JPH04230063A - Multilayer heat sink - Google Patents

Multilayer heat sink

Info

Publication number
JPH04230063A
JPH04230063A JP2416511A JP41651190A JPH04230063A JP H04230063 A JPH04230063 A JP H04230063A JP 2416511 A JP2416511 A JP 2416511A JP 41651190 A JP41651190 A JP 41651190A JP H04230063 A JPH04230063 A JP H04230063A
Authority
JP
Japan
Prior art keywords
heat sink
plate
sink
heat
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2416511A
Other languages
Japanese (ja)
Inventor
Toshihito Kobayashi
俊仁 小林
Mikio Niimi
新美 幹夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP2416511A priority Critical patent/JPH04230063A/en
Publication of JPH04230063A publication Critical patent/JPH04230063A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/331Disposition
    • H01L2224/3318Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/33181On opposite sides of the body

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To obtain a multilayer heat sink by a highly reliable soldering and to make possible a combination of a low-thermal expansion material and a high-heat conductive material by a method wherein a heat sink is formed of two kinds or more of metals or alloys and a heat sink material is bonded to the heat sink by soldering. CONSTITUTION:A plate 12 made of Cu of a high heat conductivity is soldered to a plate 11 made of Mo of a low thermal expansion coefficient using a silver solder 8 paste consisting of a compositional ratio of 45% of Ag, 15% of Cu, 16% of Zn and 24% of Cd, for example, to manufacture a multilayer heat sink 1. A power element 2 is placed on the sink 1, a ceramic substrate 3 is arranged on the opposite side to this element 2 and a fin 4 is arranged on the side of the substrate 3 which opposes to the sink 1. A heat dissipation grease 5 is mode to interpose between the substrate 3 and the film 4 and the sink 1 is bonded to the element 2 and the substrate 3 with solders 6.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、パワー素子用ヒートシ
ンクに関連し、接合部信頼性と放熱性を改善した多層ヒ
ートシンクに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat sink for power devices, and more particularly to a multilayer heat sink with improved joint reliability and heat dissipation.

【0002】0002

【従来の技術】従来、ヒートシンク材料としては、放熱
性の面からCuおよびCu合金が、はんだ接合部信頼性
の面からMoやWが用いらており、いずれもNiめっき
を施してパワー素子とAl2 O3 セラミックス基板
の間に接合される。
[Prior Art] Conventionally, as heat sink materials, Cu and Cu alloys have been used from the standpoint of heat dissipation, and Mo and W have been used from the standpoint of solder joint reliability. It is bonded between Al2O3 ceramic substrates.

【0003】Cuは熱伝導率が高く優れた放熱特性を有
するが、熱膨張係数がSiやAl2 O3 よりも3〜
4倍大きく、ハイパワーの素子が搭載される場合、熱膨
張の違いによる歪が接合材のはんだの劣化を促進してし
まう。一方、MoやWは熱膨張係数が比較的低く、はん
だ劣化を遅延させるには優れた材料であるが、熱伝導率
が低いため、Cuを用いた場合よりも放熱性の点で劣る
。 従って、両者を複合化することにより、パワー素子用に
適したヒートシンクが期待できる。
[0003]Cu has a high thermal conductivity and excellent heat dissipation properties, but its coefficient of thermal expansion is 3 to 30% lower than that of Si or Al2O3.
When a high-power element that is four times larger is mounted, distortion caused by the difference in thermal expansion accelerates the deterioration of the solder bonding material. On the other hand, Mo and W have a relatively low coefficient of thermal expansion and are excellent materials for delaying solder deterioration, but because of their low thermal conductivity, they are inferior to the case where Cu is used in terms of heat dissipation. Therefore, by combining both, a heat sink suitable for power devices can be expected.

【0004】CuとMoやWを複合させる提案としては
、MoやWを樹脂とともに成形し、樹脂を除去してポー
ラスとしたのちCuを含浸する方法や、クラッドにより
接合(CuとFe−42Ni合金が一般的)する方法が
ある。
[0004] Proposals for combining Cu with Mo or W include a method in which Mo or W is molded together with a resin, the resin is removed to make it porous, and then Cu is impregnated. There is a way to do this (commonly).

【0005】[0005]

【発明が解決しようとする問題点】前記従来技術におい
て、低熱膨張金属へのCuの含浸は工程が複雑でコスト
高をまねき、クラッド法では圧接条件が難しく、信頼性
の高い接合は望めない。特にMoおよびWは焼結インゴ
ットからの圧延によって板状に成形するため、長尺材を
得るのが難しく、さらに強固な酸化物の存在のため、異
種金属とのクラッドは困難を極める。
[Problems to be Solved by the Invention] In the prior art, impregnating low thermal expansion metal with Cu involves a complicated process and increases costs, and the cladding method requires difficult pressure welding conditions, making it impossible to achieve highly reliable bonding. In particular, since Mo and W are formed into a plate shape by rolling from a sintered ingot, it is difficult to obtain a long material, and furthermore, the presence of strong oxides makes cladding with different metals extremely difficult.

【0006】[0006]

【問題点を解決するための手段】本発明は上記の問題点
を解決するためになされたもので、少なくとも2種以上
の金属をろう接してなる多層ヒートシンクを提案するも
のである。例えばMoとCuの組合せでは、200〜3
00mm四方の板材にそれぞれNiめっきを施し、真空
もしくは、無酸素雰囲気下でろう接する。しかるのち、
切断成形することによってMoとCuが接合された小片
を得る。また、より放熱性を重視する場合には、Cu−
Mo−Cuの3層とし、それぞれの厚さを変えて各種の
多層ヒートシンクを得ることができる。ここで、Niめ
っきはろう接合部の信頼性を確保するためと、パワー素
子やAl2 O3 とはんだ接合されるときのはんだ付
け性を改善するために施される。Cu上へのはんだ付け
は耐熱性に問題があり、Moには直接はんだ接合するこ
とはできない。
[Means for Solving the Problems] The present invention has been made to solve the above problems, and proposes a multilayer heat sink made by soldering at least two or more types of metals. For example, in the combination of Mo and Cu, 200 to 3
Ni plating is applied to each 00 mm square plate material, and the plates are brazed together in a vacuum or an oxygen-free atmosphere. Afterwards,
By cutting and molding, a small piece in which Mo and Cu are bonded is obtained. In addition, when placing more emphasis on heat dissipation, Cu-
By using three layers of Mo-Cu and changing the thickness of each layer, various multilayer heat sinks can be obtained. Here, Ni plating is applied to ensure the reliability of the soldered joint and to improve the solderability when soldering to a power element or Al2O3. Soldering onto Cu has a problem with heat resistance, and direct soldering onto Mo is not possible.

【0007】以上のことから、本発明の要旨とするとこ
ろは、少なくとも2種以上の金属もしくは合金をろう接
してなる多層ヒートシンクであり、また、少なくとも1
種以上がMo、Wの金属もしくは合金およびFe−Ni
と他方が銅、銅合金よりなる多層ヒートシンクである。
From the above, the gist of the present invention is to provide a multilayer heat sink made by brazing at least two or more metals or alloys,
Metals or alloys containing at least one species of Mo and W, and Fe-Ni
and the other is a multilayer heat sink made of copper or copper alloy.

【0008】[0008]

【作用および効果】本発明により、信頼性の高いろう接
による多層ヒートシンクが得られる。さらに低熱膨張材
料と高熱伝導材料と組み合わせて、用途に応じた多層ヒ
ートシンクが製造可能である。すなわち、MoおよびW
とCuを組み合わせ、それぞれの厚さを適当に選定すれ
ば両者の特徴を生かした多層ヒートシンクが得られる。 また、Fe−Ni合金はNiの含有量によって熱膨張係
数が異なるため、Ni含有量の違う板を組み合せ、厚さ
方向で熱膨張係数が徐々に変化する複合材料を作製する
ことができる。
[Operations and Effects] According to the present invention, a highly reliable multilayer heat sink by soldering can be obtained. Furthermore, by combining low thermal expansion materials and high thermal conductivity materials, it is possible to manufacture multilayer heat sinks depending on the application. That is, Mo and W
By combining Cu and Cu and appropriately selecting the thickness of each, a multilayer heat sink that takes advantage of the characteristics of both can be obtained. Furthermore, since the Fe-Ni alloy has a different coefficient of thermal expansion depending on the Ni content, it is possible to combine plates with different Ni contents to produce a composite material whose thermal expansion coefficient gradually changes in the thickness direction.

【0009】[0009]

【実施例】以下に本発明をその一実施例に基づいて説明
する。
[Embodiment] The present invention will be explained below based on one embodiment.

【0010】(実施例1)図1において、1は熱伝導率
の高いCu製板12と、熱膨張係数が低いMo製板11
とをAg45%−Cu15%−Zn16%−Cd24%
よりなる銀ろう8ペーストによりろう接して作製した多
層ヒートシンクで、2は前記多層ヒートシンク1上に載
置されたパワー素子で、3は前記ヒートシンク1のパワ
ー素子2とは反対側に配置されたセラミックス基板で、
4は前記セラミックス基板3の多層ヒートシンク1とは
反対側に配置されたフィンである。5はセラミックス基
板3とフィン4との間に介在させた放熱グリースで、6
は多層ヒートシンク1をパワー素子2およびセラミック
ス基板3に接合させるはんだである。
(Example 1) In FIG. 1, 1 indicates a Cu plate 12 with high thermal conductivity and a Mo plate 11 with a low coefficient of thermal expansion.
and Ag45%-Cu15%-Zn16%-Cd24%
2 is a power element placed on the multilayer heat sink 1, and 3 is a ceramic element placed on the opposite side of the heat sink 1 from the power element 2. On the board,
Reference numeral 4 denotes a fin disposed on the side of the ceramic substrate 3 opposite to the multilayer heat sink 1. 5 is heat dissipation grease interposed between the ceramic substrate 3 and the fins 4;
is a solder that joins the multilayer heat sink 1 to the power element 2 and the ceramic substrate 3.

【0011】より具体的に説明すると、長さ200mm
×幅200mm×厚さ0.3mmのMo板11と長さ2
00mm×幅200mm×厚さ0.2mmのCu板12
をそれぞれNiめっきし,Ag45%−Cu15%−Z
n16%−Cd24%よりなる銀ろう8ペーストを片面
に印刷した。 ここで、Niめっきは一般的なワット浴による電気めっ
き法で行い、5μmのめっき厚とした。またMo板11
へのNiめっきは密着性が得られないため、Niめっき
後にN2 −H2 混合気流中で熱処理して密着性を確
保している。
[0011] To explain more specifically, the length is 200 mm.
×Width 200mm × thickness 0.3mm Mo plate 11 and length 2
00mm x width 200mm x thickness 0.2mm Cu plate 12
were plated with Ni, Ag45%-Cu15%-Z
Silver solder 8 paste consisting of 16% N-24% Cd was printed on one side. Here, Ni plating was performed by a general electroplating method using a Watts bath, and the plating thickness was 5 μm. Also, Mo board 11
Since adhesion cannot be obtained with Ni plating, adhesion is ensured by heat treatment in a N2-H2 mixed gas flow after Ni plating.

【0012】Cu板12とMo板11を銀ろう面をあわ
せて重ね、真空熱処理炉で700℃×30分保持してろ
う接した。引き続き、該ろう接材1をダイヤモンド砥石
により切断し、7mm×7mmの形状とし、図1に示す
ように搭載した。
[0012] The Cu plate 12 and the Mo plate 11 were stacked on top of each other with their silver solder surfaces aligned, and they were held in a vacuum heat treatment furnace at 700°C for 30 minutes to braze them. Subsequently, the brazing material 1 was cut with a diamond grindstone into a shape of 7 mm x 7 mm, and mounted as shown in FIG. 1.

【0013】(実施例2)図2は熱膨張係数が低いMo
製板11の上下にさらに熱伝導率の高いCu製板12と
13をろう接により接合し3層構造としたヒートシンク
を示した図であり、他の構成は実施例1と略同じである
実施例2である。
(Example 2) FIG. 2 shows Mo having a low coefficient of thermal expansion.
It is a diagram showing a heat sink with a three-layer structure in which Cu plates 12 and 13 with higher thermal conductivity are joined by soldering to the top and bottom of a plate 11, and the other configurations are substantially the same as in Example 1. This is example 2.

【0014】より具体的に説明すると、長さ200mm
×幅200mm×厚さ0.3mmのMo板11と長さ2
00mm×幅200mm×厚さ0.3mmのCu板12
および13の2枚をそれぞれNiめっきし、Ag45%
−Cu15%−Zn16%−Cd24%よりなる銀ろう
8ペーストをCu板12および13には片面に、Mo板
11には両面に印刷した。ここで、Niめっきは一般的
なワット浴による電気めっき法で行い、5μmのめっき
厚とした。また、Mo板11へのNiめっきは密着性が
得られないためNiめっき後にN2 −H2 混合気流
中で熱処理して密着性を確保している。
[0014] To explain more specifically, the length is 200 mm.
×Width 200mm × thickness 0.3mm Mo plate 11 and length 2
00mm x width 200mm x thickness 0.3mm Cu plate 12
and 13 were each plated with Ni, with Ag45%
Silver solder 8 paste consisting of -Cu15%-Zn16%-Cd24% was printed on one side of the Cu plates 12 and 13, and on both sides of the Mo plate 11. Here, Ni plating was performed by a general electroplating method using a Watts bath, and the plating thickness was 5 μm. Further, since Ni plating on the Mo plate 11 does not provide good adhesion, the Mo plate 11 is heat-treated in a N2-H2 mixed air flow after Ni plating to ensure adhesion.

【0015】Cu板12上にMo板11さらにCu板1
2と重ね、真空熱処理炉で700℃×30分保持してろ
う接した。引続きワイヤーカット法で直径10mmの円
盤に加工した。その後、レーザフラッシュ法で熱伝導率
を測定したところ、187〔W/m・K〕と優れた熱伝
導率が得られた。なおCuおよび純Moの熱伝導率は3
98〔W/mK〕および138〔W/m・K〕である。
[0015] Mo plate 11 is further placed on Cu plate 12.
2 and held in a vacuum heat treatment furnace at 700°C for 30 minutes to perform soldering. Subsequently, it was processed into a disk with a diameter of 10 mm using a wire cutting method. Thereafter, when the thermal conductivity was measured by a laser flash method, an excellent thermal conductivity of 187 [W/m·K] was obtained. The thermal conductivity of Cu and pure Mo is 3
98 [W/mK] and 138 [W/m·K].

【0016】(実施例3)実施例2と同様に作成したC
u−Mo−Cuのろう接材を、ダイヤモンド砥石により
切断し、7mm×7mmの形状とした。また、厚さ0.
5mmのMo板から切り出して7mm×7mmの小片を
作成し、Niめっきを5μm施して比較材とした。
(Example 3) C created in the same manner as in Example 2
The u-Mo-Cu brazing material was cut with a diamond grindstone into a shape of 7 mm x 7 mm. Also, the thickness is 0.
A small piece of 7 mm x 7 mm was cut out from a 5 mm Mo board, and Ni plating was applied to 5 μm to prepare a comparative material.

【0017】これらの多層ヒートシンク1を図3に示す
如く、理想放熱を想定した積層構造に組み込み、パワー
素子2とセラミックス基板3ではさんではんだ6で接合
し、該セラミックス基板3を放熱グリース5を介してA
l製のフィン4と接触させた。さらに、パワー素子2を
発熱させ、その時の温度上昇を温度測定点7で熱電対に
より測定した。
As shown in FIG. 3, these multilayer heat sinks 1 are assembled into a laminated structure assuming ideal heat dissipation, and the power element 2 and the ceramic substrate 3 are sandwiched and bonded with solder 6, and the ceramic substrate 3 is coated with heat dissipation grease 5. via A
It was brought into contact with fins 4 made by L. Further, the power element 2 was caused to generate heat, and the temperature rise at that time was measured using a thermocouple at the temperature measurement point 7.

【0018】図4が発熱量5W、15W、25Wのとき
の温度上昇を示した図であり、比較材のMo(1b)が
1K/Wの熱抵抗を示すのに対し、本発明のCu−Mo
−Cuのろう接材(1a)では0.75K/Wへ放熱性
が改善される。
FIG. 4 is a diagram showing the temperature rise when the calorific value is 5 W, 15 W, and 25 W. While the comparative material Mo(1b) exhibits a thermal resistance of 1 K/W, the Cu- Mo
-Cu brazing material (1a) improves heat dissipation to 0.75 K/W.

【0017】[0017]

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】Cu板とMo板をろう接により接合した本発明
の二層構造のヒートシンクを用いた半導体装置の側面図
である。
FIG. 1 is a side view of a semiconductor device using a heat sink with a two-layer structure of the present invention in which a Cu plate and a Mo plate are joined by soldering.

【図2】Cu板−Mo板−Cu板をろう接により接合し
た本発明の三層構造のヒートシンクを用いた半導体装置
の側面図である。
FIG. 2 is a side view of a semiconductor device using a three-layer heat sink of the present invention in which a Cu plate, a Mo plate, and a Cu plate are bonded together by soldering.

【図3】実施例2におけるヒートシンクの熱抵抗測定積
層構造図である。
FIG. 3 is a diagram of a laminated structure for thermal resistance measurement of a heat sink in Example 2.

【図4】本発明と従来のヒートシンクの熱抵抗(発熱量
に伴う温度上昇)を示した線図である。
FIG. 4 is a diagram showing thermal resistance (temperature rise with heat generation amount) of the present invention and a conventional heat sink.

【符号の説明】[Explanation of symbols]

1  ヒートシンク 11  Mo板 12  Cu板 13  Cu板 2  パワー素子 3  セラミックス基板 4  フィン 5  放熱グリース 6  はんだ 7  温度測定点 8  ろう材 1 Heat sink 11 Mo board 12 Cu board 13 Cu board 2 Power element 3 Ceramic substrate 4 Fin 5 Heat dissipation grease 6 Solder 7 Temperature measurement point 8 Brazing filler metal

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  パワー素子がヒートシンクを介して搭
載される半導体装置において、前記ヒートシンクを少な
くとも2種以上の金属もしくは合金で形成し、該ヒート
シンク素材をろう接により接合したことを特徴とする多
層ヒートシンク。
1. A multilayer heat sink in which a power element is mounted via a heat sink, characterized in that the heat sink is formed of at least two kinds of metals or alloys, and the heat sink materials are joined by soldering. .
【請求項2】  ヒートシンクは少なくとも一方がMo
、Wの金属もしくは合金、Fe−Ni合金の1種以上か
らなることを特徴とする請求項1記載の多層ヒートシン
ク。
[Claim 2] At least one side of the heat sink is made of Mo.
, W metals or alloys, and Fe--Ni alloys.
【請求項3】  ヒートシンクは少なくとも一方がMo
、Wの金属もしくは合金、Fe−Ni合金の1種以上か
らなり、他方がCu、Cu合金の1種以上からなること
を特徴とする請求項1記載の多層ヒートシンク。
[Claim 3] At least one side of the heat sink is made of Mo.
, W, or an Fe-Ni alloy, and the other is made of one or more of Cu and a Cu alloy.
JP2416511A 1990-12-27 1990-12-27 Multilayer heat sink Pending JPH04230063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2416511A JPH04230063A (en) 1990-12-27 1990-12-27 Multilayer heat sink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2416511A JPH04230063A (en) 1990-12-27 1990-12-27 Multilayer heat sink

Publications (1)

Publication Number Publication Date
JPH04230063A true JPH04230063A (en) 1992-08-19

Family

ID=18524733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2416511A Pending JPH04230063A (en) 1990-12-27 1990-12-27 Multilayer heat sink

Country Status (1)

Country Link
JP (1) JPH04230063A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995006957A1 (en) * 1993-09-03 1995-03-09 Kabushiki Kaisha Sekuto Kagaku Radiating plate and cooling method using same
JP2007165690A (en) * 2005-12-15 2007-06-28 Fuji Electric Holdings Co Ltd Method for joining heat spreader and metal plate
WO2011001795A1 (en) * 2009-06-30 2011-01-06 住友電気工業株式会社 Metal laminate structure and process for production of metal laminate structure
US8084868B1 (en) * 2008-04-17 2011-12-27 Amkor Technology, Inc. Semiconductor package with fast power-up cycle and method of making same
US8993121B2 (en) 2010-02-19 2015-03-31 Sumitomo Electric Industries, Ltd. Metal laminated structure and method for producing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995006957A1 (en) * 1993-09-03 1995-03-09 Kabushiki Kaisha Sekuto Kagaku Radiating plate and cooling method using same
EP0716444A1 (en) * 1993-09-03 1996-06-12 Kabushiki Kaisha Sekuto Kagaku Radiating plate and cooling method using same
US5762131A (en) * 1993-09-03 1998-06-09 Kabushiki Kaisha Sekuto Kagaku Heat radiating board and method for cooling by using the same
KR100353427B1 (en) * 1993-09-03 2002-12-16 가부시키가이샤세쿠토카가쿠 Heat sink and cooling method using it
JP2007165690A (en) * 2005-12-15 2007-06-28 Fuji Electric Holdings Co Ltd Method for joining heat spreader and metal plate
US8084868B1 (en) * 2008-04-17 2011-12-27 Amkor Technology, Inc. Semiconductor package with fast power-up cycle and method of making same
WO2011001795A1 (en) * 2009-06-30 2011-01-06 住友電気工業株式会社 Metal laminate structure and process for production of metal laminate structure
JP2011011366A (en) * 2009-06-30 2011-01-20 Sumitomo Electric Ind Ltd Method of manufacturing metal laminated structure
US9199433B2 (en) 2009-06-30 2015-12-01 Sumitomo Electric Industries, Ltd. Metal laminated structure and method for producing the metal laminated structure
US8993121B2 (en) 2010-02-19 2015-03-31 Sumitomo Electric Industries, Ltd. Metal laminated structure and method for producing the same

Similar Documents

Publication Publication Date Title
JP6696215B2 (en) Bonded body, power module substrate with heat sink, heat sink, and method of manufacturing bonded body, method of manufacturing power module substrate with heat sink, and method of manufacturing heat sink
JPH07202063A (en) Ceramic circuit board
JP5957862B2 (en) Power module substrate
JP6638282B2 (en) Light emitting module with cooler and method of manufacturing light emitting module with cooler
JP2004253736A (en) Heat spreader module
TWI775075B (en) Ceramic substrate assemblies and components with metal thermally conductive bump pads
JPH04230063A (en) Multilayer heat sink
JP4951932B2 (en) Power module substrate manufacturing method
JP7299672B2 (en) Ceramic circuit board and its manufacturing method
JP4557398B2 (en) Electronic element
JPH08102570A (en) Ceramic circuit board
JP2015213097A (en) Heat radiator, manufacturing method thereof and package for storing semiconductor device
JPH08274423A (en) Ceramic circuit board
WO2016167217A1 (en) Bonded body, substrate for power module with heat sink, heat sink, method for producing bonded body, method for producing substrate for power module with heat sink, and method for producing heat sink
JP2017168635A (en) Substrate for power module and manufacturing method of power module
JPH05109947A (en) Heat conducting material and its manufacture
JP6819385B2 (en) Manufacturing method of semiconductor devices
JPH056949A (en) Heat sink
JP2503775B2 (en) Substrate for semiconductor device
JP4121827B2 (en) Method for manufacturing module structure
JP2503778B2 (en) Substrate for semiconductor device
JP6673635B2 (en) Method of manufacturing bonded body, method of manufacturing power module substrate with heat sink, method of manufacturing heat sink, and bonded body, power module substrate with heat sink, and heat sink
JPH06344131A (en) Method for joining part to semiconductor heat radiating base plate
JP4692908B2 (en) Module structure
JP2521624Y2 (en) Semiconductor device