JPH04225793A - Heat exchange pipe and manufacture thereof - Google Patents

Heat exchange pipe and manufacture thereof

Info

Publication number
JPH04225793A
JPH04225793A JP2415169A JP41516990A JPH04225793A JP H04225793 A JPH04225793 A JP H04225793A JP 2415169 A JP2415169 A JP 2415169A JP 41516990 A JP41516990 A JP 41516990A JP H04225793 A JPH04225793 A JP H04225793A
Authority
JP
Japan
Prior art keywords
pipe
core
refrigerant
core materials
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2415169A
Other languages
Japanese (ja)
Other versions
JP2703665B2 (en
Inventor
Yoichi Hisamori
洋一 久森
Kurayoshi Kitazaki
北▲崎▼ 倉喜
Takayuki Yoshida
孝行 吉田
Tomomasa Takeshita
竹下 倫正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2415169A priority Critical patent/JP2703665B2/en
Publication of JPH04225793A publication Critical patent/JPH04225793A/en
Application granted granted Critical
Publication of JP2703665B2 publication Critical patent/JP2703665B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve a heat transfer rate in a pipe during heating and to enable the decrease of the size of a tube by a method wherein porous products fused and combined together through the covering materials of respective core materials are formed in a plurality of spots on the inner surface of a pipe used for the feed of a refrigerant. CONSTITUTION:A pipe 6 used for the feed of a refrigerant is formed such that a plurality of core materials 4 formed of a steel material with a diameter of approximate 50-200mum are piled up throughout a long range of a plurality of the core materials to produce a porous product 10, and the porous products are attached in a way that the core materials 4 are combined together or the core material 4 and the pipe 6 are combined together through a covering material 5. Namely, the covering material 5 of nickel is heat-treated and molten, the core materials 4 are combined together and the core material 5 and the pipe are combined together to produce the porous product 7. This constitution and method collect a refrigerant, passing through the pipe 6, to the crest of the crest of the porous product 11, reduce heat resistance on the whole of the pipe, and improve condensing performance and heat transfer rate in the pipe during heating.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、ヒートポンプ式ルー
ムエアコンの室内機などにおいて、パイプ内冷媒の凝縮
性能を向上する熱交換パイプおよびその製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchange pipe that improves the condensation performance of refrigerant in the pipe in an indoor unit of a heat pump type room air conditioner, and a method for manufacturing the same.

【0002】0002

【従来の技術】図11は従来の熱交換パイプを示す斜視
図であり、図において、1はパイプで、このパイプ1の
内面には軸方向に複数本の溝2が設けられ、これらの溝
2はパイプ1の端面では、波形をなすところから、波形
溝付き管と呼ばれている。また、このパイプ1は、平板
の基材上にプレスまたはしごき加工によって溝2を形成
し、その後、この基材をパイプ状に丸め、さらに合せ面
を溶接することにより製造される。このように溝2を設
けることによって、パイプ1内を流れる冷媒と接する面
積を多くし、蒸発,凝縮性能を促進することにより、管
内熱伝達率を向上することができる。また、このような
溝2を有するパイプ1の溝形状の仕様は、図12に示す
通りで、パイプ1の外径D,底肉厚t,溝2の数,リー
ド角β,溝2の深さHについて、それぞれ適正値が与え
られている。
2. Description of the Related Art FIG. 11 is a perspective view showing a conventional heat exchange pipe. In the figure, 1 is a pipe, and the inner surface of this pipe 1 is provided with a plurality of grooves 2 in the axial direction. 2 is called a wave-grooved pipe because the end surface of the pipe 1 forms a wave shape. Further, this pipe 1 is manufactured by forming grooves 2 on a flat base material by pressing or ironing, then rolling this base material into a pipe shape, and further welding the mating surfaces. By providing the grooves 2 in this manner, the area in contact with the refrigerant flowing inside the pipe 1 is increased, and the evaporation and condensation performance is promoted, thereby improving the heat transfer coefficient within the pipe. Further, the specifications of the groove shape of the pipe 1 having such a groove 2 are as shown in FIG. Appropriate values are given for each H.

【0003】0003

【発明が解決しようとする課題】従来の熱交換パイプは
以上のように構成されているので、冷房時にパイプ1を
流れる冷媒の蒸発を促進するのには有効であるが、暖房
時の冷媒の凝縮能力は、蒸発性能の約1/2であり、溝
2が深すぎると、この溝に溜った冷媒Pの膜厚が図13
に示すように厚くなり、それが抵抗になって凝縮作用を
妨げ、暖房時の管内熱伝達率を減少させるなどの課題が
あった。このように、ヒートポンプ式エアコンの弱点は
暖房性能であり、これを向上させることが必要であり、
従来の波形溝付き管ではこの課題を解決できなかった。 また、平板材に溝2を形成し、その後、パイプ形状に平
板を曲げ、溶接するため、溶接部3の溝2がつぶれてし
まい、そのため溝2が完全なパイプと比べて、管内熱伝
達率は減少し、今後、室内機の小型化にともなうパイプ
の細管化が進めば、この溶接部3の損失が致命的になる
可能性があるなどの課題があった。
[Problems to be Solved by the Invention] Since the conventional heat exchange pipe is constructed as described above, it is effective in accelerating the evaporation of the refrigerant flowing through the pipe 1 during cooling, but the evaporation of the refrigerant during heating is The condensation capacity is about 1/2 of the evaporation capacity, and if the groove 2 is too deep, the film thickness of the refrigerant P accumulated in this groove will increase as shown in Fig. 13.
As shown in Figure 2, the thickness of the pipe becomes thicker, which creates resistance and impedes condensation, leading to problems such as reducing the heat transfer coefficient within the pipe during heating. In this way, the weak point of heat pump air conditioners is their heating performance, and it is necessary to improve this.
Conventional corrugated grooved pipes could not solve this problem. In addition, since grooves 2 are formed in a flat plate material, and then the flat plate is bent into a pipe shape and welded, the grooves 2 of the welded part 3 are crushed, and as a result, the in-pipe heat transfer rate is lower than that of a pipe with complete grooves 2. In the future, as indoor units become smaller and pipes become thinner, there is a problem that the loss of this welded part 3 may become fatal.

【0004】この請求項1の発明は、上記のような課題
を解消するためになされたもので、パイプ内に多孔質体
を設けることにより暖房時の管内熱伝達率を向上させ、
細管化にも対応できる熱交換パイプを得ることを目的と
する。
[0004] The invention of claim 1 has been made to solve the above-mentioned problem, and improves the heat transfer coefficient in the pipe during heating by providing a porous body inside the pipe.
The purpose is to obtain a heat exchange pipe that can be made into thin tubes.

【0005】また、この請求項2の発明はパイプ内やパ
イプ構成のための基材上に、被覆処理材を治具を用いて
配置した後加熱するだけで、多孔質体を任意のパターン
に形成できるようにする熱交換パイプの製造方法を得る
ことを目的とする。
[0005] Furthermore, the invention of claim 2 allows the porous body to be formed into any pattern by simply placing the coating material inside the pipe or on the base material for pipe construction using a jig and then heating it. It is an object of the present invention to obtain a method for manufacturing a heat exchange pipe that allows the formation of heat exchange pipes.

【0006】[0006]

【課題を解決するための手段】この請求項1に係る発明
の熱交換パイプは、冷媒の供給に用いられるパイプの内
面に、複数のコア材どうしおよび該コア材と上記パイプ
とが、それぞれ該コア材の被覆材によって融着結合され
た多孔質体を、複数箇所に亘って設けたものである。
[Means for Solving the Problems] The heat exchange pipe of the invention according to claim 1 is provided with a plurality of core materials and a plurality of core materials and the pipe, respectively, on the inner surface of the pipe used for supplying refrigerant. A porous body fused and bonded with a core material covering material is provided at a plurality of locations.

【0007】この請求項2に係る発明の熱交換パイプの
製造方法は、被覆処理材をパイプの内面やこのパイプ用
の基材上に治具を用いて積み重ね、上記被覆処理材を加
熱し、この被覆処理材のうちの溶融した被覆材によって
、これにより被覆されたコア材どうしおよび該コア材と
パイプとを結合させて、このパイプ内面に多孔質体を形
成するようにしたものである。
[0007] The method for manufacturing a heat exchange pipe of the invention according to claim 2 includes stacking the coating material on the inner surface of the pipe or the base material for the pipe using a jig, heating the coating material, The melted coating material of the coating material binds the core materials coated with each other and the core material and the pipe, thereby forming a porous body on the inner surface of the pipe.

【0008】[0008]

【作用】この請求項1の発明における多孔質体は、パイ
プ内を通過する冷媒をここに集め、他の部分では冷媒の
膜厚を薄くするように機能し、これによりパイプ全体と
しての熱抵抗の低減による冷媒の凝縮性能の向上、並び
に管内熱伝達率の向上を図れるようにする。
[Operation] The porous body in the invention of claim 1 functions to collect the refrigerant passing through the pipe here and to reduce the thickness of the refrigerant film in other parts, thereby increasing the thermal resistance of the pipe as a whole. It is possible to improve the condensing performance of the refrigerant by reducing the amount of water, and to improve the heat transfer coefficient within the pipe.

【0009】また、この請求項2の発明における多孔質
体のパイプに対する固着は、パイプ内面または該パイプ
形成用の基材上に、治具を用いて被覆処理材を設定パタ
ーンで配置、この状態でコア材周面に被覆した被覆材を
加熱し、この被覆材の溶融および固化によって、可能に
する。
[0009]Furthermore, in the invention of claim 2, the porous body is fixed to the pipe by arranging the coating material in a set pattern on the inner surface of the pipe or on the base material for forming the pipe using a jig, and in this state. This is achieved by heating the coating material coated on the peripheral surface of the core material and melting and solidifying the coating material.

【0010】0010

【実施例】以下、この発明の一実施例を図について説明
する。図1において、6は冷媒の供給に用いられるパイ
プ、5は径が50〜200μm程度の鋼材からなる複数
のコア材で、これらのコア材5はパイプ6の内面に複数
本に亘って、長く積み上げられて多孔質体を形成してお
り、コア材6どうしおよびコア材6とパイプ6とがそれ
ぞれ被覆材により結合されている。図2はかかる多孔質
体11の形成方法を示し、まず、ニッケルメッキなどの
被覆材5を周囲に施したコア材6をパイプ6の内面に、
図2aに示すように複数本に亘って積み上げて固定し、
その後、加熱処理により被覆材5を溶融して、この溶解
した被覆材5を結合材として、コア材4どうしおよびコ
ア材とパイプとをそれぞれ接合している。これにより、
パイプ6の内面に図1に示すような多孔質体7が形成さ
れる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, 6 is a pipe used for supplying refrigerant, and 5 is a plurality of core materials made of steel with a diameter of about 50 to 200 μm. The core materials 6 are stacked to form a porous body, and the core materials 6 and the core materials 6 and the pipe 6 are respectively connected by covering materials. FIG. 2 shows a method of forming such a porous body 11. First, a core material 6 with a coating material 5 such as nickel plating applied around it is placed on the inner surface of a pipe 6.
Stack and fix multiple pieces as shown in Figure 2a,
Thereafter, the covering material 5 is melted by heat treatment, and the melted covering material 5 is used as a bonding material to join the core materials 4 to each other and to the core material and the pipe. This results in
A porous body 7 as shown in FIG. 1 is formed on the inner surface of the pipe 6.

【0011】次に動作について説明する。まず、無電解
ニッケルメッキ処理によって得られたメッキ層の成分は
、ニッケルに融点降下元素であるりんを微量含んだ合金
であり、ニッケルろう(BNi−6  Ni:89%,
P:11%)に非常に近い組成である。従って、加熱処
理により融着された被覆処理材7間は、ろう付されたの
とほぼ同様の接合強度(2.8kgf/mm2 )を有
する。またパイプ6の内面には複数本の多孔質体10の
山が設けられることで、この各多孔質体10を構成する
各コア材4間の隙間に生じる冷媒の表面張力により、パ
イプ6内を流れる冷媒が、図3に示すように、その多孔
質体10の周囲のA部分に集まる。従って、パイプ6内
面の他のB部分では、冷媒Pの膜厚が薄くなる。この結
果、冷媒Pはその膜厚が薄い部分で凝縮しやすくなり、
熱抵抗の低下による熱交換効率の向上が図れ、暖房時の
管内熱伝達率を改善できる。
Next, the operation will be explained. First, the components of the plating layer obtained by electroless nickel plating are an alloy containing nickel and a small amount of phosphorus, which is an element that lowers the melting point, and is made of nickel solder (BNi-6 Ni: 89%,
P: 11%). Therefore, the bonding strength (2.8 kgf/mm2) between the coated materials 7 fused by heat treatment is almost the same as that of brazing. In addition, by providing a plurality of ridges of porous bodies 10 on the inner surface of the pipe 6, the surface tension of the refrigerant generated in the gaps between the core materials 4 constituting each porous body 10 causes the inside of the pipe 6 to flow. The flowing refrigerant gathers in a portion A around the porous body 10, as shown in FIG. Therefore, in the other portion B of the inner surface of the pipe 6, the film thickness of the refrigerant P becomes thinner. As a result, refrigerant P tends to condense in areas where the film thickness is thin,
The heat exchange efficiency can be improved by lowering the thermal resistance, and the heat transfer coefficient within the pipe during heating can be improved.

【0012】また、上記多孔質体を持った上記の熱交換
パイプを製造する方法について説明する。まず、図2に
示すように、本実施例では粒径100μmの銅粒子をコ
ア材4として使用し、無電解ニッケルメッキ(ニッケル
:87〜93%,りん:4〜12%,その他1%)溶液
中で、90℃,20分間、コア材4にメッキ処理を行な
い、コア材4に被覆材5となるニッケルメッキ膜を形成
する。このようにして、銅粒子に3μm程度のニッケル
メッキ膜を持つ被覆処理材7を得る。なお、図2は模式
的に示した図であり、実際の寸法比に対して被覆材5の
膜厚を厚く描いてある。次に、加熱状態においてもニッ
ケルメッキと反応しない材料、つまりぬれ性の悪い材料
で、かつ線膨張率がパイプ6より小さい材料(ここでは
強固な酸化皮膜を成膜したステンレス鋼)からなる治具
8、つまりパイプ6の内径と等外径であり、パイプ6と
の半径隙間が被覆処理材7の粒径より小さく、本実施例
では長手方向に延びる複数個の溝9を持つ治具8を図4
に示すようにパイプ6に挿入する。そして、治具8の溝
9に被覆処理材7を超音波振動などにより入れていき、
治具8により崩れないように保持する。これを、真空(
10−3Torr程度)雰囲気のろう付炉の中に入れ、
950℃、30分間加熱する。この加熱処理により、メ
ッキの被覆材5は融解して、表面張力,ぬれ性等により
被覆処理材7相互及び被覆処理材7とパイプ6内面の接
触部分に引き込まれ、被覆処理材7の非接触部のニッケ
ルメッキ層が消失して、銅を素材とするコア材4の表面
が図2に示すように露出する。加熱処理を終了すると、
この状態でニッケルメッキの被覆材5が凝固して固定さ
れる。その後、治具8を引き抜き、パイプ6内面に図5
に示すような複数列の多孔質体10を持つ凝縮管として
の熱交換パイプを得る。なお、上記実施例では、パイプ
6の内面の長手方向(軸方向)に複数本の多孔質体10
を設けたものを示したが、図6に示すように螺旋状に複
数個の溝12をもつ治具11を用いれば、図7に示すよ
うな螺旋状の複数本の多孔質体10を形成できる。この
治具11の材料および外径公差は、治具8と同様であり
、治具11を引き抜く際は、治具11を回転させながら
、パイプ6から抜くようにする。
[0012] Also, a method for manufacturing the above heat exchange pipe having the above porous body will be explained. First, as shown in Fig. 2, in this example, copper particles with a particle size of 100 μm are used as the core material 4, and electroless nickel plating (nickel: 87-93%, phosphorus: 4-12%, other 1%) is used. The core material 4 is plated in a solution at 90.degree. C. for 20 minutes to form a nickel plating film that will become the covering material 5 on the core material 4. In this way, a coated material 7 having a nickel plating film of about 3 μm on the copper particles is obtained. Note that FIG. 2 is a schematic diagram, and the thickness of the covering material 5 is drawn thicker than the actual size ratio. Next, we used a jig made of a material that does not react with the nickel plating even when heated, that is, a material with poor wettability and a linear expansion coefficient smaller than that of pipe 6 (here, stainless steel with a strong oxide film). 8, that is, the outside diameter is equal to the inside diameter of the pipe 6, the radial gap with the pipe 6 is smaller than the grain size of the coating material 7, and in this example, the jig 8 has a plurality of grooves 9 extending in the longitudinal direction. Figure 4
Insert it into the pipe 6 as shown. Then, the coating material 7 is put into the groove 9 of the jig 8 by ultrasonic vibration, etc.
It is held by a jig 8 so as not to collapse. This is done in a vacuum (
Place it in a brazing furnace with an atmosphere of about 10-3 Torr,
Heat at 950°C for 30 minutes. Through this heat treatment, the plated coating material 5 melts and is drawn into the contacting parts of the coating materials 7 with each other and the inner surface of the pipe 6 due to surface tension, wettability, etc. The nickel plating layer disappears, and the surface of the core material 4 made of copper is exposed as shown in FIG. After finishing the heat treatment,
In this state, the nickel-plated covering material 5 is solidified and fixed. After that, pull out the jig 8 and attach it to the inner surface of the pipe 6 as shown in Fig.
A heat exchange pipe as a condensing pipe having a plurality of rows of porous bodies 10 as shown in FIG. In the above embodiment, a plurality of porous bodies 10 are arranged in the longitudinal direction (axial direction) of the inner surface of the pipe 6.
However, if a jig 11 having a plurality of spiral grooves 12 as shown in FIG. 6 is used, a plurality of spiral porous bodies 10 as shown in FIG. 7 can be formed. can. The material and outer diameter tolerance of this jig 11 are the same as those of the jig 8, and when pulling out the jig 11, the jig 11 is rotated while being pulled out from the pipe 6.

【0013】また、図8はこの発明の他の実施例を示す
。これはパイプ6の基材13上に、溶融した被覆材5に
ぬれにくい素材からなる複数本の棒体の治具14を図8
aに示すように載置し、これに被覆処理材7を載せた後
、基材13および治具14を被覆材5の融点より高く、
コア材4,基材13の融点より低い温度で加熱し、被覆
処理材7の相互間および被覆処理材7と基材13とを融
着させたものである。この基材13は上記被覆処理材7
から、多孔質体10が形成された後に治具14が外され
て、図8bに示すようになり、さらにパイプ状に曲げ加
工され、図8cに示すように、溶接部6aで溶接されて
熱交換パイプとされる。また、図示しない格子状の治具
を用いて、基材13上の複数箇所に被覆処理材7の山を
不連続に配置して加熱することにより、図9aに示すよ
うな多孔質体10を持った基材13を得ることができる
。従って、これをパイプ状に加工すれば、図9bに示す
ような熱交換パイプが得られる。
FIG. 8 shows another embodiment of the present invention. In this method, a plurality of rod-shaped jigs 14 made of a material that is difficult to get wet with the molten coating material 5 are placed on the base material 13 of the pipe 6 as shown in FIG.
After placing the coating treatment material 7 on it as shown in a, the base material 13 and the jig 14 are heated to a temperature higher than the melting point of the coating material 5.
The core material 4 and the base material 13 are heated at a temperature lower than their melting points to fuse the coated materials 7 and the base material 13 together. This base material 13 is the coating material 7
After the porous body 10 is formed, the jig 14 is removed to form the shape shown in FIG. 8b, which is then bent into a pipe shape, and as shown in FIG. 8c, it is welded at the welding part 6a and heated Considered to be a replacement pipe. Furthermore, by discontinuously arranging piles of the coating material 7 at a plurality of locations on the base material 13 and heating them using a grid-like jig (not shown), a porous body 10 as shown in FIG. 9a is formed. It is possible to obtain a base material 13 having a shape. Therefore, if this is processed into a pipe shape, a heat exchange pipe as shown in FIG. 9b can be obtained.

【0014】なお、上記実施例では図2に示すような被
覆材5であるニッケルメッキ膜が消失し、コア材4の素
材表面が露出する多孔質体10を内面に持つ熱交換パイ
プの製造方法を示したが、コア材4に安価である耐食性
性能があまり高くない鉄粉などを用い、被覆材5として
耐食性能に優れるニッケルメッキを行い、図10に示す
ように、加熱処理後も被覆材5であるニッケルメッキ膜
がコア材4の鉄表面から消失しないだけの被覆材5の膜
厚を制御すれば、耐食性能に優れた多孔質体10を内面
に持つ熱交換パイプを得ることができる。また、上記実
施例ではコア材4やパイプ6の材料に銅材を使用したが
、ステンレス鋼、ニッケル、ペリリウム鋼などの金属あ
るいはガラスなどの無機物質、スチレンなどのポリマな
どでもよい。
In the above embodiment, as shown in FIG. 2, the nickel plating film which is the covering material 5 disappears, and the material surface of the core material 4 is exposed. However, the core material 4 is made of an inexpensive iron powder that does not have very high corrosion resistance, and the coating material 5 is nickel plated, which has excellent corrosion resistance.As shown in FIG. 10, the coating material remains intact even after heat treatment. If the thickness of the coating material 5 is controlled so that the nickel plating film 5 does not disappear from the iron surface of the core material 4, a heat exchange pipe having a porous body 10 with excellent corrosion resistance on the inner surface can be obtained. . Further, in the above embodiment, the core material 4 and the pipe 6 are made of copper, but metals such as stainless steel, nickel, and perylium steel, inorganic substances such as glass, and polymers such as styrene may also be used.

【0015】[0015]

【発明の効果】以上のように、この請求項1の発明によ
れば冷媒の供給に用いられるパイプの内面に、複数のコ
ア材どうし、および該コア材と上記パイプが該コア材の
被覆材によって融着結合された多孔質体を、複数箇所に
亘って設けるように構成したので、上記パイプ内を通過
する冷媒を多孔質体の山に集めることができ、従って、
パイプ内面の他の部分では冷媒の膜厚を薄くでき、この
結果、熱抵抗がパイプ全体として減少し、凝縮性能の向
上と暖房時の管内熱伝達率の向上を図れるものが得られ
る効果がある。
As described above, according to the invention of claim 1, a plurality of core materials are formed on the inner surface of a pipe used for supplying refrigerant, and the core materials and the pipe are coated with the covering material of the core materials. Since the structure is such that the porous body fused and bonded by is provided at multiple locations, the refrigerant passing through the pipe can be collected in the pile of the porous body, and therefore,
The thickness of the refrigerant film can be made thinner in other parts of the inner surface of the pipe, resulting in a reduction in thermal resistance for the pipe as a whole, which has the effect of improving condensing performance and improving the heat transfer coefficient within the pipe during heating. .

【0016】また、この請求項2の発明によれば被覆処
理材をパイプの内面やこのパイプ用の基材上に治具を用
いて積み重ね、上記被覆処理材を加熱し、この被覆処理
材のうちの溶融した被覆材によって、これにより被覆さ
れたコア材どうしおよび該コアとパイプを結合させて、
このパイプ内面に多孔質体を形成するようにしたので、
ライン状その他のパターンの多孔質体の山を、パイプ内
に容易,迅速に固着することができ、かつこの種の熱交
換パイプを大量,安価に製造できるものが得られる効果
がある。
According to the second aspect of the invention, the coating material is stacked on the inner surface of the pipe or the base material for the pipe using a jig, the coating material is heated, and the coating material is heated. The melted coating material joins the core materials covered with this and the core and the pipe,
By forming a porous material on the inner surface of this pipe,
It is possible to easily and quickly fix a pile of porous material in a line shape or other pattern inside a pipe, and this type of heat exchange pipe can be manufactured in large quantities at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の一実施例による熱交換パイプを示す
斜視図である。
FIG. 1 is a perspective view showing a heat exchange pipe according to an embodiment of the present invention.

【図2】この発明の一実施例による熱交換パイプへの多
孔質体の固着手順を示す説明図である。
FIG. 2 is an explanatory diagram showing a procedure for fixing a porous body to a heat exchange pipe according to an embodiment of the present invention.

【図3】この発明におけるパイプ内の冷媒状態を示す説
明図である。
FIG. 3 is an explanatory diagram showing the state of refrigerant in a pipe in the present invention.

【図4】この発明の熱交換パイプの製造工程を示す斜視
図である。
FIG. 4 is a perspective view showing the manufacturing process of the heat exchange pipe of the present invention.

【図5】この発明におけるパイプ内の多孔質体パターン
を示す断面図である。
FIG. 5 is a sectional view showing a porous material pattern within a pipe according to the present invention.

【図6】この発明の熱交換パイプの製造方法を示す斜視
図である。
FIG. 6 is a perspective view showing a method of manufacturing a heat exchange pipe of the present invention.

【図7】図6に示す方法で製造したパイプの多孔質パタ
ーンを示す断面図である。
7 is a cross-sectional view showing a porous pattern of a pipe manufactured by the method shown in FIG. 6. FIG.

【図8】この発明の熱交換パイプの他の製造方法を示す
斜視図である。
FIG. 8 is a perspective view showing another method of manufacturing the heat exchange pipe of the present invention.

【図9】この発明の熱交換パイプのさらに他の製造方法
を示す斜視図である。
FIG. 9 is a perspective view showing still another method of manufacturing the heat exchange pipe of the present invention.

【図10】この発明の多孔質体のパイプに対する他の固
差工程を示す端面図である。
FIG. 10 is an end view showing another solidification process for the porous pipe of the present invention.

【図11】従来の熱交換パイプを示す斜視図である。FIG. 11 is a perspective view showing a conventional heat exchange pipe.

【図12】従来の熱交換パイプにおける溝形状の適正値
を示す仕様説明図である。
FIG. 12 is a specification diagram showing appropriate values for the groove shape in a conventional heat exchange pipe.

【図13】従来のパイプ内冷媒の状態を示す説明図であ
る。
FIG. 13 is an explanatory diagram showing the state of refrigerant in a conventional pipe.

【符号の説明】[Explanation of symbols]

4  コア材 5  被覆材 6  パイプ 7  被覆処理材 8  治具 10  多孔質体 なお、図中、同一符号は同一または相当部分を示す。 4 Core material 5 Coating material 6 Pipe 7 Coating treatment material 8 Jig 10 Porous body In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  冷媒の供給に用いられるパイプと、該
パイプ内面の複数箇所に、複数のコア材どうしおよび該
コア材と上記パイプとが、それぞれ上記コア材の被覆材
によって融着結合された多孔質体とを備えた熱交換パイ
プ。
1. A pipe used for supplying a refrigerant, and a plurality of core materials, and the core material and the pipe are fused and connected to each other at a plurality of locations on the inner surface of the pipe, respectively, by coating materials of the core materials. A heat exchange pipe equipped with a porous body.
【請求項2】  コア材にこれより融点の低い被覆材を
成膜して被覆処理材を形成し、該被覆処理材をパイプ内
面または該パイプ成形用の基材上に、治具を用いて複数
箇所に亘って積み重ね、上記被覆処理材の加熱による上
記被覆材の溶融により、上記コア材どうしおよび該コア
材とパイプとをそれぞれ結合させて、該パイプ内面に多
孔質体を形成する熱交換パイプの製造方法。
2. A coating material is formed by forming a coating material with a lower melting point on the core material, and the coating material is applied onto the inner surface of the pipe or the base material for forming the pipe using a jig. Heat exchange in which the core materials are stacked at multiple locations and the coating material is melted by heating the coating material, thereby bonding the core materials to each other and the core material to the pipe to form a porous body on the inner surface of the pipe. Method of manufacturing pipes.
JP2415169A 1990-12-27 1990-12-27 Heat exchange pipe manufacturing method Expired - Fee Related JP2703665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2415169A JP2703665B2 (en) 1990-12-27 1990-12-27 Heat exchange pipe manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2415169A JP2703665B2 (en) 1990-12-27 1990-12-27 Heat exchange pipe manufacturing method

Publications (2)

Publication Number Publication Date
JPH04225793A true JPH04225793A (en) 1992-08-14
JP2703665B2 JP2703665B2 (en) 1998-01-26

Family

ID=18523566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2415169A Expired - Fee Related JP2703665B2 (en) 1990-12-27 1990-12-27 Heat exchange pipe manufacturing method

Country Status (1)

Country Link
JP (1) JP2703665B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60255981A (en) * 1984-05-30 1985-12-17 Mitsubishi Metal Corp Manufacture of heat transfer tube for heat exchanger
JPS62106292A (en) * 1985-11-01 1987-05-16 Toshiba Corp Heat transfer tube and manufacture thereof
JPS63189793A (en) * 1987-02-02 1988-08-05 Mitsubishi Electric Corp Heat transfer pipe for evaporation and condensation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60255981A (en) * 1984-05-30 1985-12-17 Mitsubishi Metal Corp Manufacture of heat transfer tube for heat exchanger
JPS62106292A (en) * 1985-11-01 1987-05-16 Toshiba Corp Heat transfer tube and manufacture thereof
JPS63189793A (en) * 1987-02-02 1988-08-05 Mitsubishi Electric Corp Heat transfer pipe for evaporation and condensation

Also Published As

Publication number Publication date
JP2703665B2 (en) 1998-01-26

Similar Documents

Publication Publication Date Title
US3262190A (en) Method for the production of metallic heat transfer bodies
EP0455276A2 (en) Heat pipe and method of manufacturing the same
US20070251410A1 (en) Method For Reducing Metal Oxide Powder And Attaching It To A Heat Transfer Surface And The Heat Transfer Surface
CA2159247A1 (en) Thin film brazing of aluminum shapes
JP2580843B2 (en) Method for producing base material having porous surface
US5107575A (en) Heat exchanger and method of manufacturing the same
JP2002011569A (en) Heat exchanger and its manufacture
JP2004020174A (en) Flat radiating fin, heat exchanger using it, and its manufacturing method
GB2158757A (en) Hot press welding process
US4207662A (en) Method of manufacturing an aluminum heat exchanger
JPH04225793A (en) Heat exchange pipe and manufacture thereof
SU1611679A1 (en) Method of producing finned tubes
US4873127A (en) Method of making heat transfer tube
JPH03254359A (en) Production of heat transfer tube for heat exchanger
US3289750A (en) Heat exchanger
KR940005668B1 (en) Casing for exhaust gas cleaning catalyst
JPH01133671A (en) Manufacture of tubular material for heat exchanger
JPH0791672B2 (en) Heat transfer tube manufacturing method
JP2822015B2 (en) Pipe for heat exchanger and method for producing the same
US3452783A (en) Compound metal structure
JPS59104285A (en) Production of heat transmitting pipe
JP2004050185A (en) Method of manufacturing heat exchanger
WO2021060103A1 (en) Heat exchanger
JP2721755B2 (en) Heat transfer tube and method of manufacturing the same
JPH0787942B2 (en) Heat transfer tube manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees