JPH0791672B2 - Heat transfer tube manufacturing method - Google Patents

Heat transfer tube manufacturing method

Info

Publication number
JPH0791672B2
JPH0791672B2 JP4015582A JP1558292A JPH0791672B2 JP H0791672 B2 JPH0791672 B2 JP H0791672B2 JP 4015582 A JP4015582 A JP 4015582A JP 1558292 A JP1558292 A JP 1558292A JP H0791672 B2 JPH0791672 B2 JP H0791672B2
Authority
JP
Japan
Prior art keywords
substrate
heat transfer
transfer tube
manufacturing
tubular shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4015582A
Other languages
Japanese (ja)
Other versions
JPH05311494A (en
Inventor
保夫 増田
務 高橋
与司夫 滝沢
敏郎 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP60254505A priority Critical patent/JPS62116797A/en
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP4015582A priority patent/JPH0791672B2/en
Publication of JPH05311494A publication Critical patent/JPH05311494A/en
Publication of JPH0791672B2 publication Critical patent/JPH0791672B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • F28F13/187Heat-exchange surfaces provided with microstructures or with porous coatings especially adapted for evaporator surfaces or condenser surfaces, e.g. with nucleation sites
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/16Electroplating with layers of varying thickness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Electrochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば空調用の熱交換
器の蒸着管や凝縮管、あるいはウィックを有するヒート
パイプなどを構成するのに好適な伝熱管の製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a heat transfer tube suitable for forming a vapor deposition tube or a condenser tube of a heat exchanger for air conditioning, a heat pipe having a wick, or the like.

【0002】[0002]

【従来の技術】内外の媒体の熱交換を行なわせるための
伝熱管において、その伝熱効率を上げるためには、 (1)伝熱面積を大きくする。 (2)核沸騰を起こしやすくする。 (3)乱流を起こしやすくする。 ことが有効とされている。
2. Description of the Related Art In a heat transfer tube for exchanging heat between internal and external media, in order to increase the heat transfer efficiency, (1) the heat transfer area is increased. (2) Make nucleate boiling easy. (3) Make turbulence easy to occur. Is said to be effective.

【0003】上記(1),(3)を満たすような方法と
して、銅管の内面に螺旋状の溝を転造法などにより形成
する方法が用いられている。
As a method for satisfying the above (1) and (3), a method of forming a spiral groove on the inner surface of a copper tube by a rolling method or the like is used.

【0004】また、(2)を満たすような方法として
は、伝熱体の表面に核沸騰の核となる多孔質層を形成す
る方法が知られており、板状の伝熱体においては焼結あ
るいは鑞付法によりそのような多孔質層を形成すること
が行われている。
As a method for satisfying the condition (2), there is known a method of forming a porous layer serving as nucleate boiling nuclei on the surface of the heat transfer body, and a plate-shaped heat transfer body is burnt. Such a porous layer is formed by a binding or brazing method.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
ような従来の方法においては、それぞれ次のような課題
があった。すなわち、螺旋溝を形成する場合には、上記
の伝熱効率を上げる方法のうち、最も効果の高い核沸騰
現象を利用しておらず、また、転造工具の製作技術上及
び転造の技術上から、螺旋溝の条数やねじれの角度に制
限があることなどの理由により、通常の溝無し管と比べ
ても熱特性値が1.2〜1.5倍程度にしかならず、性
能が不充分であった。また、製造において、転造工具と
管内面の摩擦力が大きいため、大きな加圧力を必要と
し、従って大規模な装置を必要とするとともに、工具の
寿命が短くなって、製作コストが高くなるという課題が
あった。
However, each of the above conventional methods has the following problems. That is, in the case of forming the spiral groove, the nucleate boiling phenomenon, which is the most effective method among the above methods for increasing the heat transfer efficiency, is not used, and in terms of the manufacturing technique of the rolling tool and the rolling technique. Therefore, due to reasons such as restrictions on the number of spiral grooves and the angle of twist, the thermal characteristic value is only 1.2 to 1.5 times that of ordinary non-grooved tubes, resulting in insufficient performance. Met. Further, in manufacturing, since the rolling tool and the inner surface of the pipe have a large frictional force, a large pressing force is required, and therefore a large-scale device is required, and the life of the tool is shortened, resulting in an increase in manufacturing cost. There were challenges.

【0006】一方、多孔質層を形成する方法において
は、伝熱管のような管状構造のものの内面に、焼結、鑞
付を施すことは困難であった。また、金属表面にスクリ
ーン印刷等によりパターンマスキングを施した後、電気
鍍金することにより多孔質層を形成することも可能では
あるが、この方法により管内面に多孔質層を形成するの
は至難であり、かつ印刷、焼き付け等の複雑な工程を必
要とし、製造コストが高くなるという課題があった。本
発明は、上記の如き課題を解決することを目的とするも
のである。
On the other hand, in the method of forming the porous layer, it has been difficult to sinter or braze the inner surface of a tubular structure such as a heat transfer tube. It is also possible to form the porous layer by electroplating after pattern masking the metal surface by screen printing or the like, but it is extremely difficult to form the porous layer on the inner surface of the tube by this method. However, there is a problem in that a complicated process such as printing and printing is required, and the manufacturing cost becomes high. The present invention is intended to solve the above problems.

【0007】[0007]

【課題を解決するための手段】本発明は、金属製の基板
に、該基板の表面に開口する多数の孔部を形成する行程
と、前記基板の表面に鍍金を施す行程(鍍金行程)と、
前記基板を管状に成形する行程(成形行程)とを主要部
とするものであり、孔部の形成態様、鍍金行程と成形行
程の順序により、以下の各構成となる。
SUMMARY OF THE INVENTION The present invention comprises a step of forming a large number of holes on the surface of a metal substrate, and a step of plating the surface of the substrate (plating step). ,
The step of forming the substrate into a tubular shape (forming step) is a main part, and each of the following configurations is obtained depending on the mode of forming the hole, the plating step and the order of the forming step.

【0008】(1).金属製の基板に、該基板の表面に
開口し且つ該基板を貫通しない多数の孔部を形成し、こ
の後、前記基板の表面に鍍金を施して前記各孔部を開口
部が相対的に狭められた形状とし、しかる後、前記基板
を前記表面が内周側となるように管状に成形する。
(1). A large number of holes that are open to the surface of the substrate and do not penetrate through the substrate are formed in a metal substrate, and then the surface of the substrate is plated to make the openings relatively close to the holes. Then, the substrate is formed into a narrowed shape, and then the substrate is formed into a tubular shape so that the surface is on the inner peripheral side.

【0009】(2).金属製の基板に、該基板の表面に
開口し且つ該基板を貫通しない多数の孔部を形成し、こ
の後、前記基板を前記表面が内周側となるように管状に
成形し、しかる後、管状に成形された前記基板の内周側
に鍍金を施して前記各孔部を開口部が相対的に狭められ
た形状とする。
(2). In the metal substrate, a large number of holes that are open to the surface of the substrate and do not penetrate the substrate are formed, and then the substrate is formed into a tubular shape so that the surface is on the inner peripheral side, and then, The inner peripheral side of the substrate formed into a tubular shape is plated to form each of the holes so that the opening is relatively narrowed.

【0010】(3).金属製の基板に該基板を貫通する
多数の孔部を形成し、この後、前記基板の表面に鍍金を
施し、前記各孔部の表面側の開口部が相対的に狭められ
た形状とし、しかる後、前記基板の裏面に板状部材を重
着するとともに該基板を管状に成形する。
(3). Forming a large number of holes penetrating the substrate in the metal substrate, after that, the surface of the substrate is plated, the opening on the surface side of each hole is relatively narrowed, Then, a plate-shaped member is superposed on the back surface of the substrate and the substrate is formed into a tubular shape.

【0011】(4).前記(3)において、前記基板の
一部に孔部を形成しない状態に残した板状部材を前記基
板に一体的に設ける。
(4). In the (3), of the substrate
A plate-like member that is left without forming a hole in a part is
Provided integrally on the plate.

【0012】(5).金属製の基板に該基板を貫通する
多数の孔部を形成し、この後、前記基板の裏面に板状部
材を重着するとともに該基板を管状に成形し、しかる
後、管状に成形された前記基板の内周側に鍍金を施し、
前記各孔部の表面側の開口部が相対的に狭められた形状
とする。
(5). A large number of holes penetrating the substrate are formed in a metal substrate, and then a plate-like member is superposed on the back surface of the substrate and the substrate is formed into a tubular shape, and then formed into a tubular shape. The inner peripheral side of the substrate is plated,
The opening on the surface side of each hole is relatively narrowed.

【0013】(6).前記(5)において、前記基板の
一部に孔部を形成しない状態に残した板状部材を前記基
板に一体的に設ける。
(6). In (5) above,
A plate-like member that is left without forming a hole in a part is
Provided integrally on the plate.

【0014】[0014]

【作用】上記構成に係る伝熱管の製造方法によれば、伝
熱管に、内周面に開口するとともに外周側に貫通せず且
つ開口部が相対的に狭められた形状の多数の孔部が形成
される。該孔部を有する伝熱管は、該孔部が核となって
核沸騰を起こしやすいとともに乱流も起こしやすく、さ
らに伝熱面積も大きくなり、伝熱特性に優れる。
According to the method of manufacturing a heat transfer tube having the above-described structure, the heat transfer tube has a large number of holes that are open to the inner peripheral surface, do not penetrate to the outer peripheral side, and have relatively narrow openings. It is formed. The heat transfer tube having the holes has excellent heat transfer characteristics because the holes serve as nuclei to easily cause nucleate boiling and turbulent flow, and the heat transfer area increases.

【0015】[0015]

【実施例】【Example】

[実施例1]図1乃至し図4に示す方法で伝熱管を形成
した。長さ500mm、幅100mm、厚さ0.3mmの鋼板
1の幅方向のほぼ半分に直径200μの多数の貫通孔2
を、比表面積が15%になるように打ち抜き加工した。
次に、鋼板1を陰極とし、鋼板を陽極として硫酸銅液中
で陰極電流密度10A/dm2で 15分鍍金を施し、表裏
面に銅の電析金属層3を形成するとともに、貫通孔2の
開口部に狭窄部4を形成した(図2)。
Example 1 A heat transfer tube was formed by the method shown in FIGS. A large number of through holes 2 with a diameter of 200μ are formed in almost half of the width direction of a steel plate 1 having a length of 500 mm, a width of 100 mm and a thickness of 0.3 mm.
Was punched to have a specific surface area of 15%.
Next, the steel sheet 1 is used as a cathode, and the steel sheet is used as an anode, and is plated in a copper sulfate solution at a cathode current density of 10 A / dm 2 for 15 minutes to form an electrodeposited metal layer 3 of copper on the front and back surfaces and to form a through hole 2 A narrowed portion 4 was formed in the opening (Fig. 2).

【0016】次に、上記行程を経た鋼板1に、孔あき加
工部(貫通孔2の形成された側)を内側にして図3に示
すように二重に巻き加工を施した。続いて、このように
形成された管状体を高周波誘導加熱等の手段により局部
的に銅の融点以上且つ鋼板1の融点以下の温度に加熱し
て、鋼板1上に形成された電析金属層3(外側に巻かれ
た鋼板1と内側に巻かれた鋼板1との接合面に位置する
部分の電析金属層3であって、管状体の内周面部分の電
析金属層3を含まない)を瞬時に溶融させ、且つ直ちに
冷却する処理を施した。そして、この加熱、冷却処理
を、管状体上の部位を移動させつつ順次繰り返し、管状
体の全周に渡って同処理を施した。これにより、外側に
巻かれた鋼板1と内側に巻かれた鋼板1とが、電析金属
層3が溶融・固化してできた銅の接合層を介して接合さ
れ、図4に示す一体の伝熱管が製造された(図4はシー
ム部及び接合層の部分の表示を省略している)。
Next, the steel sheet 1 which has gone through the above-mentioned steps is double-wound as shown in FIG. 3 with the perforated portion (the side where the through-hole 2 is formed) inside. Subsequently, the tubular body thus formed is locally heated to a temperature not lower than the melting point of copper and not higher than the melting point of the steel plate 1 by means of high-frequency induction heating or the like, and the electrodeposited metal layer formed on the steel plate 1 is heated. 3 (including the electrodeposited metal layer 3 of the inner peripheral surface portion of the tubular body, which is the portion of the electrodeposited metal layer 3 located on the joint surface between the steel sheet 1 wound on the outside and the steel sheet 1 wound on the inside) No) was instantly melted and immediately cooled. Then, this heating and cooling treatment was sequentially repeated while moving the site on the tubular body, and the same treatment was performed over the entire circumference of the tubular body. As a result, the steel sheet 1 wound on the outside and the steel sheet 1 wound on the inside are joined together via the copper joining layer formed by melting and solidifying the electrodeposited metal layer 3, and the integrated steel sheet shown in FIG. A heat transfer tube was manufactured (FIG. 4 omits the illustration of the seam portion and the joining layer portion).

【0017】なお、上記加熱、冷却処理は瞬時に行われ
るため、管状体の内周側の開口部に形成された狭窄部4
は、図4に示されるようにその初期形状を維持する。ま
た、二重巻き加工を施した管状体を不活性又は還元性雰
囲気中で700℃以上かつ銅の融点以下の温度に加熱
し、電析金属層3と鋼板1との間で拡散接合を行っても
よい。このようにして内側に巻かれた鋼板1と外側に巻
かれた鋼板1とを接合しても、管状体の内周側の開口部
に形成された狭窄部4の形状を維持できる。
Since the heating and cooling treatments are instantaneously performed, the narrowed portion 4 formed in the opening on the inner peripheral side of the tubular body.
Maintains its initial shape as shown in FIG. Further, the tubular body that has been subjected to double winding is heated to a temperature of 700 ° C. or higher and a melting point of copper or lower in an inert or reducing atmosphere to perform diffusion bonding between the electrodeposited metal layer 3 and the steel sheet 1. May be. Thus, even if the steel plate 1 wound on the inner side and the steel plate 1 wound on the outer side are joined together, the shape of the narrowed portion 4 formed in the opening on the inner peripheral side of the tubular body can be maintained.

【0018】この伝熱管を、万力を用いて押しつぶした
が、接合面の剥離は全く見られなかった。
The heat transfer tube was crushed using a vise, but no peeling of the joint surface was observed.

【0019】この伝熱管についてR−22を用いて熱特
性試験を行ったところ、冷媒流量50kg/hr、乾き
度0.5、蒸発温度5℃の条件において、8000kc
al/m 2 hr℃の沸騰熱伝達率を示した。この値は、
通常の伝熱管として使用される同じサイズの銅管の3〜
4倍の性能値であった。
A thermal characteristic test was conducted on this heat transfer tube using R-22. As a result, a refrigerant flow rate of 50 kg / hr, a dryness of 0.5, and an evaporation temperature of 5 ° C. were 8000 kc.
It showed a boiling heat transfer coefficient of al / m 2 hr ° C. This value is
3 ~ of the same size copper tube used as a normal heat transfer tube
The performance value was four times .

【0020】なお、この伝熱管をさらに引抜加工して形
状を整えるとともに、開口部をより狭めるようにしても
よい。
The heat transfer tube may be further drawn to adjust its shape and the opening may be narrowed.

【0021】この伝熱管は、鋼製の基板に銅鍍金を施す
ことにより狭口空孔を形成され、伝熱特性が向上されて
いるとともに、この電析銅を基板の融着用として使用す
ることにより、強度が大きく向上されている。
In this heat transfer tube, a narrow hole is formed by plating a steel substrate with copper to improve the heat transfer characteristics, and the electrodeposited copper is used for fusing the substrate. As a result, the strength is greatly improved.

【0022】上記実施例においては、鋼板1に鍍金を施
した後にこの鋼板1を管状に成形したが、鋼板1に貫通
孔2を形成した後に該鋼板1を管状に成形し、しかる後
この管状体の内側に上記のような鍍金を施し、貫通孔2
の開口部に図2に示すような狭窄部4を形成するように
してもよい。
In the above embodiment, the steel sheet 1 was plated, and then the steel sheet 1 was formed into a tubular shape. However, after the through hole 2 is formed in the steel sheet 1, the steel sheet 1 is formed into a tubular shape, and then this tubular shape is formed. The inside of the body is plated as described above, and the through hole 2
A narrowed portion 4 as shown in FIG. 2 may be formed in the opening.

【0023】[実施例2] 図5乃至図7に示すような方法で銅製の伝熱管を製造し
た。長さ500mm、幅100mm、厚さ0.3mmの
銅板1aの表面に、直径100μ、深さ200μの貫通
しない凹孔2aを比表面積が20%となるようにエンボ
ス加工して形成した(図1)。この銅板1aを陰極と
し、Ti−Pt製の不溶性陽極を用い、硫酸銅鍍金液中
で陰極電流密度10A/dm 2 で20分間鍍金を施し、
凹孔2aの開口部に狭窄部4aを形成した(図6)。
Example 2 A copper heat transfer tube was manufactured by the method shown in FIGS. The copper plate 1a having a length of 500 mm, a width of 100 mm, and a thickness of 0.3 mm was formed by embossing a recessed hole 2a having a diameter of 100 μ and a depth of 200 μ and not penetrating so as to have a specific surface area of 20% (FIG. 1). ). This copper plate 1a is used as a cathode, an insoluble anode made of Ti-Pt is used, and plating is performed in a copper sulfate plating solution at a cathode current density of 10 A / dm 2 for 20 minutes,
A narrowed portion 4a was formed at the opening of the recess 2a (FIG. 6).

【0024】次に、上記銅板1を、表面(凹部2aの開
口する側の面)を内側にして管状に折り曲げ加工し、そ
の両端部を接合して図7に示す伝熱管を製造した。
Next, the copper plate 1 was bent into a tubular shape with the surface (the surface on the side where the recess 2a is opened) inside, and both ends were joined to manufacture the heat transfer tube shown in FIG.

【0025】このように製造した伝熱管の伝熱特性をR
−22を用いて調査したところ、冷媒流量50kg/h
r、乾き度0.5、蒸発温度5℃の条件において、10
000kcal/m 2 hr℃の沸騰熱伝達率を示した。
The heat transfer characteristics of the heat transfer tube thus manufactured are
A survey using -22 revealed that the refrigerant flow rate was 50 kg / h.
r, dryness 0.5, evaporation temperature 5 ° C., 10
It showed a boiling heat transfer coefficient of 000 kcal / m 2 hr ° C.

【0026】なお、この例においては凹孔を一面のみに
形成したが、両面に形成するようにしてもよい。また、
鍍金は管状に成形した後に、管軸にワイヤ状の陽極を張
り渡して行ってもよい。
Although the concave holes are formed on only one surface in this example, they may be formed on both surfaces. Also,
The plating may be performed by forming a tubular shape and then stretching a wire-shaped anode on the tube axis.

【0027】[0027]

【発明の効果】以上説明したように、本発明に係る伝熱
管の製造方法によれば、伝熱面積が大きく、核沸騰、乱
流を起こしやすい、伝熱特性に優れた伝熱管を容易かつ
経済的に製造することができる。また、基板を構成する
金属と鍍金により析出する金属を変えることにより、両
者の特性を生かした伝熱管を製造することができる。
As described above, according to the method for manufacturing a heat transfer tube of the present invention, a heat transfer tube having a large heat transfer area, easily causing nucleate boiling and turbulent flow, and having excellent heat transfer characteristics can be easily formed. It can be manufactured economically. Further, by changing the metal forming the substrate and the metal deposited by plating, it is possible to manufacture a heat transfer tube making the best use of the characteristics of both.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る伝熱管の製造行程を示
す断面図である。
FIG. 1 is a cross-sectional view showing a manufacturing process of a heat transfer tube according to an embodiment of the present invention.

【図2】本発明の一実施例に係る伝熱管の製造行程を示
す断面図である。
FIG. 2 is a cross-sectional view showing a manufacturing process of the heat transfer tube according to the embodiment of the present invention.

【図3】本発明の一実施例に係る伝熱管の製造行程を示
す断面図である。
FIG. 3 is a cross-sectional view showing a manufacturing process of the heat transfer tube according to the embodiment of the present invention.

【図4】本発明の一実施例に係る伝熱管を示す断面図で
ある。
FIG. 4 is a sectional view showing a heat transfer tube according to an embodiment of the present invention.

【図5】本発明の他の実施例に係る伝熱管の製造行程を
示す断面図である。
FIG. 5 is a cross-sectional view showing a process of manufacturing a heat transfer tube according to another embodiment of the present invention.

【図6】本発明の他の実施例に係る伝熱管の製造行程を
示す断面図である。
FIG. 6 is a cross-sectional view showing a process of manufacturing a heat transfer tube according to another embodiment of the present invention.

【図7】本発明の他の実施例に係る伝熱管を示す断面図
である。
FIG. 7 is a sectional view showing a heat transfer tube according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,1a 基板 2,2a 孔部 3,3a 電析金属層 4,4a 狭窄部 1, 1a Substrate 2, 2a Hole 3,3a Electrodeposited metal layer 4,4a Constriction

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 金属製の基板に、該基板の表面に開口し
且つ該基板を貫通しない多数の孔部を形成し、この後、
前記基板の表面に鍍金を施して前記各孔部を開口部が相
対的に狭められた形状とし、しかる後、前記基板を前記
表面が内周側となるように管状に成形することを特徴と
する伝熱管の製造方法。
1. A metal substrate is provided with a large number of holes that are open to the surface of the substrate and do not penetrate the substrate, and thereafter,
Characterized in that the surface of the substrate is plated to form each of the holes with a shape in which the opening is relatively narrowed, and thereafter, the substrate is formed into a tube so that the surface is on the inner peripheral side. Method for manufacturing heat transfer tube.
【請求項2】 金属製の基板に、該基板の表面に開口し
且つ該基板を貫通しない多数の孔部を形成し、この後、
前記基板を前記表面が内周側となるように管状に成形
し、しかる後、管状に成形された前記基板の内周側に鍍
金を施して前記各孔部を開口部が相対的に狭められた形
状とすることを特徴とする伝熱管の製造方法。
2. A metal substrate is provided with a large number of holes that are open to the surface of the substrate and do not penetrate the substrate, and thereafter,
The substrate is formed into a tubular shape so that the surface is on the inner peripheral side, and thereafter, the inner peripheral side of the substrate formed into a tubular shape is plated so that the openings of the respective hole portions are relatively narrowed. A method for manufacturing a heat transfer tube, which is characterized by having a curved shape.
【請求項3】 金属製の基板に該基板を貫通する多数の
孔部を形成し、この後、前記基板の表面に鍍金を施し、
前記各孔部の表面側の開口部が相対的に狭められた形状
とし、しかる後、前記基板の裏面に板状部材を重着する
とともに該基板を管状に成形することを特徴とする伝熱
管の製造方法。
3. A metal substrate is provided with a number of holes penetrating the substrate, and then the surface of the substrate is plated.
The heat transfer tube characterized in that the opening on the front surface side of each hole is relatively narrowed, and thereafter, a plate-like member is superposed on the back surface of the substrate and the substrate is formed into a tubular shape. Manufacturing method.
【請求項4】 前記基板の一部に孔部を形成しない状態
に残した板状部材を前記基板に一体的に設けたことを特
徴とする請求項3記載の伝熱管の製造方法。
4. A state in which a hole is not formed in a part of the substrate.
The method for manufacturing a heat transfer tube according to claim 3 , wherein the plate-like member left over is provided integrally with the substrate .
【請求項5】 金属製の基板に該基板を貫通する多数の
孔部を形成し、この後、前記基板の裏面に板状部材を重
着するとともに該基板を管状に成形し、しかる後、管状
に成形された前記基板の内周側に鍍金を施し、前記各孔
部の表面側の開口部が相対的に狭められた形状とするこ
とを特徴とする伝熱管の製造方法。
5. A metal substrate is provided with a large number of holes penetrating the substrate, and thereafter, a plate-like member is superposed on the back surface of the substrate and the substrate is molded into a tubular shape. A method for manufacturing a heat transfer tube, characterized in that plating is applied to the inner peripheral side of the substrate formed into a tubular shape, and the openings on the front surface side of the respective hole portions are relatively narrowed.
【請求項6】 前記基板の一部に孔部を形成しない状態
に残した板状部材を前記基板に一体的に設けたことを特
徴とする請求項5記載の伝熱管の製造方法。
6. A state in which a hole is not formed in a part of the substrate.
The method for manufacturing a heat transfer tube according to claim 5 , wherein the plate-like member left over is provided integrally with the substrate .
JP4015582A 1985-11-13 1992-01-30 Heat transfer tube manufacturing method Expired - Lifetime JPH0791672B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60254505A JPS62116797A (en) 1985-11-13 1985-11-13 Formation of porous layer
JP4015582A JPH0791672B2 (en) 1985-11-13 1992-01-30 Heat transfer tube manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP60254505A JPS62116797A (en) 1985-11-13 1985-11-13 Formation of porous layer
JP4015582A JPH0791672B2 (en) 1985-11-13 1992-01-30 Heat transfer tube manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP60254505A Division JPS62116797A (en) 1985-11-13 1985-11-13 Formation of porous layer

Publications (2)

Publication Number Publication Date
JPH05311494A JPH05311494A (en) 1993-11-22
JPH0791672B2 true JPH0791672B2 (en) 1995-10-04

Family

ID=26351759

Family Applications (2)

Application Number Title Priority Date Filing Date
JP60254505A Granted JPS62116797A (en) 1985-11-13 1985-11-13 Formation of porous layer
JP4015582A Expired - Lifetime JPH0791672B2 (en) 1985-11-13 1992-01-30 Heat transfer tube manufacturing method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP60254505A Granted JPS62116797A (en) 1985-11-13 1985-11-13 Formation of porous layer

Country Status (1)

Country Link
JP (2) JPS62116797A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109416211A (en) * 2016-09-08 2019-03-01 株式会社中温 The cooling freezer of multiple pipe

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006207968A (en) * 2005-01-31 2006-08-10 Denso Corp Heat transfer device
CN1840258B (en) * 2005-03-28 2010-08-25 新灯源科技有限公司 Method for manufacturing heat pipe with flat end surface
JP5749305B2 (en) * 2013-09-03 2015-07-15 三桜工業株式会社 Heat transfer tube, heat transfer tube manufacturing method, and heat exchanger
JP6920231B2 (en) * 2018-02-06 2021-08-18 新光電気工業株式会社 Loop type heat pipe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109416211A (en) * 2016-09-08 2019-03-01 株式会社中温 The cooling freezer of multiple pipe
US10852048B2 (en) 2016-09-08 2020-12-01 Chuon Co., Ltd. Multilayer pipe cooling cold storage
CN109416211B (en) * 2016-09-08 2021-02-26 株式会社中温 Multiple tube cooling refrigerator

Also Published As

Publication number Publication date
JPS62116797A (en) 1987-05-28
JPH05311494A (en) 1993-11-22
JPH0480994B2 (en) 1992-12-21

Similar Documents

Publication Publication Date Title
US7293602B2 (en) Fin tube assembly for heat exchanger and method
JPH109789A (en) Heat exchanger tube
US6594897B2 (en) Method for manufacturing coolant tube of heat exchanger
JPH0791672B2 (en) Heat transfer tube manufacturing method
JP3264240B2 (en) Method for producing copper tube having copper porous layer
US4360958A (en) Method of making heat exchangers
SU1611679A1 (en) Method of producing finned tubes
JPH03184645A (en) Heat exchanger fin and its manufacture
CN1199753C (en) Method for making heat exchanger
JPS58159935A (en) Manufacture of heat collecting and radiating panel
JP2003056992A (en) Heat exchanger
JPH1078296A (en) Heat exchanger
JPS5916639A (en) Metallic die for manufacturing cross fin tube type heat exchanger fin
JP2539229B2 (en) Heat exchanger manufacturing method
JPH11221615A (en) Tube and its production
JPH09133491A (en) Manufacture of heat exchanger
JPH02175881A (en) Production of pipe with porous inner surface
JPS57209773A (en) Method for soldering copper or copper alloy fins to titanium tubes for finned heat exchanger
CN116536033A (en) Shape memory structure and preparation method and application thereof
JP3312862B2 (en) Heat exchanger and method of manufacturing the same
JPS59101246A (en) Manufacture of multipath type heat exchanger
KR100528467B1 (en) Fin & Tube type Heat Exchanger using Brazing and Method for manufacturing the same
JPS60137567A (en) Production of laminated cooling body
JPH0245654Y2 (en)
JPH02140596A (en) Heat transfer pipe for heat exchanger

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960409