JP2000054159A - Heat transfer material, heat transfer body, production of heat transfer material, and production of heat transfer body - Google Patents

Heat transfer material, heat transfer body, production of heat transfer material, and production of heat transfer body

Info

Publication number
JP2000054159A
JP2000054159A JP10225033A JP22503398A JP2000054159A JP 2000054159 A JP2000054159 A JP 2000054159A JP 10225033 A JP10225033 A JP 10225033A JP 22503398 A JP22503398 A JP 22503398A JP 2000054159 A JP2000054159 A JP 2000054159A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer material
copper
containing copper
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10225033A
Other languages
Japanese (ja)
Inventor
Koji Nishimura
厚司 西村
Toshiji Yoshikawa
利次 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP10225033A priority Critical patent/JP2000054159A/en
Publication of JP2000054159A publication Critical patent/JP2000054159A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a heat transfer material which stably maintains the nuclei of cells and has satisfactory capillary action even as the wick of a heat pipe. SOLUTION: A copper-contg. metal powder is stuck to a support material which has three-dimensional network voids and can be vanished by heating. The support material is vanished and the copper-contg. metal powder is sintered to obtain an open cell type porous body of the copper-contg. metal. This porous body is subjected to oxidation treatment, in particular blackening oxidation treatment by oxidation up to the state of cupric oxide to produce the objective heat transfer material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、伝熱材及び伝熱体
並びに伝熱材の製造方法に関する。
The present invention relates to a heat transfer material, a heat transfer body, and a method for manufacturing a heat transfer material.

【0002】[0002]

【従来の技術】冷凍機は、蒸発器において熱媒体が蒸発
するときに周囲から熱を吸収する現象を利用して対象物
を冷却している。周囲から熱を吸収して蒸発した熱媒体
は凝縮器に導かれ、そこで冷却液化されて蒸発器に戻さ
れる。
2. Description of the Related Art A refrigerator cools an object by utilizing a phenomenon of absorbing heat from the surroundings when a heat medium evaporates in an evaporator. The heat medium evaporated by absorbing heat from the surroundings is guided to the condenser, where it is cooled and liquefied and returned to the evaporator.

【0003】また、ヒートパイプは、蒸発部において周
囲から熱を吸収して熱媒体が蒸発し、凝縮部において周
囲に熱量を放散して蒸発した熱媒体が凝縮してウィック
の毛細管作用で蒸発部に還流することにより、蒸発部か
ら凝縮部へと熱が輸送される。
In a heat pipe, the heat medium absorbs heat from the surroundings in the evaporating section, evaporates the heat medium, and dissipates heat to the surroundings in the condensing section, condenses the evaporated heat medium, and acts on the evaporating section by capillary action of the wick. The heat is transported from the evaporator to the condenser.

【0004】このように蒸発を伴う熱交換器に使用され
る伝熱体には、伝熱体と熱媒体間の伝熱効率を高めるた
めには、伝熱面積を大きくする、熱媒体の蒸発を活
発化させる、伝熱体の表面全体に熱媒体が行き亘りや
すくする、熱媒体が流れる場合に乱流を発生しやすく
することが有効であるとされている。また、熱媒体と表
面との濡れ性が悪いと伝熱に関与しない領域ができてし
まうため、伝熱材表面の濡れ性の向上も重要な課題とな
る。従来は、脱脂処理、界面活性化処理、エッチング処
理などを各々単独で行ったり、組合わせて行ったりして
いた。
[0004] In order to increase the heat transfer efficiency between the heat transfer medium and the heat medium, the heat transfer medium used in a heat exchanger involving evaporation requires a large heat transfer area and a heat transfer medium. It is said that it is effective to activate the heat transfer medium, spread the heat medium over the entire surface of the heat transfer body, and easily generate turbulence when the heat medium flows. In addition, if the wettability between the heat medium and the surface is poor, a region that does not participate in heat transfer is formed. Therefore, improving the wettability of the heat transfer material surface is also an important issue. Conventionally, the degreasing treatment, the surface activation treatment, the etching treatment and the like have been performed independently or in combination.

【0005】このことから、金属の多孔質体からなる伝
熱材を基体に被着させてなる伝熱体が注目され、内面に
銅の発泡体を被着させた熱交換器用伝熱管(特開平4−
110597号公報参照)、金属板上に金属粉末を散布
してから焼結し、焼結層を内側にして造管したヒートパ
イプ(特開昭53−43270号公報参照)などが提案
されている。
[0005] For this reason, a heat transfer body in which a heat transfer material made of a porous metal body is adhered to a substrate has attracted attention. Kaihei 4-
Japanese Patent Application Laid-Open No. Sho 53-43270), and a heat pipe in which a metal powder is sprinkled on a metal plate and then sintered to form a tube with the sintered layer inside (see Japanese Patent Application Laid-Open No. 53-43270). .

【0006】[0006]

【発明が解決しようとする課題】熱媒体が沸騰すること
による熱伝達は、気泡が伝熱材表面に発生し、伝熱材表
面から離脱することにより行われる。この気泡は、伝熱
材表面の小さな凹みに吸着されている空気などの気体を
核(気泡核という)とし、熱媒体の蒸気が核に移行する
ことにより発生し、容積が増大して伝熱材の表面から離
脱する。そして、気泡が離脱するときに凹みの底に気体
が一部残ることにより気泡核が保持されて沸騰が継続す
る。
The heat transfer due to the boiling of the heat medium is performed by generating bubbles on the surface of the heat transfer material and separating from the surface of the heat transfer material. The air bubbles are generated when the gas such as air adsorbed in the small dents on the surface of the heat transfer material becomes nuclei (called bubble nuclei), and the vapor of the heat medium transfers to the nuclei. Detach from the surface of the material. Then, when a bubble is released, a part of the gas remains at the bottom of the recess, so that the bubble nucleus is held and boiling continues.

【0007】表面張力により熱媒体が凹みの底に侵入す
るような凹みであると気泡核が保持されないため沸騰が
不安定となることが知られている。このことから、蒸発
を伴う熱伝達を促進するには、伝熱材としては、気泡核
が安定して保持されやすいような表面構造であるものが
適している。
[0007] It is known that if the depression is such that the heat medium penetrates into the bottom of the depression due to the surface tension, the bubble nucleus is not retained and the boiling becomes unstable. From this, in order to promote heat transfer accompanied by evaporation, a heat transfer material having a surface structure such that bubble nuclei are easily held stably is suitable.

【0008】ところが、金属の多孔質体からなる従来の
伝熱材は、孔径が大きいところでは気泡核が安定して保
持されないことがあった。気泡核が安定して保持されな
いと伝熱材が過熱して溶融事故に至るおそれがあり、そ
の改善が待たれていた。
However, in the conventional heat transfer material made of a porous metal material, the bubble nucleus may not be stably held in a place where the pore diameter is large. If the bubble nuclei are not held stably, the heat transfer material may overheat, leading to a melting accident, and its improvement has been awaited.

【0009】また、伝熱材表面の濡れ性に関しては、従
来の表面処理方法では、濡れ性は改善されるものの毛細
管力による熱媒体の拡散(広がり)が充分に得られず、
ヒートパイプのウィックとしては、熱媒体の蒸発部への
還流が行われ難いので、ヒートパイプとして作動が不安
定となるという問題があった。
Regarding the wettability of the surface of the heat transfer material, the conventional surface treatment method improves the wettability, but does not sufficiently obtain the diffusion (spread) of the heat medium by the capillary force.
The wick of the heat pipe has a problem that the operation of the heat pipe becomes unstable because the heat medium is hardly refluxed to the evaporating section.

【0010】本発明はかかる問題点の解決を図ろうとす
るもので、請求項1、2又は3に記載の発明は、熱媒体
が沸騰することによる熱伝達において、気泡核が安定し
て保持され、また、ヒートパイプのウィックとしても充
分な毛細管力を有する伝熱材及び伝熱体を提供すること
を目的とする。
The present invention is intended to solve such a problem. According to the first, second or third aspect of the present invention, bubble nuclei are stably held in heat transfer by boiling of a heat medium. Another object of the present invention is to provide a heat transfer material and a heat transfer body having a sufficient capillary force as a wick of a heat pipe.

【0011】また、請求項4又は5に記載の発明は、気
泡核が安定して保持され、また、ヒートパイプのウィッ
クとしても充分な毛細管力を有する伝熱材の製造方法を
提供することを目的とする。
Further, the invention according to claim 4 or 5 provides a method for producing a heat transfer material in which bubble nuclei are stably held and which has a sufficient capillary force as a wick of a heat pipe. Aim.

【0012】さらに、請求項6に記載の発明は、気泡核
が安定して保持され、また、ヒートパイプのウィックと
しても充分な毛細管力を有するかかる伝熱体の製造方法
を提供することを目的とする。
A further object of the present invention is to provide a method of manufacturing such a heat transfer body, in which bubble nuclei are stably held and which has a sufficient capillary force as a wick of a heat pipe. And

【0013】[0013]

【課題を解決するための手段】請求項1に記載の発明
は、銅を含む金属の連続気孔多孔質体に酸化処理を施し
てなる伝熱材である。
According to the first aspect of the present invention, there is provided a heat transfer material obtained by subjecting a continuous porous metal body containing copper to oxidation treatment.

【0014】銅は、酸化処理により表面に針状の酸化物
が形成され、これにより表面に微細な凹みが形成され
る。この凹みが気泡核の安定保持に適しており、安定し
た沸騰熱伝達が行われる。また、この凹みが形成される
ことにより毛細管力を向上させることができる。
As for copper, needle-like oxides are formed on the surface by the oxidation treatment, whereby fine depressions are formed on the surface. This depression is suitable for maintaining stable bubble nuclei, and stable boiling heat transfer is performed. In addition, the formation of the depression can improve the capillary force.

【0015】銅は酸化第1銅と酸化第2銅の2種類の酸
化状態を有する。酸化第1銅は黄色又は赤色であり、酸
化第2銅は黒色である。熱伝導率の観点からは両者に差
がほどんどない。しかしながら、酸化処理により形成さ
れる針状の酸化物がより長くまた密になることから、酸
化第2銅の状態にまで酸化して黒色化するのが好まし
い。
Copper has two oxidation states, cuprous oxide and cupric oxide. Cuprous oxide is yellow or red and cupric oxide is black. From the viewpoint of thermal conductivity, there is little difference between the two. However, since the needle-like oxide formed by the oxidation treatment becomes longer and denser, it is preferable to oxidize to the state of cupric oxide to blacken.

【0016】請求項2に記載の発明は、酸化処理が、黒
色の酸化第2銅を生成する酸化処理である請求項1に記
載の伝熱材である。
According to a second aspect of the present invention, there is provided the heat transfer material according to the first aspect, wherein the oxidation treatment is an oxidation treatment for producing black cupric oxide.

【0017】また、本発明の伝熱材は、多孔質であるこ
とから、基体表面に被着させてもちいるのが好ましい。
Further, since the heat transfer material of the present invention is porous, it is preferable that the heat transfer material is adhered to the substrate surface.

【0018】請求項3に記載の発明は、基体表面に請求
項1又は2に記載の伝熱材を被着させてなる伝熱体であ
る。
According to a third aspect of the present invention, there is provided a heat transfer body having the heat transfer material according to the first or second aspect adhered to a substrate surface.

【0019】また、本発明の伝熱材は、均一な厚さと孔
径を有する伝熱材を製造する観点から、三次元網目状の
空隙を有し加熱により消失可能な保持材を用いて製造す
るのが好ましい。
Further, the heat transfer material of the present invention is manufactured using a holding material having three-dimensional mesh-like voids which can be eliminated by heating, from the viewpoint of manufacturing a heat transfer material having a uniform thickness and a hole diameter. Is preferred.

【0020】請求項4に記載の発明は、a.三次元網目
状の空隙を有し加熱により消失可能な保持材に銅を含む
金属の粉体を被着させる工程、b.前記保持材を消失さ
せ、さらに、銅を含む金属の粉体を焼結して銅を含む金
属の連続気孔多孔質体を得る工程、c.得られた連続気
孔多孔質体に酸化処理を施す工程をこの順に含むことを
特徴とする伝熱材の製造方法である。
According to a fourth aspect of the present invention, there is provided: A step of applying a metal powder containing copper to a holding material having three-dimensional mesh-like voids which can be eliminated by heating; b. Removing the holding material, and further sintering a metal powder containing copper to obtain a continuous porous metal body containing copper; c. A method for producing a heat transfer material, comprising a step of subjecting the obtained continuous porous material to an oxidation treatment in this order.

【0021】また、請求項4に記載の製造方法により製
造された伝熱材は、厚さ方向に圧縮して厚さと孔径とを
調整するのが好ましい。
It is preferable that the heat transfer material manufactured by the manufacturing method according to claim 4 be compressed in the thickness direction to adjust the thickness and the hole diameter.

【0022】すなわち、請求項5に記載の発明は、保持
材を消失させて得られる連続気孔多孔質体を厚さ方向に
圧縮して所定の厚さを有する連続気孔多孔質体とする工
程をさらに含む請求項4に記載の伝熱材の製造方法であ
る。
That is, the invention according to claim 5 includes a step of compressing the continuous porous body obtained by erasing the holding material in the thickness direction to obtain a continuous porous body having a predetermined thickness. The method for producing a heat transfer material according to claim 4, further comprising:

【0023】本発明の伝熱材は、基体に被着させた伝熱
体として使用に供されるが、伝熱材となる多孔質体を形
成するときに、同時に基体に伝熱材を被着させるのが工
程を少なくできることから好ましい。
The heat transfer material of the present invention is used as a heat transfer body adhered to a base. When the porous body serving as the heat transfer material is formed, the heat transfer material is simultaneously applied to the base. It is preferable to apply it because the number of steps can be reduced.

【0024】請求項6に記載の発明は、請求項4又は5
に記載の伝熱材の製造方法における、三次元網目状の空
隙を有し加熱により消失可能な保持材に銅を含む金属の
粉体を被着させた保持材を消失させさらに銅を含む金属
の粉体を焼結して銅を含む金属の連続気孔多孔質体を得
る工程を、銅を含む金属の粉体を介して保持材が基体と
接触した状態で行うことにより伝熱材を基体に一体に被
着させるようにしてなる伝熱体の製造方法である。
The invention according to claim 6 is the invention according to claim 4 or 5
In the method for producing a heat transfer material according to the above, the holding material in which the metal powder containing copper is applied to the holding material that has a three-dimensional mesh-like void and can be removed by heating, and further contains the copper-containing metal The step of obtaining a continuous porous porous body of a metal containing copper by sintering the powder of the heat transfer material in a state in which the holding material is in contact with the base via the powder of the metal containing copper. This is a method for manufacturing a heat transfer member that is integrally attached to a heat transfer member.

【0025】[0025]

【発明の実施の形態】銅を含む金属としては、銅又は銅
合金を使用することができる。銅合金としては、具体的
には銅及び亜鉛の合金である黄銅、銅、ニッケル、鉄及
びマンガンの合金である白銅などが挙げられる。また、
銅合金を使用するときには、酸化処理により凹凸を形成
する観点から、銅の含有量が70重量%以上であるのが
好ましく、90重量%以上であるのがより好ましい。ま
た、銅を含む金属の連続気孔多孔質体(以下多孔質体と
いう)の空隙率は、90〜95%であるのが好ましい。
空隙率が90%未満であると、孔径が小さくなるため、
気泡が離脱しにくくなり熱伝達率が低下する傾向にあ
る。また、95%を超えると孔径が大きくなるため、気
泡の保持が困難となり同様に熱伝達率が低下する傾向に
ある。
BEST MODE FOR CARRYING OUT THE INVENTION As a metal containing copper, copper or a copper alloy can be used. Specific examples of the copper alloy include brass, which is an alloy of copper and zinc, and white copper, which is an alloy of copper, nickel, iron and manganese. Also,
When a copper alloy is used, the content of copper is preferably 70% by weight or more, and more preferably 90% by weight or more, from the viewpoint of forming irregularities by an oxidation treatment. Further, the porosity of the continuous porous body of metal containing copper (hereinafter referred to as a porous body) is preferably 90 to 95%.
If the porosity is less than 90%, the pore size becomes small,
Bubbles are less likely to escape, and the heat transfer coefficient tends to decrease. On the other hand, if it exceeds 95%, the pore diameter becomes large, so that it is difficult to hold the air bubbles, and similarly, the heat transfer coefficient tends to decrease.

【0026】多孔質体の酸化処理は、多層プリント配線
板の製造において、内層回路板の粗化処理として知られ
ている処理方法により行うことができる。例えば、酢酸
銅/硫酸銅/硫化バリウム/塩化アンモニウム系の処理
液又は亜塩素酸ナトリウム/水酸化ナトリウム系の処理
液に浸漬することにより行うことができる。酢酸銅/硫
酸銅/硫化バリウム/塩化アンモニウム系の処理液を用
いることにより黄色又は赤色の酸化第1銅を生成し、亜
塩素酸ナトリウム/水酸化ナトリウム系の処理液を用い
ることにより、黒色の酸化第2銅を生成する。
The oxidizing treatment of the porous body can be performed by a treatment method known as a roughening treatment of an inner circuit board in the production of a multilayer printed wiring board. For example, it can be carried out by immersing in a treatment solution of copper acetate / copper sulfate / barium sulfide / ammonium chloride system or a treatment solution of sodium chlorite / sodium hydroxide system. By using a treatment solution of copper acetate / copper sulfate / barium sulphide / ammonium chloride system, yellow or red cuprous oxide is produced, and by using a treatment solution of sodium chlorite / sodium hydroxide system, a black or black solution is obtained. Produces cupric oxide.

【0027】伝熱体の基体としては、伝熱性及び伝熱材
を被着させるときの被着性の観点から、ステンレス又は
銅を用いるのが好ましく、銅を用いるのがより好まし
い。基体に被着させる伝熱材の圧縮後の厚さは、0.3
〜0.7mmとするのが好ましい。厚さが0.3mm未
満であると空隙率を90%以上とすることが困難となる
傾向にあり、0.7mmを超えると空隙率を95%以下
とすることが困難となる傾向にあることから、前述した
ようにいずれにしても熱伝達率が低下する傾向にある。
As the base of the heat transfer body, stainless steel or copper is preferably used, and copper is more preferably used, from the viewpoint of heat transfer properties and adhesion when the heat transfer material is applied. The thickness of the heat transfer material applied to the substrate after compression is 0.3
It is preferably set to 0.7 mm. If the thickness is less than 0.3 mm, it tends to be difficult to make the porosity 90% or more, and if it exceeds 0.7 mm, it tends to be difficult to make the porosity 95% or less. Therefore, in any case, the heat transfer coefficient tends to decrease as described above.

【0028】伝熱体は平板状であってもよく、管状であ
ってもよい。また、伝熱材は、基体の片面に被着させて
もよく、両面に被着させてもよい。片面に被着させるか
又は両面に被着させるかは、用途により適宜選択され
る。管状の伝熱体は、例えば、伝熱材を被着させた平板
状の基体を造管して継目を溶接することにより作製する
ことができる。なお、管状の伝熱体は伝熱管ともいわれ
る。
The heat transfer body may be flat or tubular. Further, the heat transfer material may be applied to one side of the base, or may be applied to both sides. Whether to adhere on one side or both sides is appropriately selected depending on the application. The tubular heat transfer body can be manufactured by, for example, forming a flat plate-shaped base on which a heat transfer material is applied and welding the joint. The tubular heat transfer body is also called a heat transfer tube.

【0029】三次元網目状の空隙を有し加熱により消失
可能な保持材(以下保持材という)としては、連続気泡
構造を有する有機質発泡体、有機質繊維の不織布、有機
質繊維の織布などを用いることができる。なかでも、厚
さ及び空隙率を自由に選定できる有機質発泡体が好まし
い。有機質材料としては、加熱により溶融することな
く、また、銅を含む金属粒子が焼結するような温度で消
失するものが好ましい。好ましい有機質材料としてはポ
リウレタン、ポリプロピレン、ポリエチレン、ポリビニ
ルアルコール、フェノール樹脂、尿素樹脂などが挙げら
れる。
As a holding material having three-dimensional mesh-like voids and capable of being eliminated by heating (hereinafter referred to as a holding material), an organic foam having an open-cell structure, a nonwoven fabric of organic fibers, a woven fabric of organic fibers, and the like are used. be able to. Above all, an organic foam whose thickness and porosity can be freely selected is preferable. As the organic material, a material which does not melt by heating and disappears at a temperature at which metal particles containing copper sinter is preferable. Preferred organic materials include polyurethane, polypropylene, polyethylene, polyvinyl alcohol, phenol resin, urea resin and the like.

【0030】次に、銅を含む金属の粉体は、粘着性を付
与した保持材を、銅を含む金属の粉体の中に入れて揺動
させる方法、銅を含む金属の粉体を粘着性を付与した保
持材に吹き付ける方法などにより被着させることができ
る。保持材に粘着性を付与させる方法としては、アクリ
ル系、ゴム系などの粘着剤溶液、又はフェノール樹脂、
エポキシ樹脂、フラン樹脂などの接着性を有する樹脂の
溶液を保持材に塗布する方法、プラズマ処理により保持
材自体に粘着性を持たせる方法などが挙げられる。銅を
含む金属の粉体の粒径は、保持材に被着させるために
0.01〜100μmの範囲であるのが好ましい。大き
な粒子の隙間を小さな粒子が埋めるような粒径分布であ
ると、粒子間の焼結強度の観点から好ましい。
Next, the metal powder containing copper is swung by placing a holding material provided with tackiness in the metal powder containing copper, and the copper powder is adhered to the metal powder containing copper. It can be applied by, for example, a method of spraying the holding material having the property. As a method of imparting tackiness to the holding material, acrylic, rubber-based pressure-sensitive adhesive solution, or phenolic resin,
Examples include a method of applying a solution of an adhesive resin such as an epoxy resin and a furan resin to the holding material, and a method of giving the holding material itself tackiness by plasma treatment. The particle diameter of the metal powder containing copper is preferably in the range of 0.01 to 100 μm in order to adhere to the holding material. It is preferable from the viewpoint of the sintering strength between the particles that the particle size distribution is such that the small particles fill the gaps between the large particles.

【0031】保持材を加熱により消失させる方法して
は、酸素が十分に存在する大気雰囲気中で加熱する方法
が好ましいが他の適宜の方法によることもできる。
As a method of removing the holding material by heating, a method of heating in an air atmosphere in which oxygen is sufficiently present is preferable, but other appropriate methods can also be used.

【0032】得られた連続気孔多孔質体に酸化処理を施
す工程は、多層プリント配線板を製造するときに採用さ
れている、内層表面の酸化処理方法によることができ
る。酸化処理が黒色の酸化第2銅を生成する酸化処理
は、亜塩素酸ナトリウム−水酸化ナトリウム系の処理液
を用いることにより行うことができる。また、酢酸銅系
の処理液を用いると茶褐色の酸化物(ブラウンオキサイ
ドとも称される)を生成するが、この方法によることも
できる。
The step of subjecting the obtained continuous porous material to an oxidation treatment can be carried out by an oxidation treatment method for the inner layer surface employed when manufacturing a multilayer printed wiring board. The oxidation treatment in which the oxidation treatment produces black cupric oxide can be performed by using a sodium chlorite-sodium hydroxide-based treatment solution. When a copper acetate-based treatment solution is used, a brown oxide (also referred to as brown oxide) is generated, but this method can also be used.

【0033】連続気孔多孔質体を厚さ方向に圧縮する方
法としては、移動距離を制御できるプレス機を用いる方
法、所定の高さのスペーサーを用いてプレス盤間の距離
が所定値となるようにして圧縮する方法などが挙げられ
る。連続気孔多孔質体を損傷しないように、小さな圧縮
速度で圧縮するの好ましい。
As a method of compressing the continuous porous body in the thickness direction, a method using a press machine capable of controlling a moving distance, a method using a spacer having a predetermined height so that a distance between press plates becomes a predetermined value. And compression. It is preferable to compress at a low compression rate so as not to damage the continuous pore porous body.

【0034】[0034]

【実施例】実施例1 アクリル系共重合体(帝国化学産業株式会社製、HTR
−600LB(商品名)を使用)50重量部、同じくア
クリル系共重合体(日本カーバイド工業株式会社製、Q
−1851(商品名)を使用)50重量部及び架橋剤
(日本ポリウレタン工業株式会社製、コロネートL(商
品名)を使用)1重量部を、トルエン1161.5重量
部溶解して粘着剤溶液を調製した。調製した粘着剤溶液
に、保持材として用いる厚さ3mm、300×200m
mのポリウレタンフォーム(株式会社ブリジストン製、
エバーライトSF(商品名)を使用)を浸漬し、ロール
を通して過剰の粘着剤溶液を除去し、100℃で10分
間加熱乾燥してトルエンを除去して、保持材に粘着性を
付与した。粘着性を付与した前記保持材を平均粒径5μ
mの銅粉中に埋没させ、銅粉が保持材の空隙内に入るよ
うに揺動させて保持材に銅粉を被着させた。厚さ0.5
mm、300×200mmの銅板を基体として用い、こ
の基体片面に銅粉を一面に散布被着させ、その上に銅粉
を被着せた前記の保持材を重ね、500℃で10分間大
気雰囲気中に保持して保持材を消失させ、次に、900
℃で20分間水素ガス雰囲気中に保持した。これによ
り、基体の片面に散布した銅粉及び保持材に被着させた
銅粉が焼結して基体の片面に、基体と一体になった銅の
連続気孔焼結体が形成された。この連続気孔焼結体は、
厚さ1.5mmで空隙率96%であった。次に、前記で
得られた銅の連続気孔焼結体が形成された基体をプレス
機のプレス盤に置き、高さ1mmのスペーサーを周囲に
置いて、1MPaの圧力でプレスした。これにより得ら
れた連続気孔多孔質体は、厚さ0.5mmで空隙率48
%であった。
EXAMPLES Example 1 Acrylic copolymer (HTR, manufactured by Teikoku Chemical Industry Co., Ltd.)
-600 LB (trade name)), 50 parts by weight, an acrylic copolymer (manufactured by Nippon Carbide Industrial Co., Ltd.,
1161.5 parts by weight of toluene were dissolved in 50 parts by weight of -1851 (trade name) and 1 part by weight of a crosslinking agent (Coronate L (trade name) manufactured by Nippon Polyurethane Industry Co., Ltd.) to prepare an adhesive solution. Prepared. 3 mm thick, 300 x 200 m used as a holding material in the prepared pressure-sensitive adhesive solution
m polyurethane foam (manufactured by Bridgestone Corporation,
Everlite SF (trade name) was immersed, excess adhesive solution was removed through a roll, and heated and dried at 100 ° C. for 10 minutes to remove toluene, thereby imparting tackiness to the holding material. The holding material having the tackiness is coated with an average particle size of 5 μm.
m of copper powder was buried in the copper powder, and the copper powder was swung so that the copper powder could enter the voids of the holding material, so that the holding material was coated with the copper powder. Thickness 0.5
A copper plate of 300 mm × 200 mm is used as a substrate, and copper powder is scattered and applied to one surface of the substrate, and the above-described holding material coated with copper powder is laid thereon. To remove the holding material, and then 900
C. and kept in a hydrogen gas atmosphere for 20 minutes. As a result, the copper powder scattered on one surface of the substrate and the copper powder adhered to the holding material were sintered to form a continuous porous sintered body of copper integrated with the substrate on one surface of the substrate. This continuous pore sintered body is
The porosity was 96% at a thickness of 1.5 mm. Next, the substrate on which the copper continuous-porous sintered body obtained above was formed was placed on a press plate of a press machine, and a spacer having a height of 1 mm was placed around the plate and pressed at a pressure of 1 MPa. The resulting continuous porous material has a thickness of 0.5 mm and a porosity of 48 mm.
%Met.

【0035】純水1リットルに対して、亜塩素酸ナトリ
ウム31g、水酸化ナトリウム15g及びりん酸ナトリ
ウム12gの割合で、亜塩素酸ナトリウム、水酸化ナト
リウム及びりん酸ナトリウムを溶解させて酸化処理液を
調製した。カッターを用いて前記で得られた連続気孔多
孔質体の周囲を10mm幅で切除し、60〜80℃に加
熱された酸化処理液に2分間浸漬した。その後、水道水
にて5分間洗浄、60℃の純水にて2分間洗浄及び80
℃の乾燥機中で30分間乾燥を行って、銅の連続気孔多
孔質体に酸化処理を施してなる伝熱材を片面に有する平
板状の伝熱体を作製した。
Sodium chlorite, sodium hydroxide and sodium phosphate are dissolved in 1 liter of pure water at a ratio of 31 g of sodium chlorite, 15 g of sodium hydroxide and 12 g of sodium phosphate to prepare an oxidized solution. Prepared. Using a cutter, the periphery of the continuous porous body obtained above was cut off at a width of 10 mm and immersed in an oxidation treatment solution heated to 60 to 80 ° C. for 2 minutes. Then, wash with tap water for 5 minutes, wash with pure water at 60 ° C for 2 minutes, and
Drying was performed in a dryer at 30 ° C. for 30 minutes to produce a plate-shaped heat transfer material having a heat transfer material on one side obtained by oxidizing a continuous porous copper body.

【0036】得られた伝熱材には、気孔内も含めて黒色
の酸化第2銅が生成しており、電子顕微鏡写真(3万
倍)では、図2に示すように微細な凹凸形状が形成され
ていることが確認された。参考までに酸化処理を施す前
の電子顕微鏡写真(3万倍)を図1に示す。また、得ら
れた平板状の伝熱体の伝熱材について、純水に対する接
触角を調べたところ0度であり、純水に対するぬれ性が
極めて良好であることが示された。また、常温大気圧下
において純水を垂直方向に吸い上げることにより毛細管
力を調べたところ、毛細管力は150mmであった。
In the obtained heat transfer material, black cupric oxide was generated including the inside of the pores, and in the electron micrograph (× 30,000), fine irregularities were formed as shown in FIG. It was confirmed that it was formed. For reference, FIG. 1 shows an electron micrograph (magnification: 30,000) before the oxidation treatment. Further, the contact angle of pure heat to the heat transfer material of the obtained plate-shaped heat transfer body was 0 °, indicating that the wettability to pure water was extremely good. In addition, when the capillary force was examined by sucking pure water in the vertical direction at normal temperature and atmospheric pressure, the capillary force was 150 mm.

【0037】比較例1 酸化処理を行わないようにしたほかは実施例1と同様に
して伝熱体を作製した。得られた伝熱体の伝熱材につい
て、実施例1と同様にして純水に対する接触角を調べた
ところ120度であり、また、実施例1と同様にして調
べた毛細管力は、0mmであった。
Comparative Example 1 A heat conductor was produced in the same manner as in Example 1 except that the oxidation treatment was not performed. The heat transfer material of the obtained heat transfer material was examined for the contact angle with respect to pure water in the same manner as in Example 1, and found to have a contact angle of 120 degrees. The capillary force measured in the same manner as in Example 1 was 0 mm. there were.

【0038】実施例2 保持材を厚さ2.5mm、500×50mmの寸法に、
また、基体を厚さ1mm、500×50mmの寸法にそ
れぞれ変更して以下実施例1と同様にして平板状の伝熱
体を作製した。この伝熱体を材料として用いてパイプ状
に造管し高周波溶接により継目を溶接して、外径16m
m、内径14mmに造管された銅管外周に銅の多孔質体
からなる伝熱材20を有する伝熱管21を作製した。
Example 2 The holding material was set to a thickness of 2.5 mm and dimensions of 500 × 50 mm.
Further, the thickness of the base was changed to 1 mm and the dimensions were 500 × 50 mm, respectively, and a flat heat conductor was produced in the same manner as in Example 1 below. Using this heat transfer material as a material, a pipe is formed, and the seam is welded by high frequency welding to obtain an outer diameter of 16 m.
m, a heat transfer tube 21 having a heat transfer material 20 made of a porous copper body on the outer periphery of a copper tube formed to have an inner diameter of 14 mm.

【0039】内法寸法が各450mmの立方体形状であ
り、外気との熱の出入りがないように断熱された冷媒槽
22を用意し、冷媒槽22の中央で、中心が冷媒槽22
の底から150mmの位置になるように伝熱管21を取
り付けた。また、冷媒槽22の上部から冷媒槽22と凝
縮器23とを配管24により接続した。さらに、冷媒槽
22内の空気を真空ポンプにより吸引除去し、冷媒とし
て、冷媒槽22の上端までHFC−134a(フロンの
コード番号、1,1,1,2−テトラフルオロエタンを
表す)を封入した(図3参照)。なお、この状態でのH
FC−134aの蒸発温度は5℃であった。そして、伝
熱管21の一端から、所定流量の水を通じながら、伝熱
管21の両端、伝熱管21の中央部表面及び伝熱管21
の中央部直上20mmの位置の冷媒温度を測定した。各
部の温度が一定になったところで、伝熱管21両端の温
度差と流量から伝熱量(熱流束)を求め、その伝熱量と
伝熱管21の中央部表面及び伝熱管21の中央部直上2
0mmの位置の冷媒温度から熱伝達率を求めた。伝熱管
21に通ずる水の流量を変えることにより、熱伝達率と
伝熱量(熱流束)との関係を求めた。その結果をグラフ
として図4に示す。
A coolant tank 22 having a cube shape of 450 mm in inner dimension and insulated so that heat does not flow in and out of the outside air is prepared.
The heat transfer tube 21 was attached at a position 150 mm from the bottom of the heat transfer pipe. Further, the refrigerant tank 22 and the condenser 23 were connected by a pipe 24 from above the refrigerant tank 22. Further, the air in the refrigerant tank 22 is suctioned and removed by a vacuum pump, and HFC-134a (representing a code number of Freon, representing 1,1,1,2-tetrafluoroethane) is filled as a refrigerant to the upper end of the refrigerant tank 22. (See FIG. 3). In this state, H
The evaporation temperature of FC-134a was 5 ° C. Then, while passing a predetermined amount of water from one end of the heat transfer tube 21, both ends of the heat transfer tube 21, the central portion surface of the heat transfer tube 21 and the heat transfer tube 21.
The temperature of the refrigerant at a position 20 mm immediately above the center of the sample was measured. When the temperature of each part becomes constant, the heat transfer amount (heat flux) is obtained from the temperature difference and the flow rate at both ends of the heat transfer tube 21, and the heat transfer amount, the surface of the central portion of the heat transfer tube 21 and immediately above the central portion of the heat transfer tube 21 2
The heat transfer coefficient was determined from the refrigerant temperature at the position of 0 mm. The relationship between the heat transfer coefficient and the amount of heat transfer (heat flux) was determined by changing the flow rate of water passing through the heat transfer tube 21. The result is shown in FIG. 4 as a graph.

【0040】比較例2 酸化処理を行う前の連続気孔焼結体をそのまま伝熱部材
として伝熱管を作製し、以下実施例2と同様にして熱伝
達率と伝熱量(熱流束)との関係を求めた。その結果を
グラフとして図4に示す。
Comparative Example 2 A heat transfer tube was prepared as a heat transfer member using the continuous porous sintered body before the oxidation treatment, and the relationship between the heat transfer coefficient and the heat transfer amount (heat flux) in the same manner as in Example 2 I asked. The result is shown in FIG. 4 as a graph.

【0041】[0041]

【発明の効果】本発明になる伝熱材及び伝熱体によれ
ば、伝熱材表面において気泡核を安定して保持すること
ができるので、核沸騰現象を安定して持続することがで
きる。そのため、蒸発熱伝達率が大きくなり、熱交換器
の小型化や高性能化を図ることが可能となり、部分的な
温度上昇による溶融事故等を防ぐことが可能となる。
According to the heat transfer material and the heat transfer body of the present invention, since the bubble nuclei can be stably held on the surface of the heat transfer material, the nucleate boiling phenomenon can be stably maintained. . Therefore, the heat transfer coefficient of evaporation is increased, the size and performance of the heat exchanger can be reduced, and a melting accident due to a partial temperature rise can be prevented.

【0042】さらに、伝熱材の毛細管力が大きく、熱媒
体が伝熱材の全体に拡散することにより伝熱面全体で均
一な熱伝達が行われるので、部分的な温度上昇による溶
融事故も防止でき、ヒートパイプとして使用する場合
に、安定して作動させることができる。
Furthermore, since the heat transfer material has a large capillary force, and the heat medium diffuses throughout the heat transfer material, uniform heat transfer is performed on the entire heat transfer surface. It can be operated stably when used as a heat pipe.

【図面の簡単な説明】[Brief description of the drawings]

【図1】酸化処理前状態を示す電子顕微鏡写真である。FIG. 1 is an electron micrograph showing a state before an oxidation treatment.

【図2】酸化処理により形成された凹凸を示す電子顕微
鏡写真である。
FIG. 2 is an electron micrograph showing unevenness formed by an oxidation treatment.

【図3】実施例2及び比較例2について、伝熱量(熱流
束)を求めるために用いた装置の概略断面図である。
FIG. 3 is a schematic cross-sectional view of an apparatus used for obtaining a heat transfer amount (heat flux) in Example 2 and Comparative Example 2.

【図4】実施例2及び比較例2について、熱伝達率と伝
熱量(熱流束)との関係を示すグラフである。
FIG. 4 is a graph showing a relationship between a heat transfer coefficient and a heat transfer amount (heat flux) in Example 2 and Comparative Example 2.

【符号の説明】[Explanation of symbols]

20 伝熱材 21 伝熱管 22 冷媒槽 23 凝縮器 24 配管 Reference Signs List 20 heat transfer material 21 heat transfer tube 22 refrigerant tank 23 condenser 24 piping

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 銅を含む金属の連続気孔多孔質体に酸化
処理を施してなる伝熱材。
1. A heat transfer material obtained by subjecting a continuous porous metal body containing copper to oxidation treatment.
【請求項2】 酸化処理が、黒色の酸化第2銅を生成す
る酸化処理である請求項1に記載の伝熱材。
2. The heat transfer material according to claim 1, wherein the oxidation treatment is an oxidation treatment for producing black cupric oxide.
【請求項3】 基体表面に請求項1又は2に記載の伝熱
材を被着させてなる伝熱体。
3. A heat transfer body having the heat transfer material according to claim 1 applied to a surface of a base.
【請求項4】 a.三次元網目状の空隙を有し加熱によ
り消失可能な保持材に銅を含む金属の粉体を被着させる
工程、b.前記保持材を加熱により消失させさらに銅を
含む金属の粉体を焼結して銅を含む金属の連続気孔多孔
質体を得る工程、c.得られた連続気孔多孔質体に酸化
処理を施す工程をこの順に含むことを特徴とする伝熱材
の製造方法。
4. a. A step of applying a metal powder containing copper to a holding material having three-dimensional mesh-like voids which can be eliminated by heating; b. Removing the holding material by heating and further sintering a metal powder containing copper to obtain a continuous porous metal body containing copper; c. A method for producing a heat transfer material, comprising a step of subjecting the obtained continuous porous material to an oxidation treatment in this order.
【請求項5】 保持材を加熱により消失させさらに銅を
含む金属の粉体を焼結して得られる連続気孔多孔質体を
厚さ方向に圧縮して所定の厚さを有する連続気孔多孔質
体とする工程をさらに含む請求項4に記載の伝熱材の製
造方法。
5. A continuous pore porous body having a predetermined thickness by compressing in a thickness direction a porous body obtained by sintering a metal powder containing copper after removing the holding material by heating. The method for producing a heat transfer material according to claim 4, further comprising a step of forming a heat transfer member.
【請求項6】 請求項4又は5に記載の伝熱材の製造方
法における、三次元網目状の空隙を有し加熱により消失
可能な保持材に銅を含む金属の粉体を被着させた保持材
を消失させさらに銅を含む金属の粉体を焼結して銅を含
む金属の連続気孔多孔質体を得る工程を、銅を含む金属
の粉体を介して保持材が基体と接触した状態で行うこと
により伝熱材を基体に一体に被着させるようにしてなる
伝熱体の製造方法。
6. The method for producing a heat transfer material according to claim 4, wherein a metal powder containing copper is applied to the holding material having three-dimensional mesh-shaped voids and capable of being eliminated by heating. The step of obtaining the continuous porous body of the metal containing copper by sintering the metal powder containing copper by further erasing the holding material is performed by contacting the holding material with the base via the metal powder containing copper. A method for manufacturing a heat transfer body, wherein the heat transfer material is applied to a substrate integrally by performing the heat transfer in a state.
JP10225033A 1998-08-07 1998-08-07 Heat transfer material, heat transfer body, production of heat transfer material, and production of heat transfer body Pending JP2000054159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10225033A JP2000054159A (en) 1998-08-07 1998-08-07 Heat transfer material, heat transfer body, production of heat transfer material, and production of heat transfer body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10225033A JP2000054159A (en) 1998-08-07 1998-08-07 Heat transfer material, heat transfer body, production of heat transfer material, and production of heat transfer body

Publications (1)

Publication Number Publication Date
JP2000054159A true JP2000054159A (en) 2000-02-22

Family

ID=16823015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10225033A Pending JP2000054159A (en) 1998-08-07 1998-08-07 Heat transfer material, heat transfer body, production of heat transfer material, and production of heat transfer body

Country Status (1)

Country Link
JP (1) JP2000054159A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004088048A (en) * 2002-07-05 2004-03-18 Sony Corp Cooling device, electronic equipment, acoustic equipment, and method of manufacturing cooling device
JP2004085186A (en) * 2002-07-05 2004-03-18 Sony Corp Cooling device, electronic equipment, acoustic device, and method of manufacturing cooling device
WO2005100897A1 (en) * 2004-04-13 2005-10-27 Sony Corporation Heat transport apparatus, method of manufacturing heat transport apparatus, and electronic equipment
WO2007006847A1 (en) * 2005-07-11 2007-01-18 Luvata Oy Method for improving the liquid flow properties of a heat transfer surface and its use.
JP2009047383A (en) * 2007-08-22 2009-03-05 Mitsui Mining & Smelting Co Ltd Raw material for constituting heat pipe
JP2009109079A (en) * 2007-10-30 2009-05-21 Asahi Kasei Fibers Corp Loop heat pipe type heat transfer device
JP2010249383A (en) * 2009-04-14 2010-11-04 Fujikura Ltd Drift type sea ice cooling facilitation device
JP2011007365A (en) * 2009-06-23 2011-01-13 Taisei Kogyo Kk Aluminum fiber porous sintered molding and method of manufacturing the same
CN103851942A (en) * 2012-11-30 2014-06-11 财团法人工业技术研究院 Heat pipe and processing method thereof
JP2015010749A (en) * 2013-06-28 2015-01-19 株式会社日立製作所 Heat transfer device
CN105803447A (en) * 2016-04-14 2016-07-27 东北电力大学 Preparation and detection method for super-hydrophilic micro-nano copper oxide thin film with anti-fouling performance
WO2019181598A1 (en) * 2018-03-19 2019-09-26 ポーライト株式会社 Wick manufacturing method
TWI750769B (en) * 2019-09-03 2021-12-21 大陸商廣州力及熱管理科技有限公司 A chain-like copper metal wick structure and manufacturing method thereof
CN115635080A (en) * 2022-11-15 2023-01-24 北京中石伟业科技宜兴有限公司 High-power heat pipe and preparation method thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004088048A (en) * 2002-07-05 2004-03-18 Sony Corp Cooling device, electronic equipment, acoustic equipment, and method of manufacturing cooling device
JP2004085186A (en) * 2002-07-05 2004-03-18 Sony Corp Cooling device, electronic equipment, acoustic device, and method of manufacturing cooling device
WO2005100897A1 (en) * 2004-04-13 2005-10-27 Sony Corporation Heat transport apparatus, method of manufacturing heat transport apparatus, and electronic equipment
WO2007006847A1 (en) * 2005-07-11 2007-01-18 Luvata Oy Method for improving the liquid flow properties of a heat transfer surface and its use.
JP2009047383A (en) * 2007-08-22 2009-03-05 Mitsui Mining & Smelting Co Ltd Raw material for constituting heat pipe
JP2009109079A (en) * 2007-10-30 2009-05-21 Asahi Kasei Fibers Corp Loop heat pipe type heat transfer device
JP2010249383A (en) * 2009-04-14 2010-11-04 Fujikura Ltd Drift type sea ice cooling facilitation device
JP2011007365A (en) * 2009-06-23 2011-01-13 Taisei Kogyo Kk Aluminum fiber porous sintered molding and method of manufacturing the same
CN103851942A (en) * 2012-11-30 2014-06-11 财团法人工业技术研究院 Heat pipe and processing method thereof
JP2015010749A (en) * 2013-06-28 2015-01-19 株式会社日立製作所 Heat transfer device
CN105803447A (en) * 2016-04-14 2016-07-27 东北电力大学 Preparation and detection method for super-hydrophilic micro-nano copper oxide thin film with anti-fouling performance
WO2019181598A1 (en) * 2018-03-19 2019-09-26 ポーライト株式会社 Wick manufacturing method
CN111684231A (en) * 2018-03-19 2020-09-18 保来得株式会社 Method for making core
CN111684231B (en) * 2018-03-19 2023-02-28 保来得株式会社 Method for making core
TWI750769B (en) * 2019-09-03 2021-12-21 大陸商廣州力及熱管理科技有限公司 A chain-like copper metal wick structure and manufacturing method thereof
CN115635080A (en) * 2022-11-15 2023-01-24 北京中石伟业科技宜兴有限公司 High-power heat pipe and preparation method thereof
CN115635080B (en) * 2022-11-15 2023-09-12 北京中石伟业科技宜兴有限公司 Heat pipe and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2000054159A (en) Heat transfer material, heat transfer body, production of heat transfer material, and production of heat transfer body
EP0744586B1 (en) Method of manufacturing a heat transmitting device and a heat transmitting device
US4729871A (en) Process for preparing porous metal plate
JP6550450B2 (en) Metal plating layer of copper powder, metal substrate, energy saving heat dissipation device capable of preventing expansion and explosion, and manufacturing process thereof
US20050269065A1 (en) Heat pipe with hydrophilic layer and/or protective layer and method for making same
JP4849086B2 (en) Refrigeration cycle equipment, refrigeration / air conditioning equipment, hot water supply equipment
CN106825547A (en) The method of the increasing material manufacturing metal polyporous material of selective laser melting metal micro-nano hybrid particles solution under air ambient
JP2016183390A (en) Metallic porous body
JPH10281690A (en) Air conditioner, heat exchanger and its production
JPH10121110A (en) Boiling heat-transfer member and its production
JP2003148887A (en) Heat pipe and its manufacturing method
JP3215228U (en) Energy-saving heat dissipation device that can prevent expansion and explosion
JP5170290B2 (en) Refrigeration cycle equipment, refrigeration / air conditioning equipment, hot water supply equipment
JPH10321890A (en) Solar battery cooling system
CN110998217A (en) Heat exchange element with microstructured coating and method for producing same
JP5397522B2 (en) Refrigeration cycle equipment, refrigeration / air conditioning equipment, hot water supply equipment
TWI292028B (en) Heat pipe and method for making same
KR20150125416A (en) Heating tube coated with carbon nano material used for Absorption Refrigerator and evaporator comprising the same
JP2017171991A (en) Manufacturing method of aluminum porous body
JP3960017B2 (en) Heat pipe manufacturing method
EP1584695A1 (en) Method for joining a metal foam to a metal body
JPH08296798A (en) Hydrogen storing device
JP4534355B2 (en) Method for producing porous substrate for electrode
JP7231121B2 (en) Porous body, heat dissipation structure and electronic device
US20200399130A1 (en) Method of producing carbon nanotube complex and method of producing porous metal material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070529