JP3566804B2 - Heat transfer tube with fins - Google Patents

Heat transfer tube with fins Download PDF

Info

Publication number
JP3566804B2
JP3566804B2 JP8455596A JP8455596A JP3566804B2 JP 3566804 B2 JP3566804 B2 JP 3566804B2 JP 8455596 A JP8455596 A JP 8455596A JP 8455596 A JP8455596 A JP 8455596A JP 3566804 B2 JP3566804 B2 JP 3566804B2
Authority
JP
Japan
Prior art keywords
particles
heat transfer
transfer tube
pipe
fins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8455596A
Other languages
Japanese (ja)
Other versions
JPH09243281A (en
Inventor
雅克 永田
幹幸 小野
正孝 望月
耕一 益子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP8455596A priority Critical patent/JP3566804B2/en
Publication of JPH09243281A publication Critical patent/JPH09243281A/en
Application granted granted Critical
Publication of JP3566804B2 publication Critical patent/JP3566804B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/003Arrangements for modifying heat-transfer, e.g. increasing, decreasing by using permeable mass, perforated or porous materials

Abstract

PROBLEM TO BE SOLVED: To enhance stirring action and wettability with liquid of an outer surface so as to improve heat exchanging performance of an outer portion by providing a porous layer formed by thermal spraying on the outer surface of a heat exchanger tube which causes heat exchange between a fluid flowing through an interior thereof and a heat medium outside of the tube. SOLUTION: Pipe stock 2 used as material for heat exchanger tubes 1 installed in a variety of types of heat exchangers has on an overall outer surface thereof a thermally sprayed coating 3 corresponding to a porous layer. The thermally sprayed coating 3 has a porous structure and effective radii of capillaries between thermally sprayed particles 4 are extremely small so that large capillary pressure is induced. Portions protruding on an outer surface of the thermally sprayed coating 3 function as fins 5. As layered structures of the sprayed particles 4 there are structures such as a double structure wherein particles having large sizes are sprayed on a surface of the pipe 2 and then particles having small sizes are overlaid thereon, a gradation structure wherein particles having sizes decreasing from a surface side of the pipe toward outside are sprayed, and the like structures.

Description

【0001】
【発明の属する技術分野】
この発明は、各種熱交換器の構成機素に用いられる伝熱管に関し、特に外部の熱伝達性を向上させた伝熱管に関するものである。
【0002】
【従来の技術】
伝熱管の外面における熱伝達性を向上させる手段として、フィンを取り付けて表面積を拡大させることは周知の通りである。また一方で、例えば吸収式冷凍機や吸収式冷温水機等の吸収器の内部に配設される伝熱管では、その外面に流通させた吸収溶液によって蒸発器で発生した冷媒蒸気を吸収するため、吸収溶液に対する撹拌作用や吸収溶液との濡れ性などが要求されている。
【0003】
これらの条件を満たす伝熱管の一例として、パイプの外面に多数条の細溝(グルーブ)を長手方向に沿って形成するとともに、これらの細溝同士の間のパイプ表面に多数枚の薄いフィンを狭い間隔で設けた構成のものがある。この伝熱管によれば、フィンおよび細溝の表面積の分だけパイプの外面における放熱面積あるいは吸熱面積が増大することは勿論、例えば液体を外面に接触させればフィン同士の間隔および各細溝に生じる毛細管圧力(ポンプ作用)によって、外面の広範囲に亘り液体が撹拌された状態で分散・保持される。その結果、熱・物質伝達が促進される。
【0004】
【発明が解決しようとする課題】
ところで、上記構成の伝熱管の細溝やフィンは、平滑管に対して切削加工もしくは転造加工を施すことによって作成されている。
【0005】
しかしながら、切削加工および転造加工では大規模な設備が必要とされるばかりか、生産性にも劣るため、製造コストが嵩む不都合があった。また、この種の加工方法では、パイプの半径方向に大きな荷重が加えられることから、薄肉のパイプや軟質材のパイプを対象した場合には変形が生じるおそれが多分にあった。
【0006】
他方、上記従来の伝熱管ではその外面に液体を保持すべく、グルーブなどを形成しているが、グルーブなどで得られる毛細管圧力は低いうえ、フィン同士の間隔を狭く形成したり、細溝を一層細く形成したりしてウィックの実効毛細管半径を小さくするにしてもコストの高騰を招くなどの理由から限度があり、その結果、上記の伝熱管では外面における液体撹拌作用や濡れ性が必ずしも充分でなかった。
【0007】
この発明は上記の事情に鑑みてなされたもので、製造コストが安価で、かつ外面における液撹拌作用や液との濡れ性が高い伝熱管を提供することを目的とするものである。
【0008】
【課題を解決するための手段およびその作用】
上記の目的を達成するためにこの発明は、内部を流通する流体と外部の熱媒体との間で熱授受を行わせるフィン付き伝熱管において、外表面に、溶射によって形成された多孔質層を有するとともに、この多孔質層によって半径方向での外側に突出した前記フィンが形成されていることを特徴とするものである。
【0009】
また、請求項2の発明では、前記多孔質層を、溶射粒子の粒径の互いに相違する複数の層によって形成することができる。
【0010】
さらに、請求項3の発明では、前記多孔質層を、その厚さ方向に溶射粒子の粒径が連続的に変化している傾斜構造とすることができる。
【0011】
この発明によれば、半径方向での外側に突出したフィンを含む多孔質層の表面積の分だけ放熱もしくは吸熱面積が素管の外表面に対して増大する。また、フィンを含む多孔質層は溶射粒子同士の間に気孔を備えた構造となっているから、大きい毛細管圧力を生じさせるようになっている。したがって、伝熱管の外表面に液体を接触させた場合、その液体はフィンおよび多孔質層に保持されつつ適度に撹拌されて広範囲に分散される。
【0012】
また、請求項2に記載したように、多孔質層を溶射粒子の粒径の互いに相違する複数の層によって形成すれば、各層ごとに溶射粒子同士の間の気孔の大きさが異なり、すなわち実効毛細管半径が相違するようになるため、多孔質層の厚さ方向での毛細管圧力の大きさに差異が生じる。これが伝熱管の外表面での液保持特性や液拡散特性として表れ、そのため、溶射粒子の粒径を各層ごとに設定すれば、液保持特性や液拡散特性を微調整できる。
【0013】
さらに、請求項3に記載したように、多孔質層をその厚さ方向に溶射粒子の粒径が連続的に変化している傾斜構造とすれば、厚さ方向での毛細管圧力の差異の分布がよりなだらかになる。したがって、例えば伝熱管の外表面に液体を接触させた場合での、多孔質層の上層から下層側に向けた液体の移行がより速やかになる。
【0014】
【発明の実施の形態】
以下、この発明の具体例を図面を参照して説明する。ここに示す例はパイプ材の外表面の全域に溶射皮膜を形成するとともに、その溶射皮膜の表面の一部を突出させてフィンを形成した例である。図1において符号1は伝熱管を示している。この伝熱管1の素材となるパイプ材2としては、この具体例では一般的な円形断面の平滑銅管が用いられている。
【0015】
パイプ材2の外表面の全域には、多孔質層に相当する溶射皮膜3が形成されている。この溶射皮膜3は、溶射粒子4同士の間に気孔を備えた多孔構造となっており、溶射粒子4同士の間の実効毛細管半径が極めて小さいため、大きい毛細管圧力を生じさせるようになっている。また図2に示すように、溶射皮膜3の表面は、パイプ材2の長手方向に等間隔をあけて半径方向での外側に突出しており、これらの突出した箇所はフィン5として作用する。すなわち、各フィン5は溶射皮膜3によって形成されている。したがって、この伝熱管1の外表面は、溶射皮膜3とフィン5とにより凹凸状を成している。
【0016】
ここで、溶射皮膜3における溶射粒子4の積層状態を例示すると、図3に示すように、パイプ材2の表面に径の大きい溶射粒子4を配置し、更にその上に径の小さい溶射粒子4を重ねた2層構造や、図4に示すようにこれとは逆に、径の小さい溶射粒子4をパイプ材2の表面に配置して、その上に径の大きい溶射粒子4を重ねた構造が挙げられる。
【0017】
さらには、図5に示すように、パイプ材2の表面側から外側に向けて徐々に径の小さい溶射粒子4を配置させたいわゆる傾斜構造や、これと逆に図6に示すような、最も径の小さい溶射粒子4をパイプ材2の表面に配置させた傾斜構造などが挙げられる。また、特には図示しないが大きさが均等な溶射粒子4を用いた単層構造でも勿論よい。このような粒径の変化は、溶射時に供給する素材の粒径を変更することによって達成される。
【0018】
なお、パイプ材2の他の例としては、長手方向に沿う複数状の細溝を外面に備えたグルーブ管や縦断面が連続的な波状を形成するコルゲートパイプ、あるいは管の内面に多数の小突起を備えたグルーブ管等が挙げられる。また、溶射材料としては、熱伝導性および耐熱性に優れるものであれば他の金属やセラミックスあるいはそれらを混合したサーメットでもよく、粒径は適宜設定することができる。また、溶射方法としては、プラズマ溶射法やガス溶射法またはフレーム溶射法等の従来知られた方法を採用することができる。
【0019】
したがって、上記のように構成された伝熱管1では、転造加工や切削加工に必要とされる大規模な設備が不要であるばかりか生産性に優れるから、製造コストが安価なものとなる。またひいては、多量生産に適した伝熱管1とすることができる。さらに、溶射はパイプ材2に対して半径方向に過大な荷重を与える手段ではないから、材質が軟らかく肉厚が薄いパイプ材2を対象にできる利点もある。
【0020】
さらに、この具体例の伝熱管1によれば、多数枚のフィン5を含む溶射皮膜3の表面積の分だけパイプ材2の外表面における放熱面積あるいは吸熱面積が一般的な平滑管に対して増大する。しかも、溶射皮膜3および各フィン5が大きい毛細管圧力を生じさせる構成であるため、例えば液体を伝熱管1の外面に接触させた場合には、その液体の一部は各フィン5および溶射皮膜3の内部に吸い上げられるとともに、適度に分散される。つまり、伝熱管1の外面と液体とのいわゆる濡れ性が高い。
【0021】
ここで、伝熱管1と液体との濡れ性は、溶射粒子4の積層状態によって異なり、例えばパイプ材2の表面側に粒径の大きい溶射粒子4を配置した図3に示す2層構造では、溶射皮膜3のうち上層側での実効毛細管半径が下層側に対して大きく形成されているため、液体は上層から下層までは速やかに移行する一方、下層中からパイプ材の表面までは比較的ゆっくりと移行する。また、下層中に形成される気孔が上層に比べて大きいため、液体は大きい面積でパイプ材2と接触する。
【0022】
これに対して、溶射粒子4の配置を逆にした図4に示す2層構造では、液体は上層から下層に向けて比較的遅く移行する一方、下層中からパイプ材2の表面までは速やかに移行する。また、上層中の気孔が小さいために、液体とパイプ材2との接触面積は図3に示す構造に比べて小さい。
【0023】
また、パイプ材2の表面側から上層側に向けて徐々に径の小さい溶射粒子4を配置させた図5に示す傾斜構造と、その逆となるように溶射粒子4を配置した図6に示す傾斜構造とでは、図5に示す構造の方がパイプ材2と液体との接触面積が大きい。これは、パイプ材2の表面付近での気孔が大きさの違いによるものである。
【0024】
ここでさらに、図3および図4に示す2層構造と図5および図6に示す傾斜構造とでは、図5および図6に示す構造の方が溶射皮膜3の中層部分での実効毛細管半径が小さいため、溶射皮膜3の表面側からパイプ材2の外面側への液体の移行がより速やかに行われる。つまり、溶射粒子4の積層状態を設定すれば、伝熱管1の外面での濡れ性を微調整することができる。また、各フィン5によって伝熱管1の外表面(溶射皮膜3の表面)が凹凸状を成しているから、液体が撹拌され易い。そのため、例えばヒートポンプの吸収器に適した伝熱管1とされる。
【0025】
つぎに、図7および図8を参照してこの発明の他の具体例を説明する。なお、上記第一具体例と同じ部材には同じ符号を付し、その詳細な説明を省略する。パイプ材2の外表面には、溶射皮膜3によって形成された複数のリング状のフィン5がパイプ材2の長手方向での等間隔をあけて設けられている。したがって、図7に示すように、このパイプ材2の外表面にはフィン5を設けた部分と素地面6が露出した部分とが交互に現れている。そのため、この伝熱管1では外表面が半径方向に凹凸状を成している。
【0026】
ここで、上記した形状のフィン5を形成するにあたっては、例えばパイプ材2の外面のうちフィン5を形成する以外の箇所に予めマスキングを設けた状態で、露出している素地面6に対して溶射を施して所定厚さの溶射皮膜3を形成し、しかる後、マスキングを取り外すとともに、通例にならう洗浄などを行えばよい。
【0027】
したがって、上記のように構成された伝熱管1によれば、第一の具体例とほぼ同様に液体との濡れ性を向上させることができ、また放熱・吸熱面積を増大させることができるなどの効果を奏するばかりか、露出させた素地面6の面積分だけ第一の具体例に対して使用する溶射材料が減少するため、コストが安価になり、また軽量化されるなどの利点が生じる。
【0028】
なお、上記の各具体例ではリング状のフィン5を例示したが、この発明は上記具体例に限定されるものではなく、フィン5は、要はパイプ材2の表面に半径方向に突出し、かつ溶射皮膜3からなるものであればよいのであり、したがって、個々の形状や全体としてのレイアウト等は適宜設定することができる。
【0029】
【発明の効果】
以上の説明から明らかなように、この発明によれば、内部を流通する流体と外部の熱媒体との間で熱授受を行わせるフィン付き伝熱管において、外表面に、溶射によって形成された半径方向での外側に突出するフィンを含んだ多孔質層を有しているから、切削加工や転造加工により作成していた従来の伝熱管に比べて、製造コストの低廉化を図ることができる。また、パイプ材の外面における液撹拌作用や液との濡れ性を向上させることができる。
【0030】
また、前記フィンを含む多孔質層を、溶射粒子の粒径の互いに相違する複数の層によって形成すれば、パイプ材の外面での液保持特性や液拡散特性を微調整することができる。
【0031】
さらに、この発明のフィン付き伝熱管では、多孔質層を、その厚さ方向に溶射粒子の粒径が連続的に変化している傾斜構造とすれば、パイプ材の外面での液保持特性や液拡散特性をより細かく調整することができる。
【図面の簡単な説明】
【図1】この発明にかかる一具体例を示す概略図である。
【図2】その具体例にかかるフィンおよびパイプ材の表面を示す断面図である。
【図3】パイプ材の表面側に径の大きい溶射粒子が設けられた2層構造のフィンを示す模式図である。
【図4】パイプ材の表面側に径の小さい溶射粒子が設けられた2層構造のフィンを示す模式図である。
【図5】パイプ材の表面から外側に向けて徐々に径の小さい溶射粒子を配置した傾斜構造のフィンを示す模式図である。
【図6】パイプ材の表面から外側に向けて徐々に径の大きい溶射粒子を配置した傾斜構造のフィンを示す模式図である。
【図7】他の具体例を示す概略図である。
【図8】その具体例にかかるフィンおよびパイプ材の表面を示す断面図である。
【符号の説明】
1…伝熱管、 2…パイプ材、 3…溶射皮膜、 4…溶射粒子。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat transfer tube used as a component element of various heat exchangers, and more particularly to a heat transfer tube having improved external heat transferability.
[0002]
[Prior art]
It is well known that fins are attached to increase the surface area as a means for improving heat transfer on the outer surface of the heat transfer tube. On the other hand, for example, a heat transfer tube arranged inside an absorber such as an absorption refrigerator or an absorption chiller / heater is used to absorb refrigerant vapor generated in an evaporator by an absorption solution circulated on the outer surface thereof. In addition, there is a demand for a stirring action on the absorbing solution and a wettability with the absorbing solution.
[0003]
As an example of a heat transfer tube that satisfies these conditions, a large number of narrow grooves (grooves) are formed along the longitudinal direction on the outer surface of the pipe, and a large number of thin fins are formed on the pipe surface between the narrow grooves. There is a configuration provided at a narrow interval. According to this heat transfer tube, the heat radiation area or heat absorption area on the outer surface of the pipe is increased by the surface area of the fins and the narrow grooves. Due to the generated capillary pressure (pump action), the liquid is dispersed and held in a stirred state over a wide area on the outer surface. As a result, heat and mass transfer are promoted.
[0004]
[Problems to be solved by the invention]
By the way, the narrow grooves and fins of the heat transfer tube having the above configuration are formed by performing a cutting process or a rolling process on a smooth tube.
[0005]
However, the cutting process and the rolling process not only require large-scale equipment, but also have poor productivity, so that the production cost is disadvantageously increased. Further, in this type of processing method, since a large load is applied in the radial direction of the pipe, there is a possibility that deformation may occur when a thin pipe or a pipe made of a soft material is used.
[0006]
On the other hand, in the above-mentioned conventional heat transfer tube, a groove or the like is formed in order to retain the liquid on the outer surface thereof. Even if the effective capillary radius of the wick is reduced by making it thinner, there is a limit for reasons such as an increase in cost. Was not.
[0007]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a heat transfer tube which is inexpensive to manufacture and has high liquid agitating action on the outer surface and high wettability with a liquid.
[0008]
Means for Solving the Problems and Their Functions
The invention to achieve the above object, the finned heat transfer tube Ru to perform the heat exchange between the fluid and the outside of the heat medium flowing inside, the outer surface, a porous layer formed by thermal spraying the Yusuke Rutotomoni and is characterized that you said fins projecting outwardly in the radial direction is formed by the porous layer.
[0009]
In the invention according to claim 2, the porous layer can be formed by a plurality of layers having different particle diameters of the sprayed particles.
[0010]
Further, in the invention of claim 3, the porous layer can have an inclined structure in which the particle diameter of the spray particles continuously changes in the thickness direction.
[0011]
According to the present invention, an amount corresponding radiator or heat absorption area of the surface area of the multi-porous layer comprising a fin that projects outward in the radial direction is increased relative to the outer surface of the base pipe. Also, so that since the multi-porous layer comprising a fin has a structure having pores between the adjacent spray particles, causing a large capillary pressure. Thus, when contacted with liquid on the outer surface of the heat transfer tube, the liquid is widely dispersed is moderate agitation while being held in the fins and multi-porous layer.
[0012]
Further, as described in claim 2, if the porous layer is formed by a plurality of layers having different particle diameters of the sprayed particles, the size of the pores between the sprayed particles is different for each layer, that is, the effective layer is formed. Since the capillaries have different radii, there is a difference in the magnitude of the capillary pressure in the thickness direction of the porous layer. This appears as a liquid retention characteristic and a liquid diffusion characteristic on the outer surface of the heat transfer tube. Therefore, if the particle diameter of the spray particles is set for each layer, the liquid retention characteristic and the liquid diffusion characteristic can be finely adjusted.
[0013]
Furthermore, if the porous layer has an inclined structure in which the particle diameter of the sprayed particles continuously changes in the thickness direction, the distribution of the difference in the capillary pressure in the thickness direction is provided. Becomes more gentle. Therefore, for example, when the liquid is brought into contact with the outer surface of the heat transfer tube, the transfer of the liquid from the upper layer to the lower layer side of the porous layer becomes more rapid.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, specific examples of the present invention will be described with reference to the drawings. The example shown here is an example in which a thermal spray coating is formed on the entire outer surface of a pipe material, and a fin is formed by projecting a part of the surface of the thermal spray coating. In FIG. 1, reference numeral 1 indicates a heat transfer tube. In this specific example, a smooth copper pipe having a general circular cross section is used as the pipe material 2 as a material of the heat transfer tube 1.
[0015]
A thermal spray coating 3 corresponding to a porous layer is formed on the entire outer surface of the pipe material 2. The thermal spray coating 3 has a porous structure having pores between the thermal spray particles 4, and generates a large capillary pressure because the effective capillary radius between the thermal spray particles 4 is extremely small. . As shown in FIG. 2, the surface of the thermal spray coating 3 projects outward in the radial direction at regular intervals in the longitudinal direction of the pipe material 2, and these projected portions function as fins 5. That is, each fin 5 is formed by the thermal spray coating 3. Therefore, the outer surface of the heat transfer tube 1 has an uneven shape due to the thermal spray coating 3 and the fins 5.
[0016]
Here, as an example of the laminated state of the thermal spray particles 4 in the thermal spray coating 3, as shown in FIG. 3, the thermal spray particles 4 having a large diameter are arranged on the surface of the pipe material 2, and the thermal spray particles 4 having a small diameter are further disposed thereon. Or a structure in which small-diameter spray particles 4 are arranged on the surface of pipe material 2 and large-diameter spray particles 4 are stacked thereon, as shown in FIG. Is mentioned.
[0017]
Furthermore, as shown in FIG. 5, a so-called gradient structure and in which is arranged a small diameter of the spray particles 4 gradually toward the outer side from the surface side of the pipe 2, and conversely, as shown in FIG. 6 which, An inclined structure in which the spray particles 4 having the smallest diameter are arranged on the surface of the pipe material 2 may be used. Although not particularly shown, a single-layer structure using spray particles 4 having a uniform size may of course be used. Such a change in the particle size can be achieved by changing the particle size of the material supplied during thermal spraying.
[0018]
Other examples of the pipe material 2 include a groove pipe having a plurality of narrow grooves along the longitudinal direction on the outer surface, a corrugated pipe having a continuous vertical wavy shape, or a large number of small pipes on the inner surface of the pipe. For example, a groove tube having a projection may be used. Further, as the thermal spraying material, other metals or ceramics or a cermet obtained by mixing them may be used as long as the material has excellent thermal conductivity and heat resistance, and the particle size can be appropriately set. Further, as the thermal spraying method, a conventionally known method such as a plasma thermal spraying method, a gas thermal spraying method or a flame thermal spraying method can be employed.
[0019]
Therefore, the heat transfer tube 1 configured as described above does not require large-scale equipment required for rolling and cutting, and is excellent in productivity. Therefore, the manufacturing cost is low. Further, the heat transfer tube 1 suitable for mass production can be obtained. Further, since thermal spraying is not a means for applying an excessive load to the pipe material 2 in the radial direction, there is an advantage that the material is soft and the wall thickness is small.
[0020]
Furthermore, according to the heat transfer tube 1 of this specific example, the heat radiation area or heat absorption area on the outer surface of the pipe member 2 is increased by the amount of the surface area of the thermal spray coating 3 including a large number of fins 5 as compared with a general smooth tube. I do. Moreover, since the thermal spray coating 3 and each fin 5 generate a large capillary pressure, for example, when a liquid is brought into contact with the outer surface of the heat transfer tube 1, a part of the liquid is applied to each fin 5 and the thermal spray coating 3. And is moderately dispersed. That is, the so-called wettability between the outer surface of the heat transfer tube 1 and the liquid is high.
[0021]
Here, the wettability between the heat transfer tube 1 and the liquid differs depending on the lamination state of the spray particles 4. For example, in the two-layer structure shown in FIG. Since the effective capillary radius on the upper layer side of the thermal spray coating 3 is larger than that on the lower layer side, the liquid moves from the upper layer to the lower layer quickly, while the liquid from the lower layer to the surface of the pipe material is relatively slow. And migrate. Further, since the pores formed in the lower layer are larger than those in the upper layer, the liquid comes into contact with the pipe member 2 in a large area.
[0022]
On the other hand, in the two-layer structure shown in FIG. 4 in which the arrangement of the thermal spray particles 4 is reversed, the liquid moves relatively slowly from the upper layer to the lower layer, while the liquid moves from the lower layer to the surface of the pipe material 2 quickly. Transition. Further, since the pores in the upper layer are small, the contact area between the liquid and the pipe member 2 is smaller than that of the structure shown in FIG.
[0023]
Further, the inclined structure shown in FIG. 5 in which the spray particles 4 having a smaller diameter are gradually arranged from the surface side of the pipe material 2 toward the upper layer side, and the spray structure shown in FIG. With the inclined structure, the structure shown in FIG. 5 has a larger contact area between the pipe member 2 and the liquid. This is due to the difference in the size of the pores near the surface of the pipe material 2.
[0024]
Further herein, in an inclined structure shown in two-layer structure as in FIG. 5 and 6 shown in FIGS. 3 and 4, the effective capillary radius towards the structure shown in FIGS. 5 and 6 are in the middle portion of the sprayed skin layer 3 for small, migration of the liquid from the surface side of the sprayed skin layer 3 to the outer surface of the pipe 2 is more quickly performed. That is, if the laminated state of the thermal spray particles 4 is set, the wettability on the outer surface of the heat transfer tube 1 can be finely adjusted. Further, since the outer surface of the heat transfer tube 1 (the surface of the thermal spray coating 3) has an irregular shape due to each fin 5, the liquid is easily stirred. Therefore, for example, the heat transfer tube 1 is suitable for an absorber of a heat pump.
[0025]
Next, another specific example of the present invention will be described with reference to FIGS. The same members as those in the first specific example are denoted by the same reference numerals, and detailed description thereof will be omitted. A plurality of ring-shaped fins 5 formed by the thermal spray coating 3 are provided on the outer surface of the pipe member 2 at regular intervals in the longitudinal direction of the pipe member 2. Therefore, as shown in FIG. 7, a portion provided with the fins 5 and a portion where the base 6 is exposed alternately appear on the outer surface of the pipe member 2. Therefore, the outer surface of the heat transfer tube 1 is uneven in the radial direction.
[0026]
Here, in forming the fins 5 having the above-described shape, for example, a masking is provided in a portion of the outer surface of the pipe material 2 other than where the fins 5 are formed, and the exposed bare ground 6 is formed. The thermal spraying is performed to form a thermal spray coating 3 having a predetermined thickness. Thereafter, the masking may be removed, and cleaning or the like may be performed as usual.
[0027]
Therefore, according to the heat transfer tube 1 configured as described above, the wettability with a liquid can be improved almost in the same manner as in the first specific example, and the heat radiation and heat absorption area can be increased. In addition to the effect, the amount of the sprayed material used in the first embodiment is reduced by the area of the exposed bare ground 6, so that advantages such as lower cost and weight reduction are obtained.
[0028]
In each of the above specific examples, the ring-shaped fins 5 are illustrated, but the present invention is not limited to the above specific examples, and the fins 5 protrude in the radial direction on the surface of the pipe material 2, and What is necessary is just to consist of the thermal spray coating 3, therefore, the individual shape, the layout as a whole, etc. can be set appropriately.
[0029]
【The invention's effect】
As apparent from the above description, according to the present invention, in the finned heat transfer tube Ru to perform the heat exchange between the fluid and the outside of the heat medium flowing inside, the outer surface, which is formed by thermal spraying because a multi-porous layer containing fins protruding outward in the radial direction, as compared with the conventional heat transfer tube which has been made by cutting or rolling process, possible to reduce the production costs Can be. Further, it is possible to improve the liquid stirring action on the outer surface of the pipe material and the wettability with the liquid.
[0030]
Further, the multi-porous layer including the fin, be formed by a plurality of layers different from each other in the particle size of the spray particles, it is possible to finely adjust the liquid retention characteristics and liquid diffusion characteristics at the outer surface of the pipe material.
[0031]
Furthermore , in the heat transfer tube with fins of the present invention , if the porous layer has an inclined structure in which the particle diameter of the spray particles continuously changes in the thickness direction, the liquid holding characteristics on the outer surface of the pipe material and The liquid diffusion characteristics can be adjusted more finely.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a specific example according to the present invention.
FIG. 2 is a cross-sectional view showing a surface of a fin and a pipe material according to the specific example.
FIG. 3 is a schematic view showing a fin having a two-layer structure in which spray particles having a large diameter are provided on the surface side of a pipe material.
FIG. 4 is a schematic diagram showing a fin having a two-layer structure in which spray particles having a small diameter are provided on the surface side of a pipe material.
FIG. 5 is a schematic view showing a fin having an inclined structure in which spray particles having a smaller diameter are gradually arranged outward from the surface of a pipe material.
FIG. 6 is a schematic diagram showing a fin having an inclined structure in which spray particles having a gradually larger diameter are arranged outward from the surface of the pipe material.
FIG. 7 is a schematic diagram showing another specific example.
FIG. 8 is a cross-sectional view showing the surface of a fin and a pipe material according to the specific example.
[Explanation of symbols]
1 ... heat transfer tube, 2 ... pipe material, 3 ... thermal spray coating, 4 ... thermal spray particles.

Claims (3)

内部を流通する流体と外部の熱媒体との間で熱授受を行わせるフィン付き伝熱管において、
外表面に、溶射によって形成された多孔質層を有するとともに、この多孔質層によって半径方向での外側に突出した前記フィンが形成されていることを特徴とするフィン付き伝熱管。
In finned heat transfer tube Ru to perform the heat exchange between the fluid and the outside of the heat medium flowing inside,
The outer surface, Rutotomoni that having a porous layer formed by thermal spraying, the porous finned heat transfer tubes wherein you characterized that you fins are formed protruding outward in the radial direction by the layer.
前記多孔質層が、溶射粒子の粒径の互いに相違する複数の層によって形成されていることを特徴とする請求項1に記載のフィン付き伝熱管。 The finned heat transfer tube according to claim 1, wherein the porous layer is formed by a plurality of layers having different diameters of the sprayed particles. 前記多孔質層が、その厚さ方向に溶射粒子の粒径が連続的に変化している傾斜構造とされていることを特徴とする請求項1に記載のフィン付き伝熱管。The porous layer, finned heat exchanger tube according to the particle size of the thickness direction to spray particles are continuously changed to have inclined structure to claim 1 shall be the feature.
JP8455596A 1996-03-13 1996-03-13 Heat transfer tube with fins Expired - Fee Related JP3566804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8455596A JP3566804B2 (en) 1996-03-13 1996-03-13 Heat transfer tube with fins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8455596A JP3566804B2 (en) 1996-03-13 1996-03-13 Heat transfer tube with fins

Publications (2)

Publication Number Publication Date
JPH09243281A JPH09243281A (en) 1997-09-19
JP3566804B2 true JP3566804B2 (en) 2004-09-15

Family

ID=13833899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8455596A Expired - Fee Related JP3566804B2 (en) 1996-03-13 1996-03-13 Heat transfer tube with fins

Country Status (1)

Country Link
JP (1) JP3566804B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3145684B2 (en) * 1998-12-28 2001-03-12 木村化工機株式会社 Internal heat exchange distillation column
US6623808B1 (en) * 1999-02-23 2003-09-23 Ford Global Technologies, Inc. Spray deposition process
JP2015010749A (en) * 2013-06-28 2015-01-19 株式会社日立製作所 Heat transfer device

Also Published As

Publication number Publication date
JPH09243281A (en) 1997-09-19

Similar Documents

Publication Publication Date Title
US11131508B2 (en) Middle member of heat dissipation device and the heat dissipation device
US10267573B2 (en) Polyhedral array heat transfer tube
JP3566804B2 (en) Heat transfer tube with fins
EP0882939B1 (en) Heating tube for absorber and method of manufacturing same
EP3390948B1 (en) Heat transfer tube for heat exchanger
JPH04110597A (en) Heat transfer pipe of heat exchanger
JPH11132683A (en) Hot and chilled water generator with absorber
KR100339714B1 (en) Heat exchanger manufacturing method
JPH0949698A (en) Heat exchanger
JPH07305918A (en) Heat transfer pipe for absorber
JPS6066093A (en) Radiator in engine cooling device
CN112105235A (en) Plate-tube combined heat dissipation structure and electronic equipment
JPH0894272A (en) Heating tube for vertical type absorber and method for manufacturing the same
JP3617537B2 (en) Heat exchanger tube for absorber
JP2000205781A (en) Inner surface grooved heat transfer tube
JPH0363497A (en) Heat transmitting pipe
JPH0914882A (en) Heat transfer tube
JP3316765B2 (en) Falling film heat exchanger
JPS61243288A (en) Wet wall type heat transfer tube for absorber
JPH0914881A (en) Heat transfer tube
MXPA01004379A (en) Polyhedral array heat transfer tube
JPH11118382A (en) Heat transfer pipe for evaporator and manufacture thereof
JPH0914883A (en) Heat transfer tube
IT9022218A1 (en) HEAT EXCHANGER TUBE.
JPH0914880A (en) Heat transfer tube

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees