JPH05109946A - Heat conducting material and its manufacture - Google Patents

Heat conducting material and its manufacture

Info

Publication number
JPH05109946A
JPH05109946A JP29249491A JP29249491A JPH05109946A JP H05109946 A JPH05109946 A JP H05109946A JP 29249491 A JP29249491 A JP 29249491A JP 29249491 A JP29249491 A JP 29249491A JP H05109946 A JPH05109946 A JP H05109946A
Authority
JP
Japan
Prior art keywords
thermal expansion
expansion metal
high thermal
plate
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29249491A
Other languages
Japanese (ja)
Other versions
JP3037485B2 (en
Inventor
Yasuyuki Nakamura
恭之 中村
Makoto Kawakami
川上  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP29249491A priority Critical patent/JP3037485B2/en
Priority to DE69217810T priority patent/DE69217810T2/en
Priority to EP92309275A priority patent/EP0537965B1/en
Priority to US07/959,606 priority patent/US5358795A/en
Publication of JPH05109946A publication Critical patent/JPH05109946A/en
Application granted granted Critical
Publication of JP3037485B2 publication Critical patent/JP3037485B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Insulated Metal Substrates For Printed Circuits (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To provide a heat conducting material which has good coating properties of a thin film such as plating and a brazing material without a surface fine hole, good matching properties with thermal expansion coefficient of a bonding object material such as a chip and sealing resin, and good heat conducting properties and can set thermal expansion coefficient and heat conduction rate arbitrarily in accordance wit use and purpose by realizing uniformity of heat receiving and thermal diffusion effect. CONSTITUTION:After a copper foil is pressure-welded to both sides of a kovar plate 2 in advance, a three-layer material which is acquired by shaping a number of small holes is pressure-welded to both sides of a copper plate 1 which is heated to a recrystallization temperature or higher by a heating device. Thereby, high junction strength is acquired at a small draft and specified thermal expansion coefficient and heat conduction rate can be acquired without changing a surface area ratio with a copper exposed surface 5 (through-hole) on a surface of the kovar plate 2 which is selected in advance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、半導体チップ搭載用
放熱基板やリードフレーム用材料の如く、半導体チップ
による発熱を効率良く外部に放熱するため、金属、セラ
ミックス、Si等の半導体、プラスチックス等の被着相
手材との熱膨張係数の整合性と良好な熱伝導性を両立で
きるように、熱膨張係数及び熱伝導率を任意に変化さ
せ、かつ相手材との接合性並びに表面性状のすぐれた熱
伝導複合材料に係り、低熱膨張金属板の両面に高熱膨張
金属箔を圧接して一体化したのち、厚み方向に多数の貫
通孔を設けた3層材を、常温あるいは再結晶温度以上に
加熱した高熱膨張金属板の片面または両面に圧接するこ
とにより、接合強度が高く選定したこれら金属板の厚さ
比や貫通孔面積比を変化させることなく、熱膨張係数、
熱伝導率を可変となし、受熱の均一化、熱拡散効果の向
上をはかり、表面微細孔がなくメッキやろう材など薄膜
の被着性にすぐれた熱伝導材料とその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention efficiently dissipates heat generated by a semiconductor chip to the outside, such as a heat dissipating substrate for mounting a semiconductor chip or a material for a lead frame. The thermal expansion coefficient and the thermal conductivity are changed arbitrarily so that the matching of the thermal expansion coefficient with the adherend mating material and the good thermal conductivity can both be achieved, and the bondability and surface quality with the mating material are excellent. For heat conductive composite materials, a high thermal expansion metal foil was pressed against both sides of a low thermal expansion metal plate to integrate them, and then a three-layer material with many through holes in the thickness direction was heated to room temperature or recrystallization temperature or higher. By pressing one or both sides of the heated high thermal expansion metal plate, the thermal expansion coefficient, without changing the thickness ratio or through hole area ratio of these metal plates selected with high bonding strength,
The present invention relates to a heat conductive material having a variable heat conductivity, uniform heat reception, improved heat diffusion effect, and excellent adhesion of a thin film such as plating or brazing material without surface fine pores and a manufacturing method thereof.

【0002】[0002]

【従来の技術】半導体パッケージの集積回路チップ(以
下チップ)、とりわけ大型コンピューター用のLSI
やULSIは、高集積度化、演算速度の高速化の方向に
進んでおり、作動中における消費電力の増加に伴う発熱
量が非常に大きくなっている。該チップは大容量化して
発熱量が大きくなっており、基板材料の熱膨張係数がチ
ップ材料であるシリコンやガリウムヒ素等と大きな差が
あると、チップが剥離あるいは割れを生ずる問題があ
る。
2. Description of the Related Art A semiconductor package integrated circuit chip (hereinafter referred to as a chip), especially an LSI for a large computer
2. Description of the Related Art ULSI and ULSI are advancing toward higher integration and higher calculation speed, and the amount of heat generated is extremely large due to the increase in power consumption during operation. The chip has a large capacity and a large amount of heat generation, and if the coefficient of thermal expansion of the substrate material is largely different from that of the chip material such as silicon or gallium arsenide, there is a problem that the chip peels or cracks.

【0003】これに伴ない半導体パッケージの設計も、
熱放散性を考慮したものとなり、チップを搭載する基板
にも放熱性が要求されるようになり、基板材料の熱伝導
率が大きいことが求められている。従って、基板にはチ
ップと熱膨張係数が近く、かつ熱伝導率が大きいことが
要求されている。
As a result, semiconductor package design
Since heat dissipation is taken into consideration, the heat dissipation is also required for the substrate on which the chip is mounted, and it is required that the substrate material has high thermal conductivity. Therefore, the substrate is required to have a thermal expansion coefficient close to that of the chip and a high thermal conductivity.

【0004】従来の半導体パッケージとしては種々の構
成が提案されており、例えば基板に放熱フィンを付設し
た構成があり、放熱性を確保するためにクラッド板やC
u−MoあるいはCu−W合金等の放熱基板用複合材料
(特開昭59−141247号公報、特開昭62−29
4147号公報)が提案されている。前記複合体は熱膨
張係数、熱伝導度とも実用上満足すべき条件にかなって
いるが、Mo、W等が高密度であるため重くかつ脆いた
め、所定の寸法を得るには研削等の非塑性加工により成
形加工しなければならず、加工費が高く、歩留りが悪く
なっていた。
Various structures have been proposed as conventional semiconductor packages, for example, there is a structure in which a radiation fin is attached to a substrate, and a clad plate or C is used to secure heat radiation.
Composite material for heat dissipation substrate such as u-Mo or Cu-W alloy (Japanese Patent Laid-Open Nos. 59-141247 and 62-29).
No. 4147) has been proposed. Although the thermal expansion coefficient and the thermal conductivity of the composite satisfy practical requirements, the composite is heavy and brittle because of high density of Mo, W, etc. Molding has to be performed by plastic working, resulting in high processing cost and poor yield.

【0005】樹脂封止の半導体パッケージにおいては、
リードフレームがチップの外部への電気的接続の経路と
なるだけでなく、チップで発生する熱の放散経路として
重要な役割を果しているため、銅合金からなるリードフ
レームが多用されている。
In a resin-sealed semiconductor package,
A lead frame made of a copper alloy is often used because the lead frame not only serves as a path for electrical connection to the outside of the chip but also plays an important role as a path for dissipating heat generated in the chip.

【0006】ところが、高信頼性を要求される用途に
は、銅合金は、機械的強度が低く、チップとの熱膨張係
数の整合性が悪く、チップとアイランドとの接着界面の
剥離等が懸念されるため、チップとの熱膨張係数の整合
性から42%Ni−Fe合金等の低熱膨張係数を有する
Ni−Fe系合金を採用した半導体パッケージも提案さ
れている。しかし、Ni−Fe系合金は熱伝導率が悪い
ため、現在の要求を満すだけの熱の放散性が得られてい
ない。また、チップと封止樹脂との熱膨張差は非常に大
きく、リードフレームとチップとの熱膨張係数の整合性
がよい場合でも、リードフレームと樹脂との間の整合性
が悪く、封止樹脂に発生するクラックを完全に防止する
ことは困難であった。
However, for applications requiring high reliability, the copper alloy has low mechanical strength, poor matching of thermal expansion coefficient with the chip, and peeling of the adhesive interface between the chip and the island. Therefore, a semiconductor package using a Ni—Fe alloy having a low coefficient of thermal expansion such as 42% Ni—Fe alloy has been proposed in view of the matching of the coefficient of thermal expansion with the chip. However, since the Ni—Fe based alloy has a poor thermal conductivity, it has not been able to obtain heat dissipation enough to meet the current requirements. In addition, the difference in thermal expansion between the chip and the sealing resin is very large, and even if the matching of the thermal expansion coefficient between the lead frame and the chip is good, the matching between the lead frame and the resin is poor and the sealing resin It was difficult to completely prevent the cracks generated in the.

【0007】さらに、セラミックス半導体パッケージで
は、Alワイヤーボンディング及びガラス封着するため
に、リードフレームにはボンディングエリア及び封着位
置にAlを設けたNi−Fe系合金が多用されている。
しかし、Ni−Fe系合金は上述の如く、熱放散性が悪
く、セラミックスとの熱膨張係数の整合性に問題があっ
た。
Further, in the ceramics semiconductor package, in order to carry out Al wire bonding and glass sealing, the lead frame often uses a Ni--Fe alloy having Al in the bonding area and sealing position.
However, as described above, the Ni-Fe alloy has a poor heat dissipation property, and there is a problem in matching the coefficient of thermal expansion with ceramics.

【0008】そこで、出願人は半導体パッケージにおけ
る上述の熱膨張係数および / または熱伝導率の整合
性の問題を解決するため、高熱膨張金属板に厚み方向に
所要の貫通孔を有する低熱膨張金属板を一体化し、前記
貫通孔から高熱膨張金属を低熱膨張金属板表面に露出さ
せた芯材の両面に高熱膨張金属箔を圧接し、これら金属
板の厚さ比や貫通孔面積比を適宜選定することにより、
熱膨張係数、熱伝導率を可変となし、受熱の均一化、熱
拡散効果の向上をはかり、表面微細孔がなくめっきやろ
う材など薄膜の被着性にすぐれた特徴を有する熱伝導複
合材料を提案(特願平2−40550号)した。
[0008] Therefore, in order to solve the above-mentioned problem of the matching of the thermal expansion coefficient and / or the thermal conductivity in the semiconductor package, the applicant has a low thermal expansion metal plate having a required through hole in the thickness direction in the high thermal expansion metal plate. And the high thermal expansion metal foil is pressure-welded to both surfaces of the core material in which the high thermal expansion metal is exposed on the surface of the low thermal expansion metal plate from the through hole, and the thickness ratio and the through hole area ratio of these metal plates are appropriately selected. By
The thermal expansion coefficient and thermal conductivity are variable, uniform heat reception and improvement of thermal diffusion effect are achieved, and there are no surface micropores, and the heat conductive composite material has excellent characteristics such as plating and brazing material adhesion to thin films. Was proposed (Japanese Patent Application No. 2-40550).

【0009】[0009]

【発明が解決しようとする課題】上記の熱伝導複合材料
を得るには、まずプレスによる打ち抜き加工を行い小さ
な孔を多数個穿孔して網目状となし、焼鈍後に巻き取っ
たコバール板等の低熱膨張金属板コイルを、銅板などの
高熱膨張金属板コイルを巻き戻し時にその上方及び下方
より巻き戻して、冷間または温間で大径ロールにより圧
延接合し拡散焼鈍して芯材を得た後、さらにこの芯材の
上方及び下方より巻き戻したCu、Al等の高熱膨張金
属箔を重ねて、冷間または温間で圧延ロールにより圧接
接合し拡散焼鈍して製造する。
In order to obtain the above-mentioned heat-conductive composite material, first, a punching process by a press is performed to form a small number of small holes into a mesh shape, and low heat treatment such as Kovar plate wound after annealing is performed. After the expanded metal plate coil is rewound from the upper and lower sides of the high thermal expansion metal plate coil such as a copper plate, it is cold- or warm-rolled by a large-diameter roll and diffusion-annealed to obtain a core material. Further, a high thermal expansion metal foil of Cu, Al or the like unwound from the upper and lower sides of the core material is overlapped, cold- or warm-pressure-bonded by a rolling roll, and diffusion annealing is performed.

【0010】この熱伝導複合材料の製造に際して、上記
の芯材にCu、Al等の高熱膨張金属箔を重ねて冷間圧
接するが、接合強度を高めるために圧下力を大きくする
と、芯材表面のCu、Al等の高熱膨張金属の露出面の
形状が円形あるいは楕円から長い楕円形状となり、選定
した高熱膨張金属と低熱膨張金属との表面積比が変わっ
て熱膨張係数および / または熱伝導率が変動し、ま
た熱膨張係数に異方性が生じる問題がある。また上述の
製造工程では、圧接工程を2度繰り返すために圧下率が
高くなり、芯材の展延量の増大とともに高熱膨張金属の
露出面の形状が大きく変形する原因となる。
In the production of this heat-conductive composite material, a high thermal expansion metal foil such as Cu or Al is superposed on the above core material and cold-pressed. However, if the pressing force is increased to increase the bonding strength, the surface of the core material is increased. The shape of the exposed surface of the high thermal expansion metal such as Cu or Al is changed from a circular shape or an elliptic shape to a long elliptical shape, and the surface area ratio between the selected high thermal expansion metal and low thermal expansion metal is changed to change the thermal expansion coefficient and / or the thermal conductivity. There is a problem that it fluctuates and the coefficient of thermal expansion becomes anisotropic. Further, in the above-described manufacturing process, since the pressing process is repeated twice, the rolling reduction becomes high, which causes the shape of the exposed surface of the high thermal expansion metal to be largely deformed as the spread amount of the core increases.

【0011】そこで、芯材表面にCu、Al等の高熱膨
張金属箔を被覆するのに、上記の圧接法に代えてめっき
法にて行うことが考えられるが、めっき浴に浸漬した際
に芯材表面の高熱膨張金属と低熱膨張金属との境界にめ
っき液が残存し、これが後の拡散焼鈍時に気化してめっ
き膨れや剥がれを発生させる恐れがあり、まためっき工
程は概して煩雑で多大の製造時間を要する問題がある。
Therefore, it is conceivable that the surface of the core material is coated with a high thermal expansion metal foil such as Cu or Al by a plating method instead of the above pressure welding method. The plating solution remains at the boundary between the high thermal expansion metal and the low thermal expansion metal on the surface of the material, and this may vaporize during the subsequent diffusion annealing to cause plating swelling or peeling. There is a problem that takes time.

【0012】この発明は、受熱の均一化、熱拡散効果の
向上を図り、表面微細孔がなくめっきやろう材など薄膜
の被着性にすぐれ、チップや封止樹脂等の接着相手材の
熱膨張係数との整合性にすぐれかつ熱伝導性が良好で、
用途や目的に応じて熱膨張係数と熱伝導率を任意に選定
できる熱伝導材料の提供を目的とし、さらに、この熱伝
導材料の圧接による製造に際し、低熱膨張金属板に設け
た貫通孔形状を大きく変化させることなく、選定した熱
膨張係数および / または熱伝導率が得られ、また積
層される各高熱膨張金属と低熱膨張金属との接合強度を
向上させることが可能な熱伝導材料の製造方法の提供を
目的としている。
The present invention achieves uniform heat reception and improvement of the heat diffusion effect, has excellent surface adherence to thin films such as plating and brazing materials without surface micropores, and heats the bonding partner materials such as chips and sealing resins. Excellent compatibility with expansion coefficient and good thermal conductivity,
The purpose of the present invention is to provide a heat-conducting material in which the coefficient of thermal expansion and thermal conductivity can be arbitrarily selected according to the application and purpose.Furthermore, when manufacturing this heat-conducting material by pressure welding, the through-hole shape provided in the low thermal expansion metal plate A method for producing a heat-conducting material, which can obtain a selected coefficient of thermal expansion and / or thermal conductivity without making a large change, and can improve the bonding strength between each of the high-thermal-expansion metal and the low-thermal-expansion metal to be laminated. Is intended to be provided.

【0013】[0013]

【課題を解決するための手段】この発明は、常温あるい
は再結晶温度以上に加熱した高熱膨張金属板の片面また
は両面に、少なくとも外表面に高熱膨張金属箔を圧接さ
れて厚み方向に多数の貫通孔を設けた低熱膨張金属板が
圧接されて、前記貫通孔から高熱膨張金属が高熱膨張金
属箔表面に露出して一体化されたことを特徴とする熱伝
導材料である。
According to the present invention, a high thermal expansion metal foil is pressure-welded to at least the outer surface of one or both surfaces of a high thermal expansion metal sheet heated at room temperature or at a recrystallization temperature or higher, and a large number of penetrations are made in the thickness direction. A low-thermal-expansion metal plate provided with holes is pressure-welded to expose the high-heat-expansion metal from the through hole to the surface of the high-heat-expansion metal foil, and the heat-conducting material is integrated.

【0014】また、この発明は、低熱膨張金属板の片面
に高熱膨張金属箔を圧接して一体化したのち、厚み方向
に多数の貫通孔を設けた2層材を、常温あるいは再結晶
温度以上に加熱した高熱膨張金属板の片面または両面に
低熱膨張金属板側と圧接して前記貫通孔から高熱膨張金
属を高熱膨張金属箔表面に露出させて一体化したことを
特徴とする熱伝導材料の製造方法である。
Further, according to the present invention, a high thermal expansion metal foil is pressure-contacted with one surface of a low thermal expansion metal plate to be integrated, and then a two-layer material having a large number of through holes in the thickness direction is used at room temperature or at a recrystallization temperature or higher. Of the heat-conducting material, characterized in that the high-thermal-expansion metal plate is exposed to the high-thermal-expansion metal foil surface from the through-hole by press-contacting one side or both sides of the high-heat-expansion metal plate heated to It is a manufacturing method.

【0015】また、この発明は、低熱膨張金属板の両面
に高熱膨張金属箔を圧接して一体化したのち、厚み方向
に多数の貫通孔を設けた3層材を、常温あるいは再結晶
温度以上に加熱した高熱膨張金属板の片面または両面に
圧接して前記貫通孔から高熱膨張金属を高熱膨張金属箔
表面に露出させて一体化したことを特徴とする熱伝導材
料の製造方法である。
Further, according to the present invention, a high thermal expansion metal foil is pressure-bonded to both sides of a low thermal expansion metal plate to integrate them, and then a three-layer material having a large number of through holes in the thickness direction is formed at room temperature or at a recrystallization temperature or higher. The method for producing a heat conductive material is characterized in that one side or both sides of the heated high thermal expansion metal plate are pressed into contact with each other to expose the high thermal expansion metal from the through hole to the surface of the high thermal expansion metal foil and integrate them.

【0016】さらにこの発明は、前記構成の熱伝導材料
において、高熱膨張金属板が、Cu、Cu合金、Al、
Al合金のうちいずれか、低熱膨張金属板が、Mo、3
0〜50wt%Niを含有するNi−Fe系合金、25
〜35wt%Niと4〜20wt%Coを含有するNi
−Co−Fe系合金、Wのうちいずれか、高熱膨張金属
箔がCu、Cu合金、Al、Al合金のうちいずれかか
らなり、実質的に5層材を構成する熱伝導材料のうち、
高熱膨張金属板の厚みt1、低熱膨張金属板の厚みt
2 、及び高熱膨張金属箔層の厚みt3 が、 t1 =1t2 〜5t2 、t3 ≦1/10 t21+t2=0.1〜30mm、t3=2〜100μm を満足することが好ましい。
Further, according to the present invention, in the heat conducting material having the above-mentioned constitution, the high thermal expansion metal plate is Cu, Cu alloy, Al,
Any of the Al alloys, the low thermal expansion metal plate is Mo, 3
Ni-Fe based alloy containing 0 to 50 wt% Ni, 25
Ni containing ~ 35 wt% Ni and 4-20 wt% Co
-Co-Fe based alloy, any one of W, and the high thermal expansion metal foil is made of any one of Cu, Cu alloy, Al, Al alloy, and among the heat conductive materials that substantially constitute the five-layer material,
Thickness t 1 of high thermal expansion metal plate, thickness t of low thermal expansion metal plate
2 , and the thickness t 3 of the high thermal expansion metal foil layer satisfies t 1 = 1t 2 to 5t 2 , t 3 ≦ 1/10 t 2 t 1 + t 2 = 0.1 to 30 mm, and t 3 = 2 to 100 μm. Preferably.

【0017】また、この発明は、前記構成の熱伝導材料
において、熱伝導材料の少なくとも一主面の所要位置
に、Cu、Al、Ni、Snのうちいずれかからなる金
属メッキを被着したことを特徴とする熱伝導材料であ
る。例えば、Cu、Al等の高熱膨張金属板の両主面
に、片面または両面に高熱膨張金属箔を圧接して厚み方
向に多数の貫通孔を設けたNi−Fe系合金、Ni−C
o−Fe系合金等の低熱膨張金属板を一体化して、前記
貫通孔から高熱膨張金属を低熱膨張金属板表面に露出さ
せ、さらに最外層の高熱膨張金属箔の所要位置に、上記
の金属メッキやろう材の被着等の加工を施してプレス成
形、積層などの加工を施すことにより、セラミックスパ
ッケージ、メタルパッケージなどのチップ搭載用放熱基
板、リードフレーム等、種々用途の熱伝導材料が得られ
る。
Further, according to the present invention, in the heat conductive material having the above-mentioned structure, a metal plating made of any one of Cu, Al, Ni and Sn is deposited on a required position of at least one main surface of the heat conductive material. Is a heat-conducting material. For example, a Ni-Fe alloy, Ni-C, in which a large number of through holes are provided in the thickness direction by press-contacting a high thermal expansion metal foil on one or both surfaces of both main surfaces of a high thermal expansion metal plate such as Cu or Al.
A low thermal expansion metal plate such as an o-Fe alloy is integrated to expose the high thermal expansion metal from the through hole to the surface of the low thermal expansion metal plate, and the metal plating described above is applied to a required position of the outermost high thermal expansion metal foil. Heat-conducting materials for various purposes such as ceramic package, metal package and other chip mounting heat dissipation substrate, lead frame, etc. can be obtained by applying processing such as deposition of brazing material and press molding, lamination etc. ..

【0018】[0018]

【作用】この発明による熱伝導材料は、常温あるいは再
結晶温度以上に加熱した高熱膨張金属板の片面または両
面に、少なくとも外表面に高熱膨張金属箔を圧接されて
厚み方向に多数の貫通孔を設けた低熱膨張金属板が圧接
されて、前記貫通孔から高熱膨張金属が高熱膨張金属箔
表面に露出して一体化されたことを特徴とし、主に高熱
膨張金属板の厚さ比の選定により熱膨張係数を任意に変
化させることができ、芯材となる高熱膨張金属に高熱伝
導性金属を用い、貫通孔内に嵌入した高熱膨張金属と低
熱膨張金属板との同一平面上での露出面積比を適宜選定
することにより熱伝導率を任意に変化させ得るもので、
高熱膨張金属板と低熱膨張金属板の材質選定、組合せ、
並びに前記厚さ比と露出面積比の選定により、種々の用
途、目的に応じた熱膨張係数及び熱伝導率を設定でき、
多種の熱伝導材料を提供できる。
The heat-conducting material according to the present invention is provided with a large number of through-holes in the thickness direction by pressing a high-thermal-expansion metal foil onto at least the outer surface of one or both surfaces of the high-thermal-expansion metal plate heated to room temperature or above the recrystallization temperature. The low thermal expansion metal plate provided is pressure-contacted, the high thermal expansion metal is exposed from the through hole to the surface of the high thermal expansion metal foil and is integrated, mainly by selecting the thickness ratio of the high thermal expansion metal plate. The coefficient of thermal expansion can be changed arbitrarily, and high thermal conductivity metal is used as the core high thermal expansion metal, and the exposed area of the high thermal expansion metal and the low thermal expansion metal plate fitted in the through hole on the same plane. By appropriately selecting the ratio, the thermal conductivity can be changed arbitrarily,
Material selection and combination of high thermal expansion metal plate and low thermal expansion metal plate,
Also, by selecting the thickness ratio and the exposed area ratio, it is possible to set the thermal expansion coefficient and the thermal conductivity according to various applications and purposes.
A wide variety of heat conducting materials can be provided.

【0019】この発明による製造方法は、片面または両
面に高熱膨張金属箔を圧接して厚み方向に多数の貫通孔
を設けた低熱膨張金属板と高熱膨張金属板を圧接する簡
単な工程のみで熱伝導材料を得ることができ、この場合
圧接が1回のみであるために高熱膨張金属の露出面の形
状変形が少なく、予め選定した高熱膨張金属と低熱膨張
金属板との同一平面上での露出面積比を変動させること
なく、所要の熱膨張係数と熱伝導率を有する熱伝導材料
を得ることができる。また、この発明による製造方法
は、低熱膨張金属板に貫通孔を設ける前に高熱膨張金属
箔を圧接しているため、低熱膨張金属板と高熱膨張金属
板との圧接時に貫通孔周辺に空気を巻き込むことも少な
く、高熱膨張金属箔の剥がれが防止され、均質ですぐれ
た性状の外表面が得られるため、再度クラッドしたり高
熱膨張金属箔をめっきする必要がない。
The manufacturing method according to the present invention heats only a simple process of pressing a high thermal expansion metal foil on one surface or both surfaces and a low thermal expansion metal plate having a large number of through holes in the thickness direction. A conductive material can be obtained, and in this case, the shape deformation of the exposed surface of the high thermal expansion metal is small because the pressure welding is performed only once, and the preselected high thermal expansion metal and the low thermal expansion metal plate are exposed on the same plane. It is possible to obtain a heat conductive material having a required coefficient of thermal expansion and thermal conductivity without changing the area ratio. Further, in the manufacturing method according to the present invention, since the high thermal expansion metal foil is pressure-contacted before the low-thermal expansion metal plate is provided with the through-holes, air is blown around the through-holes during pressure contact between the low-thermal expansion metal plate and the high-thermal expansion metal plate. There is little entanglement, the exfoliation of the high thermal expansion metal foil is prevented, and a uniform and excellent outer surface is obtained, so it is not necessary to clad again or plate the high thermal expansion metal foil.

【0020】この発明による熱伝導材料は、高熱膨張金
属板と片面または両面に高熱膨張金属箔を圧接されて厚
み方向に多数の貫通孔を設けた低熱膨張金属板を圧接す
る際に、高熱膨張金属板を再結晶温度以上に加熱するた
め、またさらに低熱膨張金属板に圧接した高熱膨張金属
材料同士で圧接されるため、小さな圧下力でも高い圧接
強度が得られ、低熱膨張金属板に設けた貫通孔形状の変
形が少なく、予め選定した貫通孔内に嵌入した高熱膨張
金属と低熱膨張金属板との同一平面上での露出面積比
(貫通孔面積比)を変動させることなく、所定の熱膨張
係数及び熱伝導率が得られる。特に、片面または両面に
高熱膨張金属箔を圧接されて厚み方向に多数の貫通孔を
設けた低熱膨張金属板との圧接に際して高熱膨張金属板
を再結晶温度以上に加熱することにより、小さな圧下力
で高熱膨張金属が低熱膨張金属板の貫通孔内に嵌入して
高熱膨張金属箔表面に露出し、また圧接強度も著しく向
上し、さらに低熱膨張金属板に圧接した高熱膨張金属箔
と加熱高熱膨張金属板の同材質の圧接効果とあいまっ
て、より小さな圧下力で高い圧接強度が得られて圧延率
を小さくでき、上記の露出面積比の変動が少なくなる。
また、高熱膨張金属箔表面に露出した高熱膨張金属は同
材質の場合、圧接時に露出する高熱膨張金属板を再結晶
温度以上に加熱しているため、高熱膨張金属箔との一体
化が可能で表面性状が極めてすぐれている。
The heat-conducting material according to the present invention has a high thermal expansion coefficient when a high thermal expansion metal sheet is pressed against one side or both sides of the high thermal expansion metal sheet and a low thermal expansion metal sheet having a large number of through holes is formed in the thickness direction. Since the metal plate is heated to the recrystallization temperature or higher, and the high thermal expansion metal materials pressed against the low thermal expansion metal plate are pressed against each other, high pressing strength can be obtained even with a small rolling force. There is little deformation of the through-hole shape, and the predetermined heat amount does not change without changing the exposed area ratio (through-hole area ratio) of the high thermal expansion metal and the low thermal expansion metal plate fitted in the preselected through hole on the same plane. The expansion coefficient and thermal conductivity are obtained. In particular, when the high thermal expansion metal foil is pressed against one surface or both surfaces and the low thermal expansion metal plate having a large number of through-holes in the thickness direction is pressed, the high thermal expansion metal plate is heated to a temperature higher than the recrystallization temperature to reduce a small rolling force. The high thermal expansion metal fits into the through hole of the low thermal expansion metal plate and is exposed on the surface of the high thermal expansion metal foil, and the pressure contact strength is also significantly improved.Furthermore, the high thermal expansion metal foil pressed against the low thermal expansion metal plate and heated high thermal expansion. Combined with the pressure welding effect of the same material of the metal plate, a higher rolling contact strength can be obtained with a smaller rolling force, the rolling rate can be reduced, and the fluctuation of the exposed area ratio can be reduced.
Further, when the high thermal expansion metal exposed on the surface of the high thermal expansion metal foil is the same material, the high thermal expansion metal plate exposed during pressure welding is heated to a temperature higher than the recrystallization temperature, so that it can be integrated with the high thermal expansion metal foil. The surface quality is extremely good.

【0021】この発明による熱伝導材料は、高熱膨張金
属板の片面または両面の全面に、少なくとも一方表面に
高熱膨張金属箔を圧接した低熱膨張金属板を積層化する
に際し、この低熱膨張金属板の全面あるいは部分的に厚
み方向の貫通孔を所要間隔、パターンで配置し、例えば
貫通孔の孔寸法、形状、配置パターン等を種々変えた
り、圧延時の変形を考慮して厚み方向に貫通あるいは貫
通しない切り目を設けるなど、芯材の金属板の厚さ比お
よび / または低熱膨張金属板表面に露出した高熱膨
張金属と低熱膨張金属との表面積比を選定するなどの手
段を選定組み合せることにより、材料の全体あるいは部
分的に、用途、目的に応じた熱膨張係数及び熱伝導率を
設定でき、例えば、所要の金属、セラミックス、Si等
の半導体、プラスチックス等の相手材の熱膨張係数との
整合性を図り、かつ所要の熱伝導性を有する材料が得ら
れる。
The heat-conducting material according to the present invention is formed by laminating a low-thermal-expansion metal plate having a high-thermal-expansion metal foil pressed on at least one surface thereof on one or both surfaces of the high-thermal-expansion metal plate. Through holes in the thickness direction are arranged on the entire surface or in a part with a required interval and pattern. For example, the hole size, shape, arrangement pattern, etc. of the through holes are variously changed, or the holes are penetrated or penetrated in consideration of deformation during rolling. By selecting and combining means such as providing a notch, selecting the thickness ratio of the metal plate of the core material and / or the surface area ratio of the high thermal expansion metal and the low thermal expansion metal exposed on the surface of the low thermal expansion metal plate, The thermal expansion coefficient and thermal conductivity can be set for all or part of the material according to the application and purpose. For example, required metals, ceramics, semiconductors such as Si, plastics, etc. Achieving consistency with the thermal expansion coefficient of the counterpart material of the scan or the like, and a material having the required thermal conductivity.

【0022】好ましい実施態様この発明において、高熱
膨張金属板は圧接にて低熱膨張金属板の貫通孔内に圧入
充填されることから、Cu、Cu合金、Al、Al合金
等の展延伸性に富み、かつ高い熱伝導性を有する材料を
用いることが好ましい。また、低熱膨張金属板には、展
延性のあるMo、30〜50wt% Niを含有するN
i−Fe系合金、25〜35wt% Ni、4〜20w
t% Coを含有するNi−Co−Fe系合金、Wなど
を用いることができる。最外層の高熱膨張金属箔には、
Cu、Cu合金、Al、Al合金などの材料が選定で
き、用途やさらに被着する薄膜層材質を考慮して、芯材
の高熱膨張金属板と同材質あるいは異材質を適宜選定す
るとよい。
Preferred Embodiment In the present invention, since the high thermal expansion metal plate is press-fitted into the through hole of the low thermal expansion metal plate by pressure welding, it has excellent extensibility of Cu, Cu alloy, Al, Al alloy and the like. It is preferable to use a material having high thermal conductivity. In addition, the low thermal expansion metal plate contains Mo having a ductility and N containing 30 to 50 wt% Ni.
i-Fe alloy, 25-35 wt% Ni, 4-20w
A Ni-Co-Fe based alloy containing t% Co, W or the like can be used. The outermost layer of high thermal expansion metal foil,
Materials such as Cu, Cu alloys, Al, and Al alloys can be selected, and the same or different material as the high thermal expansion metal plate of the core material may be appropriately selected in consideration of the application and the material of the thin film layer to be deposited.

【0023】さらに用途などに応じて、ろう付け性や耐
食性を向上させるため、あるいはAu、Agメッキの被
着性を向上させるため、Cu、Al、Ni、Snなどを
メッキ、蒸着、イオンプレーティング、CVD(che
mical vapor deposition)等の
公知のコーティング技術によって被着する他、はんだ、
Agろう材、セラミックス、ガラス層などを被覆、ある
いは所要位置に被着することができる。
Further, in order to improve brazing property and corrosion resistance, or to improve adherence of Au and Ag plating, Cu, Al, Ni, Sn, etc. are plated, vapor deposited, and ion plated depending on the application. , CVD (che
In addition to depositing by a known coating technique such as medical vapor deposition), solder,
It can be coated with Ag brazing material, ceramics, a glass layer, or the like, or can be applied at a required position.

【0024】また、表面に高熱膨張金属箔を圧接した低
熱膨張金属板の板厚み方向の貫通孔は、プレス打ち抜き
等の機械加工のほか、エッチング等の化学的加工も採用
でき、貫通孔間隔が狭いほうが製品のばらつきを低減す
る上で有利であり、通常3mm以下、好ましくは1mm
以下、さらに好ましくは0.5mm以下であり、貫通孔
形状も横断面が円、多角形状等、縦断面がストレート、
テーパー等種々形状が採用でき、テーパー状の場合、貫
通孔内への圧入を容易にしかつ接合強度を高めることが
できる。さらに、当該低熱膨張金属板の板厚み方向の貫
通孔は、圧接、圧延後に高熱膨張金属板が充填される所
要の貫通孔になればよく、例えば、圧延前の低熱膨張金
属板に、板厚みの所要方向に貫通するかあるいは貫通直
前の切り目を入れたり、該金属板の両面から切り目方向
や種々の切り目の形状を変えて入れたりして、上述の貫
通孔配置となるよう種々選定でき、切り目の形状も、−
+ < など種々の形状が採用でき、また、板厚みの
所要方向に例えば、三角錐の如き楔状の切り目を入れる
こともできる。またこの発明において、圧延率は冷間の
場合は60%程度必要であるが、この発明の場合は高熱
膨張金属同士の結合が結晶学的にも極めて好ましい状態
となり20%程度まで少なくできるが、30〜50%の
圧延率が好ましい。
The through-holes in the thickness direction of the low-thermal-expansion metal plate having the high-thermal-expansion metal foil pressed against the surface can be subjected to mechanical processing such as press punching as well as chemical processing such as etching. Narrower is advantageous in reducing product variations, usually 3 mm or less, preferably 1 mm
Hereafter, it is more preferably 0.5 mm or less, and the through-hole shape has a circular horizontal section, a polygonal shape, etc., and a straight vertical section,
Various shapes such as a taper can be adopted, and in the case of the taper shape, it is possible to facilitate press-fitting into the through hole and increase the bonding strength. Furthermore, the through-holes in the plate thickness direction of the low thermal expansion metal plate may be pressure-contacted and may be the required through-holes to be filled with the high thermal expansion metal plate after rolling, for example, the low thermal expansion metal plate before rolling, the plate thickness Through the required direction or make a cut immediately before the penetration, or by changing the cut direction or the shape of various cuts from both sides of the metal plate, various selections can be made to have the above-mentioned through hole arrangement, The shape of the cut is also −
Various shapes such as + <can be adopted, and wedge-shaped cuts such as triangular pyramids can be formed in the required direction of the plate thickness. Further, in the present invention, the rolling rate is required to be about 60% in the case of cold, but in the case of the present invention, the bond between the high thermal expansion metals is extremely preferable in terms of crystallography and can be reduced to about 20%. A rolling ratio of 30 to 50% is preferable.

【0025】図面に基づく発明の開示 以下に図面に基づいてこの発明による熱伝導材料とその
製造方法を詳述する。図1に示すこの発明の熱伝導材料
は、高熱膨張金属板として銅板を、低熱膨張金属板とし
てコバール(Fe−Co−Ni合金)板を用いた例であ
り、いずれも銅板1の両面に、両面に高熱膨張金属箔層
3を設けて厚み方向に多数の貫通孔4を有するコバール
板2が圧接された構成からなる。
Disclosure of the Invention Based on the Drawings The thermal conductive material according to the present invention and the manufacturing method thereof will be described in detail below with reference to the drawings. The heat conductive material of the present invention shown in FIG. 1 is an example in which a copper plate is used as a high thermal expansion metal plate and a Kovar (Fe-Co-Ni alloy) plate is used as a low thermal expansion metal plate. A high thermal expansion metal foil layer 3 is provided on both sides, and a Kovar plate 2 having a large number of through holes 4 in the thickness direction is press-contacted.

【0026】銅板1の両面に圧接する高熱膨張金属箔層
3を有するコバール板2には、板厚み方向に同一寸法の
貫通孔3が形成されて高熱膨張金属箔層3上に円状の銅
露出面5が配列されているが、高熱膨張金属箔層3が同
一材質の銅材の場合は銅露出面5は判別できないほどに
拡散一体化される。また、ここでは板厚み方向に同一寸
法の貫通孔3が形成されているが、孔寸法が表裏で異な
るようにテーパー状としかつ隣接孔が孔寸法の大小の組
合せとなるように配置することもできる。
In the Kovar plate 2 having the high thermal expansion metal foil layer 3 pressed against both sides of the copper plate 1, through holes 3 of the same size are formed in the thickness direction of the plate, and the circular copper is formed on the high thermal expansion metal foil layer 3. Although the exposed surfaces 5 are arranged, when the high thermal expansion metal foil layer 3 is made of the same copper material, the copper exposed surfaces 5 are diffused and integrated so that they cannot be distinguished. Although the through holes 3 having the same size are formed in the plate thickness direction here, the through holes 3 may be tapered so that the hole sizes are different on the front and back sides, and adjacent holes may be arranged so as to be a combination of large and small hole sizes. it can.

【0027】銅板1の両面に高熱膨張金属箔層3を介し
て圧接されるコバール板2の各々の厚み及び銅露出面5
の比率や分散状態等を選定することにより、各主面の熱
的特性を要求される特性に近似させることできる。さら
に、最外層の高熱膨張金属箔層3に、用途やさらに被着
する薄膜層材質を考慮してCu、Cu合金、Al、Al
合金などを選定しているため、受熱の均一化、熱拡散効
果、相手材との接合性、薄膜の被着性の向上効果が得ら
れる。
The thickness and copper exposed surface 5 of each Kovar plate 2 pressed against both sides of the copper plate 1 through the high thermal expansion metal foil layer 3.
By selecting the ratio, dispersion state, etc., the thermal characteristics of each principal surface can be approximated to the required characteristics. Further, Cu, Cu alloy, Al, Al, Al, Al are added to the outermost high thermal expansion metal foil layer 3 in consideration of the use and the material of the thin film layer to be adhered.
Since an alloy or the like is selected, uniform heat reception, heat diffusion effect, bondability with the mating material, and improvement of thin film adherence can be obtained.

【0028】上述の銅板とコバール板及び銅箔を用いた
熱伝導材料を製造するには、図2に示すように、まず所
要寸法、厚みのコバール板2の両面に予め銅箔6を圧接
ロール7により圧接され、ルーパー装置にて所要長さが
ストックされた後、さらにプレス機8による打ち抜き加
工を行い、例えば、小さな孔を多数個穿孔して網目状と
なし、さらに、焼鈍後、表面処理を施してコイルに巻き
取っておく。なお、圧接ロール7により圧接した後、一
旦コイルに巻き取りしてから、再度巻き戻してプレス機
8へ送り加工することもできる。次に、図3に示すよう
に、所要寸法、厚みの銅板1コイルを巻き戻して加熱装
置10で再結晶温度以上に加熱し、上方及び下方より巻
き戻した前記の打ち抜き加工3層材9,9を重ねて、圧
接ロール7により圧接する。
In order to manufacture a heat conductive material using the above-mentioned copper plate, Kovar plate and copper foil, as shown in FIG. 2, first, a copper foil 6 is pre-pressed onto both surfaces of the Kovar plate 2 having a required size and thickness. After being pressed by 7 and stocked to the required length by a looper device, punching is further performed by a press machine 8. For example, many small holes are punched to form a mesh, and further surface treatment after annealing. And apply it to the coil. It should be noted that, after being pressed by the pressing roll 7, the coil may be once wound around the coil, then rewound and fed to the press machine 8 for processing. Next, as shown in FIG. 3, the copper plate 1 coil having a required size and thickness is rewound, heated to a recrystallization temperature or higher by a heating device 10, and rewound from above and below the punched three-layer material 9, 9 are piled up and pressed against each other by a pressing roll 7.

【0029】打ち抜き加工3層材9,9との圧接に際し
て銅板1を再結晶温度以上に加熱するため、小さな圧下
力で銅板1がコバール板2の貫通孔内に嵌入してコバー
ル板2の銅箔6表面に露出し、また、銅板1とコバール
板2との間の銅箔6と銅板1及び最外層の銅箔6と銅板
1同士が拡散一体化されるため、小さな圧下力でも高い
圧接強度が得られ、コバール板2に設けた貫通孔形状の
変形が少なく、予め選定したコバール板2表面における
露出した銅板1とコバール板2との露出面積比を変動さ
せることなく、熱膨張に異方性を生じることなく、所定
の熱膨張係数及び熱伝導率が得られる。
Since the copper plate 1 is heated above the recrystallization temperature during press contact with the punched three-layer material 9, 9, the copper plate 1 is fitted into the through hole of the Kovar plate 2 with a small reduction force, and the copper of the Kovar plate 2 is cut. The copper foil 6 exposed on the surface of the foil 6 and the copper foil 6 and the copper sheet 1 between the copper sheet 1 and the Kovar plate 2 and the outermost copper foil 6 and the copper sheet 1 are diffused and integrated with each other. Strength is obtained, deformation of the through-hole shape provided in the Kovar plate 2 is small, and thermal expansion does not change without changing the exposed area ratio of the exposed copper plate 1 and Kovar plate 2 on the surface of the Kovar plate 2 selected in advance. The desired coefficient of thermal expansion and thermal conductivity can be obtained without the occurrence of directionality.

【0030】上述の圧接に際して、高熱膨張金属材の加
熱雰囲気並びに圧接雰囲気は、非酸化性雰囲気が好まし
く、N2中、Ar中、H2中あるいはこれらの混合ガス雰
囲気やアンモニア分解ガス、プロパン燃焼ガス(DX)
ガス等を用いることができる。また、加熱装置は使用す
る高熱膨張金属材材質に応じて適宜選定するが、管状
炉、光ビーム加熱装置、レーザー加熱装置、高周波加熱
装置、プラズマ加熱装置等を採用することができる。高
熱膨張金属材の加熱温度は、選定した材料の再結晶温度
以上で融点未満の温度範囲から適宜選定するが、融点よ
り100℃程度低い温度から融点未満が好ましく、銅、
銅合金材の場合は、950〜1050℃、Al、Al合
金材の場合は、550〜650℃、Ag、Ag合金材の
場合は、800〜900℃である。
In the above pressure welding, the heating atmosphere and the pressure welding atmosphere of the high thermal expansion metal material are preferably non-oxidizing atmospheres, such as N 2 , Ar, H 2 or a mixed gas atmosphere thereof, ammonia decomposition gas, propane combustion. Gas (DX)
Gas or the like can be used. Further, the heating device is appropriately selected according to the material of the high thermal expansion metal material used, but a tubular furnace, a light beam heating device, a laser heating device, a high frequency heating device, a plasma heating device or the like can be adopted. The heating temperature of the high thermal expansion metal material is appropriately selected from the temperature range above the recrystallization temperature of the selected material and below the melting point, but a temperature lower than the melting point by about 100 ° C. and below the melting point is preferable, copper,
The temperature is 950 to 1050 ° C. in the case of copper alloy material, 550 to 650 ° C. in the case of Al and Al alloy materials, and 800 to 900 ° C. in the case of Ag and Ag alloy materials.

【0031】また、コバール板2の両面に銅箔6を圧接
した打ち抜き加工3層材9に代えて、図4に示す如く、
コバール板2の上面に銅箔6を圧接ロール7により圧接
され、ルーパー装置にて所要長さがストックされた後、
プレス機8による打ち抜き加工を行い、得られた打ち抜
き加工2層材11を図3と同様に、再結晶温度以上に加
熱した銅板1の両面に打ち抜き加工2層材11のコバー
ル板2を当接させて圧接を行い、この発明による熱伝導
材料を製造することができる。なお、圧接ロール7によ
り圧接した後、一旦コイルに巻き取りしてから、再度巻
き戻してプレス機8へ送り加工することもできる。な
お、打ち抜き加工2層材11を用いる上記の熱伝導材料
は、銅板1の両面にコバール板2を圧接するため、銅材
同士の圧接となる3層材9を用いたものと同等の圧接強
度を得るには、圧接後に低温焼鈍を施すことが望まし
い。また、熱伝導材料の最外層の銅箔6は予めコバール
板2に圧接されているため、はがれなどの欠陥が少ない
利点は、素材に打ち抜き加工3層材9、打ち抜き加工2
層材11の何れを用いても同様である。
Further, as shown in FIG. 4, instead of the punched three-layer material 9 in which the copper foils 6 are pressure-welded to both sides of the Kovar plate 2, as shown in FIG.
After the copper foil 6 is pressed against the upper surface of the Kovar plate 2 by the pressing roll 7 and the required length is stocked by the looper device,
The punching process is performed by the press machine 8, and the obtained punched two-layer material 11 is brought into contact with the Kovar plate 2 of the punched two-layer material 11 on both sides of the copper plate 1 heated to the recrystallization temperature or higher, as in FIG. Then, pressure contact is performed, and the heat conductive material according to the present invention can be manufactured. It should be noted that, after being pressed by the pressing roll 7, the coil may be once wound around the coil, then rewound and fed to the press machine 8 for processing. The above-mentioned heat-conducting material using the punched two-layer material 11 press-contacts the Kovar plate 2 on both surfaces of the copper plate 1, and therefore has the same pressure contact strength as that using the three-layer material 9 for pressure-contacting copper materials. In order to obtain the above, it is desirable to perform low temperature annealing after pressure welding. Further, since the outermost copper foil 6 of the heat conductive material is pressed against the Kovar plate 2 in advance, the advantage that there are few defects such as peeling is that the material is punched 3 layer material 9, punched 2
The same applies regardless of which of the layer materials 11 is used.

【0032】[0032]

【実施例】実施例1 板厚0.5 mm、板幅30mmのコバール板(29N
i−16Co−Fe合金)を、 900℃で焼鈍してワ
イヤーブラッシングしたのち、その片面に0.2mm厚
み、幅30mmのCu箔を圧接してCu箔厚み60μ
m、全厚み0.28mmの2層材となし、孔径1.0m
m、圧延方向孔間隔2.0mm、幅方向孔間隔2.0m
mで多数の穿孔を施した。なお、コバール板の30〜2
00°Cにおける平均熱膨張係数は 5.2×10-6
°Cであった。
EXAMPLES Example 1 Kovar plate (29N with a thickness of 0.5 mm and a width of 30 mm)
(i-16Co-Fe alloy) is annealed at 900 ° C. and wire brushing is performed, and then a Cu foil having a thickness of 0.2 mm and a width of 30 mm is pressed onto one surface of the Cu foil to obtain a Cu foil thickness of 60 μm.
m, total thickness 0.28 mm, not a two-layer material, pore diameter 1.0 m
m, rolling direction hole spacing 2.0 mm, width direction hole spacing 2.0 m
Multiple perforations were made in m. In addition, 30 to 2 of Kovar plate
The average coefficient of thermal expansion at 00 ° C is 5.2 × 10 -6 /
Was ° C.

【0033】板厚0.35 mm、板幅30mmのCu
板をワイヤーブラッシングしたのち900℃に加熱し、
前記2層材のコバール面側に前記Cu板を圧接機により
圧接して、Cu/コバール複合板の貫通孔中に銅が侵入
し、最外層の銅箔の所要位置に銅板表面が部分的に露出
して一体化した板厚0.25mm の3層材を得た。圧
延率は60%であった。得られた熱伝導材の主面におけ
るCu露出面は圧延方向に略円形となり、孔間隔は圧延
方向に2.0mmであり、コバール板に対するCu露出
面の比率は35%であった。Cu板の30〜200°C
における平均熱膨張係数は17.2×10-6/°Cであ
った。得られた材料の厚み方向の熱伝導率は250w/
m・K、及び各主面における熱膨張係数は9×10-6
℃であった。
Cu with a plate thickness of 0.35 mm and a plate width of 30 mm
After wire brushing the plate, heat to 900 ° C,
The Cu plate is pressed against the Kovar surface side of the two-layer material by a press-contacting machine, copper penetrates into the through holes of the Cu / Kovar composite plate, and the copper plate surface is partially located at the required position of the outermost copper foil. A three-layer material having a plate thickness of 0.25 mm and exposed and integrated was obtained. The rolling rate was 60%. The Cu exposed surface on the main surface of the obtained heat conductive material was substantially circular in the rolling direction, the hole interval was 2.0 mm in the rolling direction, and the ratio of the Cu exposed surface to the Kovar plate was 35%. Cu plate 30 to 200 ° C
The average coefficient of thermal expansion was 17.2 × 10 −6 / ° C. The thermal conductivity of the obtained material in the thickness direction is 250 w /
m · K and coefficient of thermal expansion on each main surface is 9 × 10 −6 /
It was ℃.

【0034】実施例2 板厚0.5 mm、板幅30mmのコバール板(29N
i−16Co−Fe合金)を、 900℃で焼鈍してワ
イヤーブラッシングしたのち、その片面に0.2mm厚
み、他面に0.05mm厚み、幅30mmのCu箔を圧
接してCu箔厚み30μm、全厚み0.29mmの3層
材となし、孔径1.0mm、圧延方向孔間隔2.0m
m、幅方向孔間隔2.0mmで多数の穿孔を施した。
Example 2 Kovar plate (29N, thickness: 0.5 mm, width: 30 mm)
(i-16Co-Fe alloy) is annealed at 900 ° C. and wire brushed, and then 0.2 mm thick on one side, 0.05 mm thick on the other side, and a Cu foil having a width of 30 mm is pressure-welded to the Cu foil to a thickness of 30 μm. Three-layer material with a total thickness of 0.29 mm, hole diameter 1.0 mm, hole spacing in the rolling direction 2.0 m
m, and a number of perforations were made at a hole interval in the width direction of 2.0 mm.

【0035】板厚0.35 mm、板幅30mmのCu
板をワイヤーブラッシングしたのち900℃に加熱し、
前記3層材のCu厚みの薄い面側に前記Cu板を圧接機
により圧接して、Cu/コバール複合板の貫通孔中に銅
が侵入し、最外層の銅箔の所要位置に銅板表面が部分的
に露出して一体化した板厚0.25mm の3層材を得
た。圧延率は62%であった。得られた熱伝導材の主面
におけるCu露出面は圧延方向に略円形となり、孔間隔
は圧延方向に2.0mmであり、コバール板に対するC
u露出面の比率は35%であった。得られた材料の厚み
方向の熱伝導率は250w/m・K、及び各主面におけ
る熱膨張係数は9×10-6/℃であった。
Cu having a thickness of 0.35 mm and a width of 30 mm
After wire brushing the plate, heat to 900 ° C,
The Cu plate is pressed against the thin Cu side surface of the three-layer material by a pressure welding machine, copper penetrates into the through holes of the Cu / Kovar composite plate, and the copper plate surface is placed at the required position of the outermost copper foil. A partially exposed and integrated three-layer material having a plate thickness of 0.25 mm was obtained. The rolling rate was 62%. The exposed Cu surface on the main surface of the obtained heat conductive material was substantially circular in the rolling direction, and the hole spacing was 2.0 mm in the rolling direction.
The ratio of the u exposed surface was 35%. The thermal conductivity of the obtained material in the thickness direction was 250 w / m · K, and the thermal expansion coefficient on each main surface was 9 × 10 −6 / ° C.

【0036】実施例3 板厚0.3 mm、板幅30mmのコバール板(29N
i−16Co−Fe合金)を、 900℃で焼鈍してワ
イヤーブラッシングしたのち、その両面に0.05mm
厚み幅30mmのCu箔を圧接してCu箔厚み30μ
m、全厚み0.25mmの3層材となし、孔径1.0m
m、圧延方向孔間隔2.0mm、幅方向孔間隔2.0m
mで多数の穿孔を施した。
Example 3 Kovar plate (29N, thickness 0.3 mm, width 30 mm)
i-16Co-Fe alloy) is annealed at 900 ° C and wire brushed, and then 0.05 mm on both sides.
A Cu foil with a thickness width of 30 mm is pressure-welded to a Cu foil thickness of 30 μ.
m, with a total thickness of 0.25 mm and a three-layer material, pore diameter 1.0 m
m, rolling direction hole spacing 2.0 mm, width direction hole spacing 2.0 m
Multiple perforations were made in m.

【0037】板厚0.5 mm、板幅30mmのCu板
をワイヤーブラッシングしたのち800℃に加熱し、そ
の両面に前記3層材を図3に示す如く圧接機により圧接
して、コバール板の貫通孔中に銅が侵入し、最外層の銅
箔の所要位置に銅板表面が部分的に露出して一体化した
板厚0.4mm の3層材を得た。圧延率は60%であ
った。得られた熱伝導材の主面におけるCu露出面は圧
延方向に略円形となり、孔間隔は圧延方向に2.0mm
であり、コバール板に対するCu露出面の比率は35%
であった。得られた材料の厚み方向の熱伝導率は230
w/m・K、及び各主面における熱膨張係数は8×10
-6/℃であった。この熱伝導材料においてCu板の厚さ
(t1)は0.15mm、コバール板の厚さ(t2)はそ
れぞれ0.115mm、表面のCu箔の厚さ(t3)は
それぞれ0.01mmであった(図1参照)。
A Cu plate having a plate thickness of 0.5 mm and a plate width of 30 mm was wire-brushed and then heated to 800 ° C., and the both surfaces of the Cu layer were pressed by a pressure welding machine as shown in FIG. Copper penetrated into the through-holes, and the surface of the copper plate was partially exposed at a required position of the outermost copper foil to obtain a three-layer material having a plate thickness of 0.4 mm 2. The rolling rate was 60%. The exposed Cu surface of the main surface of the obtained heat conductive material was substantially circular in the rolling direction, and the hole spacing was 2.0 mm in the rolling direction.
And the ratio of the exposed Cu surface to the Kovar plate is 35%.
Met. The thermal conductivity of the obtained material in the thickness direction is 230.
w / m · K and coefficient of thermal expansion on each major surface is 8 × 10
It was -6 / ° C. In this heat conductive material, the thickness of the Cu plate (t 1 ) is 0.15 mm, the thickness of the Kovar plate (t 2 ) is 0.115 mm, and the thickness of the Cu foil on the surface (t 3 ) is 0.01 mm. (See FIG. 1).

【0038】板厚0.4mmの熱伝導材料を所要寸法に
切断して、これを2枚積層して放熱基板となした。上記
放熱基板を用いて、セラミックスパッケージを作製した
ところ、良好な熱放散性が得られ、熱的整合性も優れて
いることを確認できた。
A heat conductive material having a plate thickness of 0.4 mm was cut into a required size, and two sheets were laminated to form a heat dissipation board. When a ceramic package was manufactured using the heat dissipation substrate, it was confirmed that good heat dissipation was obtained and thermal compatibility was also excellent.

【0039】さらに、板厚0.4mmの熱伝導材料を1
000℃、5分間、水素雰囲気焼鈍後、冷間圧延にて板
厚0.15mmに加工した。得られた熱伝導材料におい
て、芯材を構成するCu板の厚さ(t1)は0.068
mm、コバール板の厚さ(t2)はそれぞれ0.038
mm、表面のCu箔の厚さ(t3)はそれぞれ0.00
3mmであった。その後、公知の方法にてリードフレー
ムに加工し、半導体パッケージを作製したところ、チッ
プとアイランドとの接着界面の剥離や封止樹脂のクラッ
ク等が発生することなく、また、従来の銅合金を用いた
リードフレームに近似する良好な熱放散性が得られた。
Further, a heat conductive material having a plate thickness of 0.4 mm
After annealing at 000 ° C. for 5 minutes in a hydrogen atmosphere, cold rolling was performed to a plate thickness of 0.15 mm. In the obtained heat conductive material, the thickness (t 1 ) of the Cu plate constituting the core material is 0.068.
mm, the thickness (t 2 ) of the Kovar plate is 0.038, respectively.
mm, surface Cu foil thickness (t 3 ) is 0.00
It was 3 mm. After that, when processed into a lead frame by a known method to manufacture a semiconductor package, peeling of the adhesive interface between the chip and the island and cracks of the sealing resin did not occur, and the conventional copper alloy was used. Good heat dissipation was obtained, which is close to that of conventional lead frames.

【0040】[0040]

【発明の効果】この発明による熱伝導材料は、低熱膨張
金属板の両面または片面に高熱膨張金属箔を圧接して一
体化したのち、厚み方向に多数の貫通孔を設けた3層材
または2層材を、常温あるいは再結晶温度以上に加熱し
た高熱膨張金属板の片面または両面に圧接して前記貫通
孔から高熱膨張金属を高熱膨張金属箔表面に露出させて
一体化することにより、接合強度を高くでき、選定した
これら金属板の厚さ比や貫通孔面積比を変化させること
なく、熱膨張係数、熱伝導率を任意に変化させることが
でき、金属、セラミックス、Si等の半導体、プラスチ
ックス等の被着相手材との熱膨張係数の整合性と良好な
熱伝導性を両立でき、さらに受熱の均一化、熱拡散効果
の向上をはかり、表面微細孔がなくめっきやろう材など
薄膜の被着性にすぐれており、半導体チップ搭載用放熱
基板やリードフレーム用材料に最適な熱伝導材料であ
る。また、金属板の厚さ比や貫通孔面積比の変動の要因
である圧接が1回ですむため、工程が簡素化され、熱伝
導材料を安価に提供できる。
EFFECTS OF THE INVENTION The heat conducting material according to the present invention is a three-layer material or a two-layer material in which a high thermal expansion metal foil is pressed against both surfaces or one surface of a low thermal expansion metal plate to be integrated, and then a large number of through holes are provided in the thickness direction. The layered material is bonded to one surface or both surfaces of a high thermal expansion metal plate heated at room temperature or at a recrystallization temperature or higher by pressure-bonding to expose the high thermal expansion metal from the through hole to the surface of the high thermal expansion metal foil to integrate the bonding strength. The thermal expansion coefficient and the thermal conductivity can be arbitrarily changed without changing the thickness ratio and the through hole area ratio of the selected metal plates, and the metal, the ceramics, the semiconductor such as Si, the plastic, etc. Thin film such as plating or brazing material without surface micropores, which can achieve both good thermal conductivity and good thermal expansion coefficient matching with other material to be adhered, uniform heat reception, and improved heat diffusion effect. Adhesion of Are, the optimal heat transfer material to the radiating substrate and the material for the lead frame for semiconductor chip mounting. Further, since the pressure contact, which is a factor of the variation of the thickness ratio of the metal plate and the through hole area ratio, is only required once, the process is simplified and the heat conductive material can be provided at a low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明による熱伝導材料の一部破断斜視説明
図である。
FIG. 1 is a partially cutaway perspective view of a heat conductive material according to the present invention.

【図2】この発明による熱伝導材料素材を製造するため
の設備例を示す斜視説明図である。
FIG. 2 is a perspective explanatory view showing an example of equipment for manufacturing a heat conductive material according to the present invention.

【図3】この発明による熱伝導材料を製造するための設
備例を示す斜視説明図である。
FIG. 3 is a perspective explanatory view showing an example of equipment for manufacturing the heat conductive material according to the present invention.

【図4】この発明による他の熱伝導材料素材を製造する
ための設備例を示す斜視説明図である。
FIG. 4 is a perspective explanatory view showing an example of equipment for manufacturing another heat conductive material according to the present invention.

【符号の説明】[Explanation of symbols]

1 銅板 2 コバール板 3 高熱膨張金属箔層 4 貫通孔 5 銅露出面 6 銅箔 7 圧接ロール 8 プレス 機 9 打ち抜き加工3層材 10 加熱装置 11 打ち抜き加工2層材 1 Copper Plate 2 Kovar Plate 3 High Thermal Expansion Metal Foil Layer 4 Through Hole 5 Copper Exposed Surface 6 Copper Foil 7 Pressing Roll 8 Press Machine 9 Punching 3 Layer Material 10 Heating Device 11 Punching 2 Layer Material

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 常温あるいは再結晶温度以上に加熱した
高熱膨張金属板の片面または両面に、少なくとも外表面
に高熱膨張金属箔を圧接されて厚み方向に多数の貫通孔
を設けた低熱膨張金属板が圧接されて、前記貫通孔から
高熱膨張金属が高熱膨張金属箔表面に露出して一体化さ
れたことを特徴とする熱伝導材料。
1. A low thermal expansion metal plate in which a high thermal expansion metal foil is pressure-welded to at least the outer surface of one or both surfaces of the high thermal expansion metal plate heated at room temperature or at a temperature higher than the recrystallization temperature to provide a large number of through holes in the thickness direction. Is heat-welded to expose the high thermal expansion metal from the through hole to the surface of the high thermal expansion metal foil to be integrated therewith.
【請求項2】 低熱膨張金属板の片面に高熱膨張金属箔
を圧接して一体化したのち、厚み方向に多数の貫通孔を
設けた2層材を、常温あるいは再結晶温度以上に加熱し
た高熱膨張金属板の片面または両面に低熱膨張金属板側
と圧接して前記貫通孔から高熱膨張金属を高熱膨張金属
箔表面に露出させて一体化したことを特徴とする熱伝導
材料の製造方法。
2. A high heat treatment method comprising heating a high thermal expansion metal foil on one surface of a low thermal expansion metal plate under pressure to integrate the two layers and then heating a two-layer material having a large number of through holes in the thickness direction to room temperature or a recrystallization temperature or higher. A method for producing a heat conductive material, characterized in that one side or both sides of an expanded metal plate are pressed against the low thermal expansion metal plate side to expose the high thermal expansion metal from the through hole to the surface of the high thermal expansion metal foil and integrate them.
【請求項3】 低熱膨張金属板の両面に高熱膨張金属箔
を圧接して一体化したのち、厚み方向に多数の貫通孔を
設けた3層材を、常温あるいは再結晶温度以上に加熱し
た高熱膨張金属板の片面または両面に圧接して前記貫通
孔から高熱膨張金属を高熱膨張金属箔表面に露出させて
一体化したことを特徴とする熱伝導材料の製造方法。
3. A three-layered material having a high thermal expansion metal foil pressure-bonded to both sides of a low thermal expansion metal plate and integrated with it, and then a three-layer material having a large number of through holes in the thickness direction, heated at room temperature or at a recrystallization temperature or higher. A method for producing a heat-conducting material, comprising press-contacting one surface or both surfaces of an expanded metal plate, exposing the high thermal expansion metal from the through hole to the surface of the high thermal expansion metal foil, and integrating them.
JP29249491A 1991-10-12 1991-10-12 Thermal conductive material and method of manufacturing the same Expired - Lifetime JP3037485B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP29249491A JP3037485B2 (en) 1991-10-12 1991-10-12 Thermal conductive material and method of manufacturing the same
DE69217810T DE69217810T2 (en) 1991-10-12 1992-10-12 Process for the production of a thermally conductive material
EP92309275A EP0537965B1 (en) 1991-10-12 1992-10-12 Process of manufacturing a heat-conductive material
US07/959,606 US5358795A (en) 1991-10-12 1992-10-13 Heat-conductive material and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29249491A JP3037485B2 (en) 1991-10-12 1991-10-12 Thermal conductive material and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH05109946A true JPH05109946A (en) 1993-04-30
JP3037485B2 JP3037485B2 (en) 2000-04-24

Family

ID=17782550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29249491A Expired - Lifetime JP3037485B2 (en) 1991-10-12 1991-10-12 Thermal conductive material and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3037485B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0987757A2 (en) * 1998-09-17 2000-03-22 Kitagawa Industries Co., Ltd. Heat dissipator for electronic device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6100548B2 (en) * 2013-02-07 2017-03-22 株式会社コーセー Solid powder cosmetic medium dish

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0987757A2 (en) * 1998-09-17 2000-03-22 Kitagawa Industries Co., Ltd. Heat dissipator for electronic device
EP0987757A3 (en) * 1998-09-17 2002-10-23 Kitagawa Industries Co., Ltd. Heat dissipator for electronic device
EP1376688A2 (en) * 1998-09-17 2004-01-02 Kitagawa Industries Co., Ltd. Heat dissipator for electronic device
EP1376688A3 (en) * 1998-09-17 2005-04-27 Kitagawa Industries Co., Ltd. Heat dissipator for electronic device

Also Published As

Publication number Publication date
JP3037485B2 (en) 2000-04-24

Similar Documents

Publication Publication Date Title
EP0537965B1 (en) Process of manufacturing a heat-conductive material
EP0432867B1 (en) Method of preparing a heat-conductive composite material
JPH0313331A (en) Composite material variable in coefficient of thermal expansion and heat conductivity
JPH0837257A (en) Laminated body and manufacture thereof
JP2003152144A (en) Composite material and method for its manufacture
US5300809A (en) Heat-conductive composite material
JP3462308B2 (en) Manufacturing method of heat conductive composite material
JP2860037B2 (en) Method of manufacturing heat dissipation board for semiconductor device
JPH02275657A (en) Composite material, thermal diffusion member in circuit system employing the material, circuit system and their manufacture
JPH06268117A (en) Heat radiating substrate for semiconductor device and its manufacture
JPH05109947A (en) Heat conducting material and its manufacture
EP0392109A2 (en) Heat-conductive composite material
JPH0780272B2 (en) Thermal conductive composite material
JP3670381B2 (en) Thermally conductive composite material and manufacturing method thereof
JPH05109946A (en) Heat conducting material and its manufacture
JP2602161B2 (en) High heat dissipation integrated circuit package
JPH0924500A (en) Production of thermally conductive composite material
JP4623622B2 (en) Manufacturing method of clad material for semiconductor package and manufacturing method of semiconductor package
KR940010910B1 (en) Semiconductor package
JPH0575008A (en) Thermally conductive material and manufacture thereof
JPS61121489A (en) Cu wiring sheet for manufacture of substrate
JPH0786444A (en) Manufacture of compound heat dissipating substrate for semiconductor
JPH09312364A (en) Composite material for electronic component and its manufacture
JPH11274355A (en) Plastic package with heat sink
JP2675077B2 (en) Lead frame for semiconductor device

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20090225

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20100225

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20110225

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20120225

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 12