JP3215228U - Energy-saving heat dissipation device that can prevent expansion and explosion - Google Patents

Energy-saving heat dissipation device that can prevent expansion and explosion Download PDF

Info

Publication number
JP3215228U
JP3215228U JP2017005760U JP2017005760U JP3215228U JP 3215228 U JP3215228 U JP 3215228U JP 2017005760 U JP2017005760 U JP 2017005760U JP 2017005760 U JP2017005760 U JP 2017005760U JP 3215228 U JP3215228 U JP 3215228U
Authority
JP
Japan
Prior art keywords
layer
upper plate
lower plate
energy
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017005760U
Other languages
Japanese (ja)
Inventor
林進東
楊奥龍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lin Chintung
Original Assignee
Lin Chintung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lin Chintung filed Critical Lin Chintung
Application granted granted Critical
Publication of JP3215228U publication Critical patent/JP3215228U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

【課題】剛性が良好で、膨脹・爆発を防止する特性を有し、製造プロセスに必要な時間が短く、エネルギー消費量が少ない省エネ型放熱装置を提供する。【解決手段】膨脹・爆発を防止可能な省エネ型放熱装置であって、上板100、下板が設置され、上板100と下板が密封接続されてキャビティを構成し、キャビティ内に冷媒が注入されており、上板100と下板にそれぞれ複数の支持リブ400、コラム300が設置され、上板100又は下板の少なくとも一方の内表面には、下地層、下地層上に付着しているスノーフレーク状金属層及び密着層を少なくとも含む銅粉末の電気めっき層500が付着されている。上板100、下板に設置された銅粉末の金属めっき層500の製造過程が省エネで環境に優しく、毛管力が高く、放熱速度が高く、数秒間だけの放熱速度を実現できる。【選択図】図4The present invention provides an energy-saving heat dissipation device having good rigidity, preventing expansion / explosion, a short time required for a manufacturing process, and low energy consumption. An energy-saving heat dissipation device capable of preventing expansion / explosion, wherein an upper plate and a lower plate are installed, and the upper plate and the lower plate are hermetically connected to form a cavity, and a refrigerant is contained in the cavity. A plurality of support ribs 400 and columns 300 are installed on the upper plate 100 and the lower plate, respectively, and the inner surface of at least one of the upper plate 100 or the lower plate is attached to the base layer and the base layer. An electroplating layer 500 of copper powder including at least a snowflake-like metal layer and an adhesion layer is attached. The manufacturing process of the copper plating metal plating layer 500 installed on the upper plate 100 and the lower plate is energy-saving and environmentally friendly, has high capillary force, high heat dissipation rate, and can realize a heat dissipation rate of only a few seconds. [Selection] Figure 4

Description

本考案は放熱装置の技術分野、特に毛管力の効果が高い銅粉末の金属めっき層を有する膨脹・爆発を防止可能な省エネ型放熱装置に関する。     The present invention relates to a technical field of a heat radiating device, and more particularly to an energy saving heat radiating device capable of preventing expansion / explosion having a metal plating layer of copper powder having a high capillary force effect.

電子製品が集積化、高速化へ発展するに伴い、電子製品の放熱特性は電子製品の品質を確保するために解決しなければならない課題となっている。     As electronic products have been integrated and developed at higher speeds, the heat dissipation characteristics of electronic products have become issues that must be solved in order to ensure the quality of electronic products.

従来技術では、放熱装置は、放熱フィンを介して放熱するのが一般的であり、また、空気の流動性を改善して放熱効率を向上させるためにファンを増設するものもある。しかしながら、このような放熱方式も期待される高放熱効率を満足できない。如何に短時間内で熱を吸収して迅速に放出するかは、放熱分野での重要な研究課題となっている。     In the prior art, the heat dissipating device generally dissipates heat through the heat dissipating fins, and there is also one in which a fan is added to improve the air fluidity and improve the heat dissipating efficiency. However, such a heat dissipation method cannot satisfy the expected high heat dissipation efficiency. How to absorb and quickly release heat within a short time is an important research subject in the heat dissipation field.

凝縮管の毛管原理による放熱技術を用いるものもあるが、今まで、この技術の工業分野への普及が実現されず、従来技術による金属めっき層は、毛管力の効果、蒸発速度、膨脹爆発に対する抵抗効果のいずれも要件を満足できない。また、従来技術による金属めっき層は、厚み1ミリメートル以下にする技術的要件を満たせず、従来技術では、携帯電話のヒートパイプは最適な場合に0.6MMにしか製造できない。     Some use heat dissipation technology based on the capillary principle of the condensing tube, but until now, this technology has not been widely used in the industrial field, and the metal plating layer according to the conventional technology is effective against the effects of capillary force, evaporation rate, and expansion and explosion. None of the resistance effects can meet the requirements. Further, the metal plating layer according to the prior art does not satisfy the technical requirement of a thickness of 1 mm or less, and according to the prior art, the heat pipe of the mobile phone can be manufactured only to 0.6 MM when it is optimal.

このため、従来技術の欠点に対して、従来技術の欠点を克服するために膨脹・爆発を防止可能な省エネ型放熱装置を提供することは期待される。     For this reason, it is expected to provide an energy-saving heat dissipating device capable of preventing expansion / explosion in order to overcome the drawbacks of the prior art.

本考案は、従来技術の欠点を解決するために、毛管力が高く、数秒間の高放熱速度を有し、剛性が良好で、膨脹・爆発を防止する特性を有し、製造プロセスに必要な時間が短く、エネルギー消費量が少なく、省エネ化、環境保全の特徴を有する膨脹・爆発を防止可能な省エネ型放熱装置を提供することを目的とする。     In order to solve the drawbacks of the prior art, the present invention has a high capillary force, a high heat dissipation rate of several seconds, a good rigidity, and a property that prevents expansion / explosion and is necessary for the manufacturing process. An object of the present invention is to provide an energy-saving heat dissipation device capable of preventing expansion / explosion with short time, low energy consumption, energy saving and environmental conservation.

本考案の上記目的は下記技術案により達成させる。     The above object of the present invention is achieved by the following technical proposal.

上板、下板が設置され、前記上板と下板が密封接続されてキャビティを構成し、キャビティ内に冷媒が注入されており、
前記上板と前記下板にそれぞれ複数の支持リブが設置され、前記上板又は前記下板の少なくとも一方はそれに固定して接続されたコラムが設置され、
前記上板又は前記下板の少なくとも一方の内表面に銅粉末の電気めっき層が付着され、
前記銅粉末の電気めっき層は上板又は下板の内表面に接続された下地層、下地層に付着しているスノーフレーク状金属層及びスノーフレーク状金属層に付着している密着層を少なくとも含み、
下地層の金属粒子の粒子径は0.1−1nm、下地層の厚みは0.01−0.05mmであり、
スノーフレーク状金属層の金属粒子の粒子径は1.5−10nm、スノーフレーク状金属層の厚みは0.1−2mmであり、
密着層の金属粒子の粒子径は0.5−1.5nm、密着層の厚みは1−5nmである膨脹・爆発を防止可能な省エネ型放熱装置を提供する。
An upper plate and a lower plate are installed, the upper plate and the lower plate are hermetically connected to form a cavity, and a refrigerant is injected into the cavity,
A plurality of support ribs are installed on each of the upper plate and the lower plate, and at least one of the upper plate or the lower plate is installed with a column fixedly connected thereto,
An electroplating layer of copper powder is attached to at least one inner surface of the upper plate or the lower plate,
The electroplating layer of the copper powder includes at least an underlayer connected to the inner surface of the upper plate or the lower plate, a snowflake-like metal layer attached to the underlayer, and an adhesion layer attached to the snowflake-like metal layer,
The particle diameter of the metal particles of the underlayer is 0.1-1 nm, the thickness of the underlayer is 0.01-0.05 mm,
The particle size of the metal particles of the snowflake-like metal layer is 1.5-10 nm, the thickness of the snowflake-like metal layer is 0.1-2 mm,
Provided is an energy-saving heat dissipating device capable of preventing expansion / explosion in which the particle size of the metal particles in the adhesion layer is 0.5 to 1.5 nm and the thickness of the adhesion layer is 1 to 5 nm.

好ましくは、上記膨脹・爆発を防止可能な省エネ型放熱装置において、前記銅粉末の電気めっき層はさらに、前記密着層上に付着している補強層が設置され、補強層の金属粒子の粒子径は0.5−2.0nm、密着層の厚みは1−5nmである。     Preferably, in the energy-saving heat dissipation device capable of preventing expansion / explosion, the electroplating layer of the copper powder is further provided with a reinforcing layer attached on the adhesion layer, and the particle size of the metal particles of the reinforcing layer Is 0.5-2.0 nm, and the thickness of the adhesion layer is 1-5 nm.

好ましくは、上記膨脹・爆発を防止可能な省エネ型放熱装置において、前記銅粉末の電気めっき層はさらに、前記補強層上に付着しているロック層が設置され、ロック層の金属粒子の粒子径は0.8−1.5nm、密着層の厚みは1−5nmである。     Preferably, in the energy-saving heat dissipation device capable of preventing expansion / explosion, the electroplating layer of the copper powder is further provided with a lock layer attached on the reinforcing layer, and the particle diameter of the metal particles of the lock layer Is 0.8-1.5 nm, and the thickness of the adhesion layer is 1-5 nm.

好ましくは、上記支持リブはプレス成形された凹溝であり、凹溝の凸起側が前記上板、下板の内表面に位置する。 Preferably, the support rib is a press-formed concave groove, and the protruding side of the concave groove is located on the inner surface of the upper plate and the lower plate.

好ましくは、上記凹溝の凸起面に銅粉末の電気めっき層が付着されている。     Preferably, an electroplating layer of copper powder is attached to the protruding surface of the groove.

好ましくは、上記上板の支持リブと前記下板の支持リブは千鳥状で設置されている。     Preferably, the support ribs of the upper plate and the support ribs of the lower plate are installed in a staggered manner.

好ましくは、上記上板の内表面にコラムが溶接され、上板に溶接されたコラムの他端が下板の内表面に当接され、上板に溶接されたコラムの表面に銅粉末の電気めっき層が付着されており、
前記下板の内表面にコラムが溶接され、下板に溶接されたコラムの他端が上板の内表面に当接され、下板に溶接されたコラムの表面に銅粉末の電気めっき層が付着されている。
Preferably, a column is welded to the inner surface of the upper plate, the other end of the column welded to the upper plate is brought into contact with the inner surface of the lower plate, and copper powder is electrically connected to the surface of the column welded to the upper plate. A plating layer is attached,
A column is welded to the inner surface of the lower plate, the other end of the column welded to the lower plate is brought into contact with the inner surface of the upper plate, and an electroplated layer of copper powder is formed on the surface of the column welded to the lower plate. It is attached.

好ましくは、上板に設置されたコラムはアレイとして配列され、下板に設置されたコラムはアレイとして配列される。     Preferably, the columns installed on the upper plate are arranged as an array, and the columns installed on the lower plate are arranged as an array.

また、好ましくは、上板に設置されたコラムは直線アレイとして配列され、下板に設置されたコラムは直線アレイとして配列される。     Preferably, the columns installed on the upper plate are arranged as a linear array, and the columns installed on the lower plate are arranged as a linear array.

本考案の膨脹・爆発を防止可能な省エネ型放熱装置は、上板、下板が設置され、前記上板と下板が密封接続されてキャビティを形成し、キャビティ内に冷媒が注入されており、前記上板と前記下板にそれぞれ複数の支持リブが設置され、前記上板又は前記下板の少なくとも一方はそれに固定して接続されたコラムが設置され、前記上板又は前記下板の少なくとも一方の内表面に銅粉末の電気めっき層が付着され、前記銅粉末の電気めっき層は上板又は下板の内表面に接続された下地層、下地層に付着しているスノーフレーク状金属層及びスノーフレーク状金属層に付着している密着層を少なくとも含み、下地層の金属粒子の粒子径は0.1−1nm、下地層の厚みは0.01−0.05mmであり、スノーフレーク状金属層の金属粒子の粒子径は1.5−10nm、スノーフレーク状金属層の厚みは0.1−2mmであり、密着層の金属粒子の粒子径は0.5−1.5nm、密着層の厚みは1−5nmである。該膨脹・爆発を防止可能な省エネ型放熱装置では、上板と下板に設置された銅粉末の金属めっき層は、毛管力が高く、放熱速度が高く、数秒間だけの放熱速度を有する。該膨脹・爆発を防止可能な省エネ型放熱装置は、剛性が良好で、膨脹・爆発を防止する特性を有し、製造プロセスに必要な時間が短く、エネルギー消費量が少なく、省エネ化、環境保全の特徴を有する。     The energy-saving heat dissipation device capable of preventing expansion / explosion of the present invention has an upper plate and a lower plate, the upper plate and the lower plate are hermetically connected to form a cavity, and refrigerant is injected into the cavity. A plurality of support ribs are provided on each of the upper plate and the lower plate, and at least one of the upper plate or the lower plate is provided with a column fixedly connected thereto, and at least one of the upper plate or the lower plate. An electroplating layer of copper powder is attached to one inner surface, the electroplating layer of the copper powder is an underlayer connected to the inner surface of the upper plate or the lower plate, a snowflake-like metal layer attached to the underlayer, and At least an adhesion layer adhering to the snowflake-like metal layer is included, the particle diameter of the metal particles of the underlayer is 0.1-1 nm, and the thickness of the underlayer is 0.01-0.05 mm. Metal particles The 1.5-10Nm, the thickness of the snowflake-like metal layer is 0.1-2Mm, particle size of the metal particles in the adhesive layer is 0.5-1.5Nm, the thickness of the adhesive layer is 1-5 nm. In the energy-saving heat dissipating device capable of preventing expansion / explosion, the copper powder metal plating layers installed on the upper and lower plates have a high capillary force, a high heat dissipation rate, and a heat dissipation rate of only a few seconds. The energy-saving heat dissipation device that can prevent expansion / explosion has good rigidity, prevents expansion / explosion, has a short time required for the manufacturing process, consumes less energy, saves energy, and protects the environment It has the characteristics of.

図面を用いて本考案をより説明するが、図面の内容は本考案を制限するものではない。     The present invention will be further described with reference to the drawings, but the contents of the drawings do not limit the present invention.

本考案による膨脹・爆発を防止可能な省エネ型放熱装置の構造模式図である。1 is a structural schematic diagram of an energy-saving heat dissipation device capable of preventing expansion and explosion according to the present invention. 本考案による銅粉末の金属めっき層を500倍拡大させた顕微鏡組織模式図である。It is the microscope structure schematic diagram which expanded the metal plating layer of the copper powder by this invention 500 times. 従来技術による銅粉末の金属めっき層を500倍拡大させた顕微鏡組織模式図である。It is the microscope structure schematic diagram which expanded the metal plating layer of the copper powder by a prior art 500 times. 本考案による膨脹・爆発を防止可能な省エネ型放熱装置の実施例2の上板の構造模式図である。It is a structure schematic diagram of the upper board of Example 2 of the energy-saving type thermal radiation apparatus which can prevent expansion and explosion by this invention. 本考案による膨脹・爆発を防止可能な省エネ型放熱装置の実施例2の下板の構造模式図である。It is a structure schematic diagram of the lower board of Example 2 of the energy-saving type thermal radiation apparatus which can prevent expansion and explosion by this invention. 本考案による膨脹・爆発を防止可能な省エネ型放熱装置の実施例1の作動原理の模式図である。It is a schematic diagram of the operation principle of Example 1 of the energy-saving heat dissipation device capable of preventing expansion and explosion according to the present invention.

上板100、下板200、コラム300、支持リブ400、
銅粉末の金属めっき層500、排気ノズル600。
Upper plate 100, lower plate 200, column 300, support rib 400,
Metal plating layer 500 of copper powder, exhaust nozzle 600.

以下の実施例によって本考案について説明する。     The following examples illustrate the invention.

実施例1
図1に膨脹・爆発を防止可能な省エネ型放熱装置が示されている。該防爆放熱装置は、上板100、下板200から構成され、上板100の内表面に銅粉末の金属めっき層500が付着されている。下板200の内表面にも銅粉末の金属めっき層500が付着されている。上板と下板の間に形成されたキャビティ内に冷媒が充填される。冷媒として、水、アルコール、アセトン、R12、フレオン又はほかの成分等が挙げられる。
Example 1
FIG. 1 shows an energy-saving heat dissipation device capable of preventing expansion and explosion. The explosion-proof heat radiating device includes an upper plate 100 and a lower plate 200, and a metal plating layer 500 of copper powder is attached to the inner surface of the upper plate 100. A metal plating layer 500 of copper powder is also attached to the inner surface of the lower plate 200. A coolant is filled in a cavity formed between the upper plate and the lower plate. Examples of the refrigerant include water, alcohol, acetone, R12, freon, and other components.

銅粉末の電気めっき層は、上板又は下板の内表面に接続された下地層、下地層に付着しているスノーフレーク状金属層及びスノーフレーク状金属層に付着している密着層を少なくとも含む。下地層の金属粒子の粒子径は0.1−1nm、下地層の厚みは0.01−0.05mmである。スノーフレーク状金属層の金属粒子の粒子径は1.5−10nm、スノーフレーク状金属層の厚みは0.1−2mmである。密着層の金属粒子の粒子径は0.5−1.5nm、密着層の厚みは1−5nmである。     The electroplated layer of copper powder includes at least an underlayer connected to the inner surface of the upper plate or the lower plate, a snowflake-like metal layer attached to the underlayer, and an adhesion layer attached to the snowflake-like metal layer. The particle diameter of the metal particles of the underlayer is 0.1-1 nm, and the thickness of the underlayer is 0.01-0.05 mm. The particle diameter of the metal particles of the snowflake-like metal layer is 1.5-10 nm, and the thickness of the snowflake-like metal layer is 0.1-2 mm. The particle size of the metal particles in the adhesion layer is 0.5 to 1.5 nm, and the thickness of the adhesion layer is 1 to 5 nm.

金属基板と効果的に結合するために、下地層は小粒子を用い、スノーフレーク状金属層の粒子は下地層の金属粒子より大きく、密着層はスノーフレーク状金属層と金属基板を効果的に結合することに用いられ、金属層は全体として毛管力が高い。本考案の銅粉末の金属めっき層の顕微鏡組織は図2に示すとおりである。図3に示される従来技術による焼結プロセスで製造された銅粉末の金属めっき層の顕微鏡組織と比較した結果、本考案の銅粉末の金属めっき層はスノーフレーク状又はコーラル状の層状構造を有し、図3中の構造は多孔状である。金属層を多層設置することによって、銅粉末の金属めっき層の堅牢度を大幅に改善し、機械的破壊を受ける場合以外、脱落することがない。     In order to effectively bond to the metal substrate, the underlayer uses small particles, the particles in the snowflake-like metal layer are larger than the metal particles in the underlayer, and the adhesion layer effectively bonds the snowflake-like metal layer and the metal substrate. In particular, the metal layer has a high capillary force as a whole. The microstructure of the copper powder metal plating layer of the present invention is as shown in FIG. As a result of comparison with the microstructure of the copper plating metal plating layer produced by the prior art sintering process shown in FIG. 3, the copper plating metal plating layer of the present invention has a snowflake-like or coral-like layered structure. The structure in FIG. 3 is porous. By installing multiple metal layers, the fastness of the metal plating layer of copper powder is greatly improved, and it does not fall out except when it is subjected to mechanical destruction.

なお、本考案で製造された銅粉末の金属めっき層の顕微鏡組織は、小粒子の多層積層構造を有し、全体としてスノーフレーク状又はコーラル状の状態を示しており、本考案では、この構造についてスノーフレーク状又はコーラル状で説明するが、他の適切な名称を使用してもよい。     In addition, the microstructure of the copper plating metal plating layer manufactured by the present invention has a multilayered structure of small particles, and shows a snowflake-like or coral-like state as a whole. Although described in a snowflake or coral shape, other suitable names may be used.

なお、下地層、スノーフレーク状金属層及び密着層はそれぞれ多層から構成され、実際の使用要求に応じて柔軟に決定すればよい。     The underlayer, the snowflake-like metal layer, and the adhesion layer are each composed of multiple layers, and may be determined flexibly according to actual usage requirements.

該膨脹・爆発を防止可能な省エネ型放熱装置は、一般的な非作動状態で、銅粉末金属層の吸水性に優れることから、上板100、下板200の銅粉末金属層のいずれも飽和状態になるまで冷媒を吸着できる。作動時、上板100又は下板200の一面が熱源に接触すると、下板200の接触熱源を例にすれば、下板200は加熱されて、下板200内に設置された銅粉末の金属めっき層500内の冷媒は蒸発して上昇し、蒸発された水蒸気は上板100に至って予備凝縮されて液滴になり、上板100に冷媒が含浸されているため、蒸発された水蒸気は1秒未満内で瞬間熱交換を行って液滴になり、液滴は再び下板200に戻る。該省エ型防爆放熱装置は、数秒間だけの放熱効率があり、放熱速度が極めて高い。     The energy-saving heat dissipating device capable of preventing expansion and explosion is excellent in water absorption of the copper powder metal layer in a general non-operating state, so that both of the copper powder metal layers of the upper plate 100 and the lower plate 200 are saturated. The refrigerant can be adsorbed until it reaches a state. In operation, when one surface of the upper plate 100 or the lower plate 200 comes into contact with a heat source, the lower plate 200 is heated and the copper powder metal placed in the lower plate 200 is taken as an example. The refrigerant in the plating layer 500 evaporates and rises, and the evaporated water vapor reaches the upper plate 100 and is precondensed into droplets. Since the upper plate 100 is impregnated with the refrigerant, the evaporated water vapor is 1 Within a second, instantaneous heat exchange is performed to form a droplet, and the droplet returns to the lower plate 200 again. The energy-saving explosion-proof heat dissipation device has a heat dissipation efficiency of only a few seconds and has a very high heat dissipation rate.

該膨脹・爆発を防止可能な省エネ型放熱装置は、上下板の銅粉末の金属めっき層500が0.1mm程度になるため、熱板の厚みについての従来技術の難問を解決し、膨脹・爆発を防止可能な省エネ型放熱装置の全体を0.3mmにするという技術的要件を実現でき、従来の携帯電話等の放熱管が0.6mmにしか加工できないという技術的な難問を克服し、高集積化された電子デバイスへの放熱装置の使用量を大幅に向上できる。     In this energy-saving heat dissipation device capable of preventing expansion / explosion, the metal plating layer 500 of the copper powder on the upper and lower plates is about 0.1 mm. The technical requirement to make the entire energy-saving heat dissipation device capable of preventing air to 0.3 mm can be realized, overcoming the technical difficulty that conventional heat radiation tubes such as mobile phones can only be processed to 0.6 mm. The amount of heat dissipation device used for integrated electronic devices can be greatly improved.

該防爆放熱装置は、図4に示すように、上板100内に複数本のコラム300が設置され、上板100の内表面にさらにプレス成形された複数の支持リブ400が設置され、上板100の内表面、コラム300の表面及び支持リブ400の表面のいずれにも銅粉末の金属めっき層500が付着されている。図5に示すように、下板200の内表面にも複数本のコラム300が設置され、支持リブ400、下板200の内表面、コラム300の表面及び支持リブ400の表面のいずれにも銅粉末の金属めっき層500が付着されている。     As shown in FIG. 4, the explosion-proof heat radiating device includes a plurality of columns 300 installed in the upper plate 100, and a plurality of support ribs 400 press-formed on the inner surface of the upper plate 100. A metal plating layer 500 of copper powder is attached to any of the inner surface of 100, the surface of the column 300, and the surface of the support rib 400. As shown in FIG. 5, a plurality of columns 300 are also installed on the inner surface of the lower plate 200, and the support rib 400, the inner surface of the lower plate 200, the surface of the column 300, and the surface of the support rib 400 are both copper. A powder metal plating layer 500 is attached.

支持リブは、プレス成形された凹溝であり、凹溝の凸起側が上板、下板の内表面に位置する。凹溝の凸起面に銅粉末の電気めっき層が付着される。上板の支持リブと下板の支持リブは千鳥状で設置される。     The support rib is a press-molded concave groove, and the protruding side of the concave groove is located on the inner surface of the upper plate and the lower plate. An electroplating layer of copper powder is attached to the raised surface of the groove. The support ribs on the upper plate and the support ribs on the lower plate are installed in a staggered pattern.

上板100と下板200は組み立てられてレーザー又は摩擦溶接接により密閉型キャビティを構成し、キャビティ内の上板100のコラム300の他端は好ましくは下板200の内表面に当接され、上板と下板に設置されたコラム300は千鳥状であり、それぞれ対応した下板200又は上板100の内表面に当接される。上板に溶接されたコラムの表面に銅粉末の電気めっき層が付着され、下板に溶接されたコラムの表面にも銅粉末の電気めっき層が付着されている。     The upper plate 100 and the lower plate 200 are assembled to form a sealed cavity by laser or friction welding, and the other end of the column 300 of the upper plate 100 in the cavity is preferably in contact with the inner surface of the lower plate 200; The columns 300 installed on the upper plate and the lower plate have a staggered shape, and abut against the corresponding inner surfaces of the lower plate 200 and the upper plate 100, respectively. An electroplated layer of copper powder is attached to the surface of the column welded to the upper plate, and an electroplated layer of copper powder is also attached to the surface of the column welded to the lower plate.

支持リブ400を設置することにより、上板、下板200の間の支持強度を高め、使用時の上下板200の間に生じた膨脹による破裂や爆発を効果的に防止できる。     By installing the support rib 400, the support strength between the upper plate and the lower plate 200 can be increased, and explosion and explosion due to expansion generated between the upper and lower plates 200 during use can be effectively prevented.

増設されたコラムは、放熱装置の上板と下板200の間のキャビティの支持力を提供し、放熱装置全体の機械的特性を改善して、使用時の上板と下板200の間に生じた膨脹による破裂や爆発を防止できる。     The added column provides support for the cavity between the upper plate and the lower plate 200 of the heat dissipation device, improves the mechanical characteristics of the entire heat dissipation device, and between the upper plate and the lower plate 200 in use. Rupture and explosion due to the expansion that occurs can be prevented.

実践の結果、支持リブ400だけを設置する場合は、実際に使用されるときに膨脹爆発の発生率が、支持リブ400とコラムを同時に設置する構造の場合より遥かに高いことが見出された。支持リブ400とコラムを同時に設置した製品の膨脹爆発抵抗性について測定した結果、10000個のサンプルのうち、膨脹爆発の発生率は万分の一しかない。     As a result of practice, it has been found that when only the support rib 400 is installed, the rate of expansion and explosion is much higher when actually used than the structure in which the support rib 400 and the column are installed at the same time. . As a result of measuring the expansion / explosion resistance of the product in which the support rib 400 and the column are installed at the same time, the rate of expansion / explosion out of 10,000 samples is only one tenth.

支持リブ400とコラムはさらにクーラントの液滴を還流させる導流手段として作用し、凝縮された液滴が本体と支持リブ400に沿って還流できる。コラムはアレイとして配列されてもよいし、直線として配列されてもよい。     The support rib 400 and the column further act as a guiding means for circulating coolant droplets, and the condensed droplets can be recirculated along the main body and the support ribs 400. The columns may be arranged as an array or may be arranged as a straight line.

支持リブ400とコラムに銅粉末の金属めっき層500が付着されており、蒸発過程において、一部の蒸気はコラム上の銅粉末の金属めっき層500に接触して予備冷却されてコラムに沿って還流し、一部の蒸気は支持リブ400上の銅粉末の金属めっき層500に接触して同様に冷却されて集まり、コラム又は支持リブ400に沿って還流し、図6に示すように、支持リブ400、コラム及びその上にある銅粉末の金属めっき層500は、放射式蒸発還流のような循環過程を完成し、放熱性に優れる。     The copper plating metal plating layer 500 is attached to the support rib 400 and the column, and in the evaporation process, a part of the vapor contacts the copper powder metal plating layer 500 on the column and is precooled along the column. Reflux and some of the vapor contacts the metal plating layer 500 of the copper powder on the support rib 400 and collects in the same manner, and then circulates along the column or the support rib 400, as shown in FIG. The rib 400, the column, and the metal plating layer 500 of copper powder on the column 400 complete a circulation process such as radiative evaporation and reflux, and are excellent in heat dissipation.

該膨脹・爆発を防止可能な省エネ型放熱装置は、
(1)上板と下板である金属基板にそれぞれ、実施例5のプロセスにより銅粉末を製造して、銅粉末の金属めっき層を電気めっきするステップと、
(2)銅粉末の金属めっき層が電気めっきされた上板と下板の周辺をレーザー溶接によりシールするステップと、
(3)高周波溶接排気ノズル600を用いて、均一に加熱された板を得て、次に排気ノズルを介して、均一に加熱された板内へ冷媒を注入するステップと、
(4)一回目の真空化を行って、キャビティ内の空気圧を6.0−1−8.0−2Paにするステップと、
(5)二回排気して、一回目の真空化が実施された均一に加熱された板を100−150℃、好ましくは120℃に加熱して、ステップ(4)で残された気体を排気ノズルのトップに集めて、排気ノズルの末端で排気ノズル600を切断するステップと、
(6)切断された開口部を溶接、好ましくはレーザー溶接によりシールするステップと、
(7)縁部にあるバリを除去して、光滑に研磨するように、外部を整形して放熱装置の完成品を得るステップとを含むプロセスにより製造される。
The energy-saving heat dissipation device that can prevent the expansion and explosion is
(1) A step of producing copper powder by the process of Example 5 on each of the upper and lower metal substrates, and electroplating a metal plating layer of the copper powder;
(2) sealing the periphery of the upper plate and the lower plate on which the metal plating layer of copper powder is electroplated by laser welding;
(3) obtaining a uniformly heated plate using the high frequency welding exhaust nozzle 600, and then injecting a refrigerant into the uniformly heated plate via the exhaust nozzle;
(4) performing a first vacuum, and setting the air pressure in the cavity to 6.0 −1 −8.0 −2 Pa;
(5) Evacuate twice and heat the uniformly heated plate that has been evacuated the first time to 100-150 ° C., preferably 120 ° C., and exhaust the gas left in step (4) Collecting at the top of the nozzle and cutting the exhaust nozzle 600 at the end of the exhaust nozzle;
(6) sealing the cut opening by welding, preferably laser welding;
(7) It is manufactured by a process including a step of removing the burrs at the edge and shaping the outside to obtain a finished product of the heat dissipation device so as to polish lightly.

該膨脹・爆発を防止可能な省エネ型放熱装置の作動原理は以下のとおりである。非加熱状態(すなわち非作動状態)では、内部にある冷媒液体がほぼ飽和状態になるまで上板100、下板200の銅粉末の金属めっき層500に含浸される。上板100又は下板200のいずれか一面が熱源に位置するとき、たとえば、上板100が熱源に近い一例では、上板100は、加熱されると、内部の銅粉末の金属めっき層500が熱により蒸発されて、一部の蒸気が他端の下板200に接触して冷却され、一部の蒸気がコラム又は支持リブ400の表面にある銅粉末の金属めっき層500に接触して冷却されて、凝結されてコラム又は支持リブ400に沿って上板100に還流し、このように循環して上板100から下板200への放熱サイクルを実現する。図6に示すように、該膨脹・爆発を防止可能な省エネ型放熱装置は、放熱に必要な時間がほぼ数秒間−十数秒間だけである。本考案による防爆放熱装置は、上板と下板200の内表面に銅粉末の金属めっき層500を設置することで、上板と下板200の間の蒸発放熱の高速な切替を容易にして、放熱効果を向上させる。     The operation principle of the energy-saving heat dissipating device capable of preventing the expansion / explosion is as follows. In the non-heated state (that is, the non-operating state), the metal plating layer 500 of the copper powder of the upper plate 100 and the lower plate 200 is impregnated until the refrigerant liquid inside is almost saturated. When any one surface of the upper plate 100 or the lower plate 200 is located in the heat source, for example, in an example in which the upper plate 100 is close to the heat source, when the upper plate 100 is heated, the metal plating layer 500 of the internal copper powder is formed. It is evaporated by heat, and a part of the steam comes into contact with the lower plate 200 at the other end to be cooled, and a part of the steam comes into contact with the metal plating layer 500 of the copper powder on the surface of the column or the support rib 400 to cool. Then, it is condensed and returned to the upper plate 100 along the column or the support rib 400, and circulates in this way to realize a heat dissipation cycle from the upper plate 100 to the lower plate 200. As shown in FIG. 6, the energy-saving heat dissipating device capable of preventing the expansion / explosion requires only a few seconds to a few dozen seconds. The explosion-proof heat radiating device according to the present invention facilitates high-speed switching of evaporation heat radiation between the upper plate and the lower plate 200 by installing a metal plating layer 500 of copper powder on the inner surfaces of the upper plate and the lower plate 200. , Improve the heat dissipation effect.

なお、金属基板は銅板、アルミ板、亜鉛板、錫板、チタン板又はステンレス板等であってもよい。     The metal substrate may be a copper plate, an aluminum plate, a zinc plate, a tin plate, a titanium plate, a stainless plate, or the like.

なお、膨脹・爆発を防止可能な省エネ型放熱装置の構造は本実施例の形態に制限されず、一面だけに銅粉末の金属めっき層500が設置されてもよい。上板100、下板200に設置されたたコラム、支持リブ400は好ましくは二層の板に設置されるが、1層のみに設置されても構わない。     The structure of the energy-saving heat dissipation device capable of preventing expansion / explosion is not limited to the form of the present embodiment, and the copper-plated metal plating layer 500 may be provided only on one surface. The columns and support ribs 400 installed on the upper plate 100 and the lower plate 200 are preferably installed on a two-layer plate, but may be installed on only one layer.

本考案による膨脹・爆発を防止可能な省エネ型放熱装置は、上板100、下板200の銅粉末の金属めっき層500の製造過程が省エネで環境に優しく、銅粉末の金属めっき層500と金属基板との付着力が高く、毛管力が高く、蒸発性に優れたという特徴を有し、製造過程により金属基板の剛性を損なうことがなく、金属基板の硬度を維持できる。製造された放熱装置は熱伝達、放熱速度が高く、膨脹爆発に対する抵抗性が良好である。     The energy-saving heat dissipation device capable of preventing expansion / explosion according to the present invention is an energy-saving and environment-friendly manufacturing process of the copper powder metal plating layer 500 of the upper plate 100 and the lower plate 200. It has characteristics of high adhesion to the substrate, high capillary force, and excellent evaporability, and maintains the hardness of the metal substrate without impairing the rigidity of the metal substrate during the manufacturing process. The manufactured heat dissipating device has high heat transfer and heat dissipating speed and good resistance to expansion and explosion.

実施例2
膨脹・爆発を防止可能な省エネ型放熱装置は、
銅粉末の電気めっき層にさらに補強層とロック層が設置されており、補強層は密着層上に付着し、金属粒子の粒子径が0.5−2.0nm、厚みが1−5nmであり、ロック層は補強層上に付着し、金属粒子の粒子径が0.8−1.5nm、密着層の厚みが1−5nmであるという特徴を有する以外、実施例1の構造と同様である。
Example 2
An energy-saving heat dissipation device that can prevent expansion and explosion
Further, a reinforcing layer and a lock layer are provided on the electroplating layer of copper powder, the reinforcing layer adheres on the adhesion layer, the particle size of the metal particles is 0.5-2.0 nm, and the thickness is 1-5 nm. The lock layer adheres to the reinforcing layer, and is the same as the structure of Example 1 except that the metal particles have a particle diameter of 0.8 to 1.5 nm and the adhesion layer has a thickness of 1 to 5 nm. .

補強層とロック層を増設することによって、銅粉末の電気めっき層と上板又は下板との付着力を大幅に向上させると同時に、銅粉末の電気めっき層全体の毛管力を高める。     By increasing the reinforcing layer and the lock layer, the adhesion force between the electroplating layer of the copper powder and the upper plate or the lower plate is greatly improved, and at the same time, the capillary force of the entire electroplating layer of the copper powder is increased.

補強層とロック層が設置されたサンプル及び補強層とロック層が設置されていないサンプルについて、特性をテストしたところ、補強層とロック層が設置されたサンプルの銅粉末の電気めっき層の脱落を引き起こす外力が、補強層とロック層が設置されていないサンプルの脱落を引き起こす外力よりも60%以上高い。補強層とロック層が設置されたサンプルの毛管力も大幅に向上する。     When the characteristics of the sample with the reinforcing layer and the lock layer and the sample without the reinforcing layer and the lock layer were tested, the electroplating layer of the copper powder of the sample with the reinforcing layer and the lock layer was removed. The induced external force is 60% or more higher than the external force that causes the sample without the reinforcing layer and the lock layer to fall off. The capillary force of the sample with the reinforcement layer and the lock layer is also greatly improved.

実施例3
膨脹・爆発を防止可能な省エネ型放熱装置は、上板100内だけに複数本のコラム300が設置され、上板100、下板200の内表面にさらにプレス成形された複数の支持リブ400が設置された以外、実施例1又は2の構造と同様である。該放熱装置は、熱伝達、放熱速度が高く、膨脹爆発に対する抵抗性が良好である。
Example 3
In the energy-saving heat dissipation device capable of preventing expansion / explosion, a plurality of columns 300 are installed only in the upper plate 100, and a plurality of support ribs 400 are further press-formed on the inner surfaces of the upper plate 100 and the lower plate 200. The structure is the same as that of Example 1 or 2 except that it is installed. The heat dissipating device has high heat transfer and heat dissipating speed and good resistance to expansion and explosion.

実施例4
膨脹・爆発を防止可能な省エネ型放熱装置は、下板200内だけに複数本のコラム300が設置され、上板100、下板200の内表面にさらにプレス成形された複数の支持リブ400が設置された以外、実施例3の特徴と同様である。該放熱装置は、熱伝達、放熱速度が高く、膨脹爆発に対する抵抗性が良好である。
Example 4
In the energy-saving heat dissipation device capable of preventing expansion / explosion, a plurality of columns 300 are installed only in the lower plate 200, and a plurality of support ribs 400 are further press-formed on the inner surfaces of the upper plate 100 and the lower plate 200. Except for the installation, the features are the same as those of the third embodiment. The heat dissipating device has high heat transfer and heat dissipating speed and good resistance to expansion and explosion.

実施例5
実施例1−4のいずれか1つに記載の膨脹・爆発を防止可能な省エネ型放熱装置では、上板又は下板の銅粉末の金属めっき層は、ステップa−ステップeを含むプロセスによって製造される。
Example 5
In the energy-saving heat dissipation device capable of preventing expansion / explosion according to any one of Examples 1-4, the metal plating layer of the copper powder on the upper plate or the lower plate is manufactured by a process including step a to step e. Is done.

a.金属基板の洗浄
5%−15%の希硫酸で4−5分間洗浄し、次に純水で少なくとも三回洗浄して、銅板、アルミニウム板、亜鉛板、錫板、チタン板又はステンレス板等の金属基板の表面をきれいにする。
a. Metal substrate cleaning 5% -15% dilute sulfuric acid for 4-5 minutes, then with pure water at least three times, such as copper plate, aluminum plate, zinc plate, tin plate, titanium plate or stainless steel plate Clean the surface of the metal substrate.

b.金属層を付着すべき作動面だけを露出させるように、金属基板の他面を包む。 b. The other side of the metal substrate is wrapped so that only the working surface to which the metal layer is to be deposited is exposed.

c.金属層の付着
治具を用いて、作動面を露出させた金属基板を作業タンクに浸漬し、付着工程に、作業タンク中の液体温度を1−10℃に制御する。液体温度が電気めっき効果を支配するポイントであり、温度が高いと銅イオンの活性が強くなり、付着に不利であるとともに、高電流のときに過度加熱や酸化が発生しやすい。
作業タンクにおける液体の成分の配合比率は、硫酸の濃度が70−85グラム/リットル、硫酸銅の濃度が250−260グラム/リットルであり、溶媒は純水であり、
金属層の付着は、下地層の付着、スノーフレーク状金属層の付着及び密着層の付着工程を少なくとも含み、具体的には、
まず、金属粒子の粒子径が0.1−1nm、厚みが0.01−0.05mmの下地層を付着して、金属基板の作動面と接続し、
次に、金属粒子の粒子径が1.5−10nm、厚みが0.1−2mmのスノーフレーク状金属層を付着し、
最後に、金属粒子の粒子径が0.5−1.5nm、厚みが1−5nmである密着層を付着する。
c. Using a metal layer attachment jig, the metal substrate with the working surface exposed is immersed in the work tank, and the liquid temperature in the work tank is controlled to 1-10 ° C. in the attachment process. The temperature of the liquid dominates the electroplating effect. If the temperature is high, the activity of copper ions becomes strong, which is disadvantageous for adhesion, and excessive heating and oxidation are likely to occur at high currents.
The mixing ratio of the liquid components in the work tank is such that the concentration of sulfuric acid is 70-85 grams / liter, the concentration of copper sulfate is 250-260 grams / liter, the solvent is pure water,
The adhesion of the metal layer includes at least an adhesion process of the base layer, an adhesion of the snowflake-like metal layer, and an adhesion layer adhesion process.
First, a base layer having a metal particle diameter of 0.1-1 nm and a thickness of 0.01-0.05 mm is attached and connected to the working surface of the metal substrate,
Next, a snowflake-like metal layer having a metal particle diameter of 1.5-10 nm and a thickness of 0.1-2 mm is attached,
Finally, an adhesion layer having a metal particle diameter of 0.5 to 1.5 nm and a thickness of 1 to 5 nm is attached.

d.金属層が付着された金属板を洗浄し、具体的に、金属基板を5wt%ソーダ灰を含む洗浄タンクに入れて、超音波で洗浄タンク内の液体を40−60℃に加熱して、10−15分間洗浄し、次に浄水で2−3回水洗する。 d. The metal plate to which the metal layer is attached is cleaned. Specifically, the metal substrate is placed in a cleaning tank containing 5 wt% soda ash, and the liquid in the cleaning tank is heated to 40-60 ° C. with ultrasonic waves. Wash for 15 minutes, then rinse with clean water 2-3 times.

e.ステップdで洗浄した金属板での液体を吸い取り、乾燥させて吸液毛管力のある銅粉末の金属めっき層を得て、具体的に、洗浄した金属板の金属層内に残された水分を吸収紙で吸い取った後、窒素ガス保護ボックスに入れて乾燥させ、吸水毛管力を有する銅粉末の金属めっき層を形成して、酸化を防止する。 e. The liquid in the metal plate washed in step d is sucked and dried to obtain a copper plating metal plating layer having a liquid absorption capillary force. Specifically, moisture remaining in the metal layer of the washed metal plate is removed. After absorbing with absorbent paper, it is put into a nitrogen gas protection box and dried to form a metal plating layer of copper powder having water absorption capillary force to prevent oxidation.

銅粉末の金属めっき層の製造プロセスでは、金属層を付着するステップcは最も重要な工程であり、下地層の付着工程において、電流は0.8−1.1アンペア、付着時間は10−15分間であり、スノーフレーク状金属層の付着工程において、電流は2.0−8.0アンペア、付着時間は2−10分間であり、密着層の付着工程において、まず、1.0アンペアの電流で1時間付着させ、次に0.5アンペアの電流で1時間付着させる。     In the manufacturing process of the copper-plated metal plating layer, the step c of attaching the metal layer is the most important step. In the step of attaching the underlayer, the current is 0.8-1.1 amperes and the attachment time is 10-15. In the attachment process of the snowflake-like metal layer, the current is 2.0-8.0 amperes and the attachment time is 2-10 minutes. In the adhesion layer attachment process, first, the current is 1.0 ampere. Deposit for 1 hour and then for 1 hour at a current of 0.5 amps.

下地層、スノーフレーク状金属層及び密着層は、必要に応じてそれぞれ一層又は多層構造として設置できる。     The underlayer, the snowflake-like metal layer, and the adhesion layer can each be installed as a single layer or a multilayer structure as necessary.

該銅粉末の金属めっき層の製造プロセスでは、電気めっき方式により金属原子を還元してスノーフレーク状の金属層を形成する。金属層は少なくとも3層、好ましくは4−5層堆積される。下地層は、金属基板と効果的に結合するために小粒子が堆積され、スノーフレーク状金属層は、粒子が下地層の金属粒子よりも大きく、密着層は、スノーフレーク状金属層と金属基板を効果的に結合する。金属層は全体の毛管力が高い。本考案で製造された銅粉末の金属めっき層はスノーフレーク状又はコーラル状の層状構造を有し、多層金属層を設置することによって、銅粉末の金属めっき層の堅牢度を大幅に改善し、機械的破壊を受ける場合以外、脱落することがない。     In the manufacturing process of the copper-plated metal plating layer, metal atoms are reduced by electroplating to form a snowflake-like metal layer. At least three metal layers are deposited, preferably 4-5 layers. The underlayer is deposited with small particles to effectively bond with the metal substrate, the snowflake-like metal layer is larger than the metal particles of the underlayer, and the adhesion layer is effective for the snowflake-like metal layer and the metal substrate. Join. The metal layer has a high overall capillary force. The metal plating layer of copper powder produced by the present invention has a snowflake-like or coral-like layered structure, and by installing the multilayer metal layer, the fastness of the metal plating layer of copper powder is greatly improved, It will not drop out unless it is subjected to physical destruction.

該銅粉末の金属めっき層の製造プロセスでは、過程全体にわたって直流電気めっき方式が使用され、直流電圧は10アンペア以下、電気めっき液の温度は10℃以下であり、温度が高すぎると、銅イオンの活性を高めて付着に悪影響を与え、また、高電流により過度に焼けて黒色になったり酸化されやすくなったりする。従って、金属基板の硬度を損なわず、後続に使用される金属基板の硬度を確保できる。従来技術では、金属基板は加工時の高温焼結により柔らかくなり、それによって、後続の使用時に変形しやすく、爆発や膨脹に対する抵抗性が低下してしまう。     In the manufacturing process of the metal plating layer of the copper powder, the direct current electroplating method is used throughout the process, the direct current voltage is 10 amperes or less, the temperature of the electroplating solution is 10 ° C. or less, and if the temperature is too high, Adhesion is adversely affected by increasing the activity of the material, and it becomes excessively burnt by a high current and becomes black or easily oxidized. Therefore, the hardness of the metal substrate used subsequently can be secured without impairing the hardness of the metal substrate. In the prior art, the metal substrate becomes soft due to high-temperature sintering during processing, thereby easily deforming during subsequent use, and the resistance to explosion and expansion is reduced.

従来、銅粉末の金属めっき層の製造にあたって、真空炉を用いて800℃以上の温度で銅粉末を8時間以上焼結し、焼結終了後、950℃で3−4時間溶接する必要があるため、電気も時間もかかり、さらに、銅材質自体は高温により硬度が低下して、使用や製造のときに変形しやすくなる。本考案による銅粉末の金属めっき層の製造プロセスでは、直流電圧を用いて、3時間かけて完了でき、1枚の金属基板のめっき層を製造するのに1kW・h程度だけの電力が必要であるため、製造時間を大幅に減少させるとともに、エネルギー消費量を大幅に低下させ、省エネ化、環境保全の特徴を有する。     Conventionally, in producing a metal plating layer of copper powder, it is necessary to sinter the copper powder at a temperature of 800 ° C. or higher for 8 hours or more using a vacuum furnace, and to weld at 950 ° C. for 3 to 4 hours after the sintering is completed. Therefore, it takes both electricity and time, and the copper material itself is reduced in hardness due to high temperature and easily deforms during use and manufacture. The process for producing a metal plating layer of copper powder according to the present invention can be completed over 3 hours using a DC voltage, and only about 1 kW · h of electric power is required to produce a plating layer on one metal substrate. For this reason, the manufacturing time is greatly reduced, and the energy consumption is greatly reduced, resulting in energy saving and environmental conservation.

本考案による銅粉末の金属めっき層の製造プロセスでは、電気めっき材料として銅塊、硫酸、硫酸銅溶液及び純水だけで十分であり、製造過程にわたって銅塊と銅イオンのみが消費される。従来技術に比べて、硫酸銅溶液を交換せずに、銅イオンを補充して、純水と硫酸銅溶液を用いて濃度の比率を調整するだけでよく、副生物を発生させないため、環境に優しく、製造コストが低い点が異なる。     In the manufacturing process of the metal plating layer of copper powder according to the present invention, only the copper block, sulfuric acid, copper sulfate solution and pure water are sufficient as the electroplating material, and only the copper block and copper ions are consumed throughout the manufacturing process. Compared to the prior art, instead of replacing the copper sulfate solution, it is only necessary to replenish copper ions and adjust the concentration ratio using pure water and copper sulfate solution. It is gentle and the manufacturing cost is low.

なお、厚みの異なる銅粉末の金属めっき層を製造するために、異なるプロセスを使用することができ、研究した結果、下記プロセスで製造された対応した厚みの銅粉末の金属めっき層は特性に優れる。     In addition, in order to produce copper plating metal plating layers with different thicknesses, different processes can be used, and as a result of research, copper plating metal plating layers with corresponding thicknesses produced by the following processes have excellent characteristics. .

たとえば、電流を2.5アンペアに調整して、2分間付着して、厚み0.15−0.2MMの銅粉末の金属めっき層を得る。     For example, the current is adjusted to 2.5 amperes and adhered for 2 minutes to obtain a metal plating layer of copper powder having a thickness of 0.15-0.2 MM.

たとえば、電流を3.0アンペアに調整して、2.5分間付着して、厚み0.25−0.3MMの銅粉末の金属めっき層を得る。     For example, the current is adjusted to 3.0 amperes and adhered for 2.5 minutes to obtain a copper powder metal plating layer having a thickness of 0.25-0.3 MM.

たとえば、電流を4.0アンペアに調整して、3分間付着して、厚み0.35MMの銅粉末の金属めっき層を得る。     For example, the current is adjusted to 4.0 amperes and adhered for 3 minutes to obtain a copper powder metal plating layer having a thickness of 0.35 MM.

たとえば、電流を4.5−5.0アンペアに調整して、3分間付着して、厚み0.4MMの銅粉末の金属めっき層を得る。     For example, the current is adjusted to 4.5-5.0 amperes and adhered for 3 minutes to obtain a metal plating layer of copper powder having a thickness of 0.4 MM.

たとえば、電流を5.5アンペアに調整して、4分間付着して、厚み0.5MMの銅粉末の金属めっき層を得る。     For example, the current is adjusted to 5.5 amperes and deposited for 4 minutes to obtain a metal powder layer of copper powder having a thickness of 0.5 MM.

たとえば、電流を6アンペアに調整して、5分間付着して、厚み0.6MMの銅粉末の金属めっき層を得る。     For example, the current is adjusted to 6 amperes and adhered for 5 minutes to obtain a metal plating layer of copper powder having a thickness of 0.6 MM.

たとえば、電流を6.5アンペアに調整して、5分間して、厚み0.7−0.8MMの銅粉末の金属めっき層を得る。     For example, the current is adjusted to 6.5 amperes, and the metal plating layer of copper powder having a thickness of 0.7 to 0.8 MM is obtained for 5 minutes.

たとえば、電流を7アンペアに調整して、6分間付着して、厚み0.9MMの銅粉末の金属めっき層を得る。     For example, the current is adjusted to 7 amperes and deposited for 6 minutes to obtain a metal plating layer of copper powder having a thickness of 0.9 MM.

たとえば、電流を8アンペアに調整して、6分間付着して、厚み1MMの銅粉末の金属めっき層を得る。     For example, the current is adjusted to 8 amperes and adhered for 6 minutes to obtain a 1MM thick copper powder metal plating layer.

以上のように工程を制御することによって、製造された銅粉末の金属めっき層は、毛管性がさらに良好であり、1mlの水滴を0.01−0.05秒間で吸収できる。製造されためっき層は、顕微鏡下でスノーフレーク状の多層構造であり、毛管力が高く、蒸発性に優れた特徴を有し、製造過程は金属基板の剛性を損なうことがなく、金属基板の硬度を維持できる。     By controlling the process as described above, the manufactured copper-plated metal plating layer of copper powder has better capillary properties and can absorb 1 ml of water droplets in 0.01 to 0.05 seconds. The manufactured plating layer has a snowflake-like multilayer structure under a microscope, has a high capillary force, and has excellent characteristics of evaporation, and the manufacturing process does not impair the rigidity of the metal substrate, and the hardness of the metal substrate Can be maintained.

なお、以上の実施例は本考案の技術案を説明するものに過ぎず、本考案の保護範囲を制限するものではなく、好適な実施例を参照して本考案について詳細に説明したが、当業者であれば、本考案の技術案の本質や範囲を脱逸せずに本考案の技術案について修正又は等同置換を行うことができる。     It should be noted that the above embodiments are merely illustrative of the technical solutions of the present invention and are not intended to limit the scope of protection of the present invention, and the present invention has been described in detail with reference to preferred embodiments. If it is a trader, it can modify or replace the technical plan of the present invention without departing from the essence and scope of the technical plan of the present invention.

Claims (9)

膨脹・爆発を防止可能な省エネ型放熱装置であって、
上板、下板が設置され、前記上板と下板が密封接続されてキャビティを構成し、キャビティ内に冷媒が注入されており、
前記上板と前記下板にそれぞれ複数の支持リブが設置され、前記上板又は前記下板の少なくとも一方はそれに固定して接続されたコラムが設置され、
前記上板又は前記下板の少なくとも一方の内表面に銅粉末の電気めっき層が付着され、
前記銅粉末の電気めっき層は上板又は下板の内表面に接続された下地層、下地層に付着しているスノーフレーク状金属層及びスノーフレーク状金属層に付着している密着層を少なくとも含み、
下地層の金属粒子の粒子径は0.1−1nm、下地層の厚みは0.01−0.05mmであり、
スノーフレーク状金属層の金属粒子の粒子径は1.5−10nm、スノーフレーク状金属層の厚みは0.1−2mmであり、
密着層の金属粒子の粒子径は0.5−1.5nm、密着層の厚みは1−5nmであることを特徴とする膨脹・爆発を防止可能な省エネ型放熱装置。
An energy-saving heat dissipation device that can prevent expansion and explosion,
An upper plate and a lower plate are installed, the upper plate and the lower plate are hermetically connected to form a cavity, and a refrigerant is injected into the cavity,
A plurality of support ribs are installed on each of the upper plate and the lower plate, and at least one of the upper plate or the lower plate is installed with a column fixedly connected thereto,
An electroplating layer of copper powder is attached to at least one inner surface of the upper plate or the lower plate,
The electroplating layer of the copper powder includes at least an underlayer connected to the inner surface of the upper plate or the lower plate, a snowflake-like metal layer attached to the underlayer, and an adhesion layer attached to the snowflake-like metal layer,
The particle diameter of the metal particles of the underlayer is 0.1-1 nm, the thickness of the underlayer is 0.01-0.05 mm,
The particle size of the metal particles of the snowflake-like metal layer is 1.5-10 nm, the thickness of the snowflake-like metal layer is 0.1-2 mm,
An energy-saving heat dissipating device capable of preventing expansion and explosion, wherein the particle size of the metal particles in the adhesion layer is 0.5 to 1.5 nm and the thickness of the adhesion layer is 1 to 5 nm.
前記銅粉末の電気めっき層はさらに、前記密着層上に付着している補強層が設置され、補強層の金属粒子の粒子径は0.5−2.0nm、密着層の厚みは1−5nmであることを特徴とする請求項1に記載の膨脹・爆発を防止可能な省エネ型放熱装置。   The copper powder electroplating layer is further provided with a reinforcing layer adhering to the adhesion layer, the metal particle diameter of the reinforcement layer is 0.5-2.0 nm, and the adhesion layer thickness is 1-5 nm. The energy-saving heat dissipating device capable of preventing expansion / explosion according to claim 1. 前記銅粉末の電気めっき層はさらに、前記補強層上に付着しているロック層が設置され、ロック層の金属粒子の粒子径は0.8−1.5nm、密着層の厚みは1−5nmであることを特徴とする請求項2に記載の膨脹・爆発を防止可能な省エネ型放熱装置。   The copper powder electroplating layer is further provided with a lock layer adhering to the reinforcing layer, the metal particle diameter of the lock layer is 0.8-1.5 nm, and the thickness of the adhesion layer is 1-5 nm. The energy-saving heat dissipating device capable of preventing expansion and explosion according to claim 2. 前記支持リブはプレス成形された凹溝であり、凹溝の凸起側が前記上板、下板の内表面に位置することを特徴とする請求項3に記載の膨脹・爆発を防止可能な省エネ型放熱装置。   4. The energy saving capable of preventing expansion / explosion according to claim 3, wherein the support rib is a press-formed concave groove, and a protruding side of the concave groove is located on an inner surface of the upper plate and the lower plate. Mold heat dissipation device. 前記凹溝の凸起面に銅粉末の電気めっき層が付着されていることを特徴とする請求項4に記載の膨脹・爆発を防止可能な省エネ型放熱装置。   The energy-saving heat dissipation device capable of preventing expansion / explosion according to claim 4, wherein an electroplating layer of copper powder is attached to the protruding surface of the concave groove. 前記上板の支持リブと前記下板の支持リブは千鳥状で設置されていることを特徴とする請求項5に記載の膨脹・爆発を防止可能な省エネ型放熱装置。   The energy-saving heat dissipating device according to claim 5, wherein the support ribs of the upper plate and the support ribs of the lower plate are installed in a staggered manner. 前記上板の内表面にコラムが溶接され、上板に溶接されたコラムの他端が下板の内表面に当接され、上板に溶接されたコラムの表面に銅粉末の電気めっき層が付着されており、
前記下板の内表面にコラムが溶接され、下板に溶接されたコラムの他端が上板の内表面に当接され、下板に溶接されたコラムの表面に銅粉末の電気めっき層が付着されていることを特徴とする請求項6に記載の膨脹・爆発を防止可能な省エネ型放熱装置。
A column is welded to the inner surface of the upper plate, the other end of the column welded to the upper plate is brought into contact with the inner surface of the lower plate, and an electroplating layer of copper powder is formed on the surface of the column welded to the upper plate. Attached,
A column is welded to the inner surface of the lower plate, the other end of the column welded to the lower plate is brought into contact with the inner surface of the upper plate, and an electroplated layer of copper powder is formed on the surface of the column welded to the lower plate. The energy-saving heat dissipating device capable of preventing expansion / explosion according to claim 6, which is attached.
上板に設置されたコラムはアレイとして配列され、下板に設置されたコラムはアレイとして配列されることを特徴とする請求項7に記載の膨脹・爆発を防止可能な省エネ型放熱装置。   8. The energy-saving heat dissipating device capable of preventing expansion / explosion according to claim 7, wherein the columns installed on the upper plate are arranged as an array, and the columns installed on the lower plate are arranged as an array. 上板に設置されたコラムは直線アレイとして配列され、下板に設置されたコラムは直線アレイとして配列されることを特徴とする請求項8に記載の膨脹・爆発を防止可能な省エネ型放熱装置。   9. The energy-saving heat dissipation device capable of preventing expansion / explosion according to claim 8, wherein the columns installed on the upper plate are arranged as a linear array, and the columns installed on the lower plate are arranged as a linear array. .
JP2017005760U 2017-07-21 2017-12-21 Energy-saving heat dissipation device that can prevent expansion and explosion Active JP3215228U (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201720888046.0U CN207040120U (en) 2017-07-21 2017-07-21 A kind of swollen quick-fried heat abstractor of energy-saving prevention
CN201720888046.0 2017-07-21

Publications (1)

Publication Number Publication Date
JP3215228U true JP3215228U (en) 2018-03-08

Family

ID=61464680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017005760U Active JP3215228U (en) 2017-07-21 2017-12-21 Energy-saving heat dissipation device that can prevent expansion and explosion

Country Status (2)

Country Link
JP (1) JP3215228U (en)
CN (1) CN207040120U (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107557825B (en) * 2017-07-21 2019-11-05 林进东 The copper powder coat of metal, metal substrate, energy-saving prevention are swollen quick-fried radiator and its preparation process
CN109121368B (en) * 2018-09-21 2020-04-17 贵州永红换热冷却技术有限公司 Thin-wall liquid cooling plate
TWI687644B (en) * 2018-10-12 2020-03-11 宏達國際電子股份有限公司 Heat transferring module and manufacturing method thereof

Also Published As

Publication number Publication date
CN207040120U (en) 2018-02-23

Similar Documents

Publication Publication Date Title
JP6550450B2 (en) Metal plating layer of copper powder, metal substrate, energy saving heat dissipation device capable of preventing expansion and explosion, and manufacturing process thereof
KR102077896B1 (en) Copper powder metal plating layer, metal substrate, energy-saving anti-burst heat dissipation device and preparation process thereof
JP3215228U (en) Energy-saving heat dissipation device that can prevent expansion and explosion
CN108520855B (en) Method for improving reliability of ceramic copper-clad plate by using nano silver paste
JP2013519213A (en) Soft package lithium battery tab material and electroplating method and application thereof
CN103556193B (en) The red copper micro heat pipe that red copper surface surpasses hydrophilic-structure preparation method and manufactures by the method
CN103668368B (en) The preparation technology of molybdenum/palladium/silver laminar metal matrix composite
CN109336646A (en) A kind of manufacturing method for covering copper aluminum nitride ceramic substrate
US20220367317A1 (en) Thermal interface material layer and use thereof
JP2013102228A (en) Manufacturing method of heat radiation device
CN101717919B (en) Manufacture method of target assembly
CN109385628A (en) A kind of aluminum alloy nickel plated technique of high-efficiency environment friendly
CN106449890B (en) A kind of preparation method of photovoltaic welding
CN111455384A (en) Copper-clad plate with heat dissipation function and manufacturing method thereof
KR101713016B1 (en) Manufacturing method of sheet with exothermic and amorphous characteristics by plating
CN110944493B (en) Metal-based composite material device based on gas-liquid phase change and preparation method thereof
JPH11154776A (en) Board
CN105252099A (en) Method for welding diamond vacuum window by utilizing microwave plasma
JP2017057486A (en) Production of substrate for plated power module
CN219246721U (en) Composite current collector, battery electrode, battery and electric equipment
WO2018121216A1 (en) Heat-dissipating substrate, preparation method and application thereof, and electronic component
CN201016609Y (en) Aluminium made radiating fin
CN100349265C (en) Method of in-situ depositing high dielectric constant ferric oxide and metal film on indium phosphide material
CN112226800A (en) Preparation method of laminated ceramic coating on surface of aluminum alloy
TW200539205A (en) Electrode sheet for capacitors, method for manufacturing the same, and electrolytic capacitor

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Ref document number: 3215228

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250