JPH04110597A - Heat transfer pipe of heat exchanger - Google Patents
Heat transfer pipe of heat exchangerInfo
- Publication number
- JPH04110597A JPH04110597A JP22868590A JP22868590A JPH04110597A JP H04110597 A JPH04110597 A JP H04110597A JP 22868590 A JP22868590 A JP 22868590A JP 22868590 A JP22868590 A JP 22868590A JP H04110597 A JPH04110597 A JP H04110597A
- Authority
- JP
- Japan
- Prior art keywords
- tube
- copper
- heat exchanger
- foam
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910000881 Cu alloy Inorganic materials 0.000 claims abstract description 16
- 229910052802 copper Inorganic materials 0.000 claims abstract description 16
- 239000010949 copper Substances 0.000 claims abstract description 16
- 239000006260 foam Substances 0.000 claims description 31
- 238000000034 method Methods 0.000 abstract description 8
- 238000009835 boiling Methods 0.000 description 8
- 238000009833 condensation Methods 0.000 description 7
- 230000005494 condensation Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 238000007747 plating Methods 0.000 description 5
- 238000005096 rolling process Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 2
- 241000190020 Zelkova serrata Species 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
Landscapes
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野コ
本発明は空調用冷凍機等に使用される熱交換器用伝熱管
に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat exchanger tube for a heat exchanger used in an air conditioning refrigerator or the like.
[従来の技術]
従来、この種の熱交換器用伝熱管は伝熱効率が高い銅又
は銅合金により構成されている。この熱交換器用伝熱管
においては、管内を通流する熱媒体の蒸発又は沸騰によ
り熱交換が行われるので、その伝熱効率を高めるために
は次に示すような改善が有効である。[Prior Art] Conventionally, this type of heat exchanger tube is made of copper or copper alloy, which has high heat transfer efficiency. In this heat transfer tube for a heat exchanger, heat exchange is performed by evaporation or boiling of the heat medium flowing through the tube, so the following improvements are effective in increasing the heat transfer efficiency.
■管内表面積を大きくする。■Increase the inner surface area of the pipe.
■管内面での核沸騰及び凝縮を活発化させる。■Activate nucleate boiling and condensation on the inner surface of the tube.
■毛細管現象等により管内全面に熱媒体が行き渡りやす
くする。■Make it easier for the heat medium to spread over the entire surface of the tube due to capillary action, etc.
■乱流が発生しやすくする。■Making turbulence more likely.
これに対して、従来の伝熱管、特に管内面が平滑な平滑
管は上記項目を満足させることができない。On the other hand, conventional heat exchanger tubes, especially smooth tubes with smooth tube inner surfaces, cannot satisfy the above requirements.
そこで、近年、管内表面積を拡大すると共に、熱媒体流
の乱れを大きくするために、その内面に螺旋状の溝を形
成した伝熱管(内面溝付管)が提案されている。また、
この内面溝付管は、一般的に、転造により板材の一方の
面に溝を形成した後、前記一方の面を内側にして前記板
材を造管することにより製造されている。Therefore, in recent years, heat transfer tubes (inner grooved tubes) having spiral grooves formed on the inner surface have been proposed in order to expand the inner surface area of the tube and increase the turbulence of the heat medium flow. Also,
This internally grooved tube is generally manufactured by forming a groove on one surface of a plate material by rolling, and then forming the plate material with the one surface inside.
[発明が解決しようとする課題]
しかしながら、上述した内面溝付管においては、その製
造技術上、転造による加工速度が遅く、溝の条数及びね
じれ角度等が制約されるため、熱交換器用伝熱管の性能
を所望のものに向上させることができないという問題点
がある。[Problems to be Solved by the Invention] However, in the above-mentioned internally grooved tube, due to its manufacturing technology, the processing speed of rolling is slow and the number of grooves, twist angle, etc. are limited, so it is difficult to use for heat exchangers. There is a problem that the performance of the heat exchanger tube cannot be improved to the desired level.
本発明はかかる問題点に鑑みてなされたものであって、
伝熱効率をより一層高めることができる熱交換器用伝熱
管を提供することを目的とする。The present invention has been made in view of such problems, and includes:
It is an object of the present invention to provide a heat exchanger tube for a heat exchanger that can further improve heat transfer efficiency.
[課題を解決するための手段]
本発明に係る熱交換器用伝熱管は、銅又は銅合金からな
る素管の内面に銅又は銅合金の発泡体が被着されている
ことを特徴とする。[Means for Solving the Problems] A heat exchanger tube for a heat exchanger according to the present invention is characterized in that a foam made of copper or a copper alloy is adhered to the inner surface of a base tube made of copper or a copper alloy.
[作用コ
本発明においては、銅又は銅合金からなる素管の内面に
銅又は銅合金の発泡体が被着されている。[Function] In the present invention, a foamed body of copper or copper alloy is adhered to the inner surface of a raw tube made of copper or copper alloy.
この発泡体はメツシュ状又はセル状等の三次元的構造の
骨格組織を有しているため、熱媒体と接触する管内の表
面積が極めて大きいと共に、管内を通流する熱媒体に乱
流が発生しやすい。また、前記発泡体は細かく連続した
空隙を育していると共に、その骨格自体の内部にも空隙
が形成されている。このため、このような空隙による毛
細管現象により、液化した熱媒体が管内全面に行き渡り
やすくなり、従来の種々の内部フィン形状を何する内面
溝付管等に比して熱媒体の輸送効率が極めて高い。更に
、前記発泡体は微細な起伏を有していて、その表面活性
が平滑管のそれに比して高い。Since this foam has a mesh-like or cell-like three-dimensional skeletal structure, the surface area inside the tube that comes into contact with the heat transfer medium is extremely large, and turbulence occurs in the heat transfer medium flowing through the tube. It's easy to do. Further, the foam has fine and continuous voids, and voids are also formed inside the skeleton itself. For this reason, the capillary phenomenon caused by these voids makes it easier for the liquefied heat medium to spread over the entire surface of the tube, making it extremely efficient in transporting the heat medium compared to conventional tubes with internal grooves that have various internal fin shapes. expensive. Furthermore, the foam has fine undulations and its surface activity is higher than that of a smooth tube.
このため、前記発泡体は沸騰核又は凝縮核として作用し
、熱媒体の沸騰及び凝縮を促進する。Therefore, the foam acts as a boiling nucleus or a condensation nucleus and promotes boiling and condensation of the heat transfer medium.
従って、本発明に係る熱交換器用伝熱管は、伝熱効率を
従来に比してより一層高めることができ、熱交換性能を
著しく向上させることができる。Therefore, the heat exchanger tube for a heat exchanger according to the present invention can further increase the heat transfer efficiency compared to the conventional tube, and can significantly improve the heat exchange performance.
なお、本発明においては、素管の内面に従来の内面溝付
管と同様にして溝が形成されていても良い。この場合も
、管内面が平滑である場合と同様の効果を得ることがで
きる。In addition, in the present invention, grooves may be formed on the inner surface of the raw tube in the same manner as in conventional inner-grooved tubes. In this case as well, the same effect as when the inner surface of the tube is smooth can be obtained.
[実施例コ
次に、本発明の実施例について添付の図面を参照して説
明する。[Embodiments] Next, embodiments of the present invention will be described with reference to the accompanying drawings.
第1図は本発明の実施例に係る熱交換器用伝熱管を示す
一部切欠斜視図である。FIG. 1 is a partially cutaway perspective view showing a heat exchanger tube for a heat exchanger according to an embodiment of the present invention.
銅又は銅合金からなる素管1はその内面が平滑となって
いる。そして、この素管1の内面には、素管1の全長に
亘って、厚さが例えば0.5乃至21、の銅又は銅合金
からなる発泡体2が密着固定されている。この発泡体2
は、第2図の部分拡大図に示すように、セル状の構造体
をなしている。また、銅又は銅合金の発泡体2は比較的
安価であり、容易に入手することができる。The raw tube 1 made of copper or copper alloy has a smooth inner surface. A foam 2 made of copper or copper alloy and having a thickness of, for example, 0.5 to 21 mm is tightly fixed to the inner surface of the raw pipe 1 over the entire length of the raw pipe 1. This foam 2
As shown in the partially enlarged view of FIG. 2, it has a cell-like structure. Further, the foam 2 made of copper or copper alloy is relatively inexpensive and easily available.
次に、上述の熱交換器用伝熱管の製造方法について説明
する。Next, a method for manufacturing the above-mentioned heat exchanger tube will be explained.
先ず、その直径が素管1の内径寸法よりも若干小さい8
欅に、パイプ状の発泡体2を巻き付けた後、発泡体2を
前記8棒と共に素管1内に挿入する。その後、前記8棒
は素管1内から抜き取る。First, the diameter is slightly smaller than the inner diameter of the raw pipe 1 8
After wrapping a pipe-shaped foam 2 around the keyaki, the foam 2 is inserted into the base pipe 1 together with the eight rods. Thereafter, the eight rods are extracted from the inside of the raw tube 1.
次いで、以下に示すような方法により素管1と発泡体2
とを相互に密着固定する。Next, the raw pipe 1 and the foam 2 are formed by the method shown below.
and are closely fixed to each other.
■引抜法
発泡体2の内側に固定プラグ又はフローティングプラグ
を挿入するか、何も挿入せずに、素管1を引抜きダイス
に通過させて縮径することにより、素管1と発泡体2と
を相互に密着固定する。■Pultrusion method By inserting a fixed plug or a floating plug inside the foam 2, or by passing the raw pipe 1 through a drawing die and reducing its diameter without inserting anything, the raw pipe 1 and the foam 2 can be separated. are closely fixed to each other.
■ロール加圧法
円形のキャリバーを有する1対の成形ロール又はつづみ
型の1対の成形ロールを使用して、素管1の外径を絞り
込むことにより、素管1と発泡体2とを相互に密着固定
する。■ Roll pressure method By narrowing down the outer diameter of the raw tube 1 using a pair of forming rolls with a circular caliber or a pair of rolling rolls, the outer diameter of the raw tube 1 and the foam 2 are mutually bonded. Fix it tightly.
■ろう付性
素管1内に水溶性フラックスを注入すると共に半田線を
挿入した後、素管1内に不活性ガス又は還元性ガスを導
入しながら、インダクションヒータ又は光輝焼鈍炉等に
より素管1を加熱して、素管1と発泡体2とを相互にろ
う付接合する。■ After injecting water-soluble flux into the brazing material tube 1 and inserting the solder wire, the material tube is heated using an induction heater or bright annealing furnace while introducing an inert gas or reducing gas into the material tube 1. 1 is heated to braze and join the raw pipe 1 and the foam 2 to each other.
■メツキ法
素管1内にメツキ液を注入すると共に陽極を挿入した後
、素管1を陰極として素管1の内面にメツキ処理を施す
ことにより、素管1と発泡体2とを相互にメツキ接合す
る。なお、この場合、メツキにより発泡体2のセルが若
干つぶれるものの、発泡体2が素管1の内面から剥がれ
て素管1内から抜は落ちることを防止できる。■ Plating method After injecting the plating liquid into the raw tube 1 and inserting the anode, plating the inner surface of the raw tube 1 using the raw tube 1 as the cathode, the raw tube 1 and the foam 2 are mutually bonded. Join with plating. In this case, although the cells of the foam 2 are slightly crushed by plating, it is possible to prevent the foam 2 from peeling off from the inner surface of the raw pipe 1 and falling out from inside the raw pipe 1.
このように■乃至■に示す方法又はその外の方法により
、素管1と発泡体2とを相互に確実に固定することがで
きる。In this way, the raw pipe 1 and the foam 2 can be reliably fixed to each other by the methods shown in (1) to (3) or other methods.
上述の如く構成される熱交換器用伝熱管においては、素
管1の内面にセル状の発泡体2が被着されているため、
熱媒体との接触面積を著しく増大させることができる。In the heat exchanger tube configured as described above, since the cellular foam 2 is adhered to the inner surface of the raw tube 1,
The contact area with the heat medium can be significantly increased.
また、発泡体2は、第3図(a)及び(b)の部分拡大
図に示すように、セルの大きさを適宜選択することがで
きる。即ち、第3図(a)の発泡体2aのように、セル
を比較的粗く形成することができ、又は第3図(b)の
発泡体2bのように、セルを比較的細かく形成すること
ができる。このように、毛細管力に富む微細なセルを必
要に応じて形成することができるので、セルの毛細管現
象により、液化した熱媒体が管内全面に行き渡りやすく
なり、熱媒体の輸送効率をより一層高めることができる
。Furthermore, the cell size of the foam 2 can be appropriately selected, as shown in the partially enlarged views of FIGS. 3(a) and 3(b). That is, the cells can be formed relatively coarsely, as in the foam 2a of FIG. 3(a), or the cells can be formed relatively finely, as in the foam 2b of FIG. 3(b). I can do it. In this way, fine cells rich in capillary force can be formed as needed, so the capillary action of the cells makes it easier for the liquefied heat medium to spread throughout the tube, further increasing the transport efficiency of the heat medium. be able to.
更に、発泡体2は微細な起伏に富んでいるため、平滑管
及び内面溝付管に比してその表面活性が高い。このため
、発泡体2が沸騰核又は凝縮核として作用し、管内を通
流する熱媒体の沸騰及び凝縮を促進することができる。Furthermore, since the foam 2 is rich in fine undulations, its surface activity is higher than that of a smooth tube or a tube with internal grooves. Therefore, the foam 2 acts as a boiling nucleus or a condensation nucleus, and can promote boiling and condensation of the heat medium flowing through the pipe.
更にまた、発泡体2は予めバイブ状に成形した後に素管
1の内面に被着されているため、管内を通流する熱媒体
に対する乱流発生作用が大きい。Furthermore, since the foam 2 is previously formed into a vibrator shape and then adhered to the inner surface of the raw pipe 1, it has a large turbulence generating effect on the heat medium flowing inside the pipe.
従って、本実施例によれば、熱交換器用伝熱管の伝熱効
率を著しく高めることができ、その熱交換性能を著しく
向上させることができる。Therefore, according to this embodiment, the heat transfer efficiency of the heat exchanger tube for a heat exchanger can be significantly increased, and the heat exchange performance thereof can be significantly improved.
なお、本実施例においては、素管1にはその内面が平滑
であるものを使用したが、このような平滑管の替わりに
内面溝付き管を使用しても良い。In this embodiment, a tube with a smooth inner surface is used as the raw tube 1, but a tube with inner grooves may be used instead of such a smooth tube.
この場合は、上記実施例よりも更に一層伝熱効率を高め
ることができる。In this case, the heat transfer efficiency can be further improved than in the above embodiment.
[発明の効果]
以上説明したように本発明によれば、銅又は銅合金から
なる素管の内面に銅又は銅合金の発泡体が被着されてい
るから、管内の表面積が極めて大きいと共に、管内を通
流する熱媒体に乱流が発生しやすい。また、前記発泡体
の毛細管現象により、熱媒体が管内全面に行き渡りやす
く、熱媒体の輸送効率が極めて高い。更に、前記発泡体
はその表面活性が高く、沸騰核又は凝縮核として作用す
るため、熱媒体の沸騰及び凝縮を促進する。[Effects of the Invention] As explained above, according to the present invention, since the copper or copper alloy foam is adhered to the inner surface of the raw pipe made of copper or copper alloy, the surface area inside the pipe is extremely large, and Turbulence is likely to occur in the heat medium flowing through the pipe. Further, due to the capillary phenomenon of the foam, the heat medium easily spreads over the entire surface of the tube, and the transport efficiency of the heat medium is extremely high. Furthermore, the foam has high surface activity and acts as boiling nuclei or condensation nuclei, thereby promoting boiling and condensation of the heat transfer medium.
従って、本発明に係る熱交換器用伝熱管は、伝熱効率を
従来に比して著しく高めることができ、熱交換性能を向
上させることができる。Therefore, the heat exchanger tube for a heat exchanger according to the present invention can significantly increase the heat transfer efficiency compared to the conventional tube, and can improve the heat exchange performance.
第1図は本発明の実施例に係る熱交換器用伝熱管を示す
一部切欠斜視図、第2図及び第3図は第1図の部分拡大
図である。
1;素管、2r 2a、2b;発泡体
第1図FIG. 1 is a partially cutaway perspective view showing a heat exchanger tube for a heat exchanger according to an embodiment of the present invention, and FIGS. 2 and 3 are partially enlarged views of FIG. 1. 1; Raw pipe, 2r 2a, 2b; Foam Figure 1
Claims (2)
の発泡体が被着されていることを特徴とする熱交換器用
伝熱管。(1) A heat exchanger tube for a heat exchanger, characterized in that a foam made of copper or copper alloy is adhered to the inner surface of a raw tube made of copper or copper alloy.
特徴とする請求項1に記載の熱交換器用伝熱管。(2) The heat exchanger tube for a heat exchanger according to claim 1, wherein the raw tube has grooves formed on its inner surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22868590A JPH04110597A (en) | 1990-08-29 | 1990-08-29 | Heat transfer pipe of heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22868590A JPH04110597A (en) | 1990-08-29 | 1990-08-29 | Heat transfer pipe of heat exchanger |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04110597A true JPH04110597A (en) | 1992-04-13 |
Family
ID=16880204
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22868590A Pending JPH04110597A (en) | 1990-08-29 | 1990-08-29 | Heat transfer pipe of heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04110597A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995018350A1 (en) * | 1993-12-27 | 1995-07-06 | Hitachi Chemical Company, Ltd. | Heat transfer material |
WO2006035547A1 (en) * | 2004-09-27 | 2006-04-06 | Fujikin Incorporated | Gas heating method and gas heating piping member |
CN101900505A (en) * | 2010-08-19 | 2010-12-01 | 燿佳科技股份有限公司 | Heat pipe and manufacturing method thereof |
JP2015090242A (en) * | 2013-11-06 | 2015-05-11 | 住友電気工業株式会社 | Metal pipe, heat transfer pipe, heat exchange device, and manufacturing method of metal pipe |
CN104949563A (en) * | 2015-06-19 | 2015-09-30 | 中国石油大学(华东) | Density-gradient metal foam heat exchange tube |
CN107887355A (en) * | 2017-11-13 | 2018-04-06 | 武汉华星光电半导体显示技术有限公司 | Complex copper paillon foil and its manufacture method |
-
1990
- 1990-08-29 JP JP22868590A patent/JPH04110597A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995018350A1 (en) * | 1993-12-27 | 1995-07-06 | Hitachi Chemical Company, Ltd. | Heat transfer material |
US5943543A (en) * | 1993-12-27 | 1999-08-24 | Hitachi Chemical Company, Ltd. | Heat transmitting member and method of manufacturing the same |
WO2006035547A1 (en) * | 2004-09-27 | 2006-04-06 | Fujikin Incorporated | Gas heating method and gas heating piping member |
CN101900505A (en) * | 2010-08-19 | 2010-12-01 | 燿佳科技股份有限公司 | Heat pipe and manufacturing method thereof |
JP2015090242A (en) * | 2013-11-06 | 2015-05-11 | 住友電気工業株式会社 | Metal pipe, heat transfer pipe, heat exchange device, and manufacturing method of metal pipe |
WO2015068437A1 (en) * | 2013-11-06 | 2015-05-14 | 住友電気工業株式会社 | Metal tube, heat transfer tube, heat exchange device, and method for manufacturing metal tube |
CN104949563A (en) * | 2015-06-19 | 2015-09-30 | 中国石油大学(华东) | Density-gradient metal foam heat exchange tube |
CN107887355A (en) * | 2017-11-13 | 2018-04-06 | 武汉华星光电半导体显示技术有限公司 | Complex copper paillon foil and its manufacture method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0701100A1 (en) | Heat transfer tube | |
CN100402967C (en) | Heat exchanger | |
CN201053839Y (en) | Sintering type heat pipe | |
JPH04110597A (en) | Heat transfer pipe of heat exchanger | |
JPS60216190A (en) | Heat transfer pipe and manufacture thereof | |
CN209279749U (en) | A kind of shell core separate type porous wick structure concurrent flow aluminothermy pipe | |
RU2006780C1 (en) | Tubular heat exchanger | |
JPS61111732A (en) | Manufacture of heat exchanger | |
CN209672485U (en) | Fin-tube type heat exchanger, air-conditioner outdoor unit and air conditioner | |
JPH0791672B2 (en) | Heat transfer tube manufacturing method | |
JPH0441276B2 (en) | ||
JPS60232496A (en) | Heat exchanger | |
JPH0635920B2 (en) | Heat transfer tube for heat exchanger | |
CN209672488U (en) | Fin-tube type heat exchanger, air-conditioner outdoor unit and air conditioner | |
JP3566804B2 (en) | Heat transfer tube with fins | |
CN109341392A (en) | A kind of shell core separate type porous wick structure concurrent flow aluminothermy pipe and its manufacturing method | |
CN212747458U (en) | High flux boiling pipe | |
JPS6167529A (en) | Manufacture of heat exchanging pipe provided with inner fin | |
JP2004003733A (en) | Heat transfer pipe and heat exchanger, and method of manufacture of heat transfer pipe | |
CN201909573U (en) | Heat transfer tube for improving tube bundle effect | |
KR100339714B1 (en) | Heat exchanger manufacturing method | |
JPH0238233Y2 (en) | ||
CN2338716Y (en) | Forced heat-transfer type fin-tube | |
JP2007003014A (en) | Heat exchanger | |
JPS6218854Y2 (en) |