JP2012124220A - Method of manufacturing composite material for lead frame - Google Patents

Method of manufacturing composite material for lead frame Download PDF

Info

Publication number
JP2012124220A
JP2012124220A JP2010271636A JP2010271636A JP2012124220A JP 2012124220 A JP2012124220 A JP 2012124220A JP 2010271636 A JP2010271636 A JP 2010271636A JP 2010271636 A JP2010271636 A JP 2010271636A JP 2012124220 A JP2012124220 A JP 2012124220A
Authority
JP
Japan
Prior art keywords
thickness
composite material
rolling
cross
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010271636A
Other languages
Japanese (ja)
Inventor
Kazuma Kuroki
一真 黒木
Tetsuya Tokumitsu
哲哉 徳光
Masayuki Hosono
眞行 細野
Yukio Suzuki
幸夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2010271636A priority Critical patent/JP2012124220A/en
Publication of JP2012124220A publication Critical patent/JP2012124220A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a composite material for lead frame which allows for provision of a composite material having less variation in thickness and processing at a lower cost.SOLUTION: When manufacturing a composite material 1 composed by sequentially laminating three layers of copper or a copper alloy 2, titanium or a titanium alloy 3, and copper or a copper alloy 2, rolling reduction ratio of bonded clad rolling is set at 60% or higher, a rolling reduction ratio of finish rolling to final board thickness is set at 5% or lower, and cold bonded clad rolling and finish rolling are performed in the atmosphere.

Description

本発明は、半導体デバイスに使用されるリードフレーム用複合材の製造方法に関するものである。   The present invention relates to a method for manufacturing a composite material for lead frames used in semiconductor devices.

近年、半導体デバイスの高集積化、多ピン化、小型化、また、電子機器の小型・軽量化に伴い、高密度の実装基板が要求されるようになっている。   In recent years, high-density mounting substrates have been demanded as semiconductor devices are highly integrated, multi-pinned, downsized, and electronic devices are downsized and lightened.

半導体チップとリードフレームとの接続方法も、従来のワイヤーボンディングよりも組立工程、パッケージサイズ、コスト等を小とすることが可能なバンプ付き金属リードに関する研究・開発が行われている。この手法では、リードの先端に突起するバンプを形成し、このバンプを介して半導体チップと接合することにより、パッケージの薄型化が可能となる。   As for the method for connecting the semiconductor chip and the lead frame, research and development have been conducted on bumped metal leads capable of reducing the assembly process, package size, cost, and the like as compared with conventional wire bonding. In this method, a bump that protrudes from the tip of a lead is formed, and the package can be thinned by bonding to the semiconductor chip via this bump.

バンプ形成の方式の一つとして、化学エッチングで加工するクラッド板内部にエッチングストップ層を形成した3層クラッド板を、リードフレーム製造用の金属材料として使用することが試みられている。   As one of the bump forming methods, an attempt has been made to use a three-layer clad plate in which an etching stop layer is formed inside a clad plate processed by chemical etching as a metal material for producing a lead frame.

エッチングストップ層として、アルミニウムや鉄系合金、チタン等を用いた3層クラッド板によるリードフレームの製造方法がある。複合材は、冷間圧延により作製する方法があるが、それ以外には、例えば特許文献1に開示される方法では、真空雰囲気下で低圧下率で冷間圧延する方法により製造されている。   As an etching stop layer, there is a method for manufacturing a lead frame using a three-layer clad plate using aluminum, an iron-based alloy, titanium, or the like. The composite material is produced by cold rolling, but other than that, for example, in the method disclosed in Patent Document 1, the composite material is produced by a method of cold rolling at a low pressure under a vacuum atmosphere.

さらに、リードフレームを製造する他の方法として金属薄膜を蒸着法によって被着する方法がある。   Furthermore, as another method for manufacturing a lead frame, there is a method of depositing a metal thin film by a vapor deposition method.

国際公開第00/019533号International Publication No. 00/019533 特開2010−103305号公報JP 2010-103305 A 特開2001−251090号公報JP 2001-251090 A 特開平11−126928号公報JP-A-11-126828

しかし、これらを冷間圧延で製造すると、通常、クラッド圧延後に材料を軟質化するための焼鈍工程を必要とするが、焼鈍熱処理により銅層とチタン層の接合界面に、硬くて脆い金属間化合物層が形成され、剥離などの不具合が生じるおそれがある。   However, when these are manufactured by cold rolling, usually an annealing process is required to soften the material after clad rolling, but a hard and brittle intermetallic compound is formed at the bonding interface between the copper layer and the titanium layer by annealing heat treatment. Layers are formed, and problems such as peeling may occur.

また、真空圧延によってエッチングストップ層(チタンまたはチタン合金)を含む3層クラッド板を製造する場合(特許文献1の方法)、チタンの酸化を防ぐために、圧延時における雰囲気の酸素濃度を下げなければならない。特にチタンは酸化しやすい金属であるため、より真空度を高くした環境で圧延を行わなければならない。そのため、クラッド圧延加工にかかる設備およびランニングコスト、また真空引きに必要な時間など、工程コストが大幅に増大するという問題がある。   Further, when a three-layer clad plate including an etching stop layer (titanium or a titanium alloy) is manufactured by vacuum rolling (method of Patent Document 1), in order to prevent oxidation of titanium, the oxygen concentration in the atmosphere during rolling must be reduced. Don't be. In particular, since titanium is a metal that easily oxidizes, rolling must be performed in an environment with a higher degree of vacuum. Therefore, there is a problem that process costs such as equipment and running costs for clad rolling processing, and time required for evacuation increase significantly.

また、金属被膜を蒸着する方法による積層化も、蒸着速度を速くすると膜質が緻密でなくなり薄膜中に孔が発生し、蒸着速度を遅くすると製造にかかる時間が増えて作業性が悪化する。また、この手法においても設備コストおよび消耗品などのランニングコストが高額となってしまう問題がある。   Also, in the lamination by the method of vapor-depositing a metal film, if the vapor deposition rate is increased, the film quality is not dense and pores are generated in the thin film, and if the vapor deposition rate is decreased, the manufacturing time increases and the workability deteriorates. In addition, this method also has a problem that equipment costs and running costs such as consumables become high.

本発明は上記課題を解決し、より低コストで加工でき、板厚変動の少ない複合材提供が可能となるリードフレーム用複合材の製造方法を提供することを目的とするものである。   An object of the present invention is to solve the above-mentioned problems, and to provide a method for manufacturing a lead frame composite material that can be processed at a lower cost and can provide a composite material with less variation in plate thickness.

上記目的を達成するために本発明は、銅または銅合金、チタンまたはチタン合金、銅または銅合金の3層を順次積層し構成される複合材を製造する際、貼り合せクラッド圧延の圧下率を60%以上とすると共に、最終板厚への仕上圧延の圧下率を5%以下とし、大気中にて冷間で前記貼り合せクラッド圧延と前記仕上圧延とを行うリードフレーム用複合材の製造方法である。   In order to achieve the above object, the present invention reduces the rolling reduction ratio of bonded clad rolling when a composite material comprising three layers of copper or copper alloy, titanium or titanium alloy, and copper or copper alloy is sequentially laminated. A method for producing a composite material for a lead frame in which the reduction ratio of finish rolling to the final thickness is 5% or less, and the laminating clad rolling and the finish rolling are performed in the cold in the atmosphere. It is.

前記貼り合せクラッド圧延前のチタンまたはチタン合金の断面硬度を、120Hv以下とし、前記貼り合せクラッド圧延前の銅または銅合金の断面硬度を、100Hv以上としてもよい。   The cross-sectional hardness of titanium or titanium alloy before the bonding clad rolling may be 120 Hv or less, and the cross-sectional hardness of copper or copper alloy before the bonding clad rolling may be 100 Hv or more.

本発明によれば、より低コストで加工でき、板厚変動の少ない複合材の提供が可能となるリードフレーム用複合材の製造方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the composite material for lead frames which can be processed at low cost and can provide the composite material with few board | plate thickness fluctuation | variations can be provided.

リードフレーム用複合材の構成を示す横断面図である。It is a cross-sectional view which shows the structure of the composite material for lead frames. チタン層の板厚変動の評価方法を説明する図である。It is a figure explaining the evaluation method of the board thickness fluctuation | variation of a titanium layer.

以下、本発明の実施の形態を添付図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1は、本発明のリードフレーム用複合材の製造方法により製造される、リードフレーム用複合材の横断面図である。   FIG. 1 is a cross-sectional view of a lead frame composite material manufactured by the lead frame composite material manufacturing method of the present invention.

図1に示すように、本発明に係るリードフレーム用複合材1は、銅または銅合金2と、チタンまたはチタン合金3と、銅または銅合金2を順に積層した3層構造からなる。   As shown in FIG. 1, the leadframe composite 1 according to the present invention has a three-layer structure in which copper or copper alloy 2, titanium or titanium alloy 3, and copper or copper alloy 2 are sequentially laminated.

素材として使用する銅または銅合金2は、無酸素銅(C1020)以外に、リードフレーム用銅合金(C194など)も使用可能である。また、チタンまたはチタン合金3は、加工性を考慮して純チタン系(1種、2種)が望ましい。   As the copper or copper alloy 2 used as the material, lead frame copper alloy (C194 or the like) can be used in addition to oxygen-free copper (C1020). The titanium or titanium alloy 3 is preferably pure titanium (1 type, 2 type) in consideration of workability.

本発明のリードフレーム用複合材の製造方法では、まずコイル状に巻き取られている純銅条および純チタン条および純銅条の3つのコイルをそれぞれ送り出し装置にセットする。   In the method for manufacturing a lead frame composite material of the present invention, first, three coils of a pure copper strip, a pure titanium strip, and a pure copper strip wound in a coil shape are respectively set in a feeding device.

コイルから送り出された材料(銅およびチタン)は、接合表面を洗浄するための洗浄槽を通過することで、接合面表面の油分や異物を除去され、さらにブラッシング槽を通過することで、接合面表面の酸化膜を削り取って活性面を露出させると共に接合面表面を硬質化させる。   The material (copper and titanium) sent out from the coil passes through the cleaning tank for cleaning the bonding surface, oil and foreign matter on the bonding surface are removed, and further passes through the brushing tank to join the bonding surface. The oxide film on the surface is scraped to expose the active surface and harden the bonding surface.

その直後、3層の金属条は、クラッド圧延ミルにて冷間で貼り合せ圧延され、各金属層同士の接合が完了する。   Immediately thereafter, the three metal strips are cold-bonded and rolled in a clad rolling mill, and the joining of the metal layers is completed.

接合完了後は必要に応じて、銅/チタン接合界面に金属化合物層を形成しない程度に熱処理を実施し、各金属層同士の相互拡散を促進して接合強度を高めることができる。   After completion of the bonding, if necessary, heat treatment can be performed to such an extent that a metal compound layer is not formed at the copper / titanium bonding interface, and mutual diffusion between the metal layers can be promoted to increase the bonding strength.

本発明のリードフレーム用複合材の製造方法では、クラッド圧延(貼り合せ圧延)の圧下率(圧延前後の板厚減少率)は60%以上であることが望ましい。圧下率が60%より小さくなると、各金属層間の接合が悪化し、剥離が生じる。また、リードフレーム用複合材の最終板厚を一定とするためにチタンまたはチタン合金条の投入板厚が薄くされると、前処理であるブラッシングにより破断しやすくなる。さらにチタンまたはチタン合金はエッチングストップ層であるため、必要以上に厚くする必要がなく、投入板厚の増加は材料コストの増大につながる。   In the method for producing a composite material for a lead frame of the present invention, it is desirable that the rolling reduction (sheet thickness reduction rate before and after rolling) of clad rolling (bonding rolling) is 60% or more. When the rolling reduction is less than 60%, the bonding between the metal layers deteriorates and peeling occurs. In addition, if the input plate thickness of titanium or a titanium alloy strip is made thin in order to make the final plate thickness of the lead frame composite material constant, the lead frame composite material is likely to be broken by the pretreatment brushing. Furthermore, since titanium or a titanium alloy is an etching stop layer, it is not necessary to make it thicker than necessary, and an increase in the input plate thickness leads to an increase in material cost.

また、クラッド貼り合せ圧延後に所定の板厚まで圧下(仕上圧延)する際、その圧下率は5%以下であることが望ましい。5%より大きくなると、クラッド貼り合せ圧延時に発生したリップル(板厚比の変動による金属層のくびれ)の度合いがより顕著となり、組立時にエッチング後の表面平坦度および粗さが悪化して、実用的でなくなる。   Further, when rolling down (finish rolling) to a predetermined thickness after clad laminating rolling, the rolling reduction is preferably 5% or less. If it exceeds 5%, the degree of ripple (necking of the metal layer due to fluctuations in the sheet thickness ratio) generated during clad laminating rolling becomes more prominent, and the surface flatness and roughness after etching deteriorate during assembly. It ’s not right.

上述のリップルは、金属層間の機械的性質(硬さなど)の差を原因として発生する場合もある。   The ripple described above may occur due to a difference in mechanical properties (hardness and the like) between metal layers.

そこで本発明のリードフレーム用複合材の製造方法においては、クラッド圧延前の銅または銅合金の断面硬度は100Hv以上とし、クラッド圧延前のチタンまたはチタン合金の断面硬度は120Hv以下とすることが望ましい。銅とチタンとの硬度差が大きくなると、両者の変形抵抗差が広がり、リップルが発生しやすい。   Therefore, in the method for manufacturing a lead frame composite material of the present invention, it is desirable that the cross-sectional hardness of copper or copper alloy before clad rolling is 100 Hv or more, and the cross-sectional hardness of titanium or titanium alloy before clad rolling is 120 Hv or less. . When the difference in hardness between copper and titanium increases, the difference in deformation resistance between the two increases and ripples are likely to occur.

以上要するに、本発明のリードフレーム用複合材の製造方法によれば、貼り合わせ圧延時の圧下率を60%以上とし、仕上げ圧延時の圧下率を5%以下とすることで、チタン層(エッチングストップ層)に発生するリップルなどの板厚変動を抑制できる。また本発明によれば、冷間圧延にて複合材を作製するため、より低コストでリードフレーム用複合材を製造できる。   In short, according to the manufacturing method of the composite material for a lead frame of the present invention, the reduction rate at the time of laminating rolling is set to 60% or more, and the reduction rate at the time of finish rolling is set to 5% or less. It is possible to suppress plate thickness fluctuations such as ripples generated in the stop layer. Further, according to the present invention, since the composite material is produced by cold rolling, the lead frame composite material can be produced at a lower cost.

以下に、本発明の実施例について説明する。   Examples of the present invention will be described below.

[実施例1]
板厚0.23mmのコイル状純銅板(断面硬度140Hv)、板厚0.046mmのコイル状純チタン板(断面硬度110Hv)、板厚0.37mmの純銅板(断面硬度130Hv)を用いた合計3層について、それぞれの接合面に対して洗浄およびブラッシングを行い、清浄な活性面を露出させると共に接合面表面を硬質化させて3層を重ね合わせ、大気中で圧延ロールで貼り合せ圧延(冷間圧延)を行った。貼り合せ後に得られた複合材の厚さは、0.129mmであった。
[Example 1]
Total using a coiled pure copper plate having a thickness of 0.23 mm (cross section hardness 140 Hv), a coiled pure titanium plate having a thickness of 0.046 mm (cross section hardness 110 Hv), and a pure copper plate having a thickness of 0.37 mm (cross section hardness 130 Hv) For the three layers, cleaning and brushing are performed on each joint surface to expose a clean active surface and harden the surface of the joint surface to superimpose the three layers. Cold rolling). The thickness of the composite material obtained after bonding was 0.129 mm.

得られた複合材について仕上圧延を行い、板厚0.125mmの複合材を得た。   The obtained composite material was finish-rolled to obtain a composite material having a thickness of 0.125 mm.

[実施例2]
板厚0.46mmのコイル状純銅板(断面硬度135Hv)、板厚0.09mmのコイル状純チタン板(断面硬度105Hv)、板厚0.73mmの純銅板(断面硬度125Hv)を用いた合計3層について、それぞれの接合面に対して洗浄およびブラッシングを行い、清浄な活性面を露出させると共に接合面表面を硬質化させて3層を重ね合わせ、大気中で圧延ロールで貼り合せ圧延(冷間圧延)を行った。貼り合せ後に得られた複合材の厚さは、0.128mmであった。
[Example 2]
Total using a coiled pure copper plate having a plate thickness of 0.46 mm (cross section hardness of 135 Hv), a coiled pure titanium plate having a thickness of 0.09 mm (cross section hardness of 105 Hv), and a pure copper plate having a plate thickness of 0.73 mm (cross section hardness of 125 Hv) For the three layers, cleaning and brushing are performed on each joint surface to expose a clean active surface and harden the surface of the joint surface to superimpose the three layers. Cold rolling). The thickness of the composite material obtained after bonding was 0.128 mm.

得られた複合材について仕上圧延を行い、板厚0.125mmの複合材を得た。   The obtained composite material was finish-rolled to obtain a composite material having a thickness of 0.125 mm.

[実施例3]
板厚0.31mmのコイル状純銅板(断面硬度110Hv)、板厚0.06mmのコイル状純チタン板(断面硬度90Hv)、板厚0.5mmの純銅板(断面硬度120Hv)を用いた合計3層について、それぞれの接合面に対して洗浄およびブラッシングを行い、清浄な活性面を露出させると共に接合面表面を硬質化させて3層を重ね合わせ、大気中で圧延ロールで貼り合せ圧延(冷間圧延)を行った。貼り合せ後に得られた複合材の厚さは、0.13mmであった。
[Example 3]
Total using a coiled pure copper plate having a thickness of 0.31 mm (cross section hardness 110 Hv), a coiled pure titanium plate having a thickness of 0.06 mm (cross section hardness 90 Hv), and a pure copper plate having a thickness of 0.5 mm (cross section hardness 120 Hv) For the three layers, cleaning and brushing are performed on each joint surface to expose a clean active surface and harden the surface of the joint surface to superimpose the three layers. Cold rolling). The thickness of the composite material obtained after bonding was 0.13 mm.

得られた複合材について仕上圧延を行い、板厚0.125mmの複合材を得た。   The obtained composite material was finish-rolled to obtain a composite material having a thickness of 0.125 mm.

[実施例4]
板厚0.2mmのコイル状純銅板(断面硬度120Hv)、板厚0.04mmのコイル状純チタン板(断面硬度94Hv)、板厚0.32mmの純銅板(断面硬度120Hv)を用いた合計3層について、それぞれの接合面に対して洗浄およびブラッシングを行い、清浄な活性面を露出させると共に接合面表面を硬質化させて3層を重ね合わせ、大気中で圧延ロールで貼り合せ圧延(冷間圧延)を行った。貼り合せ後に得られた複合材の厚さは、0.13mmであった。
[Example 4]
Total using a coiled pure copper plate having a thickness of 0.2 mm (cross section hardness 120 Hv), a coiled pure titanium plate having a thickness of 0.04 mm (cross section hardness 94 Hv), and a pure copper plate having a thickness of 0.32 mm (cross section hardness 120 Hv) For the three layers, cleaning and brushing are performed on each joint surface to expose a clean active surface and harden the surface of the joint surface to superimpose the three layers. Cold rolling). The thickness of the composite material obtained after bonding was 0.13 mm.

得られた複合材について仕上圧延を行い、板厚0.125mmの複合材を得た。   The obtained composite material was finish-rolled to obtain a composite material having a thickness of 0.125 mm.

[実施例5]
板厚0.27mmのコイル状純銅板(断面硬度112Hv)、板厚0.05mmのコイル状純チタン板(断面硬度108Hv)、板厚0.42mmの純銅板(断面硬度113Hv)を用いた合計3層について、それぞれの接合面に対して洗浄およびブラッシングを行い、清浄な活性面を露出させると共に接合面表面を硬質化させて3層を重ね合わせ、大気中で圧延ロールで貼り合せ圧延(冷間圧延)を行った。貼り合せ後に得られた複合材の厚さは、0.126mmであった。
[Example 5]
Total using a coiled pure copper plate having a thickness of 0.27 mm (cross section hardness 112 Hv), a coiled pure titanium plate having a thickness of 0.05 mm (cross section hardness 108 Hv), and a pure copper plate having a thickness of 0.42 mm (cross section hardness 113 Hv) For the three layers, cleaning and brushing are performed on each joint surface to expose a clean active surface and harden the surface of the joint surface to superimpose the three layers. Cold rolling). The thickness of the composite material obtained after bonding was 0.126 mm.

得られた複合材について仕上圧延を行い、板厚0.125mmの複合材を得た。   The obtained composite material was finish-rolled to obtain a composite material having a thickness of 0.125 mm.

[実施例6]
板厚0.21mmのコイル状純銅板(断面硬度106Hv)、板厚0.04mmのコイル状純チタン板(断面硬度98Hv)、板厚0.34mmの純銅板(断面硬度118Hv)を用いた合計3層について、それぞれの接合面に対して洗浄およびブラッシングを行い、清浄な活性面を露出させると共に接合面表面を硬質化させて3層を重ね合わせ、大気中で圧延ロールで貼り合せ圧延(冷間圧延)を行った。貼り合せ後に得られた複合材の厚さは、0.125mmであった(つまり、仕上圧延を行う必要がなかった)。
[Example 6]
Total using a coiled pure copper plate having a thickness of 0.21 mm (cross section hardness of 106 Hv), a coiled pure titanium plate having a thickness of 0.04 mm (cross section hardness of 98 Hv), and a pure copper plate having a thickness of 0.34 mm (cross section hardness of 118 Hv) For the three layers, cleaning and brushing are performed on each joint surface to expose a clean active surface and harden the surface of the joint surface to superimpose the three layers. Cold rolling). The thickness of the composite material obtained after bonding was 0.125 mm (that is, it was not necessary to perform finish rolling).

[比較例1]
板厚0.13mmのコイル状純銅板(断面硬度120Hv)、板厚0.03mmのコイル状純チタン板(断面硬度110Hv)、板厚0.2mmの純銅板(断面硬度105Hv)を用いた合計3層について、それぞれの接合面に対して洗浄およびブラッシングを行い、清浄な活性面を露出させると共に接合面表面を硬質化させて3層を重ね合わせ、大気中で圧延ロールで貼り合せ圧延(冷間圧延)を行った。貼り合せ後に得られた複合材の厚さは、0.18mmであった。
[Comparative Example 1]
Total using a coiled pure copper plate having a thickness of 0.13 mm (cross section hardness 120 Hv), a coiled pure titanium plate having a thickness of 0.03 mm (cross section hardness 110 Hv), and a pure copper plate having a thickness of 0.2 mm (cross section hardness 105 Hv) For the three layers, cleaning and brushing are performed on each joint surface to expose a clean active surface and harden the surface of the joint surface to superimpose the three layers. Cold rolling). The thickness of the composite material obtained after bonding was 0.18 mm.

得られた複合材について板厚0.125mm狙いで仕上圧延を行い、板厚0.125mmの複合材を得た。   The obtained composite material was finish-rolled aiming at a plate thickness of 0.125 mm to obtain a composite material having a plate thickness of 0.125 mm.

[比較例2]
板厚0.13mmのコイル状純銅板(断面硬度118Hv)、板厚0.03mmのコイル状純チタン板(断面硬度112Hv)、板厚0.21mmの純銅板(断面硬度110Hv)を用いた合計3層について、それぞれの接合面に対して洗浄およびブラッシングを行い、清浄な活性面を露出させると共に接合面表面を硬質化させて3層を重ね合わせ、大気中で圧延ロールで貼り合せ圧延(冷間圧延)を行った。貼り合せ後に得られた複合材の厚さは、0.17mmであった。
[Comparative Example 2]
Total using a coiled pure copper plate having a thickness of 0.13 mm (cross section hardness 118 Hv), a coiled pure titanium plate having a thickness of 0.03 mm (cross section hardness 112 Hv), and a pure copper plate having a thickness of 0.21 mm (cross section hardness 110 Hv) For the three layers, cleaning and brushing are performed on each joint surface to expose a clean active surface and harden the surface of the joint surface to superimpose the three layers. Cold rolling). The thickness of the composite material obtained after bonding was 0.17 mm.

得られた複合材について仕上圧延を行い、板厚0.125mmの複合材を得た。   The obtained composite material was finish-rolled to obtain a composite material having a thickness of 0.125 mm.

[比較例3]
板厚0.26mmのコイル状純銅板(断面硬度112Hv)、板厚0.05mmのコイル状純チタン板(断面硬度103Hv)、板厚0.42mmの純銅板(断面硬度118Hv)を用いた合計3層について、それぞれの接合面に対して洗浄およびブラッシングを行い、清浄な活性面を露出させると共に接合面表面を硬質化させて3層を重ね合わせ、大気中で圧延ロールで貼り合せ圧延(冷間圧延)を行った。貼り合せ後に得られた複合材の厚さは、0.147mmであった。
[Comparative Example 3]
Total using a coiled pure copper plate having a thickness of 0.26 mm (cross section hardness 112 Hv), a coiled pure titanium plate having a thickness of 0.05 mm (cross section hardness 103 Hv), and a pure copper plate having a thickness of 0.42 mm (cross section hardness 118 Hv) For the three layers, cleaning and brushing are performed on each joint surface to expose a clean active surface and harden the surface of the joint surface to superimpose the three layers. Cold rolling). The thickness of the composite material obtained after bonding was 0.147 mm.

得られた複合材について仕上圧延を行い、板厚0.125mmの複合材を得た。   The obtained composite material was finish-rolled to obtain a composite material having a thickness of 0.125 mm.

[比較例4]
板厚0.34mmのコイル状純銅板(断面硬度110Hv)、板厚0.07mmのコイル状純チタン板(断面硬度111Hv)、板厚0.54mmの純銅板(断面硬度126Hv)を用いた合計3層について、それぞれの接合面に対して洗浄およびブラッシングを行い、清浄な活性面を露出させると共に接合面表面を硬質化させて3層を重ね合わせ、大気中で圧延ロールで貼り合せ圧延(冷間圧延)を行った。貼り合せ後に得られた複合材の厚さは、0.14mmであった。
[Comparative Example 4]
Total using a coiled pure copper plate having a plate thickness of 0.34 mm (cross section hardness 110 Hv), a coiled pure titanium plate having a plate thickness of 0.07 mm (cross section hardness 111 Hv), and a pure copper plate having a plate thickness of 0.54 mm (cross section hardness 126 Hv) For the three layers, cleaning and brushing are performed on each joint surface to expose a clean active surface and harden the surface of the joint surface to superimpose the three layers. Cold rolling). The thickness of the composite material obtained after bonding was 0.14 mm.

得られた複合材について仕上圧延を行い、板厚0.125mmの複合材を得た。   The obtained composite material was finish-rolled to obtain a composite material having a thickness of 0.125 mm.

[比較例5]
板厚0.38mmのコイル状純銅板(断面硬度62Hv)、板厚0.075mmのコイル状純チタン板(断面硬度110Hv)、板厚0.6mmの純銅板(断面硬度80Hv)を用いた合計3層について、それぞれの接合面に対して洗浄およびブラッシングを行い、清浄な活性面を露出させると共に接合面表面を硬質化させて3層を重ね合わせ、大気中で圧延ロールで貼り合せ圧延(冷間圧延)を行った。貼り合せ後に得られた複合材の厚さは、0.126mmであった。
[Comparative Example 5]
Total using a coiled pure copper plate having a thickness of 0.38 mm (cross section hardness 62 Hv), a coiled pure titanium plate having a thickness of 0.075 mm (cross section hardness 110 Hv), and a pure copper plate having a thickness of 0.6 mm (cross section hardness 80 Hv) For the three layers, cleaning and brushing are performed on each joint surface to expose a clean active surface and harden the surface of the joint surface to superimpose the three layers. Cold rolling). The thickness of the composite material obtained after bonding was 0.126 mm.

得られた複合材について仕上圧延を行い、板厚0.125mmの複合材を得た。   The obtained composite material was finish-rolled to obtain a composite material having a thickness of 0.125 mm.

[比較例6]
板厚0.26mmのコイル状純銅板(断面硬度75Hv)、板厚0.05mmのコイル状純チタン板(断面硬度112Hv)、板厚0.41mmの純銅板(断面硬度105Hv)を用いた合計3層について、それぞれの接合面に対して洗浄およびブラッシングを行い、清浄な活性面を露出させると共に接合面表面を硬質化させて3層を重ね合わせ、大気中で圧延ロールで貼り合せ圧延(冷間圧延)を行った。貼り合せ後に得られた複合材の厚さは、0.13mmであった。
[Comparative Example 6]
Total using a coiled pure copper plate having a thickness of 0.26 mm (cross section hardness 75 Hv), a coiled pure titanium plate having a thickness of 0.05 mm (cross section hardness 112 Hv), and a pure copper plate having a thickness of 0.41 mm (cross section hardness 105 Hv) For the three layers, cleaning and brushing are performed on each joint surface to expose a clean active surface and harden the surface of the joint surface to superimpose the three layers. Cold rolling). The thickness of the composite material obtained after bonding was 0.13 mm.

得られた複合材について仕上圧延を行い、板厚0.125mmの複合材を得た。   The obtained composite material was finish-rolled to obtain a composite material having a thickness of 0.125 mm.

[比較例7]
板厚0.19mmのコイル状純銅板(断面硬度121Hv)、板厚0.04mmのコイル状純チタン板(断面硬度162Hv)、板厚0.31mmの純銅板(断面硬度116Hv)を用いた合計3層について、それぞれの接合面に対して洗浄およびブラッシングを行い、清浄な活性面を露出させると共に接合面表面を硬質化させて3層を重ね合わせ、大気中で圧延ロールで貼り合せ圧延(冷間圧延)を行った。貼り合せ後に得られた複合材の厚さは、0.13mmであった。
[Comparative Example 7]
Total using a coiled pure copper plate having a thickness of 0.19 mm (cross section hardness 121 Hv), a coiled pure titanium plate having a thickness of 0.04 mm (cross section hardness 162 Hv), and a pure copper plate having a thickness of 0.31 mm (cross section hardness 116 Hv) For the three layers, cleaning and brushing are performed on each joint surface to expose a clean active surface and harden the surface of the joint surface to superimpose the three layers. Cold rolling). The thickness of the composite material obtained after bonding was 0.13 mm.

得られた複合材について仕上圧延を行い、板厚0.125mmの複合材を得た。   The obtained composite material was finish-rolled to obtain a composite material having a thickness of 0.125 mm.

[比較例8]
板厚0.2mmのコイル状純銅板(断面硬度125Hv)、板厚0.04mmのコイル状純チタン板(断面硬度188Hv)、板厚0.33mmの純銅板(断面硬度121Hv)を用いた合計3層について、それぞれの接合面に対して洗浄およびブラッシングを行い、清浄な活性面を露出させると共に接合面表面を硬質化させて3層を重ね合わせ、大気中で圧延ロールで貼り合せ圧延(冷間圧延)を行った。貼り合せ後に得られた複合材の厚さは、0.126mmであった。
[Comparative Example 8]
Total using a coiled pure copper plate having a thickness of 0.2 mm (cross section hardness 125 Hv), a coiled pure titanium plate having a thickness of 0.04 mm (cross section hardness 188 Hv), and a pure copper plate having a thickness of 0.33 mm (cross section hardness 121 Hv) For the three layers, cleaning and brushing are performed on each joint surface to expose a clean active surface and harden the surface of the joint surface to superimpose the three layers. Cold rolling). The thickness of the composite material obtained after bonding was 0.126 mm.

得られた複合材について仕上圧延を行い、板厚0.125mmの複合材を得た。   The obtained composite material was finish-rolled to obtain a composite material having a thickness of 0.125 mm.

[従来例]
板厚0.045mmのコイル状純銅板(断面硬度102Hv)、板厚0.01mmのコイル状純チタン板(断面硬度96Hv)、板厚0.072mmの純銅板(断面硬度108Hv)を用いた合計3層について、チャンバー内1×10-4Paの真空度にて、それぞれの接合面に対して洗浄およびプラズマエッチングを行い、清浄な活性面を露出させて3層を重ね合わせ、圧延ロールで貼り合せ圧延(冷間圧延)を行った。貼り合せ後に得られた複合材の厚さは、0.125mmであった。
[Conventional example]
Total using a coiled pure copper plate having a thickness of 0.045 mm (cross section hardness 102 Hv), a coiled pure titanium plate having a thickness of 0.01 mm (cross section hardness 96 Hv), and a pure copper plate having a thickness of 0.072 mm (cross section hardness 108 Hv) For the three layers, cleaning and plasma etching are performed on each joint surface at a vacuum degree of 1 × 10 −4 Pa in the chamber, and the three active layers are exposed, and the three layers are overlaid and pasted with a rolling roll. Combined rolling (cold rolling) was performed. The thickness of the composite material obtained after bonding was 0.125 mm.

以上の実施例、比較例、従来例により作製した複合材を20mm×20mmで切り出し、圧延方向および板幅方向について、各20mm長ずつ断面調査を行った。図2に示すように、純チタン層の板厚の最大値および最小値を測定し、最大値および最小値の差を板厚変動として、複合材の仕上がりを検討し、仕上がり品のチタン層板厚変動が±3μm以内のものを○(合格)とし、それよりも大きい変動となったものを×(不合格)とした。また、仕上がり品の加工コストについても評価した。   The composite material produced by the above Example, the comparative example, and the prior art example was cut out by 20 mm x 20 mm, and the cross-sectional investigation was performed for each 20 mm length about the rolling direction and the plate width direction. As shown in FIG. 2, the maximum and minimum values of the plate thickness of the pure titanium layer are measured, the difference between the maximum and minimum values is considered as the plate thickness variation, the finish of the composite material is examined, and the finished titanium layer plate Thickness fluctuations within ± 3 μm were rated as “Good” (accepted), and those with larger fluctuations were marked as “X” (failed). In addition, the processing cost of the finished product was also evaluated.

作製した複合材の、クラッド圧下率、仕上圧延圧下率、圧延前の各素材の断面硬度に対する、仕上がり品の総合評価を表1に示す。   Table 1 shows the overall evaluation of the finished product with respect to the clad reduction ratio, finish rolling reduction ratio, and cross-sectional hardness of each material before rolling.

表1に示すように、本発明の実施例1〜6は低コスト加工である大気中の冷間圧延により、板厚変動の少ない材料を得ることができた。   As shown in Table 1, Examples 1 to 6 of the present invention were able to obtain a material with little variation in plate thickness by cold rolling in the air, which is low-cost processing.

一方、比較例1〜8および従来例については、次の理由により総合評価が×となった。   On the other hand, about Comparative Examples 1-8 and the prior art example, comprehensive evaluation became x for the following reason.

比較例1および2は、クラッド圧延加工の圧下率が低いため、各金属層の十分な接合がなされずに、剥離した。比較例3および4については、仕上圧延の圧下率が高いため、板厚変動が大きくなった。比較例5および6については、銅層の断面硬度が軟らかい(100Hvより小さい)ため、板厚変動が顕著であった。比較例7および8については、チタン層の断面硬度が硬い(120Hvより大きい)ため、板厚変動が顕著であった。また、従来例については、真空下の加工であるため、加工コストが高くなった。   In Comparative Examples 1 and 2, since the rolling reduction of the clad rolling process was low, the metal layers were not sufficiently bonded and peeled off. In Comparative Examples 3 and 4, since the rolling reduction of finish rolling was high, the plate thickness variation was large. In Comparative Examples 5 and 6, since the cross-sectional hardness of the copper layer was soft (less than 100 Hv), the plate thickness variation was significant. In Comparative Examples 7 and 8, since the cross-sectional hardness of the titanium layer was hard (greater than 120 Hv), the plate thickness variation was significant. In addition, since the conventional example is processing under vacuum, the processing cost is high.

1 複合材
2 銅または銅合金
3 チタンまたはチタン合金
1 Composite 2 Copper or copper alloy 3 Titanium or titanium alloy

Claims (2)

銅または銅合金、チタンまたはチタン合金、銅または銅合金の3層を順次積層し構成される複合材を製造する際、貼り合せクラッド圧延の圧下率を60%以上とすると共に、最終板厚への仕上圧延の圧下率を5%以下とし、大気中にて冷間で前記貼り合せクラッド圧延と前記仕上圧延とを行うことを特徴とするリードフレーム用複合材の製造方法。   When manufacturing a composite material composed of three layers of copper or copper alloy, titanium or titanium alloy, and copper or copper alloy in sequence, the reduction ratio of the laminated clad rolling is set to 60% or more, and the final thickness is reached. A method for producing a composite material for a lead frame, wherein the rolling reduction of the finish rolling is 5% or less and the laminating clad rolling and the finishing rolling are performed in the air in the cold. 前記貼り合せクラッド圧延前のチタンまたはチタン合金の断面硬度を、120Hv以下とし、前記貼り合せクラッド圧延前の銅または銅合金の断面硬度を、100Hv以上とする請求項1記載のリードフレーム用複合材の製造方法。   2. The lead frame composite according to claim 1, wherein a cross-sectional hardness of the titanium or titanium alloy before the bonded clad rolling is 120 Hv or less, and a cross-sectional hardness of the copper or copper alloy before the bonded clad rolling is 100 Hv or higher. Manufacturing method.
JP2010271636A 2010-12-06 2010-12-06 Method of manufacturing composite material for lead frame Pending JP2012124220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010271636A JP2012124220A (en) 2010-12-06 2010-12-06 Method of manufacturing composite material for lead frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010271636A JP2012124220A (en) 2010-12-06 2010-12-06 Method of manufacturing composite material for lead frame

Publications (1)

Publication Number Publication Date
JP2012124220A true JP2012124220A (en) 2012-06-28

Family

ID=46505393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010271636A Pending JP2012124220A (en) 2010-12-06 2010-12-06 Method of manufacturing composite material for lead frame

Country Status (1)

Country Link
JP (1) JP2012124220A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107282662A (en) * 2016-04-04 2017-10-24 鞍钢股份有限公司 A kind of production method of super thick clad steel plate intermediate layer steel billet
CN113477740A (en) * 2021-07-05 2021-10-08 湖南湘投金天钛金属股份有限公司 Titanium-copper precise composite strip coil and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107282662A (en) * 2016-04-04 2017-10-24 鞍钢股份有限公司 A kind of production method of super thick clad steel plate intermediate layer steel billet
CN113477740A (en) * 2021-07-05 2021-10-08 湖南湘投金天钛金属股份有限公司 Titanium-copper precise composite strip coil and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6865172B2 (en) Metal laminate and its manufacturing method
EP2803480B1 (en) Production method of multilayer clad material
JP5517196B2 (en) Superconducting compound substrate and manufacturing method thereof
JP5723773B2 (en) Method for manufacturing metal laminated substrate for oxide superconducting wire
TWI606152B (en) Ultra-thin copper foil with carrier, and copper-clad laminate, printed circuit board, and coreless substrate made using the ultra-thin copper foil with carrier
JP2010118246A5 (en)
EP3509100A1 (en) Heat sink and method for manufacturing same
WO2017057698A1 (en) Metal laminate material, and production method therefor
JP5878572B2 (en) Tantalum wire used for anode lead wire of tantalum capacitor and manufacturing method thereof
JP4579705B2 (en) Clad material and manufacturing method thereof
JP7085419B2 (en) Rolled joint and its manufacturing method
JP2007138236A (en) Electrode sheet for capacitor and method of manufacturing the same
JP6637200B2 (en) Rolled joint and manufacturing method thereof
JP2012124220A (en) Method of manufacturing composite material for lead frame
JP6995712B2 (en) Rolled joint and its manufacturing method
CN113477740A (en) Titanium-copper precise composite strip coil and preparation method thereof
WO2017209157A1 (en) Metal multilayer material formed from copper and magnesium and method for producing same
JP6173532B1 (en) Copper-coated magnesium wire and method for producing the same
JP2004034127A (en) Metal sheet joint body manufacturing method, method for manufacturing laminate body using the metal sheet joint body, and method for manufacturing component using the laminate body
JP5500117B2 (en) Al-Cu bonding ribbon and manufacturing method thereof
JP5918920B2 (en) Superconducting compound substrate and manufacturing method thereof
CN108138356B (en) Substrate for epitaxial growth and method for manufacturing same
TW202400848A (en) Metal laminate, method for manufacturing same, and printed wiring board
JP2002192354A (en) METHOD FOR PRODUCING NbAl ALLOY BY LAMINATION ROLLING
JP2013049063A (en) Composite material and method for manufacturing the same