JPH02175881A - Production of pipe with porous inner surface - Google Patents

Production of pipe with porous inner surface

Info

Publication number
JPH02175881A
JPH02175881A JP33069188A JP33069188A JPH02175881A JP H02175881 A JPH02175881 A JP H02175881A JP 33069188 A JP33069188 A JP 33069188A JP 33069188 A JP33069188 A JP 33069188A JP H02175881 A JPH02175881 A JP H02175881A
Authority
JP
Japan
Prior art keywords
point metal
melting
metal powder
melting point
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33069188A
Other languages
Japanese (ja)
Other versions
JPH0520508B2 (en
Inventor
Kuniaki Seki
関 邦彰
Noboru Hagiwara
登 萩原
Hajime Sasaki
元 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP33069188A priority Critical patent/JPH02175881A/en
Publication of JPH02175881A publication Critical patent/JPH02175881A/en
Publication of JPH0520508B2 publication Critical patent/JPH0520508B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geometry (AREA)
  • Powder Metallurgy (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To produce the pipe with a porous inner surface having remarkably improved efficiency of heat transfer by forming a mixed layer of low-melting-point metal powder and high-melting-point metal powder on the inner surface of a pipe, and melting the low-melting-point metal powder by heating to form the inner-surface layer having micropores. CONSTITUTION:The mixed layer 2 of low-melting-point metal powder (Sn, etc.) and high-melting-point metal powder (Cu, etc.) is formed on the inner surface of a pipe 1 of copper, aluminum, etc., in uniform thickness by the use of a liq. flux, etc. The average particle diameter of the high-melting-point metal powder is controlled to 0.01-3mm, and that of the low-melting-point metal powder to the matching size, and a spiral groove 1a is desirably formed on the inner surface of the pipe 1. The pipe 1 is then heated to melt the low-melting-point metal, the high-melting-point metal powder is fixed to the inner surface of the pipe 1 by the molten low-melting-point metal, and simultaneously the low-melting-point metal and high-melting-point metal are diffused into each other to form a porous layer having micropores. By this method, a high-stability porous layer is integrally formed on the inner pipe surface, and a pipe with a porous inner surface useful in the production of a heat-transfer tube to be used in an evaporator is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、蒸発器用として使用される伝熱管の製造など
に有用な新規な内面多孔質管の製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a novel internally porous tube useful for manufacturing heat exchanger tubes used in evaporators.

[従来の技術1 熱交換器用として使用される伝熱管は、伝熱面積を増大
させかつ冷媒の撹拌現象を促進させるために、平滑管の
ままではなく、表面に多数の清やrR細な凹凸を形成し
て使用する例が多い。
[Prior art 1] In order to increase the heat transfer area and promote the stirring phenomenon of the refrigerant, heat transfer tubes used for heat exchangers are not made of smooth tubes, but have many fine irregularities on the surface. There are many examples where it is formed and used.

とくに蒸発器用伝熱管においては、冷媒の沸騰の核とな
る多数の微小突起や微小空洞を管の内外表面に形成し、
蒸発性能を格段に高め、熱伝達効率の大巾な向上を図ろ
うとする技術が一般化しつつある。
In particular, in heat exchanger tubes for evaporators, numerous microprotrusions and microcavities are formed on the inner and outer surfaces of the tube, which serve as the core of boiling of the refrigerant.
Technologies that aim to significantly improve evaporation performance and greatly improve heat transfer efficiency are becoming commonplace.

このような微小突起や微小空洞は、これを管の外表面に
形成するのは比較的容易であり、切削や転造などにより
消や突起を切り起しあるいは切り起した微小フィンを圧
縮して微小空洞化させたり、さらには各種の金属やセラ
ミックスを溶射したりして、容易に所望の表面を形成す
ることができる。
It is relatively easy to form such microprotrusions and microcavities on the outer surface of the tube, and by cutting or rolling the protrusions or compressing the cut and raised microfins. A desired surface can be easily formed by forming micro cavities or by spraying various metals or ceramics.

しかし、そのような表面を形成する位置が細管の内面で
あったりすると、必ずしも容易ではなく、前記切削や溶
射等を用いることは困難である。
However, when such a surface is formed on the inner surface of a thin tube, it is not always easy to form such a surface, and it is difficult to use the cutting, thermal spraying, etc. described above.

そこで、管内面を多孔質化し前記した冷媒沸騰の核を形
成するために、これまでにも種々な方法が提案されてき
た。すなわち、二重管を複合押出成形する方法、内面に
スプレーあるいは塗布する方法、内面にめっきする方法
、特殊の転造加工機により管内面に消や突起を形成する
方法などがそれである。
Therefore, various methods have been proposed so far in order to make the inner surface of the tube porous and form the core of boiling of the refrigerant described above. Examples include a method of composite extrusion molding of a double pipe, a method of spraying or coating the inner surface, a method of plating the inner surface, and a method of forming a matte projection on the inner surface of the tube using a special rolling machine.

[発明が解決しようとする課題] 上記した既提案の方法にはいずれも一長一短があり、必
ずしも十分なものとはいえない。
[Problems to be Solved by the Invention] All of the previously proposed methods described above have advantages and disadvantages, and cannot be said to be necessarily sufficient.

二重管の押出においては内管の製造に制約があり、十分
な多孔質化は困難である。内面にスプレーあるいは塗布
する場合、塗布する材料の制約がある上、単に塗布した
だけでは長期安定性に欠けるという問題がある。内面め
っき法は比較的安定した多孔質層を形成できるが、長尺
材の製造が困難である上、生産性に劣るという欠点があ
る。転造加工法は、工業的にみてもつとも優れた方法で
あるが、形成できるのは消や突起であって、冷媒の沸騰
の核とするにはやや不十分であり、核沸騰を著しく促進
させる微小な空洞を有する多孔質面を形成するには不向
きである上、変形抵抗の大きな鋼管などには適用できな
いという問題がある。
In the extrusion of double tubes, there are restrictions on the manufacture of the inner tube, and it is difficult to make it sufficiently porous. When spraying or coating the inner surface, there are restrictions on the material to be coated, and there is a problem in that simply coating it lacks long-term stability. Although the inner surface plating method can form a relatively stable porous layer, it has the drawbacks that it is difficult to manufacture long materials and the productivity is poor. The rolling method is an excellent method from an industrial perspective, but the only thing that can be formed is a nucleated protrusion, which is insufficient to form a core for boiling of the refrigerant, and it significantly accelerates nucleate boiling. There are problems in that it is not suitable for forming a porous surface having minute cavities, and it cannot be applied to steel pipes or the like that have high deformation resistance.

本発明の目的は、上記したような従来技術の問題点を解
消し、冷媒の沸WIJ蒸発性能を大[11に向上させる
ことができ、しかも経時的にも安定した強固な多孔質面
を形成し得る新規な内面多孔質管の製造方法を提供しよ
うとするものである。
The purpose of the present invention is to solve the problems of the prior art as described above, to improve the boiling point WIJ evaporation performance of refrigerant by a large [11], and to form a strong porous surface that is stable over time. The present invention aims to provide a novel method for manufacturing a tube with a porous inner surface.

[課題を解決するための手段1 本発明は、管内面に低融点金属粉末と高融点金属粉末の
混合層を形成し、これを加熱して低融点金属粉末を溶融
させ、該低融点金属によって高融点金属粉末を管内面に
固着させると同時に、低融点金属と高融点金属とを相互
拡散させることにより微小空孔を形成させるものである
[Means for Solving the Problems 1] The present invention forms a mixed layer of a low melting point metal powder and a high melting point metal powder on the inner surface of a tube, heats this to melt the low melting point metal powder, and the low melting point metal The high melting point metal powder is fixed to the inner surface of the tube, and at the same time, the low melting point metal and the high melting point metal are mutually diffused to form micropores.

[作用] 低融点金属粉末を溶融させれば、当該低融点金属と管材
との間に拡散が生じ管材と完全に一体・化する一方、溶
融しない高融点金属粉末を管内面に強固に固着させて、
沸騰の核となり得る高融点金属粉末の微小突起を形成す
ることができる。さらに、両金属の混合粉末相互間で拡
散を生じさせれば、拡散した後に微小空孔が残存形成さ
れ、それらが冷媒沸騰にとって最適な核となり、上記微
小突起と相俟って沸騰蒸発性能を顕著に向上させ、大巾
な熱伝達効率の改善を達成することができる。
[Function] When the low melting point metal powder is melted, diffusion occurs between the low melting point metal and the pipe material, completely integrating with the pipe material, while the high melting point metal powder that does not melt is firmly fixed to the inner surface of the pipe. hand,
It is possible to form microprotrusions of high melting point metal powder that can become boiling nuclei. Furthermore, if diffusion occurs between the mixed powders of both metals, micropores will remain after the diffusion, and these will become the optimal nucleus for refrigerant boiling, and together with the microprojections mentioned above, the boiling evaporation performance will be improved. The heat transfer efficiency can be significantly improved and a large improvement in heat transfer efficiency can be achieved.

[実施例] 以下に、本発明について実施例を参照し説明する。[Example] The present invention will be described below with reference to Examples.

本発明においては、管1の内面に第1図に示すようにま
ず低融点金属粉末と高融点金属粉末との混合層2を形成
する。
In the present invention, a mixed layer 2 of low melting point metal powder and high melting point metal powder is first formed on the inner surface of the tube 1, as shown in FIG.

これら混合すべき金属粉末材料の選択においては、本発
明が期待する目的に照し、相互に拡散可能な組合せとす
る必要があるが、それ以外において材料的にとくに限定
はされない。
In selecting these metal powder materials to be mixed, it is necessary to select a combination that can be mutually diffusible in view of the expected purpose of the present invention, but other than that, there are no particular limitations on the materials.

一般に管材として使用されるのは、熱伝導性の良好な鋼
管やアルミ管あるいは強度の大きい鉄鋼管などであるか
ら、上記それぞれを参照すれば、金属粉末の組合せはC
u −3n 、Cu−Ag、Cu −Au 、Aj−Z
n 、Si −AJ 。
Generally, the pipe materials used are steel pipes, aluminum pipes, or strong steel pipes with good thermal conductivity, so if you refer to each of the above, the combination of metal powders is C.
u-3n, Cu-Ag, Cu-Au, Aj-Z
n, Si-AJ.

5n−In等が考えられる。5n-In etc. can be considered.

本発明に係る製造方法の実施においては、前述した蒸発
器用伝熱管がその主たる対象となるが、その場合上記し
た冷媒の沸騰において核となる微小空孔の形成が望まれ
る。金属粉末を相互拡散させ、それによってそのような
空孔を発生させるには、粉末の粒径に一定の大きさが必
要である。すなわち、粒径が小にすぎれば溶融した一方
の金属中に完全拡散するかあるいは全体が均一的拡散と
なってしまい、空孔の発生は起らない、また、粒径が大
きすぎれば、多孔質面積が低減し、期待するような性能
の向上がみられなくなる上、溶融した側の金属による溶
融しない金属の機械的固定力が不十分となる。$1々な
実験結果によれば、高融点側金属粉末の平均粒径が0.
01〜31mの範囲となるように選択し、低融点金属粉
末も混合のし易さなどからみてそれに見合った粒径とす
ることが望ましいことが判明した。
In carrying out the manufacturing method according to the present invention, the above-mentioned heat exchanger tube for an evaporator is the main target, and in that case, it is desired to form micropores that become cores in the boiling of the refrigerant. In order to interdiffuse the metal powders and thereby generate such pores, a certain size of the powder particles is required. In other words, if the particle size is too small, it will be completely diffused into one of the molten metals, or it will be uniformly diffused throughout, and no pores will be generated.If the particle size is too large, porous The quality area decreases, and the expected improvement in performance is not seen, and the mechanical fixation force of the metal that is not melted by the metal on the melted side becomes insufficient. According to various experimental results, the average particle size of the high melting point metal powder is 0.
It has been found that it is desirable to select a particle size in the range of 0.01 to 31 m, and to make the particle size of the low melting point metal powder commensurate with this in view of ease of mixing.

なお、本発明に係る多孔質層を内面平滑管の内壁に形成
してもよいが、管1の内面に管の長手り向に平行又は第
2図に示ずような傾斜角を有するらせん消1aを形成し
、その上に上記した多孔質層を形成すれば、上記冷媒の
沸騰促進効果と同時に清により冷媒が十分に撹拌され、
内壁面全体に冷媒の供給が盛んになり、伝熱特性を一段
と向上させることができる。
The porous layer according to the present invention may be formed on the inner wall of a tube with a smooth inner surface. 1a and the above-mentioned porous layer formed thereon, the refrigerant is sufficiently stirred by the clear water at the same time as having the effect of promoting boiling of the refrigerant.
The refrigerant is supplied to the entire inner wall surface, and the heat transfer characteristics can be further improved.

また、第1図のように管1内面に金属粉末混合層2を形
成するには、金属混合粉末をフラックス液等によりペー
スト状とし、これを適当な方法により管1の内面に均一
厚さとなるように塗布すればよい、このように塗布した
後に、低融点金属の融点以上で高融点金属および管材の
融点以下に加熱してやれば、低融点金属粉末が溶融し、
管内面への融着による高融点金属粉末の固定効果と同時
に高融点金属粉末との間で相互拡散が生じ、前述した微
小空孔が形成される。
In addition, in order to form the metal powder mixed layer 2 on the inner surface of the tube 1 as shown in FIG. After applying it in this way, if it is heated above the melting point of the low melting point metal and below the melting point of the high melting point metal and the pipe material, the low melting point metal powder will melt.
Simultaneously with the fixation effect of the high melting point metal powder due to fusion to the inner surface of the tube, mutual diffusion occurs between the high melting point metal powder and the above-mentioned micropores.

実施例1 外径18關、肉厚2浦の鉄管内面にsn粉末(粒径50
μm、重量比40%)とCu粉末(粒径80μm、重量
比40%)及びハロゲン系液状フラックス(重量比20
%)の混合物をペースト状とし塗布した。これを真空炉
中で700℃X3hr熱処理したところ、Cu粉は溶融
snによって管内に固定されさらにCuと相互拡散する
ことによりCu粉衣表面は多数のボイド(空孔)が生じ
所望の多孔質面が生成された。
Example 1 Sn powder (particle size 50
μm, weight ratio: 40%), Cu powder (particle size: 80 μm, weight ratio: 40%), and halogen-based liquid flux (weight ratio: 20%)
%) was made into a paste and applied. When this was heat-treated at 700°C for 3 hours in a vacuum furnace, the Cu powder was fixed in the tube by molten sn and further interdiffused with Cu, resulting in a large number of voids (pores) on the surface of the Cu powder coating, creating the desired porous surface. was generated.

実施例2 外径12.7市、肉厚0.9mmの銅管内面に深さ0.
3w、IJo、2nmのらせん状溝を加工しておき、こ
れにSn粉末(粒径50μm、重量比50%)とCu粉
末(粒径80μm、重量比30%)及びハロゲン系液状
フラックス(重量比20%)を混合してペースト状とし
たものを塗布した。これを真空炉中で700℃X3hr
熱処理を行なったところ、snは銅管内表面とCU粉の
双方に相互拡散し管内表面とCu粉衣表面多数のボイド
(空孔)が生じ多孔質面が生成された。
Example 2 A copper tube with an outer diameter of 12.7 cm and a wall thickness of 0.9 mm has a depth of 0.0 mm on the inner surface.
A spiral groove of 3W, IJo, and 2 nm was machined, and Sn powder (particle size 50 μm, weight ratio 50%), Cu powder (particle size 80 μm, weight ratio 30%), and halogen-based liquid flux (weight ratio 20%) was mixed into a paste and applied. This was heated in a vacuum furnace at 700℃ for 3 hours.
When the heat treatment was performed, sn was mutually diffused into both the inner surface of the copper tube and the CU powder, and a large number of voids (pores) were generated on the inner surface of the tube and the surface of the Cu powder, resulting in a porous surface.

実施例3 上記実施例2の方法によって製造した内面多孔質管を用
いフレオン蒸発伝熱特性を測定した。測定条件は下記の
通りである。
Example 3 Freon evaporation heat transfer characteristics were measured using the internally porous tube manufactured by the method of Example 2 above. The measurement conditions are as follows.

冷     媒:フレオンR22 冷媒質量速度: 200kg/m” −S乾   き 
  度=0.6 測定の結果、多孔質処理をしない内面消付管と比較して
上記実施例管は、5Kw/m”において15%、30K
w/m!において60%の性能向上が確認された。
Refrigerant: Freon R22 Refrigerant mass velocity: 200kg/m”-S dry
degree = 0.6 As a result of the measurement, compared to the internal fire extinguishing pipe without porous treatment, the above-mentioned example pipe has a resistance of 15% at 5Kw/m'' and 30K
w/m! A 60% improvement in performance was confirmed.

[発明の効果] 以上の通り、本発明によれば、管内面にきわめて安定性
の高い多孔質層を管と一体的に形成することができるも
のであり、特殊な治具や工具を必要としないために長尺
化が可能であるなど、工業上においてきわめて有用なも
のがある。
[Effects of the Invention] As described above, according to the present invention, an extremely stable porous layer can be integrally formed on the inner surface of a tube, and special jigs and tools are not required. There are some products that are extremely useful in industry, such as the fact that they can be made into long lengths because they do not need to be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は管内面に金属粉末混合層を塗布した状態を示す
説明図、第2図は管内面にらせん状溝を形成した様子を
示す半割断面図である。 1:管、 la:らせん状溝、 2:金属粉末混合層。 なお、上記は本発明に係る内面多孔質管を伝熱管として
使用する場合について説明したが、伝熱管のみに限定さ
れるものではなく、多孔質面による吸収あるいは触媒作
用などそれ以外の用途にも適用できるものである。
FIG. 1 is an explanatory view showing a state in which a metal powder mixed layer is applied to the inner surface of the tube, and FIG. 2 is a half-cut sectional view showing a state in which spiral grooves are formed on the inner surface of the tube. 1: tube, la: spiral groove, 2: metal powder mixed layer. In addition, although the above description has been made regarding the case where the internally porous tube according to the present invention is used as a heat transfer tube, it is not limited to use only as a heat transfer tube, and may also be used for other purposes such as absorption or catalytic action by the porous surface. It is applicable.

Claims (3)

【特許請求の範囲】[Claims] (1)管内面に低融点金属粉末と高融点金属粉末の混合
層を形成し、これを加熱して低融点金属粉末を溶融させ
、該低融点金属によって高融点金属粉末を管内面に固着
させると同時に、低融点金属と高融点金属とを相互拡散
させることにより微小空孔を形成させる内面多孔質管の
製造方法。
(1) Form a mixed layer of low melting point metal powder and high melting point metal powder on the inner surface of the tube, heat this to melt the low melting point metal powder, and fix the high melting point metal powder to the tube inner surface with the low melting point metal. At the same time, a method for manufacturing an internally porous tube in which micropores are formed by mutually diffusing a low melting point metal and a high melting point metal.
(2)管内面に管の長手方向に平行又は傾斜角度を有す
る溝を形成し、その上に低融点金属と高融点金属の混合
粉末層を形成し、その後加熱して請求項1記載の多孔質
化処理を施す内面多孔質管の製造方法。
(2) forming grooves parallel to or inclined at an angle in the longitudinal direction of the tube on the inner surface of the tube, forming a mixed powder layer of a low melting point metal and a high melting point metal thereon, and then heating the porous groove according to claim 1; A method for manufacturing an internally porous pipe that undergoes a refining treatment.
(3)高融点金属粉末の平均粒径を0.01〜3mmの
範囲とする請求項1又は2記載の内面多孔質管の製造方
法。
(3) The method for producing an internally porous tube according to claim 1 or 2, wherein the average particle size of the high melting point metal powder is in the range of 0.01 to 3 mm.
JP33069188A 1988-12-27 1988-12-27 Production of pipe with porous inner surface Granted JPH02175881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33069188A JPH02175881A (en) 1988-12-27 1988-12-27 Production of pipe with porous inner surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33069188A JPH02175881A (en) 1988-12-27 1988-12-27 Production of pipe with porous inner surface

Publications (2)

Publication Number Publication Date
JPH02175881A true JPH02175881A (en) 1990-07-09
JPH0520508B2 JPH0520508B2 (en) 1993-03-19

Family

ID=18235494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33069188A Granted JPH02175881A (en) 1988-12-27 1988-12-27 Production of pipe with porous inner surface

Country Status (1)

Country Link
JP (1) JPH02175881A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994000613A1 (en) * 1992-06-22 1994-01-06 Pratco Industries Limited Hard facing
EP1718781A1 (en) * 2004-02-13 2006-11-08 Kyung Hyun Ko Porous coated member and manufacturing method thereof using cold spray
WO2007076110A2 (en) * 2005-12-22 2007-07-05 Luvata Franklin, Inc. Grooved porous surface, production method and application in heat transfer
EP1852669A1 (en) * 2006-05-02 2007-11-07 Samsung Gwangju Electronics Co., Ltd. Heat exchanger for refrigerator and method for manufacturing a tube thereof
JP2009109037A (en) * 2007-10-26 2009-05-21 General Electric Co <Ge> Heat transfer promoting system and manufacturing method of heat transfer device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994000613A1 (en) * 1992-06-22 1994-01-06 Pratco Industries Limited Hard facing
GB2282826A (en) * 1992-06-22 1995-04-19 Pratco Ind Ltd Hard facing
GB2282826B (en) * 1992-06-22 1996-03-20 Pratco Ind Ltd Hard facing
EP1718781A1 (en) * 2004-02-13 2006-11-08 Kyung Hyun Ko Porous coated member and manufacturing method thereof using cold spray
JP2007522346A (en) * 2004-02-13 2007-08-09 コウ,キョンヒョン Porous coating member and method for producing the same using low temperature spraying method
EP1718781A4 (en) * 2004-02-13 2009-03-18 Solmics Co Ltd Porous coated member and manufacturing method thereof using cold spray
WO2007076110A2 (en) * 2005-12-22 2007-07-05 Luvata Franklin, Inc. Grooved porous surface, production method and application in heat transfer
WO2007076110A3 (en) * 2005-12-22 2007-10-04 Luvata Franklin Inc Grooved porous surface, production method and application in heat transfer
EP1852669A1 (en) * 2006-05-02 2007-11-07 Samsung Gwangju Electronics Co., Ltd. Heat exchanger for refrigerator and method for manufacturing a tube thereof
JP2009109037A (en) * 2007-10-26 2009-05-21 General Electric Co <Ge> Heat transfer promoting system and manufacturing method of heat transfer device

Also Published As

Publication number Publication date
JPH0520508B2 (en) 1993-03-19

Similar Documents

Publication Publication Date Title
Lin et al. Review of low-GWP refrigerant pool boiling heat transfer on enhanced surfaces
US4359086A (en) Heat exchange surface with porous coating and subsurface cavities
US4663243A (en) Flame-sprayed ferrous alloy enhanced boiling surface
US3262190A (en) Method for the production of metallic heat transfer bodies
US20110154832A1 (en) Composition and method for producing the same
JPH02175881A (en) Production of pipe with porous inner surface
JPH03229667A (en) Method for manufacture of highly efficient heat transfer surface and said surface manufactured by said method
JPH10121110A (en) Boiling heat-transfer member and its production
US20070207931A1 (en) Grooved porous surface, production method and application in heat transfer
KR101925119B1 (en) copper-aluminum connecting members in face-to-face penetration welding process and preparation method thereof
JP2010132986A (en) Method for manufacturing aluminum member with layer of soldering material and method for manufacturing heat exchanger
JPS6183895A (en) Heating surface and manufacture thereof
JPS62116797A (en) Formation of porous layer
JPH02182330A (en) Expanding plug made of ceramic
JPS59104285A (en) Production of heat transmitting pipe
JPH03254359A (en) Production of heat transfer tube for heat exchanger
JPS5910467A (en) Production of blank material for brazing
JPS59150661A (en) Method for forming porous boiling heat transfer surface on surface of aluminum material
JPS61228294A (en) Heating tube and its manufacture
WO2007006847A1 (en) Method for improving the liquid flow properties of a heat transfer surface and its use.
JP2002292462A (en) Manufacturing method for aluminum joined product and device therefor
JPH0635668B2 (en) Method for manufacturing heat transfer tube for heat exchanger
JP2001038463A (en) Method for forming porous heat conductive face on metallic material surface
CA1170512A (en) Heat transfer surface for efficient boiling of liquid r-11 and its equivalents
JPH0440428B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees