TW200539205A - Electrode sheet for capacitors, method for manufacturing the same, and electrolytic capacitor - Google Patents

Electrode sheet for capacitors, method for manufacturing the same, and electrolytic capacitor Download PDF

Info

Publication number
TW200539205A
TW200539205A TW94109139A TW94109139A TW200539205A TW 200539205 A TW200539205 A TW 200539205A TW 94109139 A TW94109139 A TW 94109139A TW 94109139 A TW94109139 A TW 94109139A TW 200539205 A TW200539205 A TW 200539205A
Authority
TW
Taiwan
Prior art keywords
powder
manufacturing
electrode sheet
item
intermetallic compound
Prior art date
Application number
TW94109139A
Other languages
Chinese (zh)
Inventor
Hiroyuki Kawabata
Atsushi Otaki
Tomoaki Yamanoi
Original Assignee
Showa Denko Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko Kk filed Critical Showa Denko Kk
Publication of TW200539205A publication Critical patent/TW200539205A/en

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

A method for manufacturing an electrode sheet for capacitors includes the step of thermally spraying mixed powder 6 in which intermetallic compound powder of Al and valve action metal other than A1, such as Ti, Zr, Nb, Ta and Hf, and A1 powder are mixed, onto a surface of an aluminum foil 2, or supplying intermetallic compound powder 7 of A1 and valve action metal other than A1, such as Ti, Zr, Nb, Ta and Hf, and A1 powder 8 from different positions and thermally spraying the intermetallic compound powder and the A1 powder onto a surface of an aluminum foil 2, to thereby form an A1-valve action metal alloy layer on at least one surface of the aluminum foil 2.

Description

200539205 (1) 九、發明說明 本申請爲伴隨2004年3月24日所申請之日本專利申請 特願20 04-86467號及2004年3月29日所申請之美國假申請 6 0/5 5 6892號之優先權主張,其揭示內容爲就其原樣構成 本案的一部分。 【發明所屬之技術領域】 φ 本發明係關於於可取得大靜電容量並且耐折彎性優良 的電容器用電極片及其製造方法及電解電容器。 另外,於本說明書中,「鋁」之用語爲使用於包含鋁 及其合金的意義。又,於本說明書中,「A1」之記述爲意 指鋁(金屬單體)。 【先前技術】 近年來,隨著電氣機器的數位化,要求電解電容器爲 # 小型且大容量。尤其,個人電腦和行動電話等之通信機器 ,隨著所搭載之CPU的演算速度增大,強烈要求令電容器 的靜電容量更加增大。 可確保大靜電容量之電容器用電極箔,已知爲將Ti、 ' Zr等之閥作用金屬(閥門金屬)與A1所構成的合金箔經由 &gt; β 急冷凝固法而製作,將此合金箔予以蝕刻處理後,再施以 陽極氧化處理令表面形成氧化皮膜者(參照專利文獻1 ) 。此類由閥作用金屬與Α1所構成之合金箔的氧化皮膜的介 電率爲非常大,故可確保大的靜電容量。 -5- 200539205 (2) 但是,經由此類急冷凝固法所得的鋁合金箔並無法取 得充分的強度,特別爲彎曲強度低且耐折彎性惡化。近年 來,電解電容器由於小型化之要求,因此最多使用將電極 箔迴捲構成者,但上述先前的鋁合金箔(根據急冷凝固法 所得法),若回捲則發生折損,故到底無法供於實用。 此類狀況中,提案將含有閥作用金屬Zr、Ti等之鋁合 金(例如A1 - Zr合金、Al— Ti合金等)之粉末、或A1粉末 • 與閥作用金屬之粉末(例如Zr粉末、Ti粉末)混合粉對鋁 箔表面予以電漿熔射後,於惰性環境氣體中燒結或軋製, 於鋁箔表面形成多孔質被覆層的電極箔,使用作爲電解電 容器用電極材料(參照專利文獻2)。此電極箔爲取得大 的靜電容量,並且具有高折彎強度且耐折彎性優良,故於 迴捲型的電解電容器中亦可適用。 專利文獻1 :特開昭60-668 06號公報 專利文獻2 :特開平2-91 91 8號公報(申請專利範圍、 # 第4頁左下欄、右下欄) 但是,上述專利文獻2所記載之製造方法中,使用A1 -閥作用金屬之合金粉末作爲熔射原料之情況,於製作該 合金粉末時首先爲了調整成分乃必須於鑄造後再進行噴霧 ‘ 將其粉末化,即必須將高熔點之A1 -閥作用用金屬的合金 &gt; ^ 予以二度熔融,因此製造費用增大,並且具有生產性亦降 低的問題。另外,因爲難以將A1 -閥作用金屬之合金粉碎 成粉末狀,故A1 -閥作用金屬之合金粉末於工業上僅可依 前述之噴霧法予以製造。 -6 - 200539205 (3) 又,上述專利文獻2所記載之製造方法中,使用A1粉 末與閥作用金屬之粉末的混合粉作爲熔射原料時,後者之 閥作用金屬粉末於工業上僅可依噴霧法製造,但因爲閥作 用金屬之熔點高,故以此噴霧法並無法輕易製造閥作用金 屬的粉末,如此具有費用增大且生產性亦降低的問題。更 且,將A1粉末與閥作用金屬之粉末的混合粉予以熔射之情 形中亦具有複相化(多相化)之問題。 φ 本發明爲鑑於此類技術背景而完成,以提供具有大的 靜電容量且耐折彎性優良之電容器用電極片及可在良好生 產效率且低費用下製造此類電極片的製造方法以及小型且 大容量之電解電容器爲其目的。 本發明之其他目的可根據以下所示之本發明的實施形 態而闡明。 【發明內容】 • 爲了達成前述目的,本發明爲提供以下之手段。 〔1〕一種電容器用電極片之製造方法,其特徵爲經 由A1以外之閥作用金屬與A1之金屬間化合物粉末及A1粉末 混合的混合粉對鋁箔的表面熔射,則可於該鋁箔之至少單 面,層合A1-A1以外之閥作用金屬的合金層。 • · 〔2〕一種電容器用電極片之製造方法,其特徵爲經 由A1以外之閥作用金屬與A1之金屬間化合物粉末及A1粉末 分別由相異位置供給並且將此兩粉末對鋁箔的表面熔射, 則可於該鋁箔之至少單面,層合A1 - A1以外之閥作用金屬 200539205 (4) 的合金層。 〔3〕如前項1或2之電極片用電極片之製造方法,其 中該熔射爲以電漿熔射進行。 〔4〕一種電容器用電極片之製造方法,其特徵爲經 由A1以外之閥作用金屬與A1之金屬間化合物粉末及A1粉末 分別由相異位置投入單一之電漿流並將該電漿流對鋁箔表 面進行電漿熔射,則可於該鋁箔之至少單面,層合Al- A1 • 以外之閥作用金屬的合金層。 〔5〕如前項1〜4中任一項之電容器用電極片之製造 方法,其爲在層合該Al - A1以外之閥作用金屬的合金層後 ,進行軋製。 〔6〕如前項1〜5中任一項之電容器用電極片之製造 方法,其爲在層合該A1-A1以外之閥作用金屬的合金層進 ,進行退火。 〔7〕如前項1〜6中任一項之電容器用電極片之製造 # 方法,其中該金屬間化合物粉末之平均粒徑爲3〜1 00 // m ,該A1粉末之平均粒徑爲3〜150// m。 〔8〕如前項1〜7中任一項之電容器用電極片之製造 方法,其中該金屬間化合物粉末與該A1粉末之熔射質量比 ,設定於金屬間化合物粉末/ A1粉末=0.1〜5之範圍。 〔9〕如前項1〜8中任一項之電容器用電極片之製造 方法,其中該金屬間化合物粉末爲使用選自Ti、Zr、Nb、 Ta及Hf所成群之一種或二種以上之閥作用金屬、與A1之金 屬間化合物的粉末。 -8- 200539205 (5) 〔1〇〕如前項1〜8中任一項之電容器用電極片之製造 方法,其中該金屬間化合物粉末爲使用Al 3 Zr粉末。 〔11〕如前項1〜1〇中任一項之電容器用電極片之製 造方法,其中該鋁箔爲使用A1箔、或選自Ti、Zr、Nb、Ta 及Hf所成群之一種或二種以上之閥作用金屬、與A1所構成 的合金箔。 〔12〕一種電容器用電極片,其特徵爲根據如前項1 • 〜11中任一項之製造方法所得的電容器用電極片,該ΑΙΑ 1以外之 閥作用 金屬之 合金層 的微細 組織爲 以金屬 間化合 物相及Α1之單體相所構成,且於該金屬間化合物相之樹枝 晶(樹枝狀結晶)中鄰近的二級枝的間隔爲5 ν m以下。 〔13〕一種電容器用電極片,其特徵爲於鋁箔所構成 之芯材的至少單面上被鋁合金所構成被覆層所層合一體化 的薄片中, 該被覆層之微細組織爲以A1以外之閥作用金屬與A1之 • 金屬間化合物之相及A1之單體相所構成。 〔14〕如前項13之電容器用電極片,其中該金屬間化 合物相之樹枝晶(樹枝狀結晶)中鄰近二級枝的間隔爲5 // m以下。 〔15〕如前項13或14之電容器用電極片,其中該芯材 '· 之厚度爲5〜200//m,該被覆層之厚度5〜15〇em 〔16〕一種電解電容器用陽極材料之製造方法,其特 徵爲將根據如前項1〜1 1中任一項之製造方法所得之電極 片予以蝕刻後,再進行化成處理令表面形成介電體皮膜。 -9 - 200539205 (6) 〔l 7〕一種電解電容器用陽極材料,其爲根據如前項 16之製造方法所製造。 〔1 8〕一種電解電容器,其特徵爲使用如前項1 7項之 陽極材料所構成。 〔19〕一種電解電容器用陽極材料之製造方法,其特 徵爲使用如前項1 2之電極片予以蝕刻後,再進行化成處理 令表面形成介電體皮膜。 φ 〔20〕一種電解電容器用陽極材料,其特徵爲使用根 據如前項1 9之製造方法所製造。 〔21〕一種電解電容器,其特徵爲使用如前項20之陽 極材料所構成。 〔22〕一種電解電容器用陽極材料之製造方法,其特 徵爲將如前項1 3〜1 5中任一項之電極片予以蝕刻後,再進 行化成處理令表面形成介電體膜。 〔23〕一種電解電容器用陽極材料,其特徵爲根據如 φ 22之製造方法所製造。 〔24〕一種電解電容器,其特徵爲使用如前項23之陽 極材料所構成。 〔1〕及〔2〕之發明中,於熔射時因金屬間化合物與 ' A1爲複合且合金化,故可製造於鋁箔表面,層合A1與A1以 _ · 外之閥作用金屬之合金(本說明書中有時記述爲「A1-閥 作用金屬之合金」)層的電極片。前述A1 -閥作用用金屬 之合金之氧化皮膜的介電率爲非常大,故可確保大的靜電 容量。又,經由熔射形成A1 -閥作用金屬之合金層,故所 -10- 200539205 (7) 得之電極片的耐折彎性亦優良。更且,本製造方法中,使 用A1以外之閥作用金屬與A1之金屬間化合物的粉末及A1粉 末作爲熔射原料,金屬間化合物之粉末可經由粉碎法而輕 易粉末化而取得,且A1粉末爲熔點低且可廉價取得,故可 以良好生產效率且低費用下製造電容器用電極片。 更且〔2〕之發明中,因爲可省略預先將金屬間化合 物之粉末與A1粉末混合取得混合粉的步驟,故具有可更加 # 提高生產效率的優點。 〔3〕之發明中,因爲使用電漿熔射法進行熔射,故 冷卻速度特別快且A1 - A1以外之閥作用金屬之合金層中的 組織更加微細化,如此可更加提高電極片的耐折彎性。 〔4〕之發明中,於熔射時因爲金屬間化合物與A1爲 合金化,故可製造於鋁箔表面層合Al - A1以外之閥作用金 屬之合金層的電極片。前述A1- A1以外之閥作用金屬之合 金之氧化皮膜的介電率爲非常大,故可確保大的靜電容量 # 。又,經由熔射形成Al - A1以外之閥作用金屬之合金層, 故冷卻速度特別快且合金層(熔射層)中的組織可充分微 細化,因此電極片爲耐折彎性非常優良。更且,本製造方 法中,使用A1以外之閥作用金屬與A1之金屬間化合物之粉 * 末及Al粉末作爲熔射原料,金屬間化合物之粉末可經由粉 ‘ ' 碎法而輕易粉末取得,且A1粉末爲熔點低且可廉價取得, 故可以良好生產效率且低費用下製造電容器用電極片。加 上,不需要預先將金屬間化合物之粉末與A1粉末混合取得 混合粉之步驟,故可更加提高其生產效率。 •11 - 200539205 (8) 〔5〕之發明中,因爲將A1 — A1以外之閥作用金屬之 合金層層合後軋製,故使得該合金層的表面凹凸軋平且電 極片的表面平坦性提高並且可圖謀電極片厚度的均勻化。 〔6〕之發明中,因爲將A1 — A1以外之閥作用金屬之 合金層層合後退火,故電極片的耐折彎性更加提高,且軋 製時亦具有可減低乳製所需荷重的優點。 〔7〕之發明中,粉末之熔射可以安定狀態進行,且 φ 可有效防止A1- A1以外之閥作用金屬之合金層中發生空隙 〇 〔8〕之發明中,可更加提高所得電極片的靜電容量 。金屬間化合物粉末之熔射量若超過前述熔射質量比之適 當範圍的上限,則Al- A1以外之閥作用金屬之合金層(熔 射層)中金屬間化合物相的存在比率變得過大,經由蝕刻 處理所形成之蝕刻孔的大小變小且電解質無法進行所有的 蝕刻層故爲不佳,且A1粉末之熔射量若超過前述熔射質量 # 比之適當範圍的上限,則A1 - A1以外之閥作用金屬之合金 層(熔射層)中金屬層化合物相之存在比率變得過小且無 法取得充分的靜電容量故爲不佳。 〔9〕之發明中,可製造具備更大靜電容量的電極片 〇 + ' 〔10〕之發明中,可製造具備再更大靜電容量的電極 片。 〔1 1〕之發明中,由於使用A1箔或前述特定之鋁合金 所構成的箔作爲芯材的鋁箔,故具有化成處理時之皮膜缺 -12- 200539205 (9) 陷少且可減少漏洩電流的優點。 〔12〕之發明的電容器用電極片,由於生產效率良好 故可減低製造費用,並且可確保充分的靜電容量,且耐折 彎性亦優良。又,金屬間化合物相之樹枝晶中鄰近之二級 枝的間隔爲5 v m以下,故可確保更大的靜電容量。 〔13〕之發明的電容器用電極片中,因爲前述A1以外 之閥作用金屬與A1所構成之鋁合金之氧化皮膜的介電率爲 φ 非常大,故可確保大的靜電容量。又,被覆層之微細組織 爲由A1以外之閥作用金屬與A1之金屬間化合物之相及A1之 單體相所構成,故耐折彎性優良。 〔14〕之發明的電容器用電極片中,因爲金屬間化合 物相之樹枝晶中鄰近之二級枝的間隔規定爲5 // m,故可 確保更大的靜電容量。 〔15〕之發明中,由於芯材之厚度及被覆層之厚度分 別規定於前述特定範圍,故可確保輕量性,加上可確保充 φ 分的片強度及大的靜電容量。 〔1 6〕之發明中,由於經由蝕刻增大被覆層的表面積 ,並且經由化成處理形成介電率大的介電體皮膜,故可提 供容量更加提高的電解電容器。 ' 〔1 7〕之發明的陽極材料由於可確保大的靜電容量並 &gt; ~ 且耐折彎性優良,故若使用此陽極材料,例如可充分提供 小型且大容量之迴捲型電解電容器。 〔1 8〕之發明中,由於使用前項〔1 7〕之陽極材料所 構成,故可提供小型且大容量的電解電容器。又,前項[ -13- 200539205 (10) 1 7〕之陽極材料爲耐折彎性優良,故例如亦可提供小型且 大容量之迴捲型的電解電容器。 〔1 9〕之發明中,由於經由蝕刻增大被覆層的表面積 ,並且經由化成處理形成介電率大的介電體皮膜,故可提 供容量更加提高的電解電容器。 〔20〕之發明的陽極材料由於可確保大的靜電容量並 且耐折彎性優良,故若使用此陽極材料,例如可充分提供 φ 小型且大容量之迴捲型電解電容器。 〔21〕之發明中,由於使用前項〔20〕之陽極材料所 構成,故可提供小型且大容量的電解電容器。又,前項〔 2 0〕之陽極材料爲耐折彎性優良,故例如亦可提供小型且 大容量之迴捲型的電解電容器。 〔22〕之發明中,由於經由蝕刻增大被覆層的表面積 ,並且經由化成處理形成介電率大的介電體皮膜,故可提 供容量更加提高的電解電容器。 φ 〔23〕之發明中的陽極材料由於可確保大的靜電容量 並且耐折彎性優良,故若使用此陽極材料,例如可充分提 供小型且大容量之迴捲型電解電容器。 〔24〕之發明中,由於使用前項〔23〕之陽極材料所 _ 構成,故可提供小型且大容量的電解電容器。又,前項[ “ · 23〕之陽極材料爲耐折彎性優良,故例如亦可提供小型且 大容量之迴捲型的電解電容器。 【實施方式】 -14- 200539205 (11) 本發明之電容器用電極片之製造方法爲經由將A1以外 之閥作用金屬與A1之金屬間化合物的粉末(7 )及A1粉末 (8 )對鋁箔(2 )表面熔射,於鋁箔(2 )之至少單面, 層合Al — A1以外之閥作用金屬之合金層(11)爲其特徵。 前述A1以外之閥作用金屬(A1除外之閥作用金屬)較佳爲 使用選自Ti、Zr、Nb、Ta及Hf所成群之至少一種。 若根據此製造方法,因爲熔射時金屬間化合物與A1合 # 金化,故可製造於鋁箔(2)之表面層合A1-閥作用金屬 之合金層(11)的電極片(10)。例如,若於前述鋁箔( 2 )之兩面熔射,則如圖2所示般,取得於鋁箔所構成之芯 材(2)兩面層合A1-閥作用金屬之合金層(11) (11) 的電極片(10)。前述A1-閥作用金屬之合金之氧化皮膜 的介電率爲非常大,故可確保作爲電極片(10)的大靜電 容量。又,因爲經由熔射形成A1 -閥作用金屬之合金層, 故所得之電極片(10)的耐折彎性亦爲優良。更且,本製 # 造方法中,使用閥作用金屬與A1之金屬間化合物的粉末( 7 )及A1粉末(8 )作爲熔射原料,因爲金屬間化合物之粉 末(7 )可經由粉碎法輕易粉末而取得,且A1粉末(8 )爲 熔點低且可廉價取得,故可以良好生產效率且低費用下製 ’ 造電容器用電極片(10)。 熔射時’例如圖1A所不般,將閥作用金屬與A1之金 屬間化合物之粉末(7 )及A1粉末(8 )分別由不同位置供 給並將此兩粉末熔射至鋁箔(2)之表面亦可,或如圖1B 、C所示般’將閥作用金屬與A1之金屬間化合物的粉末及 -15- 200539205 (12) A1粉末混合的混合粉(6 )熔射至鋁箔(2 )之表面亦可。 即,圖1A中’由管嘴(3)放出電漿流(4),另一 方面將來自管嘴(3 )兩側配置之一對原料供給管中之一 管(5)的閥作用金屬與A1之金屬間化合物的粉末(7)、 來自另一管(5 )的A1粉末(8 )分別投入前述電漿流(4 )且將該電漿流(4 )熔射至鋁箔(2 )的表面。 又,圖1B中,由管嘴(3)放出電漿流(4),另一方 • 面將來自管嘴(3 )側面配置之原料供給管(5 )的閥作用 金屬與A1之金屬間化合物之粉末及A1粉末混合的混合粉( 6 )投入前述電漿流(4 )並且將該電漿流(4 )熔射至鋁 箔(2)的表面。 又,圖1C中,由一對管嘴(3) (3)分別放出電漿流 (4) (4)且彼等爲合流形成電漿流,另一方面,將來自 前述一對管嘴(3 )( 3 )之間所配置之原料供給管(5 ) 的閥作用金屬與A1之金屬間化合物的粉末及A1粉末混合的 # 混合粉(6)投入前述電漿流(4)並且將該電漿流(4) 熔射至錫范(2)的表面。 前述熔射之手法可採用公知的熔射手法,並無法特別 限定,可例示例如電漿熔射、冷噴霧等。其中,以電漿熔 ‘ 射進行熔射爲佳,於此情形中冷卻速度爲特別變快且前述 - A1 —閥作用金屬之合金層(Π )中的組織可充分微細化, 且如此可更加提高電極片(1 〇 )的耐折彎性。 前述電漿熔射,若於電極間流過氬、氨等氣體並放電 ,則電離並且發生高音高速的電漿,此電漿爲使用作爲熔 -16- 200539205 (13) 射熱源的熔射法,對前述高音高速之電漿流(電漿噴射) 投入熔射材料的粉末且加熱加速衝撞基材進行熔射。 前述冷噴霧爲將比熔射材料之熔點或軟化溫度更低溫 度中加熱之高壓氣體作成超音速流,並於此超音速流中投 入熔射材料之粉末且加速,於固相狀態原樣衝撞至基材進 行熔射。 另外,經由適當設定各種熔射條件(例如,熔射溫度 # 、氣體流量等),則亦可以多孔質形成前述A1 -閥作用金 屬的合金層(1 1 ),且亦可以非多孔質形成。 本發明之製造方法中,將前述A1—閥作用金屬之合金 層(Π)層合至鋁箔(2)之步驟後,設置退火步驟亦可 。經由施以此類的退火處理,則可更加提高電極片耐折彎 性,且於壓拉時亦具有可減低壓拉所需的荷重。 又,本發明之製造方法中,將前述A1 —閥作用金屬之 合金層(11)層合至鋁箔(2)之步驟後,設置壓拉步驟 • 亦可。經由施以此類的壓拉處理,則可將前述A1 -閥作用 金屬之合金層(11)的表面凹凸軋平且提高其表面平坦化 ,並且可圖謀電極片(10)之厚度的均勻化(視情況可無 厚度偏差)。 更且,於前述層合步驟與前述壓拉步驟之間亦可設置 ’ 退火步驟,且於前述軋製步驟後亦可設置退火步驟,或於 前述層合步驟後於前述軋製步驟前後兩者設置退火步驟亦 可。 前述熔射所用之金屬間化合物粉末(7 )的平均粒徑 -17- 200539205 (14) 爲3〜100 // m爲佳。未滿3 // m,則易堵塞原料供給管(5 )等之供給管嘴故爲不佳,另一方面若超過1 〇〇 β m,則 易於熔射層,即A1 -閥作用金屬之合金層(1 1 )產生空隙 故爲不佳。其中,金屬間化合物粉末(7 )之平均粒徑爲5 〜50// m爲更佳。 前述熔射所用之A1粉末(8)的平均粒徑爲3〜150 // m爲佳。未滿3 // m ’則易堵塞原料供給管(5 )等之供 @ 給管嘴故爲不佳,另一方面若超過150#m,則易於熔射 層,即A1 -閥作用金屬之合金層(11)產生空隙故爲不佳 。其中,A1粉末(8)之平均粒徑爲5〜70//m爲更佳。 前述金屬間化合物粉末(7 )與前述A1粉末(8 )的熔 射質量比,設定在金屬間化合物粉末/ A1粉末=0.1〜5之 範圍爲佳。未滿〇· 1則熔射合金層(1 1 )中之金屬間化合 物的份量變成過少,於蝕刻處理時金屬間化合物脫落且無 法取得良好的靜電容量,故爲不佳。另一方面,若超過5 # 則熔射合金層(1 1 )中之金屬間化合物的份量變成過多且 蝕刻處理所形成的蝕刻孔大小變小,電解質無法全部進入 蝕刻層,無法取得良好的靜電容量故爲不佳。其中,金屬 間化合物粉末(7 )與A1粉末(8 )的熔射質量比爲設定在 * 金屬間化合物粉末/ A1粉末=0.5〜2之範圍爲特佳。 ’ 於本發明之製造方法中,.前述金屬間化合物粉末(7 )爲使用選自Ti、Zr、Nb、Ta及Hf所成群之一種或二種以 上的閥作用金屬、與A1的金屬間化合物之粉末爲佳。於採 用此類構造的情形中,可製造具備更大靜電容量的電極片 -18- 200539205 (15) (10 )。其中,使用Al3zr粉末作爲前述金屬間化合物粉 末(7 )爲特佳。 又,前述鋁箔(2)可使用A1鋁、或使用選自Ti、Zr 、Nb、Ta及Hf所成群中之一種或二種以上的閥作用金屬 、與A1所構成的合金箔爲佳。於此情形中,將所得之電極 片化成處理時之皮膜缺陷少且可減少漏洩電流。 本發明之製造方法所製造的電容器用電極片(10)中 φ A1—閥作用金屬之合金層(1 1 )的微細組織爲由A1以外之 閥作用金屬與A1之金屬間化合物相(22 )及A1之單體相( 2 1 )所構成,前述金屬間化合物相(22 )之樹枝晶(樹枝 狀結晶)中鄰接之二級枝的間隔(S )爲5 // m下爲佳(參 照圖5 )。於前述A1以外之閥作用金屬,可使用例如選自 Ti、Zr、Nb、Ta及Hf所成群之一種或二種以上的閥作用金 屬。如此令金屬間化合物相之樹枝晶中鄰接之二級枝的間 隔(S )爲5 a m以下之情形,蝕刻處理後金屬間化合物相 • 的露出表面積大,藉此可確保充分的靜電容量。另外,若 提高熔射溫度且令凝固速度急冷,則可縮小前述二級枝的 間隔(S )。 本發明之製造方法所製造之電容器用電極片(10)的 一實施形態中A1 -閥作用金屬之合金層(1 1 )剖面的掃描 • 電子顯微鏡(SEM )照片示於圖3。於圖3中,白色區域爲 金屬間化合物相,黑色區域爲A1單體相。圖4爲示出將圖3 視野之一部分更加放大的SEM照片,同樣地白色區域爲金 屬間化合物相,黑色區域爲A丨單體相。圖4之中央部,確 -19- 200539205 (16) 認形成金屬間化合物相的樹枝晶(樹枝狀結晶)。 另外,前述所謂的「樹枝晶中鄰接二級枝的間隔」爲 如圖5所示般,爲樹枝晶中鄰接之二級枝(二級臂)間的 中心間距離(S ),即鄰接二級枝中一者之二級枝中心軸 至另一者二枝之中心軸爲止的距離(S ),亦稱爲「樹枝 晶臂空間」(dendrite spacing)。 本發明之電容器用電極片(10)爲於鋁箔所構成之芯 # 材(2)的至少單面,將鋁合金所構成之被覆層(11)層 合一體化的薄片所構成,前述被覆層(1 1 )的微細組織其 特徵爲由A1以外之閥作用金屬與A1之金屬間化合物之相及 A1之單體相所構成。另外,前述被覆層(11)可爲多孔質 構造、非多孔質構造的任一種形態。 於本發明之電容器用電極片(10)中,前述金屬間化 合物相(22)之樹枝晶(樹枝狀結晶)中鄰接之二級枝的 間隔(S )爲5 ν m以下爲佳。若超過5 // m,則蝕刻處理後 • 金屬間化合物相的露出表面積變小且無法取得充分的靜電 容量故爲不佳。其中,前述鄰近之二級枝的間隔(S)爲 0.5 // m以下爲特佳。 本發明之電極片(1〇)中,鋁箔所構成之芯材(2) 的厚度以5〜200//m爲佳。未滿5//m則作爲電極片(10) ^ 的剛性不夠充分,將電極片(1 〇 )折彎切斷之情況中易發 生裂痕,故爲不佳。另一方面若超過200 //m,則將電極 片迴捲收藏於迴捲型盒之情形中,迴捲時的曲率半徑R變 大且難於收藏於迴捲型盒中,故爲不佳。其中,前述鋁箔 -20- 200539205 (17) 所構成之芯材(2 )的厚度爲20〜100// m爲特佳。 又,前述被覆層(11)之厚度爲5〜150/zm爲佳。未 滿5 μ m則蝕刻處理時芯材(2 )露出且無法取得充分的靜 電容量,故爲不佳。另一方面若超過150// m,則電解質 無法進入全部的蝕刻層且無法取得充分的靜電容量,故爲 不佳。其中,前述被覆層(11)之厚度以20〜100//m爲 更佳。 • 將本發明之電極片(10)或根據本發明之製造方法所 製造的電極片(10)蝕刻後,再進行化成處理於此電極片 (1 )表面電化學性形成介電體皮膜(6 ),則可製造適合 使用作爲電解電容器用陽極材料的薄片。 前述蝕刻處理可例示例如於鹽酸水溶液或硫酸銨溶液 中通電以直流電流進行蝕刻的方法等,但並非限定於此。 又,前述化成處理並無特別限定,可列舉例如硼酸浴 、磷酸浴或己二酸浴中的化成處理等,但並非限定於此。 # 本發明之電解電容器爲使用上述陽極材料所構成。因 爲使用以本發明之電容器用電極片(10)作爲構成素材的 陽極材料,故可作成小型且大容量的電解電容器。 其次,說明本發明的具體實施例。 \ &lt;實施例1 &gt; 如圖1B所示般,由管嘴(3)放出電漿流(4),另一 方面由配置於管嘴(3 )側之原料供給管(5 )將平均粒徑 3/zm之AI3Z1·粉末(金屬間化合物粉末)及平均粒徑3//m -21 - 200539205 (18) 之A1粉末混合的混合粉(6 )投入電漿流(4 )且將該電漿 流(4 )熔射至厚度40 μ m之A1箔所構成之芯材(2 )的兩 面,則可取得圖2所示的電極片(1 〇 )。另外,前述混合 粉(6 )中之粉末的混合比(熔射質量比)爲設定爲Al3Zr 粉末/ A1粉末=1.0。所形成之熔射被覆層(11)的厚度 爲60//m,因此取得厚度160/zm的電極片(10)。 所得電極片之熔射被覆層(1 1 )中之金屬間化合物相 • 之樹枝晶中鄰接之二級枝的間隔(樹枝晶臂空間)爲平均 1 // m 〇 其次,將前述電極片於3% (質量%) Η3Ρ04水溶液中 浸漬且以90°C煮沸120分鐘脫脂後,以流水水洗,再於丙 酮溶劑中進行超音波洗淨,於50°C下乾燥5分鐘。 其次,進行蝕刻處理。蝕刻液爲使用HC1 ( 1莫耳/升 )+ H2S04 ( 3.5莫耳/升)水溶液,並以溫度75t:、電流 密度DC 0.5 A/ cm2 (單面)之條件進行蝕刻處理。 # 更且,於磷酸銨水溶液(濃度1·5克/升、85 t )中 以電流密度5 mA/cm2下進行20Vxl0分鐘的定電壓化成 處理。 其次,於空氣中以5 00 °C進行5分鐘加熱處理(退火) 後,與前述化成處理相同條件(但電壓化成處理時間5分 &quot; 鐘)下再度進行化成處理,取得電極片。 〈實施例2〜2 5、比較例1〜1 6 &gt; 使用表1、2所示之平均粒徑者作爲Al3Zr粉末,且使 -22- 200539205 (19) 用表1、2所示之平均粒徑者作爲ΑΓ粉末以外’同實施例 處理取得電極片。200539205 (1) IX. Description of the invention This application is accompanied by Japanese Patent Application No. 20 04-86467 filed on March 24, 2004 and U.S. leave application filed on March 29, 2004 6 0/5 5 6892 No.'s priority claim, its disclosure content forms part of the case as it is. [Technical field to which the invention belongs] φ The present invention relates to an electrode sheet for a capacitor, which can obtain a large electrostatic capacity and is excellent in bending resistance, a method for manufacturing the same, and an electrolytic capacitor. In this specification, the term "aluminum" is used to include aluminum and its alloys. In addition, in this specification, the description of "A1" means aluminum (metal monomer). [Prior Art] In recent years, with the digitization of electrical equipment, electrolytic capacitors have been required to be small and large-capacity. In particular, communication devices such as personal computers and mobile phones have been required to increase the electrostatic capacity of capacitors as the calculation speed of the mounted CPU increases. An electrode foil for a capacitor capable of securing a large capacitance is known to be made of an alloy foil composed of a valve-acting metal (valve metal) such as Ti, Zr, and A1 through a &gt; β rapid condensation method, and this alloy foil is made of After the etching treatment, an anodization treatment is performed to form an oxide film on the surface (see Patent Document 1). The oxide film of such an alloy foil composed of a valve-acting metal and A1 has a very high dielectric constant, and thus a large electrostatic capacity can be secured. -5- 200539205 (2) However, the aluminum alloy foil obtained by such a rapid condensation method cannot obtain sufficient strength, and particularly has low bending strength and deteriorated bending resistance. In recent years, due to the requirements of miniaturization, the electrode foil is most commonly used. However, the previous aluminum alloy foil (according to the rapid condensation method) will be damaged if it is rolled back, so it cannot be used for practical. In such cases, it is proposed that powders of aluminum alloys (such as A1-Zr alloys, Al-Ti alloys) containing valve-acting metals (such as A1-Zr alloys, Al-Ti alloys), or powders of valve-acting metals (such as Zr powder, Ti (Powder) mixed powder After plasma spraying the aluminum foil surface, it is sintered or rolled in an inert atmosphere to form a porous coating layer on the surface of the aluminum foil, which is used as an electrode material for electrolytic capacitors (see Patent Document 2). Since this electrode foil obtains a large electrostatic capacity, and has high bending strength and excellent bending resistance, it can also be applied to a rolled electrolytic capacitor. Patent Document 1: Japanese Patent Application Laid-Open No. 60-668 06 Patent Document 2: Japanese Patent Application Laid-Open No. 2-91 91 8 (Scope of patent application, # page 4 bottom left column, bottom right column) However, the above-mentioned patent document 2 In the manufacturing method, when the alloy powder of A1-valve action metal is used as the raw material for spraying, the alloy powder must first be sprayed after casting in order to adjust the composition when making the alloy powder. Since A1-an alloy of a metal for valve action &gt; ^ is melted twice, the manufacturing cost is increased and the productivity is also reduced. In addition, since it is difficult to pulverize the alloy of the A1-valve-acting metal into a powder form, the alloy powder of the A1-valve-acting metal can be manufactured industrially only by the aforementioned spraying method. -6-200539205 (3) In the manufacturing method described in the above Patent Document 2, when a mixed powder of A1 powder and a powder of a valve action metal is used as a raw material for injection molding, the latter valve action metal powder can only be used industrially. Manufactured by spray method, but because the melting point of valve action metal is high, powder of valve action metal cannot be easily produced by this spray method, which has the problems of increased cost and reduced productivity. Furthermore, there is also a problem of recombination (multiphase) in a case where a mixed powder of A1 powder and a powder of a valve-acting metal is sprayed. φ The present invention has been made in view of such a technical background, and provides a capacitor electrode sheet having a large electrostatic capacity and excellent bending resistance, a manufacturing method capable of manufacturing such an electrode sheet with good production efficiency and low cost, and a small And large-capacity electrolytic capacitors are used for this purpose. Other objects of the present invention can be clarified based on the embodiments of the present invention shown below. [Summary of the Invention] In order to achieve the foregoing object, the present invention provides the following means. [1] A method of manufacturing an electrode sheet for a capacitor, characterized in that the surface of an aluminum foil is spray-sprayed through a mixed powder in which a valve action metal other than A1 and an intermetallic compound powder of A1 and an A1 powder are mixed, so that One-sided, laminated alloy layer of valve action metals other than A1-A1. • [2] A method for manufacturing an electrode sheet for a capacitor, which is characterized in that powders of the intermetallic compound and powders of A1 and A1 are supplied from different positions through valve action metals other than A1, and the two powders are melted on the surface of the aluminum foil. It can be laminated on at least one side of the aluminum foil with an alloy layer of valve action metal 200539205 (4) other than A1-A1. [3] The method for manufacturing an electrode sheet for an electrode sheet as described in the above item 1 or 2, wherein the spraying is performed by plasma spraying. [4] A method for manufacturing an electrode sheet for a capacitor, which is characterized in that a single plasma flow is input from a different position through a valve action metal other than A1 and an intermetallic compound powder and A1 powder of A1, and the plasma flow is opposite to Plasma spraying on the surface of aluminum foil can laminate an alloy layer of valve-acting metals other than Al-A1 on at least one side of the aluminum foil. [5] The method for manufacturing an electrode sheet for a capacitor according to any one of items 1 to 4 above, which comprises laminating an alloy layer of a valve action metal other than Al-A1, and then rolling. [6] The method for manufacturing a capacitor electrode sheet according to any one of the preceding paragraphs 1 to 5, which is performed by laminating an alloy layer of a valve-acting metal other than A1-A1 and annealing it. [7] The method for manufacturing a capacitor electrode sheet according to any one of the preceding paragraphs 1 to 6, wherein the average particle diameter of the intermetallic compound powder is 3 to 1 00 // m, and the average particle diameter of the A1 powder is 3 ~ 150 // m. [8] The method for manufacturing a capacitor electrode sheet according to any one of the preceding paragraphs 1 to 7, wherein the mass ratio of the shot of the intermetallic compound powder to the A1 powder is set to the value of the intermetallic compound powder / A1 powder = 0.1 to 5 Range. [9] The method for manufacturing an electrode sheet for a capacitor according to any one of the foregoing paragraphs 1 to 8, wherein the intermetallic compound powder is one or two or more groups selected from the group consisting of Ti, Zr, Nb, Ta, and Hf. Valve acting metal and powder of intermetallic compound with A1. -8- 200539205 (5) [1〇] The method of manufacturing an electrode sheet for a capacitor according to any one of 1 to 8 above, wherein the intermetallic compound powder is an Al 3 Zr powder. [11] The method for manufacturing a capacitor electrode sheet according to any one of the preceding paragraphs 1 to 10, wherein the aluminum foil is one or two selected from the group consisting of A1 foil or a group selected from Ti, Zr, Nb, Ta, and Hf. The above-mentioned valve action metal and alloy foil composed of A1. [12] An electrode sheet for a capacitor, characterized in that the electrode sheet for a capacitor obtained by the manufacturing method according to any one of 1 to 11 above, wherein the fine structure of the alloy layer of the valve action metal other than ΑΙΑ 1 is made of metal The intermetallic compound phase and the monomer phase of A1 are composed, and the interval between adjacent secondary branches in the dendritic crystal (dendritic crystal) of the intermetallic compound phase is 5 ν m or less. [13] An electrode sheet for a capacitor, which is characterized in that, on at least one side of a core material composed of aluminum foil, a thin layer integrated with a coating layer composed of an aluminum alloy, the fine structure of the coating layer is other than A1 The valve action metal is composed of the phase of intermetallic compound of A1 and the monomer phase of A1. [14] The electrode sheet for a capacitor according to the item 13 above, wherein the interval between adjacent secondary branches in the dendrite (dendritic crystal) of the intermetallic compound phase is 5 // m or less. [15] The electrode sheet for capacitors as described in item 13 or 14 above, wherein the thickness of the core material is 5 to 200 // m, and the thickness of the coating layer is 5 to 150 em. [16] An anode material for electrolytic capacitors The manufacturing method is characterized in that the electrode sheet obtained by the manufacturing method according to any one of the preceding paragraphs 1 to 11 is etched and then subjected to a chemical conversion treatment to form a dielectric film on the surface. -9-200539205 (6) [l 7] An anode material for an electrolytic capacitor, which is manufactured according to the manufacturing method of item 16 above. [18] An electrolytic capacitor characterized by using an anode material as described in the above item 17 above. [19] A method for producing an anode material for an electrolytic capacitor, which is characterized in that an electrode sheet as described in item 12 above is used for etching, and then a chemical conversion treatment is performed to form a dielectric film on the surface. φ [20] An anode material for electrolytic capacitors, characterized in that it is manufactured using a manufacturing method as described in item 19 above. [21] An electrolytic capacitor characterized by using the anode material as described in item 20 above. [22] A method for manufacturing an anode material for an electrolytic capacitor, characterized in that the electrode sheet according to any one of the foregoing paragraphs 1 to 15 is etched and then subjected to a chemical conversion treatment to form a dielectric film on the surface. [23] An anode material for an electrolytic capacitor, characterized by being manufactured according to a manufacturing method such as φ22. [24] An electrolytic capacitor characterized by using the anode material as described in item 23 above. In the inventions of [1] and [2], since the intermetallic compound and 'A1 are compounded and alloyed during the shot, they can be manufactured on the surface of aluminum foil, and the alloys of the valve action metals other than A1 and A1 are laminated. (This description is sometimes referred to as "A1-valve-acting metal alloy"). The dielectric constant of the oxide film of the aforementioned A1-valve metal alloy is very large, so a large electrostatic capacity can be secured. In addition, the alloy layer of A1-valve action metal is formed by spraying, so the electrode sheet obtained by -10- 200539205 (7) is also excellent in bending resistance. In addition, in this manufacturing method, powders of valve action metals other than A1 and intermetallic compounds of A1 and A1 powders are used as raw materials for the shot, and the powders of intermetallic compounds can be easily powdered by pulverization, and A1 powder Since it has a low melting point and can be obtained at low cost, it is possible to produce capacitor electrode pads with good production efficiency and at low cost. Furthermore, in the invention of [2], since the step of mixing the powder of the intermetallic compound and the A1 powder in advance to obtain a mixed powder can be omitted, there is an advantage that the production efficiency can be further improved. In the invention of [3], since the plasma spraying method is used for spraying, the cooling rate is particularly fast and the structure in the alloy layer of the valve-acting metal other than A1-A1 is further refined, which can further improve the resistance of the electrode sheet. Bendability. In the invention of [4], since the intermetallic compound and A1 are alloyed at the time of spraying, it is possible to manufacture an electrode sheet in which an alloy layer of a valve-acting metal other than Al-A1 is laminated on the aluminum foil surface. The dielectric constant of the oxide film of the alloy of the valve-acting metals other than the aforementioned A1-A1 is very large, so a large electrostatic capacity # can be secured. In addition, since an alloy layer of a valve-acting metal other than Al-A1 is formed by spraying, the cooling rate is particularly fast and the microstructure in the alloy layer (spraying layer) can be sufficiently refined, so that the electrode sheet has excellent bending resistance. In addition, in this manufacturing method, powders of valve action metals other than A1 and powders of intermetallic compounds of A1 * and Al powder are used as the raw materials for the shot. The powder of the intermetallic compounds can be easily obtained through the powder method. In addition, since the A1 powder has a low melting point and can be obtained at low cost, it is possible to produce a capacitor electrode sheet with good production efficiency and low cost. In addition, the step of mixing the powder of the intermetallic compound with the A1 powder in advance to obtain a mixed powder is not required, so that the production efficiency can be further improved. • 11-200539205 (8) [5] In the invention of [5], since the alloy layers of valve action metals other than A1 to A1 are laminated and rolled, the surface of the alloy layer is flattened and the surface of the electrode sheet is flat. The thickness of the electrode sheet can be improved and uniformized. In the invention of [6], since the alloy layers of valve-acting metals other than A1 to A1 are laminated and annealed, the bending resistance of the electrode sheet is further improved, and during rolling, it also has the ability to reduce the load required for dairy production. advantage. In the invention of [7], the spraying of the powder can be performed in a stable state, and φ can effectively prevent the occurrence of voids in the alloy layer of the valve-acting metal other than A1-A1. In the invention of [8], the electrode sheet can be further improved. Electrostatic capacity. If the amount of the intermetallic compound powder shot exceeds the upper limit of the appropriate range of the aforementioned shot mass ratio, the existence ratio of the intermetallic compound phase in the alloy layer (sprayed layer) of the valve action metal other than Al-A1 becomes too large. The size of the etched holes formed by the etching process becomes smaller and the electrolyte cannot perform all the etched layers, so it is not good, and if the amount of shot of A1 powder exceeds the upper limit of the appropriate range of the shot quality # ratio, then A1-A1 The existence ratio of the metal layer compound phase in the alloy layer (spraying layer) of the other valve-acting metal is too small and a sufficient electrostatic capacity cannot be obtained, which is not preferable. In the invention of [9], an electrode sheet having a larger electrostatic capacity can be produced. In the invention of [10], an electrode sheet having an even larger electrostatic capacity can be produced. In the invention of [1 1], since the aluminum foil using A1 foil or the aforementioned specific aluminum alloy as a core material is used as the core material, it has a film defect during chemical conversion treatment. -12-200539205 (9) Less sinking and reduced leakage current The advantages. [12] The electrode sheet for a capacitor according to the invention of [12] can reduce the manufacturing cost because of its good production efficiency, can secure a sufficient electrostatic capacity, and has excellent bending resistance. In addition, since the interval between adjacent secondary branches in the dendrites of the intermetallic compound phase is 5 v m or less, a larger electrostatic capacity can be ensured. [13] In the capacitor electrode sheet of the invention of [13], since the dielectric constant of the oxide film of the aluminum alloy composed of the valve-acting metal other than A1 and A1 is very large, a large electrostatic capacity can be secured. In addition, the fine structure of the coating layer is composed of a phase of a valve action metal other than A1, an intermetallic compound phase of A1, and a monomer phase of A1, so it has excellent bending resistance. [14] In the capacitor electrode sheet of the invention of the invention, since the interval between the adjacent secondary branches in the dendrites of the intermetallic compound phase is set to 5 // m, a larger electrostatic capacity can be ensured. In the invention of [15], since the thickness of the core material and the thickness of the coating layer are respectively specified in the aforementioned specific ranges, the lightweight property can be ensured, and the sheet strength and the large electrostatic capacity can be secured. In the invention of [16], since the surface area of the coating layer is increased by etching, and a dielectric film having a large dielectric constant is formed by a chemical conversion treatment, an electrolytic capacitor having a higher capacity can be provided. '[17] The anode material of the invention [17] can ensure a large electrostatic capacity and is excellent in bending resistance. Therefore, if this anode material is used, for example, a small and large-capacity rewinding electrolytic capacitor can be sufficiently provided. In the invention of [18], since the anode material of the above-mentioned [17] is used, it is possible to provide a small-sized and large-capacity electrolytic capacitor. In addition, the anode material of the previous paragraph [-13-200539205 (10) 1 7] is excellent in bending resistance, and thus, for example, a small-sized and large-capacity rewind type electrolytic capacitor can be provided. In the invention of [19], since the surface area of the coating layer is increased by etching, and a dielectric film having a large dielectric constant is formed by chemical conversion treatment, an electrolytic capacitor having a higher capacity can be provided. [20] The anode material of the invention can secure a large electrostatic capacity and is excellent in bending resistance. Therefore, if this anode material is used, for example, a φ small and large-capacity rewinding electrolytic capacitor can be provided. In the invention of [21], since the anode material of the above [20] is used, it is possible to provide a small-sized and large-capacity electrolytic capacitor. In addition, since the anode material of the aforementioned item [20] is excellent in bending resistance, for example, a small-sized and large-capacity rewind-type electrolytic capacitor can also be provided. In the invention of [22], since the surface area of the coating layer is increased by etching, and a dielectric film having a large dielectric constant is formed by a chemical conversion treatment, an electrolytic capacitor having a higher capacity can be provided. The anode material in the invention of φ [23] can ensure a large electrostatic capacity and excellent bending resistance. Therefore, if this anode material is used, for example, a small-sized and large-capacity rewinding electrolytic capacitor can be sufficiently provided. In the invention of [24], since it is constituted by using the anode material of the above item [23], a small-sized and large-capacity electrolytic capacitor can be provided. In addition, the anode material of the previous paragraph ["· 23] is excellent in bending resistance, so for example, a small and large-capacity rewinding type electrolytic capacitor can be provided. [Embodiment] -14- 200539205 (11) The capacitor of the present invention The manufacturing method of the electrode sheet is that the powder (7) and A1 powder (8) of the valve-acting metal other than A1 and the A1 intermetallic compound are sprayed on the surface of the aluminum foil (2), and at least one side of the aluminum foil (2) is sprayed. It is characterized by layering an alloy layer (11) of a valve-acting metal other than Al—A1. The valve-acting metal other than A1 (a valve-acting metal other than A1) is preferably selected from the group consisting of Ti, Zr, Nb, Ta, and At least one of the groups formed by Hf. According to this manufacturing method, since the intermetallic compound is compounded with A1 during the shot, it can be manufactured on the surface of the aluminum foil (2) with an alloy layer of A1-valve metal (11) ) Of the electrode sheet (10). For example, if the two surfaces of the aluminum foil (2) are sprayed, as shown in FIG. 2, the core material (2) composed of the aluminum foil is laminated on both sides of the A1-valve metal. Electrode (10) of the alloy layer (11) (11). The dielectric constant of the chemical film is very large, so it can ensure a large electrostatic capacity as the electrode sheet (10). Also, since the alloy layer of the A1-valve action metal is formed by spraying, the resistance of the obtained electrode sheet (10) The bendability is also excellent. In addition, in this manufacturing method, the powder (7) of the intermetallic compound of the valve action metal and A1 and the powder A1 (8) are used as the raw material for the shot, because the powder of the intermetallic compound ( 7) The powder can be easily obtained by pulverization, and the A1 powder (8) has a low melting point and can be obtained at low cost, so it can produce a capacitor electrode sheet (10) with good production efficiency and low cost. As shown in FIG. 1A, the powder (7) and the powder (8) of the intermetallic compound of the valve-acting metal and A1 are separately supplied from different positions and the two powders are sprayed onto the surface of the aluminum foil (2), or As shown in FIGS. 1B and C, the powder of the valve-acting metal and the intermetallic compound of A1 and the mixed powder (6) of -15-200539205 (12) A1 powder may be sprayed onto the surface of the aluminum foil (2). That is, in FIG. 1A, the plasma flow (4) is released from the nozzle (3), and the other In the aspect, the powder of the valve-acting metal and the intermetallic compound of A1 (7) and the A1 powder from the other tube (5) are arranged on one side of the nozzle (3) from one of the pair of raw material supply pipes (5). (8) Put in the plasma stream (4) and spray the plasma stream (4) to the surface of the aluminum foil (2), respectively. Also, in FIG. 1B, the plasma stream (4) is discharged from the nozzle (3). On the other side, the mixed powder (6) mixed with the valve-acting metal of the raw material supply pipe (5) arranged on the side of the nozzle (3) and the powder of the intermetallic compound of A1 and the powder of A1 is put into the aforementioned plasma flow (4). ) And spray the plasma stream (4) to the surface of the aluminum foil (2). Moreover, in FIG. 1C, a pair of nozzles (3) (3) respectively emit plasma flows (4) (4) and they are combined to form a plasma flow. 3) (3) The valve-acting metal of the raw material supply pipe (5) and the powder of the intermetallic compound of A1 and the powder of A1 ## mixed powder (6) are mixed into the aforementioned plasma flow (4) and the The plasma stream (4) is sprayed onto the surface of the tin fan (2). The aforementioned thermal spraying method can be a known thermal spraying method and is not particularly limited, and examples thereof include plasma thermal spraying and cold spraying. Among them, plasma spraying is preferred for plasma spraying. In this case, the cooling rate is particularly fast and the microstructure in the alloy layer (Π) of the aforementioned-A1-valve-acting metal can be sufficiently refined, and so can be more refined. Improve the bending resistance of the electrode sheet (10). In the aforementioned plasma spray, if a gas such as argon, ammonia or the like flows between the electrodes and discharges, it will ionize and generate a high-frequency and high-speed plasma. This plasma is a spray method that uses -16-200539205 (13) a radiation source. Into the aforementioned treble and high-speed plasma flow (plasma spray), the powder of the shot material is injected and heated to accelerate and impact the substrate to perform the shot. The aforementioned cold spray is to use a high-pressure gas heated at a temperature lower than the melting point or softening temperature of the molten shot material to make a supersonic flow, and put the powder of the molten shot material in this supersonic flow and accelerate it, and collide in the solid phase state as The substrate is sprayed. In addition, by appropriately setting various shot conditions (for example, shot temperature #, gas flow rate, etc.), the above-mentioned A1-valve-acting metal alloy layer (1 1) can be formed porously, and it can also be formed non-porously. In the manufacturing method of the present invention, after the step of laminating the aforementioned alloy layer (Π) of the A1-valve-acting metal to the aluminum foil (2), an annealing step may be provided. By applying such an annealing treatment, the bending resistance of the electrode sheet can be further improved, and the load required for low-pressure drawing can also be reduced when being pressed. In addition, in the manufacturing method of the present invention, after the step of laminating the alloy layer (11) of the aforementioned A1—valve-acting metal to the aluminum foil (2), a pressing step may be provided. By applying such a compression treatment, the surface of the aforementioned A1-valve-acting metal alloy layer (11) can be flattened and raised, and the surface can be flattened, and the thickness of the electrode sheet (10) can be made uniform. (There may be no thickness deviation as the case may be). Furthermore, an 'annealing step may be provided between the aforementioned lamination step and the aforementioned pressing step, and an annealing step may be provided after the aforementioned rolling step, or both after the aforementioned laminating step and before and after the aforementioned rolling step. It is also possible to provide an annealing step. The average particle diameter of the intermetallic compound powder (7) used for the aforementioned spraying is preferably 17 to 200539205 (14), which is 3 to 100 // m. If it is less than 3 // m, the supply nozzle such as the raw material supply pipe (5) is likely to be blocked, and if it is more than 100βm, it is easy to spray the layer, that is, A1-the valve action metal. The alloy layer (1 1) is not good because it generates voids. Among them, the average particle diameter of the intermetallic compound powder (7) is more preferably 5 to 50 // m. The average particle size of the A1 powder (8) used for the aforementioned spraying is preferably 3 to 150 // m. If it is less than 3 // m ', it is easy to block the supply of the raw material supply pipe (5), etc. @ Feeding nozzle is not good. On the other hand, if it exceeds 150 # m, it is easy to spray the layer, that is, A1-valve action metal The alloy layer (11) is not good because voids are generated. Among them, the average particle diameter of the A1 powder (8) is more preferably 5 to 70 // m. The spray mass ratio of the intermetallic compound powder (7) to the A1 powder (8) is preferably set in a range of the intermetallic compound powder / A1 powder = 0.1 to 5. If it is less than 0.1, the amount of the intermetallic compound in the spray-sprayed alloy layer (1 1) becomes too small, and the intermetallic compound falls off during the etching process, and a good electrostatic capacity cannot be obtained, which is not preferable. On the other hand, if it exceeds 5 #, the amount of intermetallic compounds in the spray-spray alloy layer (1 1) becomes excessive and the size of the etched holes formed by the etching process becomes small, and the electrolyte cannot enter the etched layer, and good static electricity cannot be obtained. Capacity is therefore poor. Among them, the spray mass ratio of the intermetallic compound powder (7) to the A1 powder (8) is particularly preferably set in the range of * intermetallic compound powder / A1 powder = 0.5 ~ 2. '' In the manufacturing method of the present invention, the aforementioned intermetallic compound powder (7) is one or two or more valve-acting metals selected from the group consisting of Ti, Zr, Nb, Ta, and Hf, and an intermetallic compound with A1. Compound powder is preferred. In the case of such a structure, an electrode sheet having a larger electrostatic capacity can be manufactured -18- 200539205 (15) (10). Among them, it is particularly preferable to use Al3zr powder as the aforementioned intermetallic compound powder (7). The aluminum foil (2) may be made of A1 aluminum, or one or two or more valve-acting metals selected from the group consisting of Ti, Zr, Nb, Ta, and Hf, and an alloy foil composed of A1. In this case, the resulting electrode sheet has fewer defects in the film during treatment and can reduce leakage current. The microstructure of the φ A1—valve acting metal alloy layer (1 1) in the capacitor electrode sheet (10) manufactured by the manufacturing method of the present invention is composed of a valve acting metal other than A1 and an intermetallic compound phase of A1 (22) And A1 monomer phase (2 1), the interval (S) between adjacent secondary branches in the dendrites (dendritic crystals) of the intermetallic compound phase (22) is preferably 5 // m (see Figure 5 ). As the valve action metal other than the aforementioned A1, for example, one or two or more valve action metals selected from the group consisting of Ti, Zr, Nb, Ta, and Hf can be used. In this way, if the interval (S) between adjacent secondary branches in the dendrites of the intermetallic compound phase is 5 a m or less, the exposed surface area of the intermetallic compound phase after the etching treatment is large, thereby ensuring sufficient electrostatic capacity. In addition, if the shot temperature is increased and the solidification rate is quenched, the interval (S) of the secondary branches can be reduced. In one embodiment of the capacitor electrode sheet (10) manufactured by the manufacturing method of the present invention, the scanning of the cross section of the alloy layer (1 1) of the A1-valve-acting metal is shown in FIG. 3 with an electron microscope (SEM) photograph. In FIG. 3, the white region is an intermetallic compound phase, and the black region is an A1 monomer phase. Fig. 4 is a SEM photograph showing a part of the field of view of Fig. 3 enlarged. Similarly, the white region is an intermetallic compound phase, and the black region is an A 丨 monomer phase. In the center of Figure 4, it is confirmed that -19- 200539205 (16) dendritic crystals (dendritic crystals) that form intermetallic compound phases are recognized. In addition, the aforementioned "interval between adjacent secondary branches in the dendrite" is as shown in FIG. 5, which is the distance (S) between the centers of adjacent secondary branches (secondary arms) in the dendrite, that is, adjacent two The distance (S) from the central axis of the secondary branch of one of the secondary branches to the central axis of the other two branches is also referred to as "dendrite spacing". The electrode sheet (10) for a capacitor of the present invention is formed by laminating and integrating an aluminum alloy coating layer (11) on at least one side of a core material (2) composed of aluminum foil. (1 1) The microstructure is characterized by a phase of a valve action metal other than A1 and an intermetallic compound phase of A1 and a monomer phase of A1. The coating layer (11) may have any of a porous structure and a non-porous structure. In the capacitor electrode sheet (10) of the present invention, the interval (S) between adjacent secondary branches in the dendrites (dendritic crystals) of the intermetallic compound phase (22) is preferably 5 ν m or less. If it exceeds 5 // m, after the etching process, the exposed surface area of the intermetallic compound phase becomes small and a sufficient electrostatic capacity cannot be obtained, which is not preferable. Among them, it is particularly preferred that the interval (S) of the adjacent secondary branches is 0.5 // m or less. In the electrode sheet (10) of the present invention, the thickness of the core material (2) composed of aluminum foil is preferably 5 to 200 // m. If the thickness is less than 5 // m, the rigidity of the electrode sheet (10) is not sufficient. When the electrode sheet (10) is bent and cut, cracks are likely to occur, which is not good. On the other hand, if it exceeds 200 // m, the electrode sheet is rolled and stored in a roll-type box, and the radius of curvature R during roll-back becomes large and it is difficult to store it in the roll-type box, which is not good. Among them, the thickness of the core material (2) composed of the foregoing aluminum foil -20-200539205 (17) is particularly preferably 20 to 100 // m. The thickness of the coating layer (11) is preferably 5 to 150 / zm. If the thickness is less than 5 μm, the core material (2) is exposed during the etching process, and sufficient electrostatic capacity cannot be obtained, which is not preferable. On the other hand, if it exceeds 150 // m, the electrolyte cannot enter all the etched layers and a sufficient electrostatic capacity cannot be obtained, which is unfavorable. The thickness of the coating layer (11) is more preferably 20 to 100 // m. • The electrode sheet (10) of the present invention or the electrode sheet (10) manufactured according to the manufacturing method of the present invention is etched and then chemically treated on the surface of the electrode sheet (1) to form a dielectric film (6) electrochemically. ), A sheet suitable for use as an anode material for an electrolytic capacitor can be produced. Examples of the aforementioned etching process include a method of performing etching by applying a direct current to a hydrochloric acid aqueous solution or an ammonium sulfate solution, but the invention is not limited thereto. The chemical conversion treatment is not particularly limited, and examples thereof include chemical conversion treatments in a boric acid bath, a phosphoric acid bath, or an adipic acid bath, but are not limited thereto. # The electrolytic capacitor of the present invention is constituted by using the above anode material. Since an anode material using the capacitor electrode sheet (10) of the present invention as a constituent material is used, a small-sized and large-capacity electrolytic capacitor can be manufactured. Next, specific examples of the present invention will be described. \ &lt; Example 1 &gt; As shown in FIG. 1B, the plasma stream (4) is discharged from the nozzle (3), and the raw material supply pipe (5) disposed on the nozzle (3) side is averaged. AI3Z1 · powder with a particle size of 3 / zm (intermetallic compound powder) and A1 powder with an average particle size of 3 // m -21-200539205 (18) are mixed into a plasma stream (4) and the The plasma stream (4) is sprayed to both sides of the core material (2) made of A1 foil having a thickness of 40 μm, and the electrode sheet (10) shown in FIG. 2 can be obtained. In addition, the mixing ratio (spray shot mass ratio) of the powder in the mixed powder (6) was set to Al3Zr powder / A1 powder = 1.0. The thickness of the formed thermal spray coating (11) was 60 // m, so an electrode sheet (10) having a thickness of 160 / zm was obtained. The intermetallic compound phase in the spray coating layer (1 1) of the obtained electrode sheet • The interval between the adjacent secondary branches in the dendrites (dendritic arm space) is an average of 1 // m. 3% (mass%) dipped in 3P04 aqueous solution, boiled at 90 ° C for 120 minutes, degreased, washed with running water, and then ultrasonically washed in acetone solvent, and dried at 50 ° C for 5 minutes. Next, an etching process is performed. For the etching solution, an HC1 (1 mole / liter) + H2S04 (3.5 mole / liter) aqueous solution was used, and etching was performed at a temperature of 75t: and a current density of DC 0.5 A / cm2 (one side). # Furthermore, a constant-voltage chemical conversion treatment was performed in an aqueous ammonium phosphate solution (concentration 1.5 g / l, 85 t) at a current density of 5 mA / cm2 at 20 Vx10 minutes. Next, after performing heat treatment (annealing) in the air at 500 ° C for 5 minutes, the chemical conversion treatment was performed again under the same conditions as the aforementioned chemical conversion treatment (but the voltage chemical conversion treatment time was 5 minutes &quot; minutes) to obtain an electrode sheet. <Examples 2 to 2 5. Comparative Examples 1 to 16 &gt; Use the average particle size shown in Tables 1 and 2 as the Al3Zr powder, and -22-200539205 (19) Use the average shown in Tables 1 and 2 Those having a particle size other than AΓ powder were treated in the same manner as in the example to obtain an electrode sheet.

-23- 200539205-23- 200539205

£ 評價 於供給管嘴發生阻塞 於供給管嘴發生阻塞 於供給管嘴發生阻塞 於供給管嘴發生阻塞 〇 〇 〇 〇 〇 顯著發生空隙 於供給管嘴發生阻塞 〇 〇 〇 〇 〇 顯著發生空隙 於供給管嘴發生阻塞 〇 〇 〇 CV積 (// FV/cm2) 1 I I I I 2861 i 2659 | I 2719 I 2836 I 2814 I I 2137 I I I 2823 I 2906 2828 2759 2734 2098 I 2691 2714 2740 樹枝晶臂空間 (/xm) Τ— Τ— T— T— τ— τ— T— τ— τ— Τ— τ— τ— τ— τ— r- χ— τ- τ— τ- χ— 熔射層之厚 度(&quot;m) § 〇 CO § § § § § § § § § S § § § § § § g § § 〇 〇 〇 〇 〇 〇 〇 o O O 寸 ο ο ο ο ο ο ο ο ο ο Ο 寸 想f _Ηπ ft安 锲國 〇 X— q τ— q T— q T— p τ- q τ— p τ- q x— q τ— q T- p τ- ο τ- Ο τ— ο τ— Ο τ— Ο τ— Ο τ— ρ τ- ο τ— ρ τ— Ο τ— 尨、翅 &lt; 5Γ 〇 S X— T— C0 m S O s 〇 T— τ— C0 ΙΟ S ο S τ— Ο τ- τ— C0 ιη _伥5 Τ— T— X— CO 00 CO CO CO CO CO C0 ιο ιη ΙΟ ιη ΙΟ ΙΟ ιη τ— m m 比較例1 比較例2 比較例3 比較例4 實施例1 實施例2 實施例3 實施例4 實施例5 |比較例5 I 丨比較例6, |實施例6 I 實施例7 實施例8 實施例9 實施例101 比較例7 比較例8 實施例11 實施例12 實施例13 -24- 200539205£ Evaluated due to blockage in the supply nozzle Occurred blockage in the supply nozzle Occurred blockage in the supply nozzle Occurred blockage in the supply nozzle Nozzle blockage 〇〇〇 CV product (// FV / cm2) 1 IIII 2861 i 2659 | I 2719 I 2836 I 2814 II 2137 III 2823 I 2906 2828 2759 2734 2098 I 2691 2714 2740 Dendritic arm space (/ xm) Τ— Τ— T— T— τ— τ— T— τ— τ— Τ— τ— τ— τ— τ— r— χ— τ- τ— τ- χ— Thickness of the spray layer (&quot; m) § 〇CO § § § § § § § § § § S § § § § § § g § § 〇 〇〇〇〇〇〇〇〇o OO inch ο ο ο ο ο ο ο ο ο ο ο Country 〇X— q τ— q T— q T— p τ- q τ— p τ- qx— q τ— q T- p τ- ο τ- Ο τ— ο τ— Ο τ— Ο τ— Ο τ — Ρ τ- ο τ— ρ τ— Ο τ— 尨, fins &lt; 5Γ 〇SX— T— C0 m SO s 〇T— τ— C0 ΙΟ S ο S τ— Ο τ- τ— C0 ιη _ 伥 5 Τ— T— X— CO 00 CO CO CO CO CO C0 ιο ιη ΙΟ ιη ΙΟ ΙΟ ιη τ— mm Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Example 1 Example 2 Example 3 Example 4 Example 5 | Comparative Example 5 I 丨 Comparative Example 6, | Example 6 I Example 7 Example 8 Example 9 Example 101 Comparative Example 7 Comparative Example 8 Example 11 Example 12 Example 13 -24- 200539205

CNI漱 評價 〇 〇 顯著發生空隙 於供給管嘴發 生阻塞 〇 〇 〇 〇 〇 顯著發生空隙 I於供給管嘴發 生阻塞 〇 〇 〇 〇 〇 顯著發生空隙 顯著發生空隙 顯著發生空隙 顯著發生空隙 CV積 (β FV/cm2) 2673 2658 2173 1 2776 2822 2735 2682 2792 2128 I 2813 2728 2659 2867 2741 2119 I 2254 2293 2170 樹枝晶臂空間 (&quot;m) X— T— T— T— τ— τ— τ— τ— τ— τ— τ— τ— τ— X— τ— τ— 熔射層之厚度 (&quot;m) § § § 〇 CD § § § § § § § § § § § § § § § § 芯材之厚度 (&quot;m) 〇 对 〇 〇 〇 寸 〇 寸 ο ο ο ο ο 〇 〇 寸 〇 〇 〇 〇 〇 〇 ττ 〇 〇 寸 起is ¢1 ί 锲fi鬆 Ρ X- q 〇 T— 〇 q T— Ο τ— ο τ— ο τ- ο τ— q τ— q T— 〇 q τ— 〇 〇 T— 〇 τ— 〇 τ— 〇 T— q τ— 〇 τ— AI粉末之平均 粒徑(&quot;m) 〇 150 170 T&quot; CO ΙΟ ο 150 170 τ— 00 LO 〇 CM 〇 150 170 〇 150 题·Ν ξ 釀伥5 in T— m T— 1〇 S ο in S ο ΙΓ&gt; S S S 100 100 100 100 100 100 100 150 150 150 實施例14 實施例15 比較例9 比較例10 實施例16 丨實施例17 I 實施例18 實施例19 實施例20 比較例11 比較例12 丨實施例21 | |實施例22 | 丨實施例23 | 丨實施例24 I 實施例25 比較例13 比較例14 比較例15 比較例16 -25- 200539205 (22) 〈實施例2 6 &gt; 如圖1A所示般,由管嘴(3 )放出電漿流(4 ),另 一方面,由其一者之原料供給管(5 )將平均粒徑1 5 // ηι 之Al3Zr粉末(金屬間化合物粉末)(7 )投入電漿流(4 ),並且由另一者之原料供給管(5 )將平均粒徑20 // m 之A1粉末(8 )投入電漿流(4 )並將該電漿流(4 )熔射 至厚度40 // m之A1箔所構成之芯材(2 )的兩面,則可取 • 得圖2所示之電極片(10)。另外,將熔射質量比設定成 Al3Zr粉末/ A1粉末=1.0並進行電漿熔射。所形成之熔射 被覆層(11)的厚度爲5/zm,因此取得厚度15//m的電極 片(10)。 所得電極片之熔射被覆層(1 1 )中之金屬間化合物相 之樹枝晶中鄰接之二級枝的間隔(樹枝晶臂空間)爲平均 1 // m 〇 其次,將前述電極片於3% (質量% ) H3P04水溶液中 • 浸漬且以9 〇 °C煮沸1 2 0分鐘脫脂後,以流水水洗,再於丙 酮溶劑中進行超音波洗淨,於50 °C下乾燥5分鐘。 其次,進行蝕刻處理。蝕刻液爲使用HC1 ( 1莫耳/升 )+ H2S04 ( 3.5莫耳/升)水溶液,並以溫度75t:、電流 密度DC 0.5 A/ cm2 (單面)之條件進行蝕刻處理。 • 更且’於磷酸銨水溶液(濃度1 · 5克/升、8 5 °C )中 以電流密度5 mA/ 下進行20V X 1 0分鐘的定電壓化成 處理。 其次’於空氣中以5 00 Ϊ進行5分鐘加熱處理(退火) -26- 200539205 (23) 後,與前述化成處理相同條件(但電壓化成處理時間5分 鐘)下再度進行化成處理,取得電極片。 〈實施例2 7〜5 0、比較例1 7〜3 2 &gt; 使用表3、4所示厚度者作爲A1箔所構成的芯材(2) ,且將熔射被覆層(1 1 )之形成厚度設定成表3、4所示之 厚度以外,同實施例26處理取得電極片。Evaluation of CNI 〇00 Occurrence of significant blockage of the supply nozzle Occurred significantly of void I Occurred of blockage of the supply nozzle 0.000 Significant occurrence of voids Occurrence of significant voids Occurrence of significant voids (FV / cm2) 2673 2658 2173 1 2776 2822 2735 2682 2792 2128 I 2813 2728 2659 2867 2741 2119 I 2254 2293 2170 Dendrite arm space X— T— T— T— τ— τ— τ— τ— τ — τ — τ — τ — τ — X — τ — τ — thickness of the spray layer (&quot; m) § § § 〇CD § § § § § § § § § § § § § § § § of the core material Thickness (&quot; m) 〇To 〇〇〇inch 〇inch ο ο ο ο ο 〇〇inch 〇〇〇〇〇〇〇ττ 〇〇inch from is ¢ 1 ί 松 松 P X- q 〇T-〇q — Ο τ— ο τ— ο τ- ο τ— q τ— q T— 〇q τ— 〇〇T— 〇τ— 〇τ— 〇T— q τ— 〇τ— average particle size of AI powder (&quot; m) 〇150 170 T &quot; CO ΙΟ ο 150 170 τ— 00 LO 〇CM 〇150 170 〇150 5 in T — m T — 10 S ο in S ο Γ> SSS 100 100 100 100 100 100 100 100 150 150 150 Example 14 Example 15 Comparative Example 9 Comparative Example 10 Example 16 丨 Example 17 I Example 18 Example 19 Example 20 Comparative Example 11 Comparative Example 12 丨 Example 21 | | Example 22 | 丨 Example 23 | 丨 Example 24 I Example 25 Comparative Example 13 Comparative Example 14 Comparative Example 15 Comparative Example 16 -25- 200539205 (22) <Example 2 6 &gt; As shown in FIG. 1A, the plasma stream (4) is discharged from the nozzle (3), and on the other hand, the average particle is supplied from one of the raw material supply pipes (5). The Al3Zr powder (intermetallic compound powder) (7) with a diameter of 1 5 // is put into the plasma stream (4), and the A1 powder with an average particle diameter of 20 // m is supplied from the other raw material supply pipe (5) ( 8) Put in the plasma stream (4) and spray the plasma stream (4) to both sides of the core material (2) made of A1 foil with a thickness of 40 // m. It is preferable to obtain the electrode shown in Figure 2. Sheet (10). In addition, the spraying mass ratio was set to Al3Zr powder / A1 powder = 1.0, and plasma spraying was performed. The thickness of the formed thermal spray coating (11) was 5 / zm, so an electrode sheet (10) having a thickness of 15 // m was obtained. The interval (dendritic arm space) of adjacent secondary branches in the dendrites of the intermetallic compound phase in the spray coating layer (1 1) of the obtained electrode sheet was an average of 1 // m. Second, the foregoing electrode sheet was placed at 3 % (Mass%) in H3P04 aqueous solution • Immerse and boil at 90 ° C for 120 minutes. After degreasing, wash with running water, then perform ultrasonic cleaning in acetone solvent, and dry at 50 ° C for 5 minutes. Next, an etching process is performed. For the etching solution, an HC1 (1 mole / liter) + H2S04 (3.5 mole / liter) aqueous solution was used, and the etching treatment was performed at a temperature of 75t: and a current density of DC 0.5 A / cm2 (single-sided). • Furthermore, it was subjected to a constant-voltage chemical conversion treatment at a current density of 5 mA / at 20 V for 10 minutes in an aqueous solution of ammonium phosphate (concentration: 1.5 g / l, 85 ° C). Next, heat treatment (annealing) in air at 5 00 5 for 5 minutes -26- 200539205 (23), and then perform chemical conversion treatment again under the same conditions as the aforementioned chemical conversion treatment (but with a voltage conversion treatment time of 5 minutes) to obtain an electrode sheet. . <Example 2 7 ~ 50, Comparative Example 1 7 ~ 3 2 &gt; The thickness shown in Tables 3 and 4 was used as the core material (2) made of A1 foil, and the thermal spray coating layer (1 1) The formation thickness was set to a thickness other than those shown in Tables 3 and 4, and the electrode sheet was obtained in the same manner as in Example 26.

-27- 200539205-27- 200539205

00嗽 評價 彎曲剛性不良 彎曲剛性不良 彎曲剛性不良 靜電容量低 〇 〇 〇 〇 〇 靜電容量低 靜電容量低 〇 〇 〇 〇 〇 靜電容量低 靜電容量低 〇 〇 CV積 (&quot;FV/cm2) 1 I I 19.7 24.5 1 24.5 23.4 23.0 22.7 16.7 19.0 22.9 23.4 23.8 ! 23.0 22.5 16.4 16.4 22.8 24.6 樹枝晶臂空間 (&quot;m) T— τ— T- T— X— τ~ ^r- τ— τ— τ— τ— τ— τ— τ~ τ— τ— τ— 1 X— τ— 熔射層之厚度 (&quot;m) § 100 C0 to ο CM § 100 150 300 CO ΙΟ S § 100 150 300 00 1〇 芯材之厚度 (//m) CO CO C0 1〇 in ΙΟ in in ΙΟ in s s S 〇 〇 〇 dj &lt;!□ II芝 i«a Ο 'Τ— q τ- q T— q T— Ο τ— q τ— Ο τ— q τ— Ο τ— q τ— ρ τ- q Ο τ— q τ— o T— p T— q τ— 〇 Τ— q χ— q τ— •N a &lt; 5Γ 宕 另 另 s S 宕 s s 鬆起 安· 题*Ν ξ ΙΟ τ- in 1〇 T- ID τ- LO τ— in τ— ΙΟ τ- ΙΟ τ— ΙΟ τ— m τ- in ΙΟ τ— in ΙΟ τ— m IT) ΙΟ τ— m m τ— ΙΟ τ— , 比較例17 比較例18 比較例19 比較例20 實施例26 實施例27 實施例28 實施例29 實施例30 比較例21 比較例22 實施例31 實施例32 實施例33 I -1 實施例34 實施例35 比較例23 比較例24 實施例36 實施例37 -28- 20053920500 cough evaluation Bending rigidity Bending rigidity Bending rigidity Bending rigidity Low capacitance Low capacitance Low capacitance Low capacitance Low capacitance Low CV product (&quot; FV / cm2) 1 II 19.7 24.5 1 24.5 23.4 23.0 22.7 16.7 19.0 22.9 23.4 23.8! 23.0 22.5 16.4 16.4 22.8 24.6 Dendritic Arm Space (&quot; m) T- τ- T- T- X- τ ~ ^ r- τ- τ- τ- τ- τ — Τ— τ— τ ~ τ— τ— τ— 1 — X— τ— thickness of the spray layer (&quot; m) § 100 C0 to ο CM § 100 150 300 CO IOS S § 100 150 300 00 1〇 Thickness (// m) CO CO C0 1〇in ΙΟ in in ΙΟ in ss S 〇〇〇dj &lt;! □ II Zhii «a Ο 'Τ— q τ- q T— q T— 〇 τ— q τ— Ο τ— q τ— Ο τ— q τ — ρ τ- q Ο τ — q τ — o T — p T — q τ — 〇Τ — q χ — q τ — • N a &lt; 5Γ The other s s ss ss sssssssssssssnng * N ξ ΙΟ τ- in 1〇T- ID τ- LO τ— in τ— ΙΟ τ- ΙΟ τ— ΙΟ τ— m τ- in ΙΟ τ—in ΙΟ τ— m IT) ΙΟ τ— mm τ— ΙΟ τ—, Comparative Example 17 Comparative Example 18 Comparative Example 19 Comparative Example 20 Example 26 Example 27 Example 28 Example 29 Example 30 Comparative Example 21 Comparative Example 22 Example 31 Example 32 Implementation Example 33 I -1 Example 34 Example 35 Comparative Example 23 Comparative Example 24 Example 36 Example 37 -28- 200539205

寸漱 評價 〇 〇 〇 靜電容量低 靜電容量低 〇 〇 〇 〇 〇 靜電容量低 靜電容量低 〇 〇 〇 〇 〇 靜電容量低 迴捲時之曲率大 迴捲時之曲率大 迴捲時之曲率大 CV積 (//FV/cm2) 22.1 22.9 22.2 15.7 18.3 23.1 24.4 22.8 23.3 ί 21.3 I I 15.8 I 19.8 24.1 23.2 24.0 23.8 j 21.4 16.6 I I I 樹枝晶臂空間 (&quot;m) T— Τ- T- τ— τ— τ- τ— T— τ— t— T- τ— T- τ— τ- Τ- 熔射層之厚虔 (&quot;m) § 100 150 300 CO in § 100 I 150 300 CO in § 100 150 300 § 100 芯材之厚度 (&quot;m) 〇 寸 〇 〇 〇 100 100 100 100 100 I_ 100 100 200 200 200 200 200 200 | 200 300 300 300 &lt;Π 1蠭窆 〇 Τ— q T— q τ— q χ— q T— q τ~ q τ— Ο ο τ- q τ— q T— q T— q T— o , p q T— o Ο τ— q q τ— q τ— &lt; ίΓ 另 另 另 s s s S s s 题*Ν ξ _伥5 姻衾© m T— ΙΟ τ— ID τ— m τ— m in τ— ΙΟ τ- ΙΟ τ— ιη τ- in T— to τ- in IT) in T— in lO in T— ΙΟ τ— m T— ΙΟ 1〇 實施例38 實施例39 實施例40 比較例25 比較例26 [實施例41」 I實施例42 I 實施例43 丨實施例44 I 丨實施例45 | l比較例27 j 比較例28 實施例46 |實施例47 | 實施例48 實施例49 實施例50 比較例29 比較例30 比較例31 比較例32 -29- 200539205 (26) &lt;實施例5 1 &gt; 除了令熔射質量比設定爲Al3Zr粉末/ A1粉末=0.1以 外,同實施例3 8處理取得電極片。 &lt;實施例5 2〜5 5、比較例3 3、3 4 &gt; 除了令熔射質量比設定爲表5所示之値以外,同實施 例5 1處理取得電極片。Inch evaluation 〇00 Capacitance Low Capacitance Low Capacitance Low Capacitance Low Capacitance Low Capacitance Low Curvature When Rewinding Large Curvature When Rewinding Large CV Product When Curling (// FV / cm2) 22.1 22.9 22.2 15.7 18.3 23.1 24.4 22.8 23.3 ί 21.3 II 15.8 I 19.8 24.1 23.2 24.0 23.8 j 21.4 16.6 III Dendritic arm space (m) T—T- T- τ— τ— τ -τ— T— τ— t— T- τ— T- τ— τ- Τ- Thickness of the spray layer (&quot; m) § 100 150 300 CO in § 100 I 150 300 CO in § 100 150 300 § 100 Thickness of core material (&quot; m) 〇inch 〇〇〇100 100 100 100 100 I_ 100 100 200 200 200 200 200 200 200 | 200 300 300 300 &lt; Π 1 蠭 窆 〇Τ— q T— q τ— q χ— q T— q τ ~ q τ— Ο ο τ- q τ— q T— q T— q T— o, pq T— o τ— qq τ— q τ— &lt; ίΓ and another sss S ss title * Ν ξ _ 伥 5 衾 衾 m m—t I τ— ID τ— m τ — m in τ— ΙΟ τ- ΙΟ τ— ιη τ- in T— to τ- in IT) in T—in l O in T— 10 τ—m T— 10 10 Example 38 Example 39 Example 40 Comparative Example 25 Comparative Example 26 [Example 41 ”I Example 42 I Example 43 丨 Example 44 I 丨 Example 45 | Comparative Example 27 j Comparative Example 28 Example 46 | Example 47 | Example 48 Example 49 Example 50 Comparative Example 29 Comparative Example 30 Comparative Example 31 Comparative Example 32 -29- 200539205 (26) & Example 5 1 &gt; An electrode sheet was obtained in the same manner as in Example 3 and 8 except that the shot mass ratio was set to Al3Zr powder / A1 powder = 0.1. &lt; Example 5 2 to 5 5. Comparative Example 3 3, 3 4 &gt; An electrode sheet was obtained in the same manner as in Example 5 1 except that the shot quality ratio was set to 値 shown in Table 5.

-30- 200539205-30- 200539205

(27) 評價 I I 靜電容量低 〇 〇 〇 〇 〇 靜電容量低 cv積效率 I I (&quot;FV/cm2) 0.79 0.96 0.98 1.00 0.99 0.98 0.82 樹枝晶臂空間 (&quot;m) T— T— τ— V- τ— 熔射層之厚度 (&quot;m) ί § § § s § § § 芯材之厚度 (//m) 〇 〇 〇 ο 〇 〇 〇 m 1 U ύ ^ te a &lt; ί &lt;3 I 0.05 T— d d q 〇 cvi 〇 ιό I 10.0 奸百 忉 a 沪i &lt; 驭 S 另 S 翠 · ? SE g m ^ 5 領 m _ m UO ΙΟ ΙΟ in in m 比較例33 實施例51 實施例52 實施例53 實施例54 實施例55 比較例34 -31 - 200539205 (28) 〈實施例5 6〜5 8、比較例3 5 &gt; 且使用平均粒 表6所示之値 使用平均粒徑15 // m者作爲Α13Ζγ粉末, 徑20 // m者作爲Α1粉末,且樹枝臂空間爲以 般電漿熔射以外,同實施例1處理取得電極(27) Evaluation II Low electrostatic capacity 0.0000 Low electrostatic capacity cv product efficiency II (&quot; FV / cm2) 0.79 0.96 0.98 1.00 0.99 0.98 0.82 Dendritic arm space (m) T- T- τ- V -τ— Thickness of spray layer (&quot; m) ί § § § s § § § Thickness of core material (// m) 〇〇〇ο 〇〇〇m 1 U ύ ^ te a &lt; ί &lt; 3 I 0.05 T— ddq 〇cvi 〇ιό I 10.0 忉 百 忉 a Shanghai i &lt; Yu S another S Cui? SE gm ^ 5 collar m _ m UO ΙΟ ΙΟ in in m Comparative Example 33 Example 51 Example 52 Example 53 Example 54 Example 55 Comparative Example 34 -31-200539205 (28) <Example 5 6 to 5 8 Comparative Example 3 5 &gt; The average particle size shown in Table 6 is used. An average particle size of 15 // m is used as Α13Zγ powder, a diameter of 20 // m is used as Α1 powder, and the branch arm space is plasma-fused. Except for radiation, the electrode was obtained in the same manner as in Example 1.

-32- 200539205 (29)-32- 200539205 (29)

CD 評價 〇 〇 〇 靜電容量低 CV積 (&quot;FV/cm2) 2879 2753 2915 2117 樹枝晶臂空間 (&quot;m) 1〇 d τ— in 熔射層之厚度 (&quot;m) § § § § 芯材之厚度 (&quot;m) ! i 〇 ο ο ο J-3 &lt;|π s 1 1想g q τ- q τ— q q x— $ 庐g &lt; 邳 s s 闵 &lt;!□驭 Ss *N § 讓供 5 領尜駿! m ΙΟ in ΙΟ 實施例56 實施例57 實施例58 比較例35 -33- 200539205 (30) 〈實施例5 9 &gt; 除了使用平均粒徑15// m之AhTr粉末代替AhZr粉末 作爲金屬間化合物粉末以外,同實施例1 3處理取得電極 片0 ·, &lt;實施例60&gt; 除了使用平均粒徑15//⑺之八13价粉末代替Al3Zr粉末 # 作爲金屬間化合物粉末以外,同實施例13處理取得電極 片0 &lt;實施例6 1 &gt; 除了使用平均粒徑1 5 # 作爲金屬間化合物粉末以外 片。 〈實施例62 &gt;CD evaluation 〇〇〇 Low capacitance CV product (&quot; FV / cm2) 2879 2753 2915 2117 Dendritic arm space (m) 1〇d τ—in Thickness of spray layer (m) § § § § Thickness of the core material (&quot; m)! I 〇ο ο ο J-3 &lt; | π s 1 1 gq τ- q τ— qqx— $ —g &lt; 邳 ss Min &lt;! □ CONTROLSs * N § Let 5 collars be worn! M ΙΟ in ΙΟ Example 56 Example 57 Example 58 Comparative Example 35 -33- 200539205 (30) <Example 5 9 &gt; Except the use of AhTr powder with an average particle size of 15 // m Instead of the AhZr powder as the intermetallic compound powder, the same treatment as in Example 13 was used to obtain the electrode sheet 0. &lt; Example 60 &gt; except that the 13-valent powder with an average particle size of 15 // ⑺ was used instead of the Al3Zr powder # as the intermetallic compound. Except for the powder, the electrode sheet 0 was obtained in the same manner as in Example 13 &lt; Example 6 1 &gt; except that the average particle diameter 1 5 # was used as the intermetallic compound powder. <Example 62 &gt;

# 除了使用平均粒徑1 5 A 作爲金屬間化合物粉末以外 片0 扣之Al3Ta粉末代替Al3Zr粉末 ,同實施例1 3處理取得電極 m之Al3Hf粉末代替Al3Zr粉末 ,同實施例13處理取得電極 -34- 200539205 (31)# Except using the average particle size of 1 5 A as the intermetallic compound powder, instead of Al3Zr powder, use Al3Ta powder instead of Al3Zr powder, and perform the same treatment as in Example 1 to obtain Al3Hf powder instead of Al3Zr powder. -200539205 (31)

i評價 I I 〇 〇 〇 〇 cv積 (&quot;FV/cm2) 1988 2011 1969 2053 樹枝晶臂空 間 (&quot;m) τ— τ— τ— τ— 熔射層之厚 度(//πι) § § § § 芯材之厚度 (//m) ο ο ο ο jj in a 1 § ® ^ I i ο τ— ο τ~ ο τ— ρ τ— Al粉末之 平均粒徑 (&quot;m) &lt;□ 14- ^ ^ 酲伥 ϋ m m m 領鬆驭 m m ΙΟ UO φ m ^ *hl 酲供 讓 φ 領耘駿 AI3Ti AI3Nb AI3Ta AI3Hf 實施例59 實施例60 實施例61 實施例62 -35- 200539205 (32) 測定如上述處理所得之各電極片的C V積、並且進行 下述各種評價。 &lt;原料供給管嘴有無發生阻塞之評價&gt; 關於熔射中於原料供給管之供給管嘴發生阻塞而無法 以安定狀態進行粉末熔射者,於表之評價欄中以「於供給 管嘴發生阻塞」表示。 &lt;有無發生空隙之評價&gt; 進行所得電極片的剖面觀察,且關於熔射被覆層顯著 察見空隙者,於表之評價欄中以「顯著發生空隙」表示。 &lt;彎曲特性之評價&gt; 對直徑1 mm之鋁製圓棒的外周面捲繞電極片時,關 於電極片上發生裂痕者,於表之評價欄中以「彎曲剛性不 ® 良」表示,另一方面,關於電極片與圓棒之外周面之間發 生間隙者,於表之評價欄中以「迴捲時之曲率大」表示。 &lt;靜電容量之評價&gt; 關於未取得充分的靜電容量者,於表之評價欄中以「 靜電容量低」表示。另外,表3、4中之「CV積比」爲將 CV積除以熔射層厚度(予以除算)所得之値。又,表5中 之「CV積效率」爲選出CV積爲最大値者(實施例53 ), 並將各個CV積除以最大CV積之値。 -36- 200539205 (33) 進行上述各評價之結果,關於取得充分的靜電容量, 並且未發生供給管嘴阻塞,且熔射層亦未發生空隙,並且 具備良好之彎曲特性者,於表之評價欄中以「〇」表示。 此處所用之用語及說明爲使用於說明本發明的實施形 態,並非將本發明限定於此。本發明,若在其申請專利範 圍內,則只要不超脫其精神亦可容許任何的設計變更。 # 產業上之可利用性 本發明之電容器用電極片例如可使用作爲個人電腦和 行動電話等之通信機器所用之電容器的電極,尤其是作爲 電解電容器用陽極材料。 【圖式簡單說明】 圖1 A爲示出熔射金屬間化合物粉末及A1粉末時之熔 射方法之一例的槪略圖,圖1 B爲示出其他一例的槪略圖, Φ 圖1C爲示出再其他一例的槪略圖。 圖2爲示出本發明之一實施形態之電極片的剖面圖。 圖3爲圖2之電極片之熔射層(A1 — A1以外之閥作用金 屬之合金層)之剖面的掃描電子顯微鏡(SEM )照片。 ’ 圖4爲將圖3之視野的一部分再放大的SEM照片。 ‘ 圖5爲用以說明本發明之電極片中熔射層(Al — A1以 外之閥作用金屬之合金層)之微細構造的模型圖。 【主要元件符號說明】 -37- 200539205 (34) 1 :電極片 2 :鋁箔 3 :管嘴 4 :電漿流 5 :另一管 6 :混合粉 7 :金屬間化合物粉末i Evaluation II 〇〇〇〇〇cv product (&quot; FV / cm2) 1988 2011 1969 2053 dendritic arm space (m) τ— τ— τ— τ— thickness of the spray layer (// πι) § § § § Thickness of core material (// m) ο ο ο ο jj in a 1 § ® ^ I i ο τ— ο τ ~ ο τ— ρ τ— average particle size of Al powder (&quot; m) &lt; □ 14 -^ ^ 酲 伥 ϋ mmm collar loose mm ΙΟ UO φ m ^ * hl 酲 for φ collar Yunjun AI3Ti AI3Nb AI3Ta AI3Hf Example 59 Example 60 Example 60 Example 61 Example 62 -35- 200539205 (32) The CV product of each electrode sheet obtained by the above-mentioned processing was subjected to various evaluations described below. &lt; Evaluation of whether the raw material supply nozzle is clogged &gt; Regarding the supply nozzle of the raw material supply pipe which is blocked during the spraying and cannot perform powder spraying in a stable state, use "in the supply nozzle" in the evaluation column of the table. "A block has occurred". &lt; Evaluation of the presence or absence of voids &gt; A cross-sectional observation of the obtained electrode sheet, and noticeable voids on the spray coating layer, are indicated in the evaluation column of the table as "noticeable voids". &lt; Evaluation of Bending Characteristics &gt; When an electrode sheet is wound on the outer peripheral surface of an aluminum round rod with a diameter of 1 mm, those with cracks on the electrode sheet are indicated in the evaluation column of the table as "bad bending rigidity", and On the one hand, those where a gap occurs between the electrode sheet and the outer peripheral surface of the round bar are indicated in the evaluation column of the table as "the curvature during rewinding is large". &lt; Evaluation of electrostatic capacity &gt; Those who have not obtained sufficient electrostatic capacity are indicated by "low electrostatic capacity" in the evaluation column of the table. In addition, the "CV product ratio" in Tables 3 and 4 is the value obtained by dividing the CV product by the thickness of the spray layer (divided). In addition, the "CV product efficiency" in Table 5 is to select the person with the largest CV product (Example 53), and divide each CV product by the maximum CV product. -36- 200539205 (33) As a result of the above evaluations, those who have obtained sufficient electrostatic capacity, and have not blocked the supply nozzle, and have no voids in the spray layer, and have good bending characteristics, are evaluated on the table. It is indicated by "〇" in the column. The terms and descriptions used herein are used to describe the embodiments of the present invention, and the present invention is not limited thereto. If the present invention is within the scope of its patent application, any design change can be allowed as long as it does not exceed its spirit. # Industrial Applicability The capacitor electrode sheet of the present invention can be used, for example, as an electrode of a capacitor used in communication equipment such as a personal computer and a mobile phone, and particularly as an anode material for an electrolytic capacitor. [Brief description of the drawing] FIG. 1A is a schematic view showing an example of a spraying method when the intermetallic compound powder and A1 powder are shot, FIG. 1B is a schematic view showing another example, and Φ FIG. 1C is a view showing A sketch of another example. Fig. 2 is a sectional view showing an electrode sheet according to an embodiment of the present invention. Fig. 3 is a scanning electron microscope (SEM) photograph of a cross section of the spray layer (valve-acting metal alloy layer other than A1-A1) of the electrode sheet of Fig. 2. FIG. 4 is an enlarged SEM photograph of a part of the field of view of FIG. 3. ‘FIG. 5 is a model diagram for explaining the microstructure of the spray layer (the alloy layer of the valve action metal other than Al—A1) in the electrode sheet of the present invention. [Description of Symbols of Main Components] -37- 200539205 (34) 1: electrode sheet 2: aluminum foil 3: nozzle 4: plasma flow 5: another tube 6: mixed powder 7: intermetallic compound powder

8 : A1粉末 1 〇 :電極片 1 1 : A1-閥作用金屬之合金層 21 :單體相 22 :金屬間化合物相8: A1 powder 1 〇: Electrode sheet 1 1: A1-alloy layer of valve action metal 21: monomer phase 22: intermetallic compound phase

-38--38-

Claims (1)

200539205 (1) 十、申請專利範圍 1· 一種電容器用電極片之製造方法,其特徵爲經由 A1以外之閥作用金屬與A1之金屬間化合物粉末及A1粉末混 合的混合粉對鋁箔的表面熔射,則可於該鋁箔之至少單面 ,層合Al — A1以外之閥作用金屬的合金層。 2· —種電容器用電極片之製造方法,其特徵爲經由 A1以外之閥作用金屬與A1之金屬間化合物粉末及A1粉末分 • 別由相異位置供給並且將此兩粉末對鋁箔的表面熔射,則 可於該鋁箔之至少單面,層合A1 - A1以外之閥作用金屬的 合金層。 3 ·如申請專利範圍第1項或第2項之電容器用電極片 之製造方法,其中該熔射爲以電漿熔射進行。 4· 一種電容器用電極片之製造方法,其特徵爲經由 A1以外之閥作用金屬與Ai之金屬間化合物粉末及A1粉末分 另!1 S相異位置投入單一之電漿流並將該電漿流對鋁箔表面 ® 進行電漿熔射,則可於該鋁箔之至少單面,層合Al- A1以 外之閥作用金屬的合金層。 5·如申請專利範圍第1項、第2項或第4項之電容器用 電極片之製造方法,其爲在層合該Al - A1以外之閥作用金 屬的合金層後,進行軋製。 6. 如申請專利範圍第1項、第2項或第4項之電容器用 電極片之製造方法,其爲在層合該A1 一 A1以外之閥作用金 屬的合金層後,進行退火。 7. 如申請專利範圍第1項、第2項或第4項之電容器用 -39- 200539205 (2) 電極片之製造方法,其中該金屬間化合物粉末之平均粒徑 爲3〜100/z m ’該A1粉末之平均粒徑爲3〜15〇// m。 8·如申請專利範圍第丨項、第2項或第4項之電容器用 電極片之製造方法,其中該金屬間化合物粉末與該A1粉末 之熔射質量比’設定於金屬間化合物粉末/ A1粉末=0 · 1 〜5之範圍。 9.如申請專利範圍第1項、第2項或第4項之電容器用 ® 電極片之製造方法,其中該金屬間化合物粉末爲使用選自 Ti、Zr、Nb、Ta及Hf所成群之一種或二種以上之閥作用金 屬、與A1之金屬間化合物的粉末。 1 〇 ·如申請專利範圍第1項、第2項或第4項之電容器 用電極片之製造方法,其中該金屬間化合物粉末爲使用 Al3Zr粉末。 11·如申請專利範圍第1項、第2項或第4項之電容器 用電極片之製造方法,其中該鋁箔爲使用A1箔、或選自Ti ® 、Zr、Nb、Ta及Hf所成群之一種或二種以上之閥作用金 屬、與A1所構成的合金箔。 12· —種電容器用電極片,其特徵爲根據如申請專利 範圍第1項、第2項或第4項之製造方法所得的電容器用電 極片,該A1 - A1以外之閥作用金屬之合金層的微細組織爲 ' 以金屬間化合物相及A1之單體相所構成,且於該金屬間化 合物相之樹枝晶(樹枝狀結晶)中鄰近的二級枝的間隔爲 5 // m以下。 1 3 · —種電容器用電極片,其特徵爲於鋁箔所構成之 -40- 200539205 (3) 芯材的至少單面上被鋁合金所構成被覆層所層合一體化的 薄片中, 該被覆層之微細組織爲以A1以外之閥作用金屬與A1之 金屬間化合物之相及A1之單體相所構成。 14·如申請專利範圍第13項之電容器用電極片,其中 該金屬間化合物相之樹枝晶(樹枝狀結晶)中鄰近二級枝 的間隔爲5 // m以下。 Φ 1 5 ·如申請專利範圍第1 3項或第1 4項之電容器用電極 片,其中該芯材之厚度爲5〜200//m,該被覆層之厚度5 〜1 5 0 // m 16· —種電解電容器用陽極材料之製造方法,其特徵 爲將根據如申請專利範圍第1項、第2項或第4項之製造方 法所得之電極片予以蝕刻後,再進行化成處理令表面形成 介電體皮膜。 17· —種電解電容器用陽極材料,其爲根據如申請專 ® 利範圍第1 6項之製造方法所製造。 18· —種電解電容器,其特徵爲使用如申請專利範圍 第17項之陽極材料所構成。 19· 一種電解電容器用陽極材料之製造方法,其特徵 爲使用如申請專利範圍第1 2項之電極片予以蝕刻後,再進 ' 行化成處理令表面形成介電體皮膜。 2〇· —種電解電容器用陽極材料,其特徵爲使用根據 如申請專利範圍第1 9項之製造方法所製造。 2 1· —種電解電容器,其特徵爲使用如申請專利範圍 •41 - 200539205 (4) 第2 0項之陽極材料所構成。 22· —種電解電容器用陽極材料之製造方法,其特徵 爲將如申請專利範圍第1 3項或第1 4項之電極片予以鈾刻後 ,再進行化成處理令表面形成介電體皮膜。 23. 一種電解電谷器用陽極材料,其特徵爲根據如申 請專利範圍第22項之製造方法m製自。 24· —種電解電容器,其特徵爲使用如申請專利範圍 • 第23項之陽極材料所構成。200539205 (1) X. Application for patent scope 1. A method for manufacturing capacitor electrode pads, characterized in that the powder on the surface of aluminum foil is spray-sprayed through a mixed powder mixed with a valve action metal other than A1 and an intermetallic compound powder of A1 and A1 powder , At least one side of the aluminum foil may be laminated with an alloy layer of a valve-acting metal other than Al—A1. 2 · —A method for manufacturing a capacitor electrode sheet, which is characterized by passing a valve action metal other than A1, an intermetallic compound powder of A1, and an A1 powder separately from a different location and melting the two powders on the surface of an aluminum foil Can be laminated on at least one side of the aluminum foil, and an alloy layer of a valve action metal other than A1-A1 can be laminated. 3. The method for manufacturing the electrode sheet for capacitors according to item 1 or item 2 of the scope of patent application, wherein the spraying is performed by plasma spraying. 4. A method for manufacturing a capacitor electrode sheet, which is characterized in that a valve acting metal other than A1 and Ai intermetallic compound powder and A1 powder are separated. If a single plasma flow is placed at 1 S and the plasma flow is plasma-sprayed on the aluminum foil surface®, an alloy layer of a valve action metal other than Al-A1 can be laminated on at least one side of the aluminum foil . 5. The method for manufacturing an electrode sheet for a capacitor according to item 1, 2, or 4 of the scope of the patent application, which comprises rolling an alloy layer of a valve action metal other than Al-A1. 6. If the method of manufacturing the electrode pad for capacitors according to item 1, 2, or 4 of the scope of patent application is to anneal the alloy layer of the valve-acting metal other than A1 to A1. 7. The method for manufacturing capacitors for the first, second or fourth item of the scope of application for patents -39- 200539205 (2) The manufacturing method of electrode pads, wherein the average particle diameter of the intermetallic compound powder is 3 ~ 100 / zm ′ The average particle diameter of the A1 powder is 3 to 15 // m. 8. If the method of manufacturing an electrode sheet for a capacitor according to item 丨, item 2 or item 4 of the scope of the patent application, wherein the spray mass ratio of the intermetallic compound powder to the A1 powder is set to intermetallic compound powder / A1 Powder = 0 · 1 to 5 range. 9. The method for manufacturing a ® electrode sheet for a capacitor according to item 1, 2, or 4, in which the intermetallic compound powder is a group selected from the group consisting of Ti, Zr, Nb, Ta, and Hf Powder of one or more valve-acting metals and intermetallic compounds with A1. 1 〇 The method of manufacturing an electrode sheet for a capacitor according to item 1, 2, or 4 of the scope of patent application, wherein the intermetallic compound powder is Al3Zr powder. 11. The method for manufacturing a capacitor electrode sheet according to item 1, 2, or 4 of the scope of the patent application, wherein the aluminum foil is a group using A1 foil or selected from the group consisting of Ti ®, Zr, Nb, Ta, and Hf One or two or more valve-acting metals and an alloy foil composed of A1. 12. · A capacitor electrode sheet, which is characterized by a capacitor electrode sheet obtained by a manufacturing method such as the first, second or fourth item of the patent application scope, and an alloy layer of a valve action metal other than A1-A1 The microstructure is composed of an intermetallic compound phase and a monomer phase of A1, and the interval between adjacent secondary branches in the dendritic crystal (dendritic crystal) of the intermetallic compound phase is 5 // m or less. 1 3 · An electrode sheet for a capacitor, which is characterized in that -40-200539205 made of aluminum foil (3) at least one side of a core material is laminated and integrated with a coating layer made of an aluminum alloy, and the coating is The fine structure of the layer is composed of a phase of a valve action metal other than A1 and an intermetallic compound phase of A1 and a monomer phase of A1. 14. The capacitor electrode sheet according to item 13 of the scope of patent application, wherein the interval between adjacent secondary branches in the dendrite (dendritic crystal) of the intermetallic compound phase is 5 // m or less. Φ 1 5 · As for the electrode pads for capacitors No. 13 or No. 14 in the scope of patent application, the thickness of the core material is 5 ~ 200 // m, and the thickness of the coating layer is 5 ~ 1 5 0 // m 16. · A method for manufacturing an anode material for an electrolytic capacitor, which is characterized in that the electrode sheet obtained according to the manufacturing method of the first, second or fourth item of the patent application scope is etched, and then the surface is chemically treated to form a surface. A dielectric film is formed. 17. · An anode material for electrolytic capacitors, which is manufactured according to the manufacturing method according to item 16 of the patent application. 18. A type of electrolytic capacitor, which is characterized by using an anode material such as the scope of patent application No. 17. 19. A method of manufacturing an anode material for an electrolytic capacitor, which is characterized in that an electrode sheet such as the item No. 12 in the patent application scope is used for etching, and then a chemical conversion treatment is performed to form a dielectric film on the surface. 2 ·· An anode material for an electrolytic capacitor, characterized in that it is manufactured using a manufacturing method according to item 19 of the scope of patent application. 2 1 · —A kind of electrolytic capacitor, which is characterized by using anode materials such as the scope of patent application • 41-200539205 (4) Item 20. 22 · —A method for manufacturing an anode material for electrolytic capacitors, characterized in that the electrode sheet such as item 13 or item 14 of the scope of patent application is engraved with uranium, and then chemically treated to form a dielectric film on the surface. 23. An anode material for an electrolytic valley device, characterized in that it is manufactured in accordance with a manufacturing method m as set forth in the patent application No. 22. 24 · —An electrolytic capacitor characterized by using an anode material as described in the scope of patent application • Item 23. -42--42-
TW94109139A 2004-03-24 2005-03-24 Electrode sheet for capacitors, method for manufacturing the same, and electrolytic capacitor TW200539205A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004086467 2004-03-24
US55689204P 2004-03-29 2004-03-29

Publications (1)

Publication Number Publication Date
TW200539205A true TW200539205A (en) 2005-12-01

Family

ID=37879399

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94109139A TW200539205A (en) 2004-03-24 2005-03-24 Electrode sheet for capacitors, method for manufacturing the same, and electrolytic capacitor

Country Status (2)

Country Link
CN (1) CN1934664A (en)
TW (1) TW200539205A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102222611B1 (en) * 2015-07-10 2021-03-05 삼성전기주식회사 Method for forming exterior electrode of passive device and passive device having exterior electrode
CN110379998B (en) * 2019-07-05 2021-02-26 联动天翼新能源有限公司 Electrode slice beating softening device

Also Published As

Publication number Publication date
CN1934664A (en) 2007-03-21

Similar Documents

Publication Publication Date Title
JP5769528B2 (en) Electrode material for aluminum electrolytic capacitor and method for producing the same
TWI273615B (en) Electrode sheet for capacitors, method of manufacturing the same, and electrolytic capacitor
WO2010125778A1 (en) Capacitor electrode body, method for manufacturing capacitor electrode body, capacitor, and method for manufacturing capacitor
TW201135770A (en) Electrode material for aluminum electrolytic capacitor and production method therefor
JP2007138236A (en) Electrode sheet for capacitor and method of manufacturing the same
WO2014112499A1 (en) Method for producing electrode material for aluminum electrolytic capacitors, and electrode material for aluminum electrolytic capacitors
CN109036852B (en) Three-dimensional porous aluminum electrode foil and preparation method thereof
JP2005072462A (en) Capacitor electrode sheet, its manufacturing method, manufacturing apparatus, and electrolytic capacitor
WO2005022568A1 (en) Sheet for capacitor electrodes, method and apparatus for manufacturing the same, and electrolytic acpacitors
JP6073255B2 (en) Method for producing electrode material for aluminum electrolytic capacitor
TW200539205A (en) Electrode sheet for capacitors, method for manufacturing the same, and electrolytic capacitor
JP4665866B2 (en) Manufacturing method of valve metal composite electrode foil
JP2008117985A (en) Method of manufacturing valve metal composite foil
JP5053702B2 (en) Capacitor electrode sheet and manufacturing method thereof
US20080297983A1 (en) Electrode Sheet For Capacitors, Method For Manufacturing The Same, And Electrolytic Capacitor
JP2006302917A (en) Electrode sheet for capacitor, method for manufacturing the same, and electrolytic capacitor
JP7317852B2 (en) METHOD FOR MANUFACTURING ELECTRODE MATERIAL FOR ALUMINUM ELECTROLYTIC CAPACITOR
JP2008047755A (en) Manufacturing method of valve metal composite electrode foil
JP5573362B2 (en) Electrode foil, capacitor using this electrode foil, and method for producing electrode foil
JP2008252019A (en) Method for manufacturing thin-film capacitor
JP2009049376A (en) Electrode foil for capacitor
JP2008021761A (en) Bulb metal composite electrode foil and its manufacturing method
TWI837192B (en) Method for manufacturing electrode materials for aluminum electrolytic capacitors
JP2012124220A (en) Method of manufacturing composite material for lead frame
JPH06344497A (en) Metallic composite material and production thereof