JP2001236945A - Lithium battery electrode, its manufacturing method, and battery using the same - Google Patents

Lithium battery electrode, its manufacturing method, and battery using the same

Info

Publication number
JP2001236945A
JP2001236945A JP2000043689A JP2000043689A JP2001236945A JP 2001236945 A JP2001236945 A JP 2001236945A JP 2000043689 A JP2000043689 A JP 2000043689A JP 2000043689 A JP2000043689 A JP 2000043689A JP 2001236945 A JP2001236945 A JP 2001236945A
Authority
JP
Japan
Prior art keywords
electrode
battery
hole
metal foil
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000043689A
Other languages
Japanese (ja)
Other versions
JP4475722B2 (en
Inventor
Koji Hataya
耕二 幡谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2000043689A priority Critical patent/JP4475722B2/en
Publication of JP2001236945A publication Critical patent/JP2001236945A/en
Application granted granted Critical
Publication of JP4475722B2 publication Critical patent/JP4475722B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a lithium battery electrode having improved battery characteristics and reduced quality variation from the improvement of the permeation of an electrolyte into a battery in a battery using a membrane-like electrode manufactured by applying electrode mixture onto a metal foil, a lithium battery using the same, and a method of manufacturing the electrode. SOLUTION: An electrode (12) is manufactured by applying electrode mixture (13) containing a material for allowing a lithium ion to be electrochemically absorbed into and discharged to one side or both sides of a metal foil (14). A lithium battery uses a lithium battery electrode having partially or wholly at least one or more linear or needle-hole-like holes (16) less than 100 μm in maximum line width or maximum diameter, within 20 mm in diameter on the metal foil with the electrode mixture applied thereto and its manufacturing method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】正極と負極の少なくともいず
れか一方が、電気化学的にリチウムイオンを吸蔵放出可
能な物質を含む電極からなるリチウム一次電池もしくは
二次電池に関し、より詳しく言えば有機電解液を使用し
負極がリチウムイオンを吸蔵放出可能な炭素材料からな
るリチウムイオン二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium primary battery or a secondary battery in which at least one of a positive electrode and a negative electrode comprises an electrode containing a substance capable of occluding and releasing lithium ions electrochemically, and more specifically, an organic electrolyte. The present invention relates to a lithium ion secondary battery in which a negative electrode is made of a carbon material capable of inserting and extracting lithium ions.

【0002】[0002]

【従来の技術】近年、ポータブル電話機、ビデオカメ
ラ、ノート型パソコン等の小型化および携帯化、あるい
は電気自動車の実用化に向けて、より高エネルギー密度
の蓄電池が要望されているが、その中でも3V以上の出
力が可能な有機電解液電池は期待されている。その代表
例としては現在既に上市されているリチウムイオン二次
電池が挙げられる。これらの有機電解液電池の正極に
は、LiMn24等のスピネル構造化合物や、一般的に
LiMO2で表せられるα−NaFeO2構造を有するリ
チウム遷移金属複合酸化物等が利用できる。ここでMは
Co、Ni、Al、Mn、Ti、Fe等から選ばれる単
独もしくは2種類以上の金属元素である。さらにはリチ
ウムの挿入可能なMnO2やV25等の金属酸化物やT
iS2やZnS2等の金属硫化物、電気化学的酸化還元活
性を有するポリアニリンやポリピロール等のπ共役系高
分子、分子内に硫黄−硫黄結合の形成−開裂を利用する
ジスルフィド化合物等を用いることも可能である。一方
負極としては、金属リチウムもしくは各種リチウム合
金、あるいはリチウムを吸蔵放出可能な金属酸化物や炭
素材料を用いることができる。とりわけ繰り返し充放電
が可能なリチウムイオン二次電池に於いては負極に炭素
材料が使用されることが一般的であるが、炭素材料とし
ては天然に産出される黒鉛もしくは有機原料を2000
℃以上の高温で焼成し、グラファイト構造が発達した平
坦な電位特性を有する黒鉛系炭素材料、あるいは有機原
料を1000℃以下の比較的低温で焼成し、黒鉛系材料
よりも大きな充放電容量が期待できるコークス系炭素材
料等が用いられる。
2. Description of the Related Art In recent years, storage batteries with higher energy density have been demanded for miniaturization and portability of portable telephones, video cameras, notebook personal computers, and the like, or for practical use of electric vehicles. Organic electrolyte batteries capable of the above outputs are expected. A typical example is a lithium-ion secondary battery that is already on the market. For the positive electrode of these organic electrolyte batteries, a spinel structure compound such as LiMn 2 O 4 or a lithium transition metal composite oxide generally having an α-NaFeO 2 structure represented by LiMO 2 can be used. Here, M is a single metal element or two or more metal elements selected from Co, Ni, Al, Mn, Ti, Fe and the like. Further, metal oxides such as MnO 2 and V 2 O 5 into which lithium can be inserted, and T
Use of metal sulfides such as iS 2 and ZnS 2 , π-conjugated polymers such as polyaniline and polypyrrole having electrochemical redox activity, and disulfide compounds utilizing formation and cleavage of sulfur-sulfur bonds in the molecule Is also possible. On the other hand, as the negative electrode, metallic lithium or various lithium alloys, or a metal oxide or a carbon material capable of inserting and extracting lithium can be used. In particular, in a lithium ion secondary battery capable of repeatedly charging and discharging, it is common to use a carbon material for the negative electrode. As the carbon material, naturally produced graphite or an organic raw material is used.
Baking at a high temperature of ℃ or higher, graphite-based carbon material with developed graphite structure and flat potential characteristics, or baking an organic material at a relatively low temperature of 1000 ℃ or less, expected to have higher charge / discharge capacity than graphite-based material A coke-based carbon material that can be used is used.

【0003】上記電極には、電極の電子伝導性を向上さ
せる目的として、粉末や繊維状の金属もしくは炭素粉末
を加える場合がある。金属としては、銅、銀、アルミ等
が、炭素としては、黒鉛、カーボンブラック、アセチレ
ンブラック、ケッチェンブラック等を用いることができ
る。また電極の製造方法としては、結着剤の役目をする
少量の高分子材料、例えばポリフッ化ビニリデン(PV
DF)を1−メチル−2−ピロリドン等の溶剤に溶解し
たものに、各種活物質および適宜炭素や金属の微粉体か
らなる導電助剤を分散させてペースト状にした電極合剤
を用意する。それを電極芯材となる厚さ数十μmの金属
箔の両面又は片面に塗布した後、有機溶剤を除去するこ
とにより金属箔上に活物質を含む電極合剤層を形成させ
る方法が一般的である。その他の結着剤の例としては、
エチレンプロピレン−ジエンタ−ポリマー(EPゴ
ム)、フッ化ビニリデン−プロピレン共重合体やフッ化
ビニリデン−ヘキサフルオロプロピレン共重合体等の各
種フッ素ゴム等が挙げられる。その他では、ポリテトラ
フルオロエチレン(PTFE)やSBR、NBR等の高
分子のラテックスやディスパージョンに、ポリアクリル
酸ナトリウムやカルボキシメチルセルロース(CMC)
等の水溶性高分子を増粘剤として加えたものを結着剤と
して利用する方法もある。また電極芯材は集電体とも呼
ばれ、正極側にはアルミ箔が、一方負極側には銅箔が用
いられることが多い。塗布−乾燥直後の電極では、乾燥
過程で溶剤が抜けることにより、電極内に空隙が生じ、
充填率が低くなりすぎる場合がある。その場合、電極の
機械強度が低いため電極合剤が剥げ落ちやすいことや、
電極合剤中の粒子同士の接触が弱いため電極の電子伝導
性が不十分となる等の不都合がある。そのためロールプ
レス等の加圧成型を施す場合が多い。この加圧成型で
は、一回もしくは複数回に分けて所望の厚みまで加工し
電極の充填率を高める。この様にして製造されるリチウ
ムイオン電池用電極は、金属箔上の電極合剤部の厚みは
100μm前後であり、厚さの誤差が数μm以内で非常
に平滑な多孔質性の電極となる。これらの正極と負極と
を両者が対向する形で、隔膜となる高分子製の微孔質フ
ィルムを介して、形が崩れないように高密度に何層にも
しっかり巻き取り、それを金属製の電池缶に挿入し、最
終的に電解液を注入した後、機械的な方法でカシメる
か、もしくはレーザー溶接等の方法で完全に密閉するこ
とにより電池が製造される。その他、短冊状に切り抜い
た電極を隔膜を介してかさね合わせたものを一層もしく
は複数層積層させた構造を有する電池や、あるいはアル
ミ箔等の表面にポリマーシートをラミネートしたフィル
ムを袋状に加工したものを金属製の電池缶の代わりに用
いる場合もある。ここで隔膜としては、1μm以下の細
孔を有する厚さ100μm以下のポリプロピレンやポリ
エチレン製の微孔質膜が使用される場合が多いが、PV
DFやPTFE製の微孔質膜を用いることも可能であ
る。
In some cases, powder, fibrous metal or carbon powder is added to the above-mentioned electrode in order to improve the electron conductivity of the electrode. As the metal, copper, silver, aluminum or the like can be used, and as the carbon, graphite, carbon black, acetylene black, Ketjen black or the like can be used. As a method of manufacturing an electrode, a small amount of a polymer material serving as a binder, for example, polyvinylidene fluoride (PV
DF) is dissolved in a solvent such as 1-methyl-2-pyrrolidone, and an electrode mixture is prepared by dispersing various active materials and a conductive assistant made of fine powder of carbon or metal as appropriate into a paste. After applying it on both sides or one side of a metal foil having a thickness of several tens of μm as an electrode core material, a method of forming an electrode mixture layer containing an active material on the metal foil by removing an organic solvent is generally used. It is. Examples of other binders include:
Various fluorine rubbers such as ethylene propylene-dienter polymer (EP rubber), vinylidene fluoride-propylene copolymer and vinylidene fluoride-hexafluoropropylene copolymer are exemplified. Others include sodium polyacrylate and carboxymethylcellulose (CMC) in latexes and dispersions of polymers such as polytetrafluoroethylene (PTFE), SBR, and NBR.
A method in which a water-soluble polymer such as the above is added as a thickener is used as a binder. The electrode core material is also called a current collector, and an aluminum foil is often used on the positive electrode side and a copper foil is often used on the negative electrode side. In the electrode immediately after coating and drying, voids are generated in the electrode due to the removal of the solvent during the drying process,
The filling rate may be too low. In that case, the electrode mixture is easily peeled off due to the low mechanical strength of the electrode,
Since the contact between the particles in the electrode mixture is weak, there are disadvantages such as insufficient electron conductivity of the electrode. Therefore, pressure molding such as a roll press is often performed. In this pressure molding, processing is performed once or a plurality of times to a desired thickness to increase the filling rate of the electrode. The electrode for a lithium ion battery manufactured in this manner is a very smooth porous electrode in which the thickness of the electrode mixture portion on the metal foil is about 100 μm, and the thickness error is within several μm. . The positive and negative electrodes are opposed to each other, and are wound tightly into a high-density layer through a polymer microporous film that serves as a diaphragm. After the battery is inserted into the battery can and finally injected with the electrolytic solution, the battery is manufactured by caulking with a mechanical method or completely sealing by a method such as laser welding. In addition, a battery having a structure in which one or a plurality of layers obtained by laminating electrodes cut in a strip shape via a diaphragm or a film in which a polymer sheet is laminated on the surface of an aluminum foil or the like was processed into a bag shape. In some cases, a metal battery can be used instead of a metal battery can. Here, a polypropylene or polyethylene microporous membrane having a thickness of 100 μm or less having pores of 1 μm or less is often used as the diaphragm.
It is also possible to use a microporous membrane made of DF or PTFE.

【0004】一方電解液としては、通常リチウム塩を有
機溶媒に溶解したものが用いられる。リチウム塩として
は、おもにLiClO4、LiPF6、LiBF4、Li
CF3SO3等が使用され、有機溶媒としてはエチレンカ
ーボネート、プロピレンカーボネート、γ−ブチロラク
トン、スルホラン、ジエチルカーボネート、ジメチルカ
ーボネート、エチルメチルカーボネート、ジメトキシエ
タン、ジエトキシエタン、2−メチル−テトラヒドロフ
ラン、各種グライム類等を単独もしくは2種類以上混合
したものが用いられる。また電解液の注入は一般に減圧
下で行われる。具体的には電池内部を減圧にしておき、
そこに電解液を注入した後、常圧に戻すことにより電池
内部まで電解液を浸透させる。しかしながら、上記のよ
うにリチウムイオン電池では、電池缶内に薄膜状で平滑
な電極や隔膜がかなり高密度に充填されており、この様
な減圧下における注入でも電解液の浸透が必ずしも十分
ではなく、最終的な電池性能のバラツキを低減させるた
め、40℃〜80℃程度で一定時間電池を加熱するエー
ジングと呼ばれる処理を施すことが多い。この様な電解
液の注入工程およびその結果得られる電池内の電解液の
浸透状態は、電池特性や品質のバラツキあるいは歩留ま
り等に対して極めて大きな影響を与える。
On the other hand, as the electrolytic solution, a solution obtained by dissolving a lithium salt in an organic solvent is usually used. Lithium salts mainly include LiClO 4 , LiPF 6 , LiBF 4 , Li
CF 3 SO 3 and the like are used, and as an organic solvent, ethylene carbonate, propylene carbonate, γ-butyrolactone, sulfolane, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, dimethoxyethane, diethoxyethane, 2-methyl-tetrahydrofuran, various glymes And the like may be used alone or in combination of two or more. The injection of the electrolyte is generally performed under reduced pressure. Specifically, the pressure inside the battery is reduced,
After the electrolyte is injected into the battery, the pressure is returned to normal pressure to allow the electrolyte to penetrate into the battery. However, in the lithium ion battery, as described above, the battery can is filled with a thin and smooth electrode and a diaphragm at a considerably high density, and the permeation of the electrolytic solution is not always sufficient even under such reduced pressure injection. In order to reduce variations in the final battery performance, a process called aging for heating the battery at about 40 ° C. to 80 ° C. for a certain time is often performed. Such a step of injecting the electrolytic solution and the resulting permeation state of the electrolytic solution in the battery have a very large effect on variations in battery characteristics and quality, yield, and the like.

【0005】[0005]

【発明が解決しようとする課題】本発明では、リチウム
イオン電池に代表される、金属箔上に電極合剤を塗布す
ることにより製造される薄膜状電極を用いた電池に於い
て、電池内への電解液に浸透状態を向上させることによ
り電池特性の向上や品質のバラツキを低下させたリチウ
ム電池用電極とそれを用いたリチウム電池及び前記電極
の製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION In the present invention, a battery using a thin-film electrode manufactured by applying an electrode mixture on a metal foil, such as a lithium ion battery, is used. It is an object of the present invention to provide a lithium battery electrode having improved battery characteristics and reduced variation in quality by improving the state of penetration into an electrolytic solution, a lithium battery using the same, and a method of manufacturing the electrode.

【0006】[0006]

【課題を解決するための手段】本発明の上記課題は下記
の発明により達成される。すなわち本発明は、(1)金
属箔の片面もしくは両面に電気化学的にリチウムイオン
を吸蔵−放出可能な物質を含む電極合剤を塗布して製造
される電極に於いて、電極合剤が塗布されている金属箔
上で直径20mm以内に、最大線幅もしくは最大径が1
00μm未満の線状もしくは針穴状の透孔の全体もしく
はその一部を少なくとも1つ以上設けたことを特徴とす
るリチウム電池用電極、(2)前記透孔を設ける前後で
金属箔部分の質量変化が1%以下であることを特徴とす
る(1)項記載のリチウム電池用電極、(3)あらかじ
め電極合剤が金属箔上に塗布されている電極に対し、電
極合剤を通して金属箔に切れ込み、もしくは針穴を設け
ることにより、金属箔上に前記透孔を設けることを特徴
とする(1)又は(2)項記載の電極の製造方法、
(4)金属箔上に透孔を設けたのち、加圧成型を行なう
ことを特徴とする(3)項記載の電極の製造方法、
(5)正極と負極の少なくとも一方に(1)〜(3)項
のいずれか1項に記載の電極を用いたことを特徴とする
リチウム電池、及び(6)電池の、正極、隔膜、負極の
電池要素が張り合わされて一体化していることを特徴と
する(5)項記載のリチウム電池を提供するものであ
る。
The above objects of the present invention can be attained by the following inventions. That is, the present invention relates to (1) an electrode manufactured by applying an electrode mixture containing a substance capable of electrochemically absorbing and releasing lithium ions to one or both surfaces of a metal foil; The maximum line width or the maximum diameter is 1 mm or less on the metal foil
An electrode for a lithium battery, wherein at least one or all of a linear or needle-shaped through hole having a diameter of less than 00 μm is provided, and (2) a mass of a metal foil portion before and after providing the through hole. (1) The electrode for a lithium battery according to (1), wherein the change is 1% or less, and (3) the electrode on which the electrode mixture is applied in advance on the metal foil is applied to the metal foil through the electrode mixture. The method for manufacturing an electrode according to (1) or (2), wherein the through hole is provided on the metal foil by providing a cut or a needle hole.
(4) The method for producing an electrode according to (3), wherein after forming a through hole on the metal foil, pressure molding is performed.
(5) A lithium battery using the electrode according to any one of (1) to (3) for at least one of a positive electrode and a negative electrode, and (6) a positive electrode, a diaphragm, and a negative electrode of a battery. (5) The battery element according to (5), wherein the battery elements are laminated and integrated.

【0007】[0007]

【発明の実施の形態】本発明のリチウム電池用電極は最
大線幅もしくは最大径が100μm未満の線状もしくは
針穴状の透孔が設けられている。上記のような針穴や切
れ目等の透孔をはじめから有する金属箔を用いても構わ
ないが、このような針穴や切れ目等の透孔であれば、金
属箔上に電極合剤を塗工した後でも設けることが可能で
あり、この塗工後の方が好ましい。具体的には鋭利な刃
物や針先等により電極合剤部分も含めて電極芯材である
金属箔に切れ目や針穴を入れることにより透孔を設ける
ことが出来る。すなわち針穴を開けることや切れ目を入
れる等の切り取られる部分がほとんど無い開孔方法であ
れば、透孔を設ける製造工程においても電極合剤が抜け
落ちたり剥がれ落ちたりするような可能性は低く、電極
に与えるダメージが非常に小さい。透孔を設ける工程で
切除される部分としては、限りなくゼロに近い方が望ま
しいが、金属箔部の質量減少で1%以下であれば電極に
与えるダメージは許容できる範囲に納めることができ
る。本発明のリチウム電池用電極の製造において、開孔
工程直後及び加圧成型後の電極を断面図で、図1及び図
2にそれぞれ示す。図中12は電極であり、電極合剤1
3が、金属箔14上に塗設されている。15、16は電
極上に形成される開孔部である。金属箔上に透孔を設け
る工程は、塗布−乾燥直後、加圧成型後あるいは複数回
に分けて加圧成型する場合の途中段階のいずれに行なっ
ても良いが、透孔を開ける際に図1に示したように開孔
部15が開きすぎて電極に凹凸が生じてしまう場合があ
る。その場合は開孔工程後にロールプレス等による加圧
成型を施すことにより、図2のように狭小化開孔部16
にするとともに表面を、平坦な状態に戻すことができ
る。これにより電極合剤部の表面を平坦化することがで
きる。リチウムイオン電池に於いては電極の平坦性は極
めて重要である。平坦性に劣る電極の場合、電池全体と
しての充填率が下がってしまうことは当然であるが、そ
の他電極が隔膜を突き破ってしまったり、電池セル内で
の電極の押し付けられ方や電極間距離が不均一となり、
電池の内部抵抗にバラツキを生じてしまい、最終的に電
池特性に悪影響を与え、最悪の場合デンドライドと呼ば
れる樹枝上の金属リチウムが析出してしまう可能性もあ
る。すなわち、リチウムイオン電池においては電極が平
坦性に劣るということは致命的であると言える。
BEST MODE FOR CARRYING OUT THE INVENTION The lithium battery electrode of the present invention is provided with a linear or needle-shaped through hole having a maximum line width or a maximum diameter of less than 100 μm. A metal foil having the above-described through holes such as needle holes and cuts may be used from the beginning, but if such through holes such as the needle holes and cuts are used, the electrode mixture is coated on the metal foil. It can be provided even after processing, and it is more preferable after coating. Specifically, a through hole can be provided by making a cut or a needle hole in a metal foil as an electrode core material including an electrode mixture portion with a sharp blade or a needle point. In other words, if there is almost no portion to be cut off such as making a needle hole or making a cut, the likelihood of the electrode mixture falling off or peeling off in the manufacturing process of providing a through hole is low, Very little damage to the electrodes. It is desirable that the portion to be cut off in the step of providing the through-hole is as close to zero as possible, but if the mass of the metal foil portion is 1% or less, damage to the electrode can be kept within an acceptable range. In the production of the electrode for a lithium battery of the present invention, the electrodes immediately after the opening step and after pressure molding are shown in sectional views in FIGS. 1 and 2, respectively. In the figure, reference numeral 12 denotes an electrode;
3 is applied on the metal foil 14. Reference numerals 15 and 16 denote openings formed on the electrodes. The step of providing the through-hole on the metal foil may be performed immediately after coating and drying, after the pressure molding, or at any stage during the pressure molding in a plurality of times. As shown in FIG. 1, there is a case where the opening portion 15 is too open and the electrode has irregularities. In this case, by performing pressure molding by a roll press or the like after the hole forming step, as shown in FIG.
And the surface can be returned to a flat state. Thereby, the surface of the electrode mixture portion can be flattened. In a lithium ion battery, the flatness of the electrodes is extremely important. In the case of electrodes with poor flatness, it is natural that the filling rate of the battery as a whole will decrease, but other electrodes will break through the diaphragm, the way the electrodes are pressed in the battery cell, and the distance between the electrodes will decrease. Becomes uneven,
The internal resistance of the battery may vary, eventually affecting the battery characteristics, and in the worst case, metallic lithium on the dendritic tree may be deposited. In other words, it can be said that it is fatal that the electrode has poor flatness in the lithium ion battery.

【0008】本発明にリチウム電池用電極の製造におい
ては、前記の開孔工程後の加圧成型工程により開口部が
狭くなると同時に開電極合剤を平滑に戻すことができ
る。例えば線状の透孔の場合、一度開口した金属箔の切
断面の両端が加圧成型により接触し、透孔が見かけ上閉
じた状態であっても気体は通り抜けることが可能であ
る。具体的には透孔が線状の場合の最大線幅あるいは針
穴状である場合の最大径としては、100μm以下が望
ましく、50μm以下がより望ましく、さらには10μ
m以下がより望ましい。その下限は特に制限はないが
0.1μm程度である。ところで、従来何らかの貫通孔
を有する電極芯材を利用した電極は存在した。例えば金
属製の網、織布、不織布、パンチドメタル、ラス状金属
シート等、はじめから貫通孔を有するもの電極芯材とし
て用い電極を製造する方法である。しかし、従来のもの
は孔径が極めて大きい貫通孔を利用するものである。こ
のような貫通孔を形成した電極芯材は、金属箔に比べれ
ば高価であり、かつ実際に電極を製造する場合、通常の
バーコード法やドクターブレード法等によりペースト状
の電極合剤を金属箔上に直接塗布するような製造方法は
適用できず、電極の製造方法および製造装置を抜本的に
変更する必要があった。本発明においてリチウムイオン
電池に用いられる一般的な粉体活物質の粒径は、数μm
〜数十μm程度なので、開口部が上記範囲である場合、
同時に活物質が電極より脱落する可能性も小さくなる効
果もある。
In the production of an electrode for a lithium battery according to the present invention, the opening can be narrowed by the pressure molding step after the opening step, and at the same time, the open electrode mixture can be returned to a smooth state. For example, in the case of a linear through hole, both ends of the cut surface of the metal foil that has been opened once come into contact by pressure molding, and gas can pass through even if the through hole is apparently closed. Specifically, the maximum line width when the through-hole is linear or the maximum diameter when the through-hole is needle-shaped is preferably 100 μm or less, more preferably 50 μm or less, and further preferably 10 μm or less.
m or less is more desirable. The lower limit is not particularly limited, but is about 0.1 μm. By the way, conventionally, there has been an electrode using an electrode core material having some kind of through-hole. For example, a method of manufacturing an electrode using a metal net, a woven fabric, a nonwoven fabric, a punched metal, a lath-like metal sheet, or the like having a through hole as an electrode core material from the beginning. However, the conventional one utilizes a through hole having a very large hole diameter. An electrode core material having such a through-hole is more expensive than a metal foil, and when an electrode is actually manufactured, a paste-like electrode mixture is metallized by a normal barcode method, a doctor blade method, or the like. A manufacturing method of directly applying on a foil cannot be applied, and it has been necessary to drastically change the manufacturing method and the manufacturing apparatus of the electrode. The particle size of a general powdered active material used for a lithium ion battery in the present invention is several μm.
~ Several tens μm, so when the opening is in the above range,
At the same time, there is an effect that the possibility that the active material falls off the electrode is reduced.

【0009】本発明において、この電極上の微小な透孔
の作用については次のように推定される。上記のよう
に、リチウムイオン電池は、薄膜状の電極や隔膜が高密
度に充填されているため電解液の浸透は困難である。一
方、リチウムイオン電池に使用される電極材料は多孔質
体であり、かつ結着剤として含まれるPVDFも電解液
として使用される極性溶剤との親和性が高いため、電極
単体では正負極共に電解液の浸透性は非常に良好であ
る。また隔膜に関しても各種表面処理等が施され、電解
液に対する濡れ性は改良されている場合が多い。しかし
ながら、電池セル内に装入した時に電極に電解液が浸透
し難い。それは電池セル内に残る気泡が抜けないからで
あると推定される。すなわち事前の減圧処理にも限度が
あり、完全に気泡を抜き切ることは不可能である。そし
て電解液を注入後は、高密度に充填されたリチウムイオ
ン電池では、気泡の逃げ道が無く、電極と隔膜の間に電
解液で満たされていない部分が少なからず出来てしま
う。これが最終的に電池性能やそのバラツキの要因とな
る可能性が高い。本発明の電極上には電極合剤が塗布さ
れた面の任意の場所で、ある一定の大きさの円内に透孔
が存在しており、気泡を逃すので電解液の浸透が十分に
行われると考えられる。この場合、例えば直径20mm
程度の円の中に透孔の一部もしくは全部がひとつ以上存
在している場合、気泡は10mm移動すれば透孔に到達
し、電池セル内から放出されることとなる。
In the present invention, the effect of the fine through-holes on the electrode is presumed as follows. As described above, the lithium ion battery is difficult to penetrate the electrolyte because the thin-film electrodes and the diaphragm are densely packed. On the other hand, the electrode material used in lithium-ion batteries is a porous material, and PVDF, which is contained as a binder, also has a high affinity for the polar solvent used as an electrolytic solution. The permeability of the liquid is very good. In addition, various surface treatments and the like are applied to the diaphragm, and the wettability to the electrolytic solution is often improved. However, the electrolyte does not easily penetrate into the electrodes when inserted into the battery cells. It is presumed that this is because bubbles remaining in the battery cells do not escape. That is, there is a limit in the pre-decompression process, and it is impossible to completely remove bubbles. After the injection of the electrolytic solution, in the lithium ion battery filled at a high density, there is no escape path for bubbles, and a portion of the lithium ion battery which is not filled with the electrolytic solution is formed between the electrode and the diaphragm. This is likely to eventually cause battery performance and its variation. On the electrode of the present invention, there is a through hole in a circle of a certain size at an arbitrary place on the surface where the electrode mixture is applied, so that bubbles can escape so that the electrolyte can sufficiently penetrate. It is thought to be done. In this case, for example, a diameter of 20 mm
In the case where one or more of the through holes are present in one or more circles, the bubbles reach the through holes after being moved by 10 mm, and are discharged from the battery cells.

【0010】開孔するにあたっては、ミシン機の様なも
のを用いれば、容易に連続的な針穴状の透孔を設けるこ
とができる。一方線状の透孔に関しては、図3に示した
ような刃のある部分20と刃に抜けがある部分21を有
する円形のロータリーカッター23等を用いることによ
り、線状の透孔を連続的に設けることができる。ただし
線状の透孔の形状に関しては、直線状に限らず、曲線
状、S字状、鍵状、十字状、放射状等、あるいはこれら
を複数組み合わせたもの等何でもよく、また透孔の配列
としては、規則的であっても不規則的であっても構わな
い。本発明において前記の透孔は電池用電極の全面にわ
たってもしくは主要部に形成されるものであり、前者の
方が好ましい。一方で、前記のように本発明の主目的で
ある電池セル内からの効率的な脱泡および電解液の注入
には、前記のように電極上での透孔の分布が重要であ
る。充放電し得る電極合剤が塗布された電極上の任意の
場所で、ある一定の大きさの円内に透孔の全体もしくは
一部が必ず1個以上存在していることが望ましい。その
円の大きさとしては直径20mm以下が望ましく、さら
に望ましくは直径15mm以下であり、さらには直径1
0mm以下がより望ましい。しかしながら電極合剤が塗
工してあっても、例えば電解液が容易に浸透し得る電極
の端部付近、あるいは旋回構造を有する電池の最外周に
なる部分や電極タブに対向する部分等の実質的に電池の
充放電にほとんど関係ない部分は、上記の特徴を有して
いる必要が無いことは当然である。本発明の特徴を有す
る電極もしくは電極の製造方法は、一般的な旋回構造を
有する電池に対しても有効であるが、とりわけ正極、隔
膜、負極の電池要素があらかじめ互いに張り合わされ、
一体化されたセルを用いた電池の性能向上および品質の
安定化に対して有効である。このような一体化電池セル
の製造には高分子粉体を用いた通常の熱融着法を使用す
ることができる。すなわち電極と隔膜の間に1〜100
μm程度の高分子粉体をあらかじめ配しておき、電極と
隔膜とを重ね合わせた状態で高分子粉体の融点以上で加
熱することにより高分子粉体を溶融させ、互いに多孔質
体である電極と隔膜とを張り合わせることができる。最
終的に超乾燥雰囲気下で前記したような各種有機系電解
液を電池セル内部に浸透させた後、金属製電池缶あるい
はアルミラミネートシート製の袋等に封入することによ
り電池が製造できる。
When a hole is formed by using a machine such as a sewing machine, a continuous needle-hole-shaped through hole can be easily provided. On the other hand, as for the linear through-holes, the linear through-holes are continuously formed by using a circular rotary cutter 23 having a bladed portion 20 and a blade-removed portion 21 as shown in FIG. Can be provided. However, the shape of the linear through hole is not limited to a linear shape, but may be any shape such as a curved shape, an S shape, a key shape, a cross shape, a radial shape, or a combination of a plurality of these. May be regular or irregular. In the present invention, the through holes are formed over the entire surface or the main part of the battery electrode, and the former is preferable. On the other hand, as described above, for efficient degassing from the inside of the battery cell and injection of the electrolytic solution, which is the main object of the present invention, the distribution of the pores on the electrodes is important as described above. It is desirable that at least one or all of the through-holes be present in a circle of a certain size at any position on the electrode to which the chargeable and dischargeable electrode mixture is applied. The diameter of the circle is desirably 20 mm or less, more desirably 15 mm or less, and more desirably 1 mm or less.
0 mm or less is more desirable. However, even if the electrode mixture is applied, for example, the vicinity of the end of the electrode where the electrolyte can easily penetrate, or the outermost part of the battery having the swirl structure, or the part facing the electrode tab, etc. Naturally, it is not necessary for a portion that is hardly related to the charge and discharge of the battery to have the above characteristics. The method of manufacturing an electrode or an electrode having the features of the present invention is effective for a battery having a general swirl structure, but in particular, a positive electrode, a diaphragm, and a battery element of a negative electrode are bonded to each other in advance,
This is effective for improving the performance and stabilizing the quality of the battery using the integrated cells. For the manufacture of such an integrated battery cell, a normal heat fusion method using a polymer powder can be used. That is, between 1 and 100 between the electrode and the diaphragm.
A polymer powder of about μm is disposed in advance, and the polymer powder is melted by heating at a temperature equal to or higher than the melting point of the polymer powder in a state where the electrode and the diaphragm are overlapped, and the two are porous bodies. The electrode and the diaphragm can be bonded together. Finally, a battery can be manufactured by infiltrating the above-mentioned various organic electrolytes into the inside of the battery cell under an ultra-dry atmosphere and then enclosing the battery in a metal battery can or an aluminum laminate sheet bag.

【0011】[0011]

【実施例】以下に本発明を実施例に基づいて詳細に説明
する。また適宜本発明の効果をより明確にするための比
較例も合わせて示す。なお実施例および比較例において
は、前記に説明した隔膜の両面に正極、負極を張り合わ
せた一体型電池セルを用いた。この様な一体型電池セル
では、通常は電解液や気泡の出入りはセルの端面からの
みしか起こらず、電極上に設けた透孔の効果が容易に判
断可能となる。 LiCoO2正極の作製 正極活物質としてLiCoO2(日興ファインプロダク
ツ社製)を90gと、導電剤として黒鉛粉末(ロンザ社
製、商品名SFG−7)を7gと、結着剤としてPVD
Fを3gとを1−メチル−2−ピロリドン42gを混練
することにより電極合剤ペーストを作製した。本ペース
トを厚さ30μmのアルミ箔の片面に乾燥後の電極合剤
の質量が約20mg/cm2になるように塗布し、10
0℃で加熱することにより1−メチル−2−ピロリドン
を散逸させた。その後ロールプレス機を用いて圧縮成型
することによりLiCoO2電極を作製した。本方法で
作製したLiCoO2電極を、以下の実施例においては
単に正極と呼ぶ。また実際の電池セル作製に際しては、
部分的に電極合剤を剥がしてタブを取った100×10
0mmの大きさの電極を用いた。 炭素負極の作製 活物質として黒鉛系炭素活物質(ペトカ社製、商品名B
L924)94gと、結着剤としてPVDF6gとを1
−メチル−2−ピロリドン70gを混練することにより
電極合剤ペーストを作製した。本ペーストを厚さ20μ
mの銅箔の片面に乾燥後の電極合剤の質量が約10mg
/cm2になるように塗布し、100℃で加熱すること
により1−メチル−2−ピロリドンを散逸させた。その
後ロールプレス機で加圧成型することにより炭素電極を
作製した。本方法で作製した炭素電極を、以下の実施例
においては単に負極と呼ぶ。また実際の電池セル作製に
際しては、部分的に電極合剤を剥がしてタブを取った1
01×101mmの大きさの電極を用いた。 線状透孔の開孔 上記方法で製造した電極合剤を塗工済みの負極に対して
カッターを用いて切れ目を入れることにより、銅箔上に
線状の透孔を設けた。これを図4(a)、(b)に示し
た。図4(b)は図4(a)のA部の拡大図である。図
示のように電極合剤と銅箔の両方を貫通するように、ミ
シン目状の切れ目2を、10mm間隔の直線状に5mm
の切れ目2を5mm間隔で入れて形成した。なお、1は
電極タブである。開孔直後の透孔の線幅は最大で約30
0μm程度であった。またこの開孔工程において電極全
体の質量変化は0.1%以下であり、銅箔部分の質量変
化が1%以下であることは明らかであった。そして最終
的にもう一度ロールプレスにより加圧成型を施し電極表
面を図2で示したような平滑な状態に戻した。この加圧
成型により、電極合剤面は僅かなキズが残るもののほぼ
平滑な状態に戻り、また開孔工程で開いた銅箔上の透孔
の開口部は肉眼では見かけ上ほとんど閉じてしまった
が、光学顕微鏡で観察したところ、部分的に最大で約1
0μm程度の開口が見られた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail based on embodiments. In addition, comparative examples for further clarifying the effects of the present invention are also shown. In Examples and Comparative Examples, an integrated battery cell in which a positive electrode and a negative electrode were attached to both surfaces of the above-described diaphragm was used. In such an integrated battery cell, the entry and exit of the electrolytic solution and bubbles usually occur only from the end face of the cell, and the effect of the through-hole provided on the electrode can be easily determined. Preparation of LiCoO 2 cathode 90 g of LiCoO 2 (manufactured by Nikko Fine Products) as a cathode active material, 7 g of graphite powder (manufactured by Lonza, trade name: SFG-7) as a conductive agent, and PVD as a binder
An electrode mixture paste was prepared by kneading 3 g of F and 42 g of 1-methyl-2-pyrrolidone. This paste was applied to one side of a 30-μm-thick aluminum foil such that the mass of the electrode mixture after drying was about 20 mg / cm 2 ,
Heating at 0 ° C. allowed 1-methyl-2-pyrrolidone to dissipate. Thereafter, a LiCoO 2 electrode was produced by compression molding using a roll press machine. The LiCoO 2 electrode produced by this method is simply referred to as a positive electrode in the following examples. In actual battery cell production,
100 × 10 with tab removed by partially removing electrode mixture
An electrode having a size of 0 mm was used. Preparation of carbon negative electrode Graphite-based carbon active material (trade name B, manufactured by Petka Co., Ltd.)
L924) 94 g and 6 g of PVDF as a binder
An electrode mixture paste was prepared by kneading 70 g of -methyl-2-pyrrolidone. This paste is 20μ thick
The mass of the electrode mixture after drying on one side of
/ Cm 2 and heated at 100 ° C. to dissipate 1-methyl-2-pyrrolidone. Then, a carbon electrode was produced by press molding with a roll press machine. The carbon electrode produced by this method is simply referred to as a negative electrode in the following examples. In actual battery cell fabrication, the electrode mixture was partially peeled off and a tab was removed.
An electrode having a size of 01 × 101 mm was used. Opening of linear through-hole A linear through-hole was formed on the copper foil by making a cut using a cutter on the coated negative electrode with the electrode mixture produced by the above method. This is shown in FIGS. 4 (a) and 4 (b). FIG. 4B is an enlarged view of a portion A in FIG. As shown in the figure, a perforated cut 2 is formed in a straight line at intervals of 10 mm by 5 mm so as to penetrate both the electrode mixture and the copper foil.
Cuts 2 were formed at intervals of 5 mm. In addition, 1 is an electrode tab. The line width of the through-hole immediately after opening is up to about 30
It was about 0 μm. Also, in this opening step, it was clear that the mass change of the entire electrode was 0.1% or less and the mass change of the copper foil portion was 1% or less. Finally, pressure molding was again performed by a roll press to return the electrode surface to a smooth state as shown in FIG. Due to this pressure molding, the surface of the electrode mixture returned to an almost smooth state although slight scratches remained, and the opening of the through-hole on the copper foil opened in the opening step was almost completely closed to the naked eye. However, when observed with an optical microscope, it was partially
An opening of about 0 μm was observed.

【0012】針穴状透孔の開孔 同様に電極合剤を塗工済みの負極に対して針を用いて、
銅箔上に透孔を設けた。図5(b)は図(a)のB部の
拡大図である。具体的には電極合剤部と銅箔の両方を透
通するように、図5で示したように格子状に縦横7mm
間隔で針穴状の透孔3を設けた。この場合も開孔直後の
透孔の線幅は最大で約500μm程度であった。また開
孔工程において電極全体の質量変化は0.1%以下であ
り、銅箔部分の質量変化が1%以下であることは明らか
であった。そして最終的にもう一度ロールプレスにより
加圧成型を施し電極表面を図2で述べたような平滑な状
態に戻した。この場合も加圧成型により、電極合剤面は
僅かなキズが残るもののほぼ平滑な状態に戻り、また開
孔工程で開いた銅箔上の透孔の開口部は肉眼では見かけ
上ほとんど閉じてしまったが、光学顕微鏡で観察したと
ころ、部分的に最大で約10μm程度の開口が見られ
た。なおこの電極の透孔の格子の対角線距離は約10m
mであるので、電極上の任意の場所で直径10mmの円
内に必ず1個以上透孔が存在することになる。また針穴
状透孔に関しては、透孔の分布の最適化を目的として、
格子状の透孔の縦横間隔を変えたものも作製した。 一体化電池セルの作製 ガラス瓶中で平均粒径6μmのPVDF粉末2.5gと
エタノール47.5gを混合し、超音波洗浄機内で超音
波照射することにより、PVDF粉末を分散させた。こ
のPVDF粉末分散液をガラスシャーレに移し取り、親
水性PTFE製微孔質膜(日本ミリポア社製、商品名J
GWPメンブランフィルター)を105×105mmに
切り抜いたものを浸して両面を濡らしてPVDF粉末を
付着させた後、取り出して正極(LiCoO2正極)と
負極(炭素負極)の間に隔膜として挟み込んでガラス板
で両側から固定した。60℃で加熱及び真空乾燥してエ
タノールを散逸させた後、窒素気流中200℃×10分
間加熱して、PVDF粉末を溶融させることにより、親
水性PTFE製微孔質膜と正極及び負極を接着させ、後
記の図7断面図に表される、正極4/隔膜6/負極5が
完全に一体化した電池セルを作製した。 充放電サイクル試験方法 電池の充放電試験は25℃の恒温槽内において、充電上
限電圧を4.1Vに設定し、最大電流125mAで3時
間充電した。一方、放電は100mAの一定電流で電池
電圧が2.5Vに達するまでとした。なお充電と放電と
の間には15分間の休止時間をおいた。以下に上記の方
法で作製した一体化電池セルに、電解液を注入した電池
の充放電サイクル試験に関する実施例および比較例を示
す。
Opening of needle-hole-shaped through holes Similarly, using a needle for a negative electrode coated with an electrode mixture,
A through hole was provided on the copper foil. FIG. 5B is an enlarged view of a portion B in FIG. Specifically, as shown in FIG. 5, 7 mm in length and width, so as to penetrate both the electrode mixture portion and the copper foil.
Needle-hole-shaped through holes 3 were provided at intervals. Also in this case, the line width of the through-hole immediately after the opening was about 500 μm at the maximum. Further, it was clear that the change in mass of the entire electrode was 0.1% or less and the change in mass of the copper foil portion was 1% or less in the opening step. Finally, pressure molding was again performed by a roll press to return the electrode surface to a smooth state as shown in FIG. In this case also, the pressure mixture returns to an almost smooth state although the surface of the electrode mixture is slightly scratched, and the opening of the through hole on the copper foil opened in the opening step is almost closed to the naked eye. However, when observed with an optical microscope, an opening having a maximum size of about 10 μm was partially observed. The diagonal distance of the grid of through-holes of this electrode is about 10 m.
m, one or more through holes always exist in a circle having a diameter of 10 mm at an arbitrary position on the electrode. In addition, regarding the needle-hole-shaped through-hole, for the purpose of optimizing the distribution of the through-hole,
A lattice-shaped hole having a different vertical and horizontal distance was also manufactured. Preparation of Integrated Battery Cell In a glass bottle, 2.5 g of PVDF powder having an average particle diameter of 6 μm and 47.5 g of ethanol were mixed, and the mixture was irradiated with ultrasonic waves in an ultrasonic cleaner to disperse the PVDF powder. This PVDF powder dispersion was transferred to a glass Petri dish, and a microporous membrane made of hydrophilic PTFE (trade name: J, manufactured by Nippon Millipore Co., Ltd.)
After depositing the PVDF powder wet both sides of the GWP membrane filter) soak those cut into 105 × 105 mm, a glass plate by sandwiching a membrane between the positive electrode (LiCoO 2 positive electrode) and the negative electrode (carbon negative electrode) is taken out And fixed from both sides. After heating and vacuum drying at 60 ° C to dissipate the ethanol, it is heated in a nitrogen stream at 200 ° C for 10 minutes to melt the PVDF powder, thereby bonding the hydrophilic PTFE microporous membrane to the positive and negative electrodes. As a result, a battery cell in which the positive electrode 4 / diaphragm 6 / negative electrode 5 was completely integrated as shown in the sectional view of FIG. 7 described later was produced. Charge / discharge cycle test method In the charge / discharge test of the battery, the battery was charged at a maximum current of 125 mA for 3 hours in a constant temperature bath at 25 ° C. with a charging upper limit voltage of 4.1 V. On the other hand, discharging was performed until the battery voltage reached 2.5 V at a constant current of 100 mA. In addition, a pause of 15 minutes was provided between charging and discharging. Hereinafter, Examples and Comparative Examples relating to a charge / discharge cycle test of a battery in which an electrolyte is injected into the integrated battery cell manufactured by the above method will be described.

【0013】実施例1 露点−60℃以下の乾燥空気中で、銅箔に線状の透孔を
設けた負極を用いた上記の一体化電池セルを耐圧容器に
いれ、全体をドライ真空ポンプを用いて約100kPa
まで減圧しておき、そこに電池が完全に漬かるように、
1MのLiPF 6を含む体積比1:1のエチレンカーボ
ネートとジエチルカーボネートからなる電解液を導入し
た。減圧状態のまま3分間および常圧に戻し3分間放置
した後、ドライ真空ポンプを用いてさらに1分間減圧処
理をした。その後常圧で10分間放置した後に電池セル
を電解液より取り出し、最終的に図6、7のようなアル
ミラミネートシート製の外装材7に減圧封入とすること
により、フィルム状リチウムイオン電池11を作製し
た。図中8は正極タブ、9は負極タブ、10は熱融着封
口部である。このような電池を6個作製し、充放電サイ
クル試験を行った。本電池を電池A群とし以下の実施例
および比較例と合わせて表1に充放電試験の結果をまと
める。 比較例1 銅箔上に透孔を持たない負極を用いた一体化電池セルに
対して、実施例1と同様にあらかじめ電池を減圧状態に
する方法を用いて電解液を浸透させた。これについて
も、実施例1と同様にアルミラミネートシート製の外装
材に減圧封入することによりフィルム状リチウムイオン
電池を作製した。本電池についても合計6個作製し、充
放電サイクル試験を行った。以下これらを電池B群とす
る。
EXAMPLE 1 In a dry air having a dew point of -60 ° C. or less, a linear through hole was formed in a copper foil.
The above-mentioned integrated battery cell using the negative electrode provided
The whole is about 100 kPa using a dry vacuum pump.
Until the battery is completely immersed in it,
1M LiPF 6Ethylene carb containing 1: 1 by volume
And an electrolyte solution consisting of diethyl carbonate and diethyl carbonate.
Was. Reduced pressure for 3 minutes and return to normal pressure for 3 minutes
After that, the pressure was reduced for 1 minute using a dry vacuum pump.
Made sense. After leaving the battery at normal pressure for 10 minutes,
From the electrolytic solution, and finally, as shown in FIGS.
Encapsulation under reduced pressure in the exterior material 7 made of a laminate sheet
To produce a film-shaped lithium-ion battery 11
Was. In the figure, 8 is a positive electrode tab, 9 is a negative electrode tab, and 10 is heat sealing.
Mouth. Six such batteries were fabricated and charged and discharged.
Kul test was performed. The following examples were made with this battery as battery group A.
Table 1 summarizes the results of the charge / discharge test along with the comparative examples.
Confuse. Comparative Example 1 For an integrated battery cell using a negative electrode having no pores on a copper foil
On the other hand, the battery was previously depressurized in the same manner as in Example 1.
The electrolyte was infiltrated using the method described above. about this
In the same manner as in Example 1, an aluminum laminate sheet
Lithium ion film
A battery was manufactured. A total of six batteries were also manufactured and charged.
A discharge cycle test was performed. Hereinafter, these are referred to as battery group B.
You.

【0014】実施例2 銅箔に線状の透孔を設けた負極を用いた一体化電池セル
を、常圧下で電解液に5分間浸漬させ、その後ドライ真
空ポンプを用いて2分間減圧処理を行った。その後常圧
で10分間放置した後に電池セルを電解液より取り出
し、実施例1と同様にアルミラミネートシート製の外装
材に減圧封入することによりフィルム状リチウムイオン
電池を作製した。本電池についても合計6個作製し、充
放電サイクル試験を行った。以下これらを電池C群とす
る。 比較例2 銅箔に透孔を持たない負極を用いた一体化電池セルに対
して、実施例2と同様な方法を用いてセル内に電解液を
浸透させた。これについても、実施例1と同様にアルミ
ラミネートシート外装材に減圧封入することによりフィ
ルム状リチウムイオン電池を作製した。本電池について
も合計6個作製し、充放電サイクル試験を行った。以下
これらを電池D群とする。
Example 2 An integrated battery cell using a negative electrode provided with a linear through hole in a copper foil was immersed in an electrolytic solution at normal pressure for 5 minutes, and then subjected to a pressure reduction treatment for 2 minutes using a dry vacuum pump. went. After leaving the battery at normal pressure for 10 minutes, the battery cell was taken out of the electrolytic solution, and sealed in an aluminum laminate sheet packaging material under reduced pressure in the same manner as in Example 1 to produce a film-shaped lithium ion battery. A total of six batteries were also manufactured and subjected to a charge / discharge cycle test. Hereinafter, these are referred to as a battery C group. Comparative Example 2 An electrolytic solution was permeated into a cell using a method similar to that of Example 2 for an integrated battery cell using a negative electrode having no holes in the copper foil. Also in this case, a film-like lithium-ion battery was produced by encapsulation under reduced pressure in an aluminum laminate sheet exterior material in the same manner as in Example 1. A total of six batteries were also manufactured and subjected to a charge / discharge cycle test. Hereinafter, these are referred to as a battery D group.

【0015】実施例3 銅箔上に縦横7mm間隔の格子状に針穴状の透孔を設け
た負極を用いた一体化電池セルに対して、実施例1と同
様にあらかじめ電池セルを減圧状態にする方法を用いて
電解液を浸透させた。これについても、実施例1と同様
にアルミラミネートシート製の外装材に減圧封入するこ
とによりフィルム状リチウムイオン電池を作製した。本
電池についても合計6個作製し、充放電サイクル試験を
行った。以下これらを電池E1群とし、充放電サイクル
試験の結果を表2にまとめる。 実施例4 銅箔上に縦横10mm間隔の格子状に針穴状の透孔を設
けた負極を用いた以外は、実施例3と同様な方法で6個
の電池を作製し、充放電サイクル試験を行った。以下こ
れらを電池E2群とする。なおこの電極の透孔の格子の
対角線距離は約15mmであるので、電極上の任意の場
所で直径15mmの円内に必ず1個以上透孔が存在す
る。 実施例5 銅箔上に縦横14mm間隔の格子状に針穴状の透孔を設
けた負極を用いた以外は、実施例3と同様な方法で6個
の電池を作製し、充放電サイクル試験を行った。以下こ
れらを電池E3群とする。なおこの電極の透孔の格子の
対角線距離は約20mmであるので、電極上の任意の場
所で直径20mmの円内に必ず1個以上透孔が存在す
る。
Example 3 For an integrated battery cell using a negative electrode in which a needle-hole-shaped through hole is provided in a grid pattern at intervals of 7 mm on a copper foil, the battery cell was previously decompressed in the same manner as in Example 1. The electrolyte solution was permeated using the method described in (1). Also in this case, a film-like lithium-ion battery was produced by encapsulation under reduced pressure in an exterior material made of an aluminum laminated sheet in the same manner as in Example 1. A total of six batteries were also manufactured and subjected to a charge / discharge cycle test. Hereinafter, these are referred to as a battery E1 group, and the results of the charge / discharge cycle test are summarized in Table 2. Example 4 Six batteries were produced in the same manner as in Example 3 except that a negative electrode having a needle-hole-shaped through hole formed in a grid pattern at intervals of 10 mm in length and width on a copper foil was used, and a charge / discharge cycle test was performed. Was done. Hereinafter, these are referred to as a battery E2 group. Since the diagonal distance of the grid of through-holes of this electrode is about 15 mm, one or more through-holes always exist in a circle having a diameter of 15 mm at any place on the electrode. Example 5 Six batteries were prepared in the same manner as in Example 3 except that a negative electrode having a needle-hole-shaped through-hole formed in a lattice at intervals of 14 mm in length and width on a copper foil was used, and a charge / discharge cycle test was performed. Was done. Hereinafter, these are referred to as a battery E3 group. Since the diagonal distance of the grid of through-holes of this electrode is about 20 mm, one or more through-holes always exist in a circle having a diameter of 20 mm at any place on the electrode.

【0016】比較例3 銅箔上に縦横18mm間隔の格子状に針穴状の透孔を設
けた負極を用いた以外は、実施例3と同様な方法で6個
の電池を作製し、充放電サイクル試験を行った。以下こ
れらを電池E4群とする。なおこの電極の透孔の格子の
対角線距離は約25mmであるので、電極上の任意の場
所で半径25mmの円内に必ず1個以上透孔が存在す
る。
Comparative Example 3 Six batteries were prepared in the same manner as in Example 3 except that a negative electrode having a needle-like through hole formed in a lattice pattern at intervals of 18 mm in length and width on a copper foil was used. A discharge cycle test was performed. Hereinafter, these are referred to as a battery E4 group. Since the diagonal distance of the grid of through-holes of this electrode is about 25 mm, one or more through-holes always exist within a circle having a radius of 25 mm at any place on the electrode.

【0017】充放電サイクル試験結果 表1に電池A〜E群までの充放電試験の結果を示す。表
1および表2から分かるように負極の銅箔に線状もしく
は針穴状の透孔を有する電池の方から明らかに高性能で
ある。具体的には電池A群、C群、E1〜E3群では、
初期5サイクル目の放電容量が大きく、かつバラツキも
小さい。また200サイクル後でも90%前後の放電容
量を維持している。一方電池C群よりも、あらかじめ減
圧しておき電解液に浸漬させた電池A群の方が、僅かな
がら特性が良いようではあるが、これは非常に小さい差
であり、透孔を有する電極を用いた場合、必ずしも前も
って注液時に減圧処理する必要が無いと言える。このこ
とは電解液の注液工程および注液装置の簡略化につなが
ると言える。続いて、負極の銅箔に透孔を持たない電池
B、D群について見てみると、減圧下で電解液を導入し
た電池B群はそこそこの特性を示した。しかしながら銅
箔に透孔を有する電池A群、C群、E1〜E4群と比較
すると放電容量も小さく、かつバラツキも大きい。また
200サイクル後には放電容量は70%程度まで低下し
てしまった。一方銅箔に透孔を持たず、かつ減圧下注液
していない電池D群は、他に比べて極端に性能が劣りま
たバラツキも大きい。これは電極集電体箔に透孔が無い
場合、電池セル端部より電解液がある程度浸透しまった
後では、電池内に残存する気泡を除くことが非常に困難
であるためと推測させる。一方、金属箔上の透孔の分布
の影響に関しては、表2に示した電池E1〜E4群のど
の場合も、透孔を有しない電池B群より特性が良いこと
は明らかである。しかしながら透孔を密にもつ電池の方
が、放電容量も大きくバラツキも小さい。具体的には直
径20mmの円内に必ず透孔が存在するようにした電池
E3群までは、かなり特性の良い試験結果であったが、
直径25mmの円内に必ず透孔が存在するようにした電
池E4群では、電池性能およびその安定性に若干劣るよ
うである。
Charge / discharge cycle test results Table 1 shows the results of the charge / discharge test for the batteries A to E. As can be seen from Tables 1 and 2, the performance is clearly higher from the battery having a linear or needle-shaped through hole in the copper foil of the negative electrode. Specifically, in the batteries A, C, and E1 to E3,
The discharge capacity at the initial 5th cycle is large and the variation is small. Further, the discharge capacity is maintained at about 90% even after 200 cycles. On the other hand, although it seems that the characteristics of the battery group A, which was previously reduced in pressure and immersed in the electrolytic solution, were slightly better than those of the battery group C, this was a very small difference. When it is used, it can be said that it is not always necessary to perform the decompression treatment before injection. This can be said to lead to simplification of the electrolyte injection step and the injection apparatus. Subsequently, looking at the batteries B and D having no holes in the copper foil of the negative electrode, the batteries B in which the electrolytic solution was introduced under reduced pressure showed moderate characteristics. However, compared to the batteries A, C, and E1 to E4 having the copper foil, the discharge capacity is small and the variation is large. After 200 cycles, the discharge capacity was reduced to about 70%. On the other hand, the battery group D, which does not have a through-hole in the copper foil and is not injected under reduced pressure, has extremely poor performance and large variation compared to the others. This is presumed to be because it is very difficult to remove air bubbles remaining in the battery after the electrolyte has penetrated to some extent from the end of the battery cell when the electrode current collector foil has no through hole. On the other hand, with respect to the influence of the distribution of the through-holes on the metal foil, it is clear that all of the batteries E1 to E4 shown in Table 2 have better characteristics than the battery B having no through-hole. However, a battery having a dense through-hole has a larger discharge capacity and smaller variation. Specifically, up to the battery E3 group in which the through-hole was always present in a circle having a diameter of 20 mm, the test results showed considerably good characteristics.
In the group of batteries E4 in which the through holes are always present in a circle having a diameter of 25 mm, the battery performance and its stability seem to be slightly inferior.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【発明の効果】以上のような実施例および比較例から、
電極芯材である金属箔に透孔を持たせることによりセル
内への電解液の導入が容易になり、電池性能の向上およ
び品質の安定化につながることは明らかである。また金
属箔上の透孔は、開口率等は重要ではなく、本明細書中
で示したように最低限気泡が通り抜けることができる本
発明の特徴を有する透孔が一定の分布状態で存在してい
ればよい。そのような透孔は本発明の方法を用いること
により、通常の金属箔上に電極合剤を塗布した後の電極
に対しても、電極合剤面を平滑な状態に保ったまま設け
ることが可能である。したがって本発明の有用性は極め
て普遍的かつ広範囲におよぶと言える。なお本明細書で
は、主に正極/隔膜/負極が完全に一体化した電池セル
について適用した場合を示したが、通常の旋回型の内部
構造を有する金属製電池缶を用いたリチウムイオン電池
に対しても有用である。すなわちこの様な旋回型の電池
の場合では、気泡の抜け道は旋回構造の端面方向にしか
無いが、電極芯材の金属箔上に本発明の方法および特徴
を有する透孔を設けることにより旋回構造の直径方向に
も気泡が移動可能となる。またさらに電解液の注入が困
難な大型の電池に関しても、一定パターンの透孔を設け
ることにより電池セルの大きさに関わらず注液工程が極
めて容易になり、その結果安定した品質の電池の製造が
可能になることは容易に類推できる。
From the above Examples and Comparative Examples,
It is clear that providing the metal foil as the electrode core material with a hole facilitates the introduction of the electrolytic solution into the cell, leading to an improvement in battery performance and a stabilization of quality. In addition, in the through-holes on the metal foil, the aperture ratio and the like are not important, and as shown in the present specification, at least the through-holes having the characteristics of the present invention through which bubbles can pass exist in a constant distribution state. It should just be. By using the method of the present invention, such through-holes can be provided while maintaining the electrode mixture surface in a smooth state, even for an electrode after applying the electrode mixture on a normal metal foil. It is possible. Therefore, the usefulness of the present invention can be said to be extremely universal and widespread. In this specification, mainly the case where the present invention is applied to a battery cell in which the positive electrode / diaphragm / negative electrode is completely integrated is shown. However, the present invention is applied to a lithium ion battery using a metal battery can having a normal swirling internal structure. It is also useful. In other words, in the case of such a revolving type battery, the escape path of air bubbles is only in the direction of the end face of the revolving structure. However, by providing a through hole having the method and features of the present invention on the metal foil of the electrode core material, the revolving structure is provided. Bubbles can also move in the diametric direction. In addition, even for large batteries where it is difficult to inject the electrolyte, the through-holes with a fixed pattern make the pouring process extremely easy regardless of the size of the battery cells, resulting in the production of batteries of stable quality. It is easy to guess that is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】開孔工程直後の電極の断面図である。FIG. 1 is a sectional view of an electrode immediately after an opening step.

【図2】加圧成型後の電極の断面図である。FIG. 2 is a sectional view of an electrode after pressure molding.

【図3】開孔に用いるロータリーカッターの正面図であ
る。
FIG. 3 is a front view of a rotary cutter used for opening holes.

【図4】負極の銅箔上の線状の透孔の形成を示す説明図
である。
FIG. 4 is an explanatory view showing the formation of a linear through hole on a copper foil of a negative electrode.

【図5】負極の銅箔上の針穴状の透孔の形成を示す説明
図である。
FIG. 5 is an explanatory view showing formation of a needle-hole-shaped through hole on a copper foil of a negative electrode.

【図6】本発明のリチウム電池の斜視図を示す。FIG. 6 shows a perspective view of the lithium battery of the present invention.

【図7】本発明のリチウム電池の断面構造を示す説明図
である。
FIG. 7 is an explanatory view showing a cross-sectional structure of the lithium battery of the present invention.

【符号の説明】[Explanation of symbols]

1 電極タブ 2 線状透孔 3 針穴状透孔 4 LiCoO2正極 5 炭素負極 6 電池隔膜 7 アルミラミネートフィルム製外装材 8 正極タブ 9 負極タブ 10 熱融着封口部REFERENCE SIGNS LIST 1 electrode tab 2 linear through hole 3 needle hole through hole 4 LiCoO 2 positive electrode 5 carbon negative electrode 6 battery diaphragm 7 aluminum laminate film exterior material 8 positive electrode tab 9 negative electrode tab 10 heat sealing sealing part

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H017 BB06 CC03 DD08 EE01 5H029 AJ01 AJ14 AK03 AL06 AM03 AM04 AM05 AM07 CJ03 CJ06 CJ22 DJ07 DJ14 EJ01 5H050 AA01 AA19 BA17 CA09 CB07 FA02 FA10 GA03 GA04 GA08 GA22 HA04  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H017 BB06 CC03 DD08 EE01 5H029 AJ01 AJ14 AK03 AL06 AM03 AM04 AM05 AM07 CJ03 CJ06 CJ22 DJ07 DJ14 EJ01 5H050 AA01 AA19 BA17 CA09 CB07 FA02 FA10 GA03 GA04 GA08 GA22 HA04

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 金属箔の片面もしくは両面に電気化学的
にリチウムイオンを吸蔵−放出可能な物質を含む電極合
剤を塗布して製造される電極に於いて、電極合剤が塗布
されている金属箔上で直径20mm以内に、最大線幅も
しくは最大径が100μm未満の線状もしくは針穴状の
透孔の全体もしくはその一部を少なくとも1つ以上設け
たことを特徴とするリチウム電池用電極。
1. An electrode manufactured by applying an electrode mixture containing a substance capable of occluding and releasing lithium ions electrochemically to one or both surfaces of a metal foil, wherein the electrode mixture is applied. An electrode for a lithium battery, wherein at least one or all or a part of a linear or needle-shaped through hole having a maximum line width or a maximum diameter of less than 100 μm is provided within a diameter of 20 mm on a metal foil. .
【請求項2】 前記透孔を設ける前後で金属箔部分の質
量変化が1%以下であることを特徴とする請求項1記載
のリチウム電池用電極。
2. The electrode for a lithium battery according to claim 1, wherein a change in mass of the metal foil portion before and after providing the through hole is 1% or less.
【請求項3】 あらかじめ電極合剤が金属箔上に塗布さ
れている電極に対し、電極合剤を通して金属箔に切れ込
み、もしくは針穴を設けることにより、金属箔上に前記
透孔を設けることを特徴とする請求項1又は2記載の電
極の製造方法。
3. An electrode, in which an electrode mixture is previously applied on a metal foil, is provided with a cutout or a needle hole in the metal foil through the electrode mixture to provide the through-hole on the metal foil. The method for manufacturing an electrode according to claim 1 or 2, wherein
【請求項4】 金属箔上に透孔を設けたのち、加圧成型
を行なうことを特徴とする請求項3記載の電極の製造方
法。
4. The method for producing an electrode according to claim 3, wherein after forming a through hole on the metal foil, pressure molding is performed.
【請求項5】 正極と負極の少なくとも一方に請求項1
〜3のいずれか1項に記載の電極を用いたことを特徴と
するリチウム電池。
5. The method according to claim 1, wherein at least one of the positive electrode and the negative electrode is provided.
A lithium battery using the electrode according to any one of claims 1 to 3.
【請求項6】 電池の、正極、隔膜、負極の電池要素が
張り合わされて一体化していることを特徴とする請求項
5記載のリチウム電池。
6. The lithium battery according to claim 5, wherein the battery elements of the positive electrode, the diaphragm, and the negative electrode are laminated and integrated.
JP2000043689A 2000-02-21 2000-02-21 ELECTRODE FOR LITHIUM BATTERY, METHOD FOR PRODUCING THE SAME, AND BATTERY USING THE SAME Expired - Fee Related JP4475722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000043689A JP4475722B2 (en) 2000-02-21 2000-02-21 ELECTRODE FOR LITHIUM BATTERY, METHOD FOR PRODUCING THE SAME, AND BATTERY USING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000043689A JP4475722B2 (en) 2000-02-21 2000-02-21 ELECTRODE FOR LITHIUM BATTERY, METHOD FOR PRODUCING THE SAME, AND BATTERY USING THE SAME

Publications (2)

Publication Number Publication Date
JP2001236945A true JP2001236945A (en) 2001-08-31
JP4475722B2 JP4475722B2 (en) 2010-06-09

Family

ID=18566562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000043689A Expired - Fee Related JP4475722B2 (en) 2000-02-21 2000-02-21 ELECTRODE FOR LITHIUM BATTERY, METHOD FOR PRODUCING THE SAME, AND BATTERY USING THE SAME

Country Status (1)

Country Link
JP (1) JP4475722B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008283152A (en) * 2007-05-14 2008-11-20 Toyo Aluminium Kk Collector material, and method of manufacturing the same
JP2010044896A (en) * 2008-08-11 2010-02-25 Fuji Heavy Ind Ltd Power storage device
US20100110612A1 (en) * 2006-10-17 2010-05-06 Maxwell Technologies, Inc. Electrode for energy storage device
JP2010205524A (en) * 2009-03-03 2010-09-16 Nissan Motor Co Ltd Thin battery
JP2011066324A (en) * 2009-09-18 2011-03-31 Daihatsu Motor Co Ltd Electrochemical cell
JP2011159642A (en) * 2010-01-29 2011-08-18 Nec Tokin Corp Electrochemical device
US8310810B2 (en) 2007-12-06 2012-11-13 Mitsubishi Electric Corporation Electric double-layer capacitor including holes penetrating a negative electrode current collector and method of producing same
JP2013073763A (en) * 2011-09-27 2013-04-22 Mitsubishi Motors Corp Secondary battery
JP2013074164A (en) * 2011-09-28 2013-04-22 Daihatsu Motor Co Ltd Electrochemical cell
WO2014192637A1 (en) * 2013-05-31 2014-12-04 株式会社安永 Electrode for non-aqueous electrolyte secondary battery, and manufacturing method of electrode for non-aqueous electrolyte secondary battery
WO2015107893A1 (en) * 2014-01-15 2015-07-23 パナソニックIpマネジメント株式会社 Electrochemical element and method for manufacturing same
JP2015138614A (en) * 2014-01-21 2015-07-30 日産自動車株式会社 Method for manufacturing battery electrode, battery electrode, and secondary battery
JP2019102379A (en) * 2017-12-07 2019-06-24 三菱マテリアル株式会社 Power storage device
KR20200124253A (en) * 2018-02-22 2020-11-02 제이에무에나지 가부시키가이샤 Power storage device, negative electrode for power storage device, and manufacturing method thereof

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100110612A1 (en) * 2006-10-17 2010-05-06 Maxwell Technologies, Inc. Electrode for energy storage device
JP2008283152A (en) * 2007-05-14 2008-11-20 Toyo Aluminium Kk Collector material, and method of manufacturing the same
US8310810B2 (en) 2007-12-06 2012-11-13 Mitsubishi Electric Corporation Electric double-layer capacitor including holes penetrating a negative electrode current collector and method of producing same
JP2010044896A (en) * 2008-08-11 2010-02-25 Fuji Heavy Ind Ltd Power storage device
JP2010205524A (en) * 2009-03-03 2010-09-16 Nissan Motor Co Ltd Thin battery
JP2011066324A (en) * 2009-09-18 2011-03-31 Daihatsu Motor Co Ltd Electrochemical cell
JP2011159642A (en) * 2010-01-29 2011-08-18 Nec Tokin Corp Electrochemical device
JP2013073763A (en) * 2011-09-27 2013-04-22 Mitsubishi Motors Corp Secondary battery
JP2013074164A (en) * 2011-09-28 2013-04-22 Daihatsu Motor Co Ltd Electrochemical cell
WO2014192637A1 (en) * 2013-05-31 2014-12-04 株式会社安永 Electrode for non-aqueous electrolyte secondary battery, and manufacturing method of electrode for non-aqueous electrolyte secondary battery
JPWO2014192637A1 (en) * 2013-05-31 2017-02-23 株式会社安永 Non-aqueous electrolyte secondary battery electrode and method for producing non-aqueous electrolyte secondary battery electrode
WO2015107893A1 (en) * 2014-01-15 2015-07-23 パナソニックIpマネジメント株式会社 Electrochemical element and method for manufacturing same
JPWO2015107893A1 (en) * 2014-01-15 2017-03-23 パナソニックIpマネジメント株式会社 Electrochemical element and manufacturing method thereof
JP2015138614A (en) * 2014-01-21 2015-07-30 日産自動車株式会社 Method for manufacturing battery electrode, battery electrode, and secondary battery
JP2019102379A (en) * 2017-12-07 2019-06-24 三菱マテリアル株式会社 Power storage device
JP7015977B2 (en) 2017-12-07 2022-02-04 三菱マテリアル株式会社 Power storage device
KR20200124253A (en) * 2018-02-22 2020-11-02 제이에무에나지 가부시키가이샤 Power storage device, negative electrode for power storage device, and manufacturing method thereof
EP3758033A4 (en) * 2018-02-22 2021-12-08 Musashi Energy Solutions Co., Ltd. Power storage device, power storage device electrode, and method for manufacturing said power storage device and power storage device electrode
KR102574080B1 (en) 2018-02-22 2023-09-07 무사시 에너지 솔루션즈 가부시키가이샤 Electrical storage device, negative electrode for electrical storage device, and manufacturing method thereof

Also Published As

Publication number Publication date
JP4475722B2 (en) 2010-06-09

Similar Documents

Publication Publication Date Title
KR101592355B1 (en) Secondary battery using the flexible current collector and manufacturing method of flexible current collector
JP4431304B2 (en) Lithium ion secondary battery separator and lithium ion secondary battery provided with the same
JP3980505B2 (en) Thin lithium ion secondary battery
JP2001135359A (en) Nonaqueous electrolyte battery
JP2003086162A (en) Separator for nonaqueous secondary battery and nonaqueous secondary battery
WO2002011217A2 (en) Particulate electrode including electrolyte for a rechargeable lithium battery
JP3471238B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP4475722B2 (en) ELECTRODE FOR LITHIUM BATTERY, METHOD FOR PRODUCING THE SAME, AND BATTERY USING THE SAME
JP2009087885A (en) Method for manufacturing positive electrode
KR20100101626A (en) Battery
JP2001266941A (en) Manufacturing method of gel electrolyte battery
JP3443773B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2002216744A (en) Nonaqueous electrolyte battery and manufacturing method of positive electrode for nonaqueous electrolyte battery
JP2007172879A (en) Battery and its manufacturing method
WO2001089023A1 (en) A lithium secondary battery comprising a super fine fibrous polymer electrolyte and its fabrication method
JP4561034B2 (en) Manufacturing method of non-aqueous electrolyte battery
KR102406390B1 (en) Method of preparing lithium metal negative electrode, lithium metal negative electrode prepared by the method, and lithium secondary battery comprising the smae
JP2007172878A (en) Battery and its manufacturing method
JP4830295B2 (en) Non-aqueous electrolyte secondary battery
JP2001210370A (en) Manufacturing method of gel electrolyte battery
JP5595322B2 (en) Separator and electrochemical device using the same
JP3516133B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JPH09259923A (en) Polymer battery and manufacture thereof
JPH10261437A (en) Polymer electrolyte and lithium polymer battery using it
JP4082103B2 (en) Method for producing non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060621

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100309

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees