JPH0480994B2 - - Google Patents
Info
- Publication number
- JPH0480994B2 JPH0480994B2 JP60254505A JP25450585A JPH0480994B2 JP H0480994 B2 JPH0480994 B2 JP H0480994B2 JP 60254505 A JP60254505 A JP 60254505A JP 25450585 A JP25450585 A JP 25450585A JP H0480994 B2 JPH0480994 B2 JP H0480994B2
- Authority
- JP
- Japan
- Prior art keywords
- heat transfer
- porous plate
- substrate
- tube
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 claims description 22
- 239000002184 metal Substances 0.000 claims description 16
- 229910052751 metal Inorganic materials 0.000 claims description 16
- 239000000758 substrate Substances 0.000 claims description 15
- 238000007747 plating Methods 0.000 claims description 9
- 229910000831 Steel Inorganic materials 0.000 description 13
- 239000010959 steel Substances 0.000 description 13
- 229910052802 copper Inorganic materials 0.000 description 12
- 239000010949 copper Substances 0.000 description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 8
- 238000009835 boiling Methods 0.000 description 7
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 229910000365 copper sulfate Inorganic materials 0.000 description 2
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 241000238413 Octopus Species 0.000 description 1
- 229910003086 Ti–Pt Inorganic materials 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/18—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
- F28F13/185—Heat-exchange surfaces provided with microstructures or with porous coatings
- F28F13/187—Heat-exchange surfaces provided with microstructures or with porous coatings especially adapted for evaporator surfaces or condenser surfaces, e.g. with nucleation sites
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/16—Electroplating with layers of varying thickness
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/04—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
- F28D15/046—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- Electrochemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Electroplating Methods And Accessories (AREA)
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、例えば空調用の熱交換器の蒸発管や
凝縮管の伝熱面、あるいはウイツクを有するヒー
トパイプなどを構成するのに好適な多孔質板の形
成方法に関し、特に伝熱体に応用した場合に製造
コストが安く、伝熱特性を向上させることができ
る多孔質板の形成方法に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention is suitable for configuring, for example, a heat transfer surface of an evaporation tube or a condensation tube of a heat exchanger for air conditioning, or a heat pipe having a heat exchanger. The present invention relates to a method for forming a porous plate, and particularly relates to a method for forming a porous plate that can be manufactured at low cost and improve heat transfer characteristics when applied to a heat transfer body.
[従来の技術]
板状部材の内外の媒体の熱交換を行わせるため
の伝熱体において、その伝熱効率を上げるために
は、
(1) 伝熱面積を大きくする。[Prior Art] In order to increase the heat transfer efficiency of a heat transfer body for exchanging heat between the inside and outside of a plate-shaped member, the following steps are required: (1) Enlarge the heat transfer area.
(2) 核沸騰を起こしやすくする。(2) Make nucleate boiling more likely.
(3) 毛細管現象を起こしやすくする。(3) Facilitates capillary action.
(4) 乱流を起こしやすくする。(4) Make turbulence more likely.
ことが有効とされている。It is said that this is effective.
この(1)、(4)を満たすような方法として、銅管の
内面に螺旋状の溝を転造法などにより形成する方
法が用いられている。 As a method that satisfies (1) and (4), a method is used in which a spiral groove is formed on the inner surface of a copper tube by a rolling method or the like.
また、(2)を満たすような方法としては、伝熱体
の表面に核沸騰の核となる多孔質層を形成する方
法が知られており、板状の伝熱体においては焼結
あるいは鑞付法によりそのような多孔質層を形成
することが行われている。 In addition, as a method that satisfies (2), a method is known in which a porous layer is formed on the surface of the heat transfer body, which becomes the core of nucleate boiling. Such a porous layer is formed by a deposition method.
[発明が解決しようとする問題点]
しかしながら、上記のような従来の方法におい
ては、それぞれ次のような問題点があつた。[Problems to be Solved by the Invention] However, the above conventional methods have the following problems.
すなわち、螺旋溝を形成する場合には、上記の
伝熱効率を上げる方法のうち、最も効果の高い核
沸騰現象を利用しておらず、また、転造工具の製
作技術上及び転造の技術上から、螺旋溝の条数や
ねじれの角度に制限があることなどの理由によ
り、通常の溝無し管と比べても熱特性値が1.2〜
1.5倍程度にしかならず、性能が不充分であつた。
また、製造において、転造工具と管内面の摩擦力
が大きいため、大きな加圧力を必要とし、従つて
大規模な装置を必要とするとともに、工具の寿命
が短くなつて、製作コストが高くなるという問題
点があつた。 In other words, when forming spiral grooves, the nucleate boiling phenomenon, which is the most effective of the above methods for increasing heat transfer efficiency, is not used, and there are also Therefore, due to the limitations on the number of spiral grooves and the angle of twist, the thermal characteristic value is 1.2~1.2 compared to ordinary grooveless pipes.
The increase was only about 1.5 times, and the performance was insufficient.
In addition, during manufacturing, the frictional force between the rolling tool and the inner surface of the tube is large, so a large pressing force is required, which in turn requires large-scale equipment, shortens the life of the tool, and increases production costs. There was a problem.
一方、多孔質層を形成する方法においては、伝
熱管のような管状構造のものの内面に、焼結、鑞
付を施すことは困難であつた。また、金属表面に
スクリーン印刷等によりパターンマスキングを施
した後、電気鍍金することにより多孔質層を形成
することも可能ではあるが、この方法により管内
面に多孔質層を形成するのは至難であり、かつ印
刷、焼き付け等の複雑な工程を必要とし、製造コ
ストが高くなるという問題点があつた。 On the other hand, in the method of forming a porous layer, it is difficult to sinter or braze the inner surface of a tubular structure such as a heat exchanger tube. It is also possible to form a porous layer by applying pattern masking to the metal surface by screen printing, etc., and then electroplating, but it is extremely difficult to form a porous layer on the inner surface of the tube using this method. However, there was a problem in that it required complicated processes such as printing and baking, resulting in high manufacturing costs.
本発明は、上記のような問題点に鑑み、核沸騰
を起こさせて伝熱特性を向上させる狭口空孔(開
口部が相対的に狭められている空孔)を管状体の
内面においても容易に形成でき、伝熱特性の優れ
た伝熱体を安価に製造するのに寄与するような多
孔質板の形成方法を提供することを目的とするも
のである。 In view of the above-mentioned problems, the present invention provides narrow holes (holes whose openings are relatively narrow) that cause nucleate boiling and improve heat transfer characteristics, even on the inner surface of a tubular body. It is an object of the present invention to provide a method for forming a porous plate that can be easily formed and contributes to manufacturing a heat transfer body having excellent heat transfer characteristics at a low cost.
[問題点を解決するための手段]
上記問題点を解決するため、本発明は、金属製
の基板に該基板の表面に開口する多数の孔部を形
成し、この後、上記基板の表面に鍍金を施し、上
記各孔部を開口部が相対的に狭められた形状とす
るものである。[Means for Solving the Problems] In order to solve the above problems, the present invention forms a large number of holes opening on the surface of a metal substrate, and then forms holes on the surface of the substrate. The holes are plated so that each of the holes has a relatively narrow opening.
以下、図面によつて説明すると、第1図の金属
製の基板1には貫通孔2が打ち抜きにより成形さ
れている。これに鍍金を行うことにより第2図の
ように開口部が狭められ、これに板状部材を裏か
ら重着すると、たこつぼ状の狭口空孔が形成され
る。第5図の基板1aには、エンボス加工によ
り、貫通していない凹孔2aが形成されている。
これを上面側から鍍金を行うと第6図に示される
ようなリエントラントキヤビテイが形成される。 Hereinafter, referring to the drawings, a through hole 2 is formed by punching in a metal substrate 1 shown in FIG. By plating this, the opening is narrowed as shown in FIG. 2, and when a plate-like member is attached to this from the back, a narrow hole shaped like an octopus is formed. A concave hole 2a that does not pass through is formed in the substrate 1a of FIG. 5 by embossing.
When this is plated from the top side, a reentrant cavity as shown in FIG. 6 is formed.
[作用]
このような方法においては、孔部の開口部に鍍
金による析出金属がひさし状にオーバーハングし
て形成され、開口部を相対的に狭めて狭口空孔を
形成する。[Function] In such a method, the metal deposited by plating is formed overhanging the opening of the hole in the shape of a canopy, and the opening is relatively narrowed to form a narrow hole.
[実施例]
(実施例 1)
第1図及び第2図に示す方法で多孔質板を形成
し、この多孔質板を用いて第4図に示す伝熱管を
製造した。[Example] (Example 1) A porous plate was formed by the method shown in Figs. 1 and 2, and a heat exchanger tube shown in Fig. 4 was manufactured using this porous plate.
長さ500mm、幅100mm、厚さ0.3mmの鋼板1の幅
方向のほぼ半分に直径200μの貫通孔2…を、比
表面積が15%になるように打ち抜き加工した。次
に、鋼板1を陰極とし、銅板を陽極として硫酸銅
液中で陰極電流密度10A/dm2で15分鍍金を施
し、表裏面に銅の電析金属層3を形成するととも
に、貫通孔2の開口部に狭窄部4を形成した。こ
れにより第2図に示す多孔質板が形成された。 A through hole 2 with a diameter of 200 μm was punched in approximately half of a steel plate 1 with a length of 500 mm, a width of 100 mm, and a thickness of 0.3 mm so that the specific surface area was 15%. Next, using the steel plate 1 as a cathode and the copper plate as an anode, plating is performed in a copper sulfate solution at a cathode current density of 10 A/dm 2 for 15 minutes to form a copper electrodeposited metal layer 3 on the front and back surfaces, and to form a copper electrodeposited metal layer 3 on the front and back surfaces. A narrowed portion 4 was formed at the opening. As a result, a porous plate shown in FIG. 2 was formed.
次に、上記のようにして形成された多孔質板
に、孔あき加工部を内側にして第3図に示すよう
に二重に巻き加工を施した。続いて、このように
形成された管状体を高周波誘導加熱等の手段によ
り局部的に銅の融点以上且つ鋼板1の融点以下の
温度に加熱して、鋼板1上に形成された電析金属
層3(外側に巻かれた鋼板1と内側に巻かれた鋼
板1との接合面に位置する部分の電析金属層3で
あつて、管状体の内周面部分の電析金属層3を含
まない)を瞬時に溶融させ、且つ直ちに冷却する
処理を施した。そして、この加熱、冷却処理を、
管状体上の部位を移動させつつ順次繰り返し、管
状体の全周に渡つて同処理を施した。これによ
り、外側に巻かれた鋼板1と内側に巻かれた鋼板
1とが、電析金属層3が溶融・固化してできた銅
の接合層を介して接合され、図4に示す一体の伝
熱管が製造された(図4はシーム部及び接合層の
部分の表示を省略している)。なお、上記加熱、
冷却処理は瞬時に行われるため、管状体の内周側
の開口部に形成された狭窄部4は、図4に示され
るようにその初期形状を維持する。また、二重巻
き加工を施した管状体を不活性又は還元性雰囲気
中で700℃以上かつ銅の融点以下の温度に加熱し、
電析金属層3と鋼板1との間で拡散接合を行つて
もよい。このようにして内側に巻かれた鋼板1と
外側に巻かれた鋼板1とを接合しても、管状体の
内周側の開口部に形成された狭窄部4の形状を維
持できる。 Next, the porous plate formed as described above was double-wound as shown in FIG. 3 with the perforated portion inside. Subsequently, the tubular body thus formed is locally heated to a temperature above the melting point of copper and below the melting point of the steel plate 1 by means such as high-frequency induction heating to form an electrodeposited metal layer on the steel plate 1. 3 (including the electrodeposited metal layer 3 on the inner peripheral surface of the tubular body, which is the part of the electrodeposited metal layer 3 located at the joint surface between the steel plate 1 wound on the outside and the steel plate 1 wound on the inside) A process was performed to instantaneously melt the liquid and immediately cool it. Then, this heating and cooling process is
The same treatment was applied to the entire circumference of the tubular body by sequentially repeating the process while moving the parts on the tubular body. As a result, the steel plate 1 wound on the outside and the steel plate 1 wound on the inside are joined via the copper bonding layer formed by melting and solidifying the electrodeposited metal layer 3, and the integrated steel plate 1 shown in FIG. A heat exchanger tube was manufactured (FIG. 4 omits the seam and bonding layer portions). In addition, the above heating,
Since the cooling process is instantaneous, the narrowed portion 4 formed at the opening on the inner peripheral side of the tubular body maintains its initial shape as shown in FIG. 4. In addition, a double-wound tubular body is heated in an inert or reducing atmosphere to a temperature of 700°C or higher and lower than the melting point of copper,
Diffusion bonding may be performed between the electrodeposited metal layer 3 and the steel plate 1. Even if the steel plate 1 wound on the inside and the steel plate 1 wound on the outside are joined in this way, the shape of the narrowed portion 4 formed at the opening on the inner peripheral side of the tubular body can be maintained.
この伝熱管を、万力を用いて押しつぶしたが、
接合面の剥離は全く見られなかつた。 This heat exchanger tube was crushed using a vise, but
No peeling was observed on the joint surface.
この伝熱管についてR−22を用いて熱特性試験
を行つたところ、冷媒流量50Kg/hr、乾き度0.5、
蒸発温度5℃の条件において、8000kcal/m2hr℃
の沸騰熱伝達率を示した。この値は、通常の伝熱
管として使用される同じサイズの銅管の3〜4倍
の性能値であつた。 When we conducted a thermal property test on this heat transfer tube using R-22, we found that the refrigerant flow rate was 50 kg/hr, the degree of dryness was 0.5,
8000kcal/m 2 hr℃ at evaporation temperature of 5℃
showed the boiling heat transfer coefficient of This value was 3 to 4 times higher than that of a copper tube of the same size used as a normal heat exchanger tube.
なお、この伝熱管をさらに引抜加工して形状を
整えるとともに、開口部をより狭めるようにして
もよい。 Note that this heat exchanger tube may be further drawn to adjust its shape, and the opening may be made narrower.
この伝熱管は、鋼製の基板に銅鍍金を施すこと
により狭口空孔を形成され、伝熱特性が向上され
ているとともに、この電析銅を基板の融着用とし
て使用することにより、強度が大きく向上されて
いる。 This heat transfer tube has narrow holes formed by applying copper plating to a steel substrate to improve heat transfer characteristics, and by using this electrodeposited copper as a welding material for the substrate, it has increased strength. has been greatly improved.
(実施例 2)
第5図及び第6図に示す方法で多孔質板を形成
し、この多孔質板を用いて第7図に示す伝熱管を
製造した。(Example 2) A porous plate was formed by the method shown in FIGS. 5 and 6, and a heat exchanger tube shown in FIG. 7 was manufactured using this porous plate.
長さ500mm、幅100mm、厚さ0.3mmの銅板1aの
一面に、直径100μ、深さ200μの貫通しない凹孔
2aを比表面積が20%となるようにエンボス加工
して形成した(第5図)。この銅板1aを陰極と
し、Ti−Pt製の不溶性陽極を用い、硫酸銅鍍金
液中で陰極電流密度10A/dm2で20分間鍍金を施
し、凹孔2aの開口部に第6図に示すように狭窄
部4aを形成した。これにより孔部が貫通してい
ない多孔質板が形成された。 A non-penetrating concave hole 2a with a diameter of 100 μm and a depth of 200 μm was embossed on one side of the copper plate 1a with a length of 500 mm, a width of 100 mm, and a thickness of 0.3 mm so that the specific surface area was 20% (Fig. 5). ). Using this copper plate 1a as a cathode and using an insoluble anode made of Ti-Pt, plating was applied in a copper sulfate plating solution at a cathode current density of 10 A/dm 2 for 20 minutes, and the opening of the recessed hole 2a was plated as shown in FIG. A narrowed portion 4a was formed in the area. As a result, a porous plate without penetrating holes was formed.
次に、上記のようにして形成された多孔質板
を、孔あき部を内側にして管状に折り曲げ加工
し、その両端部を接合して第7図に示す伝熱管を
製造した。 Next, the porous plate formed as described above was bent into a tubular shape with the perforated portions inside, and both ends were joined to produce a heat exchanger tube as shown in FIG. 7.
このように製造した伝熱管の伝熱特性をR−22
を用いて調査したところ、冷媒流量50Kg/hr、乾
き度0.5、蒸発温度5℃の条件において、
10000kcal/m2hr℃の沸騰熱伝達率を示した。 The heat transfer characteristics of the heat transfer tube manufactured in this way are R-22
When investigated using
It showed a boiling heat transfer coefficient of 10000 kcal/m 2 hr°C.
なお、この例においては凹孔を一面のみに形成
したが、両面に形成するようにしてもよい。ま
た、鍍金は管状に成形した後に、管軸にワイヤ状
の陽極を張り渡して行つてもよい。 In this example, the recessed holes were formed only on one side, but they may be formed on both sides. Further, plating may be performed by stretching a wire-shaped anode around the tube shaft after forming the tube into a tube shape.
[発明の効果]
以上説明したように、本発明は、金属製の基板
に該基板の表面に開口する多数の孔部を形成し、
この後、上記基板の表面に鍍金を施し、上記各孔
部を開口部が相対的に狭められた形状としたもの
であるので、核沸騰を起こすための核となる狭口
空孔を基板の表面に容易に形成することができ、
伝熱特性のよい伝熱体を安価に製造することがで
きる。また、基板を構成する金属と鍍金により析
出する金属を変えることにより、両者の特性を生
かした伝熱体を製造することができる。[Effects of the Invention] As explained above, the present invention forms a large number of holes opening on the surface of a metal substrate,
After that, the surface of the substrate is plated, and each of the holes is formed into a shape with a relatively narrow opening, so that the narrow holes, which serve as the nucleus for causing nucleate boiling, are formed in the substrate. can be easily formed on the surface,
A heat transfer body with good heat transfer characteristics can be manufactured at low cost. Furthermore, by changing the metal constituting the substrate and the metal deposited by plating, it is possible to manufacture a heat transfer body that takes advantage of the characteristics of both.
第1図及び第2図は本発明の一実施例に係る多
孔質板の製造行程を示す断面図、第3図及び第4
図は本発明の一実施例に係る多孔質板を用いた伝
熱管の製造行程を示す断面図、第5図及び第6図
は本発明の他の実施例に係る多孔質板の製造行程
を示す断面図、第7図は本発明の他の実施例に係
る多孔質板を用いた伝熱管を示す断面図である。
1,1a……基板、2,2a……孔部、3,3
a……電析金属層、4,4a……狭窄部。
1 and 2 are cross-sectional views showing the manufacturing process of a porous plate according to an embodiment of the present invention, and FIGS.
The figure is a sectional view showing the manufacturing process of a heat exchanger tube using a porous plate according to one embodiment of the present invention, and FIGS. 5 and 6 are sectional views showing the manufacturing process of a porous plate according to another embodiment of the present invention. FIG. 7 is a cross-sectional view showing a heat exchanger tube using a porous plate according to another embodiment of the present invention. 1, 1a... Substrate, 2, 2a... Hole, 3, 3
a... Electrodeposited metal layer, 4, 4a... Narrowed portion.
Claims (1)
の孔部を形成し、この後、上記基板の表面に鍍金
を施し、上記各孔部を開口部が相対的に狭められ
た形状とすることを特徴とする多孔質板の形成方
法。 2 上記孔部が上記基板を貫通しない凹部である
ことを特徴とする特許請求の範囲第1項記載の多
孔質板の形成方法。 3 上記孔部が貫通孔であることを特徴とする特
許請求の範囲第1項記載の多孔質板の形成方法。[Claims] 1. Forming a large number of holes opening on the surface of the substrate in a metal substrate, and then plating the surface of the substrate, and forming the holes so that the openings are relative to each other. A method for forming a porous plate characterized by forming a porous plate into a narrowed shape. 2. The method of forming a porous plate according to claim 1, wherein the hole is a recess that does not penetrate the substrate. 3. The method of forming a porous plate according to claim 1, wherein the hole is a through hole.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60254505A JPS62116797A (en) | 1985-11-13 | 1985-11-13 | Formation of porous layer |
JP4015582A JPH0791672B2 (en) | 1985-11-13 | 1992-01-30 | Heat transfer tube manufacturing method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60254505A JPS62116797A (en) | 1985-11-13 | 1985-11-13 | Formation of porous layer |
JP4015582A JPH0791672B2 (en) | 1985-11-13 | 1992-01-30 | Heat transfer tube manufacturing method |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4015582A Division JPH0791672B2 (en) | 1985-11-13 | 1992-01-30 | Heat transfer tube manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62116797A JPS62116797A (en) | 1987-05-28 |
JPH0480994B2 true JPH0480994B2 (en) | 1992-12-21 |
Family
ID=26351759
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60254505A Granted JPS62116797A (en) | 1985-11-13 | 1985-11-13 | Formation of porous layer |
JP4015582A Expired - Lifetime JPH0791672B2 (en) | 1985-11-13 | 1992-01-30 | Heat transfer tube manufacturing method |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4015582A Expired - Lifetime JPH0791672B2 (en) | 1985-11-13 | 1992-01-30 | Heat transfer tube manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (2) | JPS62116797A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006207968A (en) * | 2005-01-31 | 2006-08-10 | Denso Corp | Heat transfer device |
CN1840258B (en) * | 2005-03-28 | 2010-08-25 | 新灯源科技有限公司 | Method for manufacturing heat pipe with flat end surface |
JP5749305B2 (en) * | 2013-09-03 | 2015-07-15 | 三桜工業株式会社 | Heat transfer tube, heat transfer tube manufacturing method, and heat exchanger |
JP6300970B2 (en) * | 2016-09-08 | 2018-03-28 | 株式会社中温 | Multi-tube cooling and cold storage |
JP6920231B2 (en) * | 2018-02-06 | 2021-08-18 | 新光電気工業株式会社 | Loop type heat pipe |
-
1985
- 1985-11-13 JP JP60254505A patent/JPS62116797A/en active Granted
-
1992
- 1992-01-30 JP JP4015582A patent/JPH0791672B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH05311494A (en) | 1993-11-22 |
JPS62116797A (en) | 1987-05-28 |
JPH0791672B2 (en) | 1995-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0522985B1 (en) | Heat transfer tubes and method for manufacturing | |
US4577381A (en) | Boiling heat transfer pipes | |
JP2000346577A (en) | Heat exchanging fin collar and method of manufacturing heat exchange | |
CN108866412A (en) | The preparation method of three-dimensional porous composite material | |
CN108866369A (en) | Three-dimensional porous composite material | |
JPH0480994B2 (en) | ||
JP2009521662A (en) | Method for producing grooved porous surfaces and application to heat conduction | |
JP3264240B2 (en) | Method for producing copper tube having copper porous layer | |
SU1611679A1 (en) | Method of producing finned tubes | |
JP3403126B2 (en) | Fin for heat exchanger and method of manufacturing the same | |
EP3121520B1 (en) | Heat exchanger | |
JP2001033179A (en) | Tubular heat exchanger and its manufacture | |
TWM629047U (en) | Radiator assembly with heat pipe | |
JPS6397309A (en) | Production of clad pipe | |
JPH02268966A (en) | Manufacture of heat exchanger | |
JPH02175881A (en) | Production of pipe with porous inner surface | |
KR19980071026A (en) | Sheet for manufacturing fins for heat exchanger and fins for heat exchanger | |
JPH0631326Y2 (en) | Tube for heat exchanger | |
JPS5916639A (en) | Metallic die for manufacturing cross fin tube type heat exchanger fin | |
JPH0787942B2 (en) | Heat transfer tube manufacturing method | |
JPS6126785A (en) | Manufacture of heat exchanger member | |
JP3752046B2 (en) | Heat transfer tube and manufacturing method thereof | |
KR100528467B1 (en) | Fin & Tube type Heat Exchanger using Brazing and Method for manufacturing the same | |
JPS62112796A (en) | Formation of porous layer | |
JPS5942175Y2 (en) | Mandrel for heat exchanger manufacturing |