JPH03254359A - Production of heat transfer tube for heat exchanger - Google Patents

Production of heat transfer tube for heat exchanger

Info

Publication number
JPH03254359A
JPH03254359A JP4846490A JP4846490A JPH03254359A JP H03254359 A JPH03254359 A JP H03254359A JP 4846490 A JP4846490 A JP 4846490A JP 4846490 A JP4846490 A JP 4846490A JP H03254359 A JPH03254359 A JP H03254359A
Authority
JP
Japan
Prior art keywords
tube
heat exchanger
heat transfer
metal
metallic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4846490A
Other languages
Japanese (ja)
Inventor
Akio Isozaki
礒崎 昭夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP4846490A priority Critical patent/JPH03254359A/en
Publication of JPH03254359A publication Critical patent/JPH03254359A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the high-performance heat transfer tube for heat exchangers by forming plural groove parts on the surface of a metallic strip blank material, depositing metallic particles and brazing material in the groove parts, heating the blank material to join the metallic particles and the metallic strip blank material to each other, forming the metallic strip blank material to a tubular shape, and butting and welding the ends. CONSTITUTION:The plural hollow groove parts 2a are formed on the surface of the continuously supplied metallic strip blank material 2. The metallic particles 8 and the brazing material 9 are deposited on this metallic strip blank material. The metallic particle and brazing material are heated as well when this metallic strip blank material is heated. After the brazing material melts once, the material solidifies to form secure and porous metallic particle layers on the bottoms of the groove parts. The metallic strip blank material is then formed to the tubular shape by forming rolls, etc., in such a manner that the groove parts are positioned on the inner side and the butt ends are welded to form the tube. The high-performance heat transfer tube for heat exchangers formed with the metallic particle layer on the inside surface of the tube is produced in this way.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は冷凍空調機の蒸発器等に使用される熱交換器用
伝熱管の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing heat exchanger tubes for heat exchangers used in evaporators, etc. of refrigeration and air conditioners.

[従来の技術] 従来、冷凍空調機の蒸発器等の熱交換性能を向上させる
ために、これに使用される数多くの熱交換器用伝熱管が
開発され、量産化されている。この熱交換器用伝熱管に
おいては、管内を通流する冷媒の蒸発又は沸騰により熱
交換が行なわれるので、その伝熱特性を向上させるため
には次に示すような改善が必要である。
[Prior Art] Conventionally, in order to improve the heat exchange performance of evaporators, etc. of refrigeration and air conditioners, a large number of heat exchanger tubes for use in the evaporators have been developed and mass-produced. In this heat transfer tube for a heat exchanger, heat exchange is performed by evaporation or boiling of the refrigerant flowing through the tube, so the following improvements are required to improve its heat transfer characteristics.

■ 管内表面積を拡大する。■ Expand the inner surface area of the tube.

■ 流れの乱れを大きくして伝熱抵抗を小さくする。■ Reduce heat transfer resistance by increasing flow turbulence.

■ 管内面での沸騰を活発化させる。■ Activates boiling on the inner surface of the tube.

■ ■〜■の手段を適宜組み合わせる。■ Combine the measures from ■ to ■ as appropriate.

先ず、■の対策を施した伝熱管としては、伝熱管内に高
いフィンを成形し、又は伝熱管内にフィン材を設置して
、伝熱管の内表面積を拡大することにより伝熱特性を向
上させたものがある。しかし、この場合、管内を通流す
る冷媒の圧力損失が管内面が平滑な平滑管の約10倍に
なってしまうため、使用上問題がある。
First, for heat transfer tubes that take measures against (■), heat transfer characteristics are improved by molding tall fins inside the heat transfer tube or installing fin material inside the heat transfer tube to expand the inner surface area of the heat transfer tube. There is something that made me However, in this case, the pressure loss of the refrigerant flowing through the tube is about 10 times that of a smooth tube with a smooth inner surface, which poses a problem in use.

■の対策を施した伝熱管としては、コルゲート管がある
。このコルゲート管は冷媒流の乱れが大きくなるので、
伝熱抵抗が低減されて伝熱特性が向上する。しかし、こ
の場合においても、管内を通流する冷媒の圧力損失が平
滑管の約5倍になってしまうため、使用上問題がある。
A corrugated tube is an example of a heat transfer tube that takes measures for (2). This corrugated pipe causes large turbulence in the refrigerant flow, so
Heat transfer resistance is reduced and heat transfer characteristics are improved. However, even in this case, there is a problem in use because the pressure loss of the refrigerant flowing through the pipe is about five times that of a smooth pipe.

また、■の対策を施した伝熱管として、粒子を管内面に
焼結させたものがある。この伝熱管は平滑管の5乃至1
0倍の伝熱特性を有するものの、小径化及び長尺化が困
難であると共に、生産性が低く、製造コストが高いとい
う問題点がある。
Furthermore, as a heat exchanger tube that takes the measure (2), there is one in which particles are sintered on the inner surface of the tube. This heat exchanger tube is a smooth tube with 5 to 1
Although it has 0 times the heat transfer characteristics, it is difficult to make the diameter smaller and the length longer, and there are problems in that the productivity is low and the manufacturing cost is high.

そこで、近年、内表面積を拡大すると共に冷媒流の乱れ
を大きくするために、その内面に溝を形成した伝熱管が
製造されている。
Therefore, in recent years, heat exchanger tubes having grooves formed on the inner surface have been manufactured in order to increase the inner surface area and increase the turbulence of the refrigerant flow.

このように管の内面に溝を形成した伝熱管は、溝によっ
て管の内表面積が平滑管の場合の約1.5倍に拡大され
るものの、この溝が微細であるため圧力損失が平滑管の
場合の約2倍に抑制されている。また、この伝熱管にお
いては、溝が管軸に対して例えば約5乃至30″捻れて
形成されているので、管内を通流する冷媒がこの溝に沿
って旋回する。従って、この伝熱管は、圧力損失が少な
いと共に、その伝熱特性が平滑管の2乃至3倍に向上し
ている。更に、この伝熱管は機械加工による連続的な製
造が可能であるので、管の小径化及び長尺化も可能であ
る。このため、この伝熱管は、ルームエアコン又は冷凍
機等の数多くの蒸発器に使用されている。
In heat exchanger tubes with grooves formed on the inner surface of the tube, the inner surface area of the tube is expanded by approximately 1.5 times that of a smooth tube, but because the grooves are minute, the pressure loss is lower than that of a smooth tube. This is suppressed to about twice that in the case of . In addition, in this heat exchanger tube, the groove is formed to be twisted, for example, about 5 to 30 inches with respect to the tube axis, so the refrigerant flowing inside the tube swirls along this groove. , pressure loss is small, and its heat transfer characteristics are improved two to three times that of smooth tubes.Furthermore, this heat transfer tube can be manufactured continuously by machining, so it is possible to reduce the diameter and length of the tube. It is also possible to scale the heat exchanger tube.For this reason, this heat exchanger tube is used in many evaporators such as room air conditioners or refrigerators.

[発明が解決しようとする課題] しかしながら、蒸発器等のヒートポンプの高性能化を図
るためには、熱交換器用伝熱管の伝熱性能を更に一層向
上させる必要がある。この場合に、管の内面に溝を形成
した伝熱管では、伝熱性能の向上に限界があり、伝熱管
使用分野からのヒートポンプの高性能化という要求には
十分に対応することができないという問題点がある。
[Problems to be Solved by the Invention] However, in order to improve the performance of heat pumps such as evaporators, it is necessary to further improve the heat transfer performance of heat exchanger tubes for heat exchangers. In this case, there is a problem that heat transfer tubes with grooves formed on the inner surface of the tube have a limit to the improvement of heat transfer performance, and cannot fully meet the demand for higher performance heat pumps from the field where heat transfer tubes are used. There is a point.

本発明はかかる問題点に鑑みてなされたものであって、
小径化及び長尺化が可能であり、製造コストを低減する
ことができると共に、伝熱性能が更に一層向上した伝熱
管を製造することができる熱交換器用伝熱管の製造方法
を提供することを目的とする。
The present invention has been made in view of such problems, and includes:
It is an object of the present invention to provide a method for manufacturing a heat exchanger tube for a heat exchanger, which can be made smaller in diameter and longer, can reduce manufacturing costs, and can manufacture a heat exchanger tube with further improved heat transfer performance. purpose.

[課題を解決するための手段] 本発明に係る熱交換器用伝熱管の製造方法は、連続的に
供給される金属帯素材の表面に複数の溝部を形成する工
程と、前記金属帯素材の少なくとも前記溝部内に金属粒
子及びロウ材を被着させる工程と、前記金属帯素材を加
熱して前記ロウ材を一旦溶融させた後に凝固させ前記金
属粒子及び前記金属帯素材を相互に接合する工程と、前
記溝部を内側にして前記金属帯素材を管状に成形する工
程と、この成形体の突き合わせ端部を溶接して造管する
工程とを有することを特徴とする。
[Means for Solving the Problems] A method for manufacturing a heat exchanger tube for a heat exchanger according to the present invention includes a step of forming a plurality of grooves on the surface of a continuously supplied metal strip material, and at least one step of forming a plurality of grooves on the surface of a metal strip material that is continuously supplied. a step of depositing metal particles and a brazing material in the groove; and a step of heating the metal strip material to once melt the brazing material and then solidifying it to join the metal particles and the metal strip material to each other. The present invention is characterized by comprising the steps of forming the metal strip material into a tubular shape with the groove portion facing inside, and forming a pipe by welding the abutted ends of the formed body.

[作用コ 本願発明者は、その内面に冷媒が活発に沸騰する構造を
形成して伝熱管の伝熱特性を向上させるべく種々実験研
究を重ねた。その結果、伝熱管の内面に溝部を形成し、
この溝部内に例えば溝部の深さの略半分の厚さで粒子層
を形成すると伝熱特性を更に一層向上できることを見い
出した。また、この粒子層を形成する手段としては、溶
射、焼結及びロウ付けがあるが、溶射による場合は粒径
が不均一になり、焼結による場合は焼結工程の時間が長
く生産性が悪いという欠点がある。しかし、本願発明者
は、例えば、金属粒子より粒径が小さいロウ材を前記金
属粒子に混合し、この混合物を前記溝部内に堆積させ、
前記ロウ材を一旦溶融させた後に凝固させて前記金属粒
子を溝部底部に接合させることにより、極めて強固な金
属粒子層を迅速に形成できることを見い出した。
[Operations] The inventor of the present application has conducted various experimental studies in order to improve the heat transfer characteristics of the heat transfer tube by forming a structure on the inner surface of the tube in which the refrigerant actively boils. As a result, grooves are formed on the inner surface of the heat exchanger tube,
It has been found that heat transfer characteristics can be further improved by forming a particle layer in this groove, for example, with a thickness approximately half the depth of the groove. In addition, thermal spraying, sintering, and brazing are methods for forming this particle layer, but thermal spraying results in non-uniform particle sizes, and sintering requires a long sintering process and reduces productivity. It has the disadvantage of being bad. However, the inventor of the present application, for example, mixes a brazing material having a particle size smaller than the metal particles with the metal particles, deposits this mixture in the groove,
It has been found that an extremely strong metal particle layer can be quickly formed by once melting the brazing material and then solidifying it to bond the metal particles to the bottom of the groove.

本発明はこのような知見に基づいてなされたものであっ
て、先ず、連続的に供給される金属帯素材の表面に複数
の凹状の溝部を形成する。この金属帯素材としては、熱
伝導性が優れた金属からなる帯状の板材を使用する。次
に、溝部が形成された前記金属帯素材上に金属粒子及び
ロウ材を被着させる。例えば、金属帯素材上に金属粒子
及びロウ材の混合物を散布すると、この金属粒子及びロ
ウ材は前記金属帯素材が次工程に進行する間の振動等に
より前記溝部内に入り込み、この溝部内に均一に分散す
るため、金属帯素材上に局部的に偏在することがない。
The present invention has been made based on such knowledge, and first, a plurality of concave grooves are formed on the surface of a continuously supplied metal strip material. As this metal band material, a band-shaped plate made of metal with excellent thermal conductivity is used. Next, metal particles and a brazing material are deposited on the metal strip material in which the grooves are formed. For example, when a mixture of metal particles and brazing material is sprinkled onto a metal strip material, the metal particles and brazing material enter the groove due to vibrations while the metal strip material progresses to the next step. Since it is uniformly dispersed, it is not locally unevenly distributed on the metal strip material.

また、前記ロウ材としては、例えば銅粒子に対するりん
銅ロウ材のように、金属粒子と密度が略等しいものが好
ましく、また、その粒径が金属粒子の約171O等、金
属粒子よりも小さいものが好ましい。このようなロウ材
を使用すれば、金属粒子の間にロウ材が均一に混合し、
後工程の加熱時に粒子相互間の隙間及び粒子と帯素材と
の間の隙間にロウ材が溶融して容易に粒子層が形成され
る。
Further, the brazing material is preferably one having approximately the same density as the metal particles, such as a phosphorous brazing material for copper particles, and one having a particle size smaller than that of the metal particles, such as about 171O of the metal particles. is preferred. If such a brazing material is used, the brazing material will be mixed uniformly between the metal particles, and
During heating in the post-process, the brazing material melts in the gaps between the particles and in the gaps between the particles and the band material, and a particle layer is easily formed.

次に、前記金属粒子及びロウ材が被着された前記金属帯
素材を加熱する。この場合、前記溝部内に堆積した前記
金属粒子及びロウ材も加熱され、このロウ材が一旦溶融
した後に凝固すると、前記金属粒子及び前記金属帯素材
が相互に接合して前記溝部底部上に強固な多孔質の金属
粒子層が形成される。
Next, the metal strip material to which the metal particles and brazing material are adhered is heated. In this case, the metal particles and the brazing material deposited in the groove are also heated, and when the brazing material once melts and solidifies, the metal particles and the metal strip material are bonded to each other and firmly attached to the bottom of the groove. A porous metal particle layer is formed.

次に、金属粒子層が形成された前記金属帯素材を成形ロ
ール等によって前記溝部が内側になるようにして管状に
成形し、この成形体の突き合わせ端部を溶接して造管す
る。これにより、管の内面に前記金属粒子層が形成され
た熱交換器用伝熱管が製造される。
Next, the metal strip material on which the metal particle layer has been formed is formed into a tube shape using a forming roll or the like so that the groove portion is on the inside, and the butted ends of this formed body are welded to form a tube. As a result, a heat exchanger tube for a heat exchanger in which the metal particle layer is formed on the inner surface of the tube is manufactured.

従って、本発明方法により製造された熱交換器用伝熱管
は、管の内面に形成された溝部によって、その内表面積
が拡大されて伝熱面が広くなると共に、冷媒が管内にて
旋回して流れやすくなるのでその管内全面が冷媒により
濡れるため、伝熱面が有効に活用される。これにより、
伝熱特性が向上する。また、前記溝部内の溝底面上には
多孔質の金属粒子層が形成されており、この金属粒子層
において冷媒が活発に沸騰するため、伝熱特性がより一
層向上する。
Therefore, in the heat exchanger tube manufactured by the method of the present invention, the grooves formed on the inner surface of the tube expand the inner surface area and widen the heat transfer surface, and the refrigerant swirls and flows inside the tube. Since the entire inside of the tube is wetted by the refrigerant, the heat transfer surface is effectively utilized. This results in
Improves heat transfer properties. Further, a porous metal particle layer is formed on the bottom surface of the groove, and the refrigerant actively boils in this metal particle layer, so that the heat transfer characteristics are further improved.

更に、本発明方法においては、連続的に供給される金属
帯素材に上述した一連の処理を施こすことにより、伝熱
特性が優れた熱交換器用伝熱管を連続的に製造すること
ができるので、伝熱管の小径化及び長尺化が可能である
と共に、その製造コストを低減することができる。
Furthermore, in the method of the present invention, heat exchanger tubes for heat exchangers with excellent heat transfer characteristics can be continuously manufactured by subjecting the continuously supplied metal strip material to the above-mentioned series of treatments. , it is possible to make the heat exchanger tube smaller in diameter and longer, and the manufacturing cost thereof can be reduced.

[実施例コ 次に、本発明の実施例について添付の図面を参照して説
明する。
[Embodiments] Next, embodiments of the present invention will be described with reference to the accompanying drawings.

第1図は本発明の実施例における熱交換器用伝熱管の製
造ラインを示す斜視図である。
FIG. 1 is a perspective view showing a manufacturing line for heat exchanger tubes in an embodiment of the present invention.

熱交換器用伝熱管製造ラインにおいては、巻き解きリー
ル1、溝加工部3、粒子ホッパー4、加熱炉5、ロール
フォーミング部6及び溶接機7が金属帯2の送給方向に
配列されている。そして、コイル状に巻回された金属帯
2は巻き解きり−ル1に装着され、リール1から巻き解
かれた金属帯2は熱交換器用伝熱管製造ラインの溝加工
部3に供給される。
In the heat exchanger tube manufacturing line, an unwinding reel 1, a groove processing section 3, a particle hopper 4, a heating furnace 5, a roll forming section 6, and a welding machine 7 are arranged in the feeding direction of the metal strip 2. Then, the metal band 2 wound into a coil is attached to an unwinding reel 1, and the metal band 2 unwound from the reel 1 is supplied to the groove processing section 3 of the heat exchanger tube manufacturing line. .

溝加工部3においては、金属帯2の搬送路の上方及び下
方に夫々溝付ロール3a及び対向ロール3bがその軸を
相互に平行にして金属帯2をその上面及び下面から挟み
込むように設置されている。
In the groove processing section 3, a grooved roll 3a and a counter roll 3b are installed above and below the conveyance path of the metal strip 2, respectively, with their axes parallel to each other so as to sandwich the metal strip 2 from the upper and lower surfaces thereof. ing.

溝付ロール3aの周面にはその周方向に対して傾斜する
方向に延びる複数の溝が形成されており、対向ロール3
bの周面には溝が形成されていない。
A plurality of grooves extending in a direction inclined with respect to the circumferential direction are formed on the circumferential surface of the grooved roll 3a.
No groove is formed on the circumferential surface of b.

そして、各溝付ロール3a及び対向ロール3bは適宜の
駆動装置により金属帯2を送り出す方向に回転するよう
になっている。
Each of the grooved rolls 3a and the opposing rolls 3b is rotated in the direction in which the metal strip 2 is sent out by an appropriate drive device.

粒子ホッパー4は溝加工部3の後方の金属帯2の上方に
配置されており、金属粒子8及びロウ材粒子9の混合物
が貯留されていて、この混合物を所定量切り出して金属
帯2の表面上に散布する。
The particle hopper 4 is disposed above the metal strip 2 behind the groove processing section 3, and stores a mixture of metal particles 8 and brazing material particles 9. A predetermined amount of this mixture is cut out and applied to the surface of the metal strip 2. Sprinkle on top.

加熱炉5は粒子ホッパー4の下流側にて金属帯2の周囲
を取り囲むように設置されており、炉内を通過する金属
帯2を加熱するようになっている。
The heating furnace 5 is installed downstream of the particle hopper 4 so as to surround the metal band 2, and heats the metal band 2 passing through the furnace.

ロールフォーミング部6においては、金属帯2の搬送路
に沿ってカリバーを有する3対のフォーミングロール8
a、6b+ 6cが配置されており、金属帯2はこれら
のロール6a乃至6Cを通過することによって、その長
手方向の中心線の周りに湾曲されて管状に成形されるよ
うになっている。
In the roll forming section 6, three pairs of forming rolls 8 having calibers are disposed along the conveyance path of the metal strip 2.
a, 6b+6c are arranged, and the metal strip 2 is curved around its longitudinal center line and formed into a tubular shape by passing through these rolls 6a to 6C.

溶接機7はロールフォーミング部6の後方に配置されて
いる。ロールフォーミング部6において管状に成形され
た金属帯2は、この溶接機の内部を通過する間にその突
き合わせ端部が溶接される。
The welding machine 7 is arranged behind the roll forming section 6. The metal strip 2 formed into a tubular shape in the roll-forming section 6 is welded at its butt ends while passing through the welding machine.

次に、上述した製造ラインを使用した本実施例に係る熱
交換器用伝熱管の製造方法について説明する。
Next, a method of manufacturing a heat exchanger tube for a heat exchanger according to this embodiment using the above-mentioned manufacturing line will be described.

先ず、リール1から巻き解かれた金属帯2の先端を溝付
ロール3a及び対向ロール3b間に噛み込ませ、溝付ロ
ール3a及び対向ロール3bを金属帯2の送り方向に回
転させて金属帯2を連続的に送り出す。これにより、金
属帯2の表面には、溝付ロール3aの周面の溝形状が転
写されて金属帯2の長手方向に対して傾斜する方向の複
数の溝部2a(第2図及び第3図参照)が形成される。
First, the tip of the metal band 2 unwound from the reel 1 is caught between the grooved roll 3a and the opposing roll 3b, and the grooved roll 3a and the opposing roll 3b are rotated in the feeding direction of the metal band 2 to form the metal band. 2 continuously. As a result, the groove shape of the circumferential surface of the grooved roll 3a is transferred to the surface of the metal band 2, and a plurality of grooves 2a in a direction inclined with respect to the longitudinal direction of the metal band 2 (FIGS. 2 and 3) are formed. ) is formed.

次に、粒子ホッパー4から金属粒子8及びロウ材粒子9
の混合物を連続的に所定量ずつ切り出し、溝部2aが形
成された金属帯2の表面にこの金属粒子8及びロウ材粒
子9を散布する。これらの散布された粒子は、振動によ
り金属帯2の全面に均一に分散し、溝部2a内に堆積す
る。第2図は粒子が散布された状態の金属帯2を示す部
分拡大断面図である。第2図に示すように、例えばロウ
材粒子9として、金属粒子8と密度が等しく、金属粒子
より粒径が小さいものを使用すれば、金属粒子8間及び
金属粒子8と溝部2a面との間にロウ材粒子9が均一に
分散して堆積する。
Next, metal particles 8 and brazing material particles 9 are transferred from the particle hopper 4.
A predetermined amount of the mixture is continuously cut out, and the metal particles 8 and brazing material particles 9 are sprinkled on the surface of the metal strip 2 in which the groove portion 2a is formed. These scattered particles are uniformly dispersed over the entire surface of the metal band 2 due to the vibration, and are deposited in the groove portion 2a. FIG. 2 is a partially enlarged sectional view showing the metal strip 2 with particles scattered thereon. As shown in FIG. 2, for example, if the brazing material particles 9 are of the same density as the metal particles 8 and have a smaller particle size than the metal particles, the gaps between the metal particles 8 and between the metal particles 8 and the surface of the groove 2a can be In between, the brazing material particles 9 are uniformly dispersed and deposited.

次に、この溝部2a内に金属粒子8及びロウ材粒子9が
堆積した金属帯2は、加熱炉5を通過して加熱され、ロ
ウ材粒子9が一旦溶融する。そして、金属帯2が加熱炉
5を出ると、溶融したロウ材が凝固するため、金属粒子
8及び金属帯2がロウ材により相互に接合される。これ
により、第3図に示すように、金属帯2上に例えば溝部
2aの深さの略半分の厚さで均−且つ強固な金属粒子層
が形成される。
Next, the metal strip 2 with the metal particles 8 and the brazing metal particles 9 deposited in the groove 2a passes through a heating furnace 5 and is heated, and the brazing metal particles 9 are once melted. Then, when the metal strip 2 leaves the heating furnace 5, the molten brazing material solidifies, so that the metal particles 8 and the metal strip 2 are joined to each other by the brazing material. As a result, as shown in FIG. 3, a uniform and strong metal particle layer is formed on the metal band 2 with a thickness that is, for example, approximately half the depth of the groove portion 2a.

次いで、金属帯2をロールフォーミング部6に案内し、
フォーミングロール6a、6b、6cにより金属帯2を
その長手方向の中心軸の周りに湾曲させて、管状に成形
する。その後、この管状に成形した金属帯2を溶接機7
内に導入し、金属帯2の突き合わせ端部を溶接して造管
する。これにより、内面に螺旋状の溝部及び金属粒子層
を形成した熱交換器用伝熱管を連続的に製造することが
できる。
Next, the metal strip 2 is guided to the roll forming section 6,
The metal strip 2 is curved around its central axis in the longitudinal direction by forming rolls 6a, 6b, and 6c to form it into a tubular shape. After that, the metal strip 2 formed into a tubular shape is welded to a welding machine 7.
The butted ends of the metal strip 2 are welded to form a pipe. Thereby, it is possible to continuously manufacture a heat exchanger tube for a heat exchanger in which a spiral groove and a metal particle layer are formed on the inner surface.

本実施例方法により製造された熱交換器用伝熱管は、第
4図に示すように、使用時において管内を通流する冷媒
10が金属粒子層内の金属粒子8の表面で蒸気泡11を
形成するため、冷媒10の沸騰を促進することができる
。また、金属帯2を管状に成形して伝熱管を製造するか
ら、第5図に示すように、金属帯2の送り方向に対して
斜め方向に形成された溝部2aが管内にて螺旋状をなし
、管内を通流する冷媒10に図中矢印方向の旋回流を与
えることができる。
In the heat exchanger tube manufactured by the method of this embodiment, as shown in FIG. 4, during use, the refrigerant 10 flowing through the tube forms vapor bubbles 11 on the surface of the metal particles 8 in the metal particle layer. Therefore, boiling of the refrigerant 10 can be promoted. Furthermore, since the heat transfer tube is manufactured by forming the metal strip 2 into a tubular shape, the groove portion 2a formed diagonally with respect to the feeding direction of the metal strip 2 forms a spiral shape inside the tube, as shown in FIG. None, it is possible to give the refrigerant 10 flowing through the pipe a swirling flow in the direction of the arrow in the figure.

従って、本実施例方法によれば、熱交換器用伝熱管の伝
熱特性をより一層向上させることができる。また、この
溝部2aの形成及び粒子層の形成は平板状の金属帯2に
対して実施し、これらを形成した後に造管することによ
り伝熱管を製造するから、伝熱管の小径化及び長尺化が
容易であると共に、製造コストを低減することができる
Therefore, according to the method of this embodiment, the heat transfer characteristics of the heat exchanger tube for a heat exchanger can be further improved. In addition, since the formation of the groove portion 2a and the formation of the particle layer are performed on the flat metal strip 2, and the heat exchanger tube is manufactured by forming the tube after forming these, the diameter of the heat exchanger tube can be reduced and the length can be increased. In addition to being easy to manufacture, manufacturing costs can be reduced.

次に、実際に上述した本実施例方法によりルームエアコ
ン等に使用される銅製の伝熱管を製造し、その性能を評
価した結果について説明する。
Next, the results of actually manufacturing copper heat exchanger tubes used in room air conditioners and the like using the method of this embodiment described above and evaluating their performance will be described.

先ず、厚さが0.5m+m1幅が30mmの銅板材に溝
加工を施した。この溝加工においては、溝数を50本、
溝の深さを0.4vamとし、銅板材の送り方向に対す
る溝の延長方向がなす角度、即ちリード角を18゜とし
た。
First, a groove was formed on a copper plate material having a thickness of 0.5 m + m1 and a width of 30 mm. In this groove processing, the number of grooves is 50,
The depth of the groove was 0.4 vam, and the angle formed by the extending direction of the groove with respect to the feeding direction of the copper plate material, that is, the lead angle was 18°.

次に、平均粒径が50μmの銅粒子と平均粒径が5μm
のりん銅ロウ粒子とをその粒子数の混合比がl対lとな
るように混合した混合粒子を前記銅板材上に散布した。
Next, copper particles with an average particle size of 50 μm and copper particles with an average particle size of 5 μm
Mixed particles prepared by mixing phosphorous copper wax particles with the number of particles at a mixing ratio of 1:1 were sprinkled on the copper plate material.

その後、この銅板材を加熱し、りん銅ロウ粒子を一旦溶
融した後に凝固させて銅板材上に厚さが約0.15m+
+の銅粒子層を形成した。
Thereafter, this copper plate material is heated, and the phosphor copper wax particles are once melted and then solidified to form a thickness of about 0.15 m+ on the copper plate material.
A positive copper particle layer was formed.

更に、この銅板材を管状に成形し、その突き合わせ端部
を溶接して内径が9.52mの熱交換器用伝熱管を得た
。この伝熱管を実施例1とした。
Furthermore, this copper plate material was formed into a tube shape, and the butted ends were welded to obtain a heat exchanger tube for a heat exchanger having an inner diameter of 9.52 m. This heat exchanger tube was designated as Example 1.

また、実施例1と同一内径の銅製平滑管からなる伝熱管
を従来例1とした。
Further, a heat exchanger tube made of a copper smooth tube having the same inner diameter as in Example 1 was designated as Conventional Example 1.

そして、実施例1及び従来例1に係る伝熱管の供試管長
を5000mmとし、管内を通流する冷媒として蒸発温
度が7℃であるフロンR22を使用して、その管内境膜
伝熱性能を測定し、比較評価した。
The test tube length of the heat transfer tubes according to Example 1 and Conventional Example 1 was set to 5000 mm, and Freon R22 with an evaporation temperature of 7°C was used as the refrigerant flowing inside the tubes, and the film heat transfer performance in the tubes was evaluated. Measured and comparatively evaluated.

なお、冷媒の入口温度は7℃であり、その流量は50k
g/時である。
The inlet temperature of the refrigerant is 7°C, and the flow rate is 50k.
g/hour.

その結果、実施例1においては、伝熱出口における冷媒
の過熱度は5度であった。これは同様にして測定を行な
った従来例1に比して約7倍の伝熱効率を示すものであ
る。即ち、従来から使用されている管内面に溝を形成し
た伝熱管では、その伝熱性能を平滑管に比して約2乃至
3倍にしか向上させることができないが、本実施例によ
れば、上述の如〈従来の溝付管よりも伝熱性能が極めて
優れた伝熱管を連続的に製造することができる。
As a result, in Example 1, the degree of superheat of the refrigerant at the heat transfer outlet was 5 degrees. This shows a heat transfer efficiency approximately seven times higher than that of Conventional Example 1, which was measured in the same manner. In other words, with conventionally used heat transfer tubes in which grooves are formed on the inner surface of the tube, the heat transfer performance can only be improved by about 2 to 3 times compared to smooth tubes, but according to this example, As mentioned above, it is possible to continuously manufacture heat transfer tubes with extremely superior heat transfer performance than conventional grooved tubes.

なお、本実施例に係る伝熱管をルームエアコン等の小型
空調機に使用する場合には、例えば、内径が6.35乃
至9.52m++、長さが1000乃至2000mであ
る長尺の伝熱管を製造し、これを1乃至2m毎に切断し
て使用すれば、製造コストを低減できる。
In addition, when the heat exchanger tube according to this embodiment is used in a small air conditioner such as a room air conditioner, for example, a long heat exchanger tube with an inner diameter of 6.35 to 9.52 m++ and a length of 1000 to 2000 m is used. Manufacturing costs can be reduced by cutting the pieces into pieces of 1 to 2 m each.

[発明の効果コ 以上説明したように本発明によれば、金属帯素材の表面
に溝部を形成し、更に多孔質の金属粒子層を形成した後
、この金属帯素材を管状に加工するから、管内を通流す
る冷媒に旋回流等の乱れを与えることができる溝部と、
冷媒の沸騰を促進できる金属粒子層との相乗効果を有す
る高性能な熱交換器用伝熱管を製造することができる。
[Effects of the Invention] As explained above, according to the present invention, after forming grooves on the surface of a metal strip material and further forming a porous metal particle layer, this metal strip material is processed into a tubular shape. a groove portion capable of imparting turbulence such as a swirling flow to the refrigerant flowing through the pipe;
It is possible to manufacture a high-performance heat exchanger tube that has a synergistic effect with the metal particle layer that can promote boiling of the refrigerant.

従って、この伝熱管を使用すれば、ヒートポンプ等の熱
交換性能をより一層向上させることができる。
Therefore, if this heat exchanger tube is used, the heat exchange performance of a heat pump or the like can be further improved.

また、本発明方法においては、管の小径化及び長尺化が
可能であると共に、連続的な製造が可能であるため、熱
交換器用伝熱管の製造コストを低減することができる。
Furthermore, in the method of the present invention, it is possible to make the tubes smaller in diameter and longer, and continuous production is possible, so the manufacturing cost of heat exchanger tubes for heat exchangers can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例における熱交換器用伝熱管の製
造ラインを示す斜視図、第2図は粒子が散布された状態
の金属帯素材を示す部分拡大断面図、第3図は金属粒子
層が形成された金属帯素材を示す部分拡大断面図、第4
図は金属粒子層における冷媒の沸騰を示す部分拡大断面
図、第5図は本実施例方法により製造された伝熱管の使
用特性を示す断面図である。 1;巻き解きリール、2:金属帯、2a;溝部、3;溝
加工部、3a;溝付ロール、3b;対向ロール、4:粒
子ホッパー、5:加熱炉、6;ロールフォーミング部、
6at  6b+  8c;フォーミングロール、7;
溶接機、8;金属粒子、9;ロウ材粒子、10;冷媒、
11;蒸気泡 第1図 第2図 第3図
Fig. 1 is a perspective view showing a manufacturing line for heat exchanger tubes according to an embodiment of the present invention, Fig. 2 is a partially enlarged cross-sectional view showing a metal strip material with particles dispersed thereon, and Fig. 3 is a perspective view showing a manufacturing line for heat exchanger tubes according to an embodiment of the present invention. Partially enlarged sectional view showing the metal strip material with layers formed, No. 4
The figure is a partially enlarged cross-sectional view showing the boiling of the refrigerant in the metal particle layer, and FIG. 5 is a cross-sectional view showing the usage characteristics of the heat exchanger tube manufactured by the method of this embodiment. 1; unwinding reel, 2: metal band, 2a; groove section, 3; grooved section, 3a; grooved roll, 3b; opposing roll, 4: particle hopper, 5: heating furnace, 6; roll forming section,
6at 6b+ 8c; forming roll, 7;
welding machine, 8; metal particles, 9; brazing metal particles, 10; refrigerant,
11; Steam bubbles Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)連続的に供給される金属帯素材の表面に複数の溝
部を形成する工程と、前記金属帯素材の少なくとも前記
溝部内に金属粒子及びロウ材を被着させる工程と、前記
金属帯素材を加熱して前記ロウ材を一旦溶融させた後に
凝固させ前記金属粒子及び前記金属帯素材を相互に接合
する工程と、前記溝部を内側にして前記金属帯素材を管
状に成形する工程と、この成形体の突き合わせ端部を溶
接して造管する工程とを有することを特徴とする熱交換
器用伝熱管の製造方法。
(1) A step of forming a plurality of grooves on the surface of a continuously supplied metal strip material, a step of depositing metal particles and a brazing material in at least the grooves of the metal strip material, and a step of depositing metal particles and a brazing material in at least the grooves of the metal strip material. a step of heating to once melt the brazing material and then solidify it to join the metal particles and the metal strip material to each other; a step of forming the metal strip material into a tubular shape with the groove portion inside; 1. A method for manufacturing a heat exchanger tube for a heat exchanger, comprising the step of welding butt ends of molded bodies to form a tube.
JP4846490A 1990-02-28 1990-02-28 Production of heat transfer tube for heat exchanger Pending JPH03254359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4846490A JPH03254359A (en) 1990-02-28 1990-02-28 Production of heat transfer tube for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4846490A JPH03254359A (en) 1990-02-28 1990-02-28 Production of heat transfer tube for heat exchanger

Publications (1)

Publication Number Publication Date
JPH03254359A true JPH03254359A (en) 1991-11-13

Family

ID=12804094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4846490A Pending JPH03254359A (en) 1990-02-28 1990-02-28 Production of heat transfer tube for heat exchanger

Country Status (1)

Country Link
JP (1) JPH03254359A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8123109B2 (en) * 2003-05-30 2012-02-28 Uop Llc Method for making brazed heat exchanger and apparatus
WO2012082540A2 (en) 2010-12-15 2012-06-21 Uop Llc Fabrication method for making brazed heat exchanger with enhanced parting sheets
CN102538569A (en) * 2011-12-18 2012-07-04 镇江市清源科技工程有限公司 Novel plate heat exchanger

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8123109B2 (en) * 2003-05-30 2012-02-28 Uop Llc Method for making brazed heat exchanger and apparatus
WO2012082540A2 (en) 2010-12-15 2012-06-21 Uop Llc Fabrication method for making brazed heat exchanger with enhanced parting sheets
EP2652426A4 (en) * 2010-12-15 2018-04-11 Uop Llc Fabrication method for making brazed heat exchanger with enhanced parting sheets
CN102538569A (en) * 2011-12-18 2012-07-04 镇江市清源科技工程有限公司 Novel plate heat exchanger

Similar Documents

Publication Publication Date Title
US4663243A (en) Flame-sprayed ferrous alloy enhanced boiling surface
KR20030038558A (en) Improved heat transfer tube with grooved inner surface
US4354550A (en) Heat transfer surface for efficient boiling of liquid R-11 and its equivalents
JPH03254359A (en) Production of heat transfer tube for heat exchanger
CN104010755A (en) Method for manufacturing heat exchanger and heat exchanger obtained by same
JPH0635668B2 (en) Method for manufacturing heat transfer tube for heat exchanger
JPH0440428B2 (en)
JPS6115088A (en) Heat transfer tube for boiling
JPH02175881A (en) Production of pipe with porous inner surface
JPH02280933A (en) Heat transfer tube and manufacture thereof
JPH04225793A (en) Heat exchange pipe and manufacture thereof
JP2721755B2 (en) Heat transfer tube and method of manufacturing the same
JPH1119765A (en) Heat exchanger and its manufacture
JPH04172187A (en) Manufacture of pipe with internal groove
WO2021060103A1 (en) Heat exchanger
JPH1038490A (en) Finned heating tube for high-temperature heat exchanger
KR102155778B1 (en) Heat-exchanger
JPH04203796A (en) Inner surface machined heat transfer pipe
JPH109712A (en) Flat tube for condenser and manufacture of same
JPS61176435A (en) Manufacture of tube for heat exchanger
JP2930249B2 (en) Method of manufacturing inner grooved pipe
WO2019026915A1 (en) Method for producing heat exchanger
JPH04313691A (en) Heat transfer tuber for heat exchanger and manufacture thereof
JP3779794B2 (en) Internal grooved heat transfer tube and manufacturing method thereof
JPH0231318B2 (en) FUTSUTOYODENNETSUKAN