JP5500117B2 - Al-Cu bonding ribbon and manufacturing method thereof - Google Patents

Al-Cu bonding ribbon and manufacturing method thereof Download PDF

Info

Publication number
JP5500117B2
JP5500117B2 JP2011091697A JP2011091697A JP5500117B2 JP 5500117 B2 JP5500117 B2 JP 5500117B2 JP 2011091697 A JP2011091697 A JP 2011091697A JP 2011091697 A JP2011091697 A JP 2011091697A JP 5500117 B2 JP5500117 B2 JP 5500117B2
Authority
JP
Japan
Prior art keywords
bonding
ribbon
material layer
hardness
bonding ribbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011091697A
Other languages
Japanese (ja)
Other versions
JP2012227241A (en
Inventor
武範 久下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2011091697A priority Critical patent/JP5500117B2/en
Publication of JP2012227241A publication Critical patent/JP2012227241A/en
Application granted granted Critical
Publication of JP5500117B2 publication Critical patent/JP5500117B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/438Post-treatment of the connector
    • H01L2224/4383Reworking
    • H01L2224/43847Reworking with a mechanical process, e.g. with flattening of the connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/438Post-treatment of the connector
    • H01L2224/43848Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45014Ribbon connectors, e.g. rectangular cross-section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45025Plural core members
    • H01L2224/4503Stacked arrangements
    • H01L2224/45032Two-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/85948Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group

Description

本発明は、半導体パッケージなどの結線材料として使用されるボンディングリボン、特にAlとCuの2種類の材料をクラッドした2層構造のAl−Cuボンディングリボンに関する。   The present invention relates to a bonding ribbon used as a connection material for a semiconductor package or the like, and more particularly to an Al—Cu bonding ribbon having a two-layer structure in which two kinds of materials of Al and Cu are clad.

従来から、半導体パッケージの結線には、高い電気伝導性と表面酸化を抑えられるといった金属的な特性によって、主にAuワイヤによるボンディングが使用されている。しかし、Auワイヤによるボンディングは、比較的大きな電流を流す場合には、過電流による短絡を避けるために複数のAuワイヤが結線される場合が多いため、ボンディングに時間を要し、更には高価なAu材料を多量に使用せざるを得ないことから高コストの原因となっている。   Conventionally, bonding by an Au wire has been mainly used for the connection of a semiconductor package due to metallic characteristics such as high electrical conductivity and suppression of surface oxidation. However, in the case of bonding with an Au wire, when a relatively large current flows, a plurality of Au wires are often connected to avoid a short circuit due to an overcurrent. Since a large amount of Au material must be used, this is a cause of high cost.

また、高機能を必要とする半導体パッケージに搭載されるICチップは積層構造をとる場合が多いが、近年ではICチップのダウンサイジングにより軽薄短小化が求められている。そのため、ICチップ内にある結線用スペースも限られてしまうことから、ワイヤボンディングそのものの精度向上が求められている。   In addition, IC chips mounted on semiconductor packages that require high functions often have a laminated structure, but in recent years, there has been a demand for lighter, thinner, and smaller devices by downsizing IC chips. For this reason, since the space for connection in the IC chip is also limited, improvement in the accuracy of wire bonding is required.

しかしながら、ICチップのデザインに応じた結線パターンでは、例えば隣接するワイヤ間の配線スペースがAuワイヤ1本分程度の距離である場合や、低ループ化を実現するために1stボンディング位置の直近から大きく湾曲したループ形状を取らざるを得ない場合がある。このような事情から、Auワイヤ自体の組成や焼鈍条件等の工程設計を行う必要が生じている。   However, in the connection pattern according to the design of the IC chip, for example, when the wiring space between adjacent wires is a distance of about one Au wire, or in order to realize a low loop, it is greatly increased from the position closest to the 1st bonding position. In some cases, a curved loop shape must be taken. Under such circumstances, it is necessary to perform process design such as composition and annealing conditions of the Au wire itself.

このような事情に対応するため、例えば、特許文献1(特開2008−140983号公報)では、ファインピッチ化に対応可能なボンディング装置の改良が提案され、ステージ及びその周辺部材を改善したワイヤボンディング装置が記載されている。しかし、この技術の実施にはキャピラリーの動作に追従し得るワイヤ追従性が不可欠であり、ワイヤ自身の柔軟性が不十分な場合には隣接するワイヤ同士の接触により短絡不良を引き起こしやすい。   In order to cope with such a situation, for example, Patent Document 1 (Japanese Patent Laid-Open No. 2008-140983) proposes an improvement of a bonding apparatus that can cope with a fine pitch, and wire bonding in which the stage and its peripheral members are improved. An apparatus is described. However, in order to implement this technique, wire followability that can follow the operation of the capillary is indispensable. If the flexibility of the wire itself is insufficient, short-circuit failure is likely to occur due to contact between adjacent wires.

また、ワイヤボンディング時の不着不良を低減するためには治具とのマッチングや選定が重要となるが、この問題解決のために特許文献2(特開2007−095963号公報)には、キャピラリー内部のホール径及びチャンファー径をワイヤ径に応じてデザインする工夫が示されている。このようにファインピッチ化の実現には、ワイヤの細線化だけでなく、装置や治具においても最適化が求められ、その設計等に多くの時間と手間を要している。   Further, matching and selection with a jig are important to reduce non-bonding defects at the time of wire bonding. However, in order to solve this problem, Patent Document 2 (Japanese Patent Application Laid-Open No. 2007-095963) discloses the inside of a capillary. The idea of designing the hole diameter and the chamfer diameter according to the wire diameter is shown. Thus, in order to realize a fine pitch, not only thinning of the wire but also optimization of the apparatus and the jig is required, and much time and labor are required for the design and the like.

更に、Auワイヤは高価であることから、コスト削減のために細線化する傾向がある。近年の細線化技術の進歩は目覚しく、要求に応じた線径を精度よく実現することが可能となっている。しかし、高密度にボンディングされたAuワイヤを樹脂封止する際には、樹脂の選定はもちろん、注入方向や流入量を精度よくコントロールする必要があるため、パッケージデザイン時に多くの時間を費やすことから生産性を著しく落とすケースもある。   Furthermore, since Au wires are expensive, they tend to be thinned to reduce costs. Advances in thinning technology in recent years have been remarkable, and it has become possible to accurately realize the wire diameter according to requirements. However, when resin-sealing Au wires bonded at high density, it is necessary to control the injection direction and flow rate with high accuracy, as well as selecting the resin. In some cases, productivity is significantly reduced.

このような問題に対処するため、例えば特許文献3(特開2004−155857号公報)には、Auワイヤの変形や断線リーク不良などの電気特性不良の発生が少ないエポキシ樹脂組成物、及びこの樹脂で封止された電子部品装置が記載されている。しかし、この特許文献3の技術の前提として樹脂封止にはAuワイヤの十分な強度が求められるうえ、高強度のAuワイヤであっても隣接するワイヤ間隔が狭い場合には樹脂注入時に短絡するケースが発生しやすい。   In order to deal with such a problem, for example, Patent Document 3 (Japanese Patent Application Laid-Open No. 2004-155857) discloses an epoxy resin composition in which the occurrence of electrical property defects such as deformation of the Au wire and defective disconnection leakage is small, and the resin. An electronic component device sealed with is described. However, as a premise of the technique of Patent Document 3, sufficient strength of the Au wire is required for the resin sealing, and even if it is a high strength Au wire, if the interval between adjacent wires is narrow, a short circuit occurs at the time of resin injection. Cases are likely to occur.

近年では、このような問題点を有するボンディングワイヤの代わりに、例えば特許文献4(特開2006−196629号公報)に記載されているように、結線材料としてボンディングリボンが提案されている。ボンディングリボンは、ワイヤと違って平面同士の接合が実現されるため、樹脂注入時の横方向からの応力に対する抵抗力が大きいなどの利点を有することから、パワーデバイスを中心に広く使用されている。また、特許文献5(特開2004−336043号公報)には、Al−Cuボンディングリボンについての記載があるが、ワイヤとリボンの形状の違いによる優位性について説明されているのみである。   In recent years, instead of a bonding wire having such a problem, a bonding ribbon has been proposed as a connection material as described in, for example, Japanese Patent Application Laid-Open No. 2006-196629. Bonding ribbons are widely used mainly in power devices because they have the advantage of high resistance to stress from the lateral direction during resin injection because bonding between flat surfaces is realized unlike wires. . Patent Document 5 (Japanese Patent Laid-Open No. 2004-336043) describes an Al—Cu bonding ribbon, but only describes the superiority due to the difference in shape between the wire and the ribbon.

尚、ボンディングリボンによるボンディング方法は、超音波ワイヤボンディング方法を利用したものであり、ボンディングリボンに荷重及び超音波振動を加えることにより、ボンディングリボンの表面に自然に形成された数nm程度の酸化膜を破ってボンディングリボンの金属原子を露出させ、アルミニウムやニッケル等のボンディングパッドとボンディングリボンとの界面に塑性流動を発生させて互いに密着する新生面を漸増させながら、原子間結合させることにより接合するものである。   The bonding method using the bonding ribbon uses an ultrasonic wire bonding method. By applying a load and ultrasonic vibration to the bonding ribbon, an oxide film of about several nanometers formed naturally on the surface of the bonding ribbon. To bond metal atoms on the bonding ribbon by exposing them and bonding them between atoms while gradually increasing the new surfaces that adhere to each other by generating plastic flow at the interface between the bonding pad and bonding ribbon, such as aluminum or nickel. It is.

特開2008−140983号公報JP 2008-140983 A 特開2007−095963号公報JP 2007-095963 A 特開2004−155857号公報JP 2004-155857 A 特開2006−196629号公報JP 2006-196629 A 特開2004−336043号公報JP 2004-336043 A

上述したように従来のボンディングリボンにおいては、1stボンディングから2ndボンディングまでの間で、ボンディングリボンが高い剛性を有するため曲げに反発して未接合となる、いわゆるボンディング不着が発生しやすかった。また、1stボンディング終了後から2ndボンディングの位置までボンディングリボンを繰り出す際に、ボンディングリボンがボンディングツールの内壁との間で強い摩擦を生じるため必要な量を繰り出せないことがあり、この場合にもボンディング不着が発生していた。   As described above, in the conventional bonding ribbon, since the bonding ribbon has high rigidity between the 1st bonding and the 2nd bonding, so-called bonding non-bonding that is repelled from bending and unbonded easily occurs. Also, when the bonding ribbon is unwound from the end of the first bonding to the 2nd bonding position, the bonding ribbon may generate a strong friction with the inner wall of the bonding tool. Non-delivery occurred.

更に、上記のごとく1stボンディング後のループ形成過程においてボンディングツールの先端とボンディングリボンが過度に擦れることにより、ボンディングリボン表面が疵付いてしまうという問題があった。表面に付いた疵は各種の問題を引き起こすが、特にCuなどの金属表面の新生面を部分的に露出させることになり、結局ボンディングリボンの酸化を進行させてしまう。また、特にAl−Cuボンディングリボンについては、AlとCuの接合強度が不十分である場合が多く、1stボンディング後のループ形成過程においてAlとCuの接合界面で剥れが発生しやすいという問題もあった。   Furthermore, as described above, there has been a problem that the bonding ribbon surface becomes wrinkled due to excessive rubbing between the tip of the bonding tool and the bonding ribbon in the loop formation process after the first bonding. The wrinkles on the surface cause various problems, but in particular, the new surface of a metal surface such as Cu is partially exposed, and eventually the oxidation of the bonding ribbon proceeds. In particular, for Al-Cu bonding ribbons, the bonding strength between Al and Cu is often insufficient, and there is a problem that peeling is likely to occur at the bonding interface between Al and Cu in the loop formation process after the first bonding. there were.

本発明は、このような従来のボンディングリボンにおける問題点に鑑みてなされたものであり、Al−Cuボンディングリボンに柔軟性を付与することによって、ループ形成過程におけるAlとCuの接合界面での剥れの発生がなく、曲げに対する反発や繰り出し不良に起因するボンディング不着及び表面の疵付きを防止することができるAl−Cuボンディングリボン及びその製造方法を提供することを目的とする。   The present invention has been made in view of such problems in the conventional bonding ribbon. By providing flexibility to the Al-Cu bonding ribbon, peeling at the bonding interface between Al and Cu in the loop formation process is achieved. An object of the present invention is to provide an Al—Cu bonding ribbon and a method of manufacturing the same that can prevent bonding non-bonding and surface wrinkling due to repulsion against bending and unsuccessful feeding.

上記した従来のAl−Cuボンディングリボンの問題点を解決するため、本発明者は、AlとCuの接合界面での剥れをなくすことと共に、曲げに対する反発や繰り出し不良のない優れたルーピング性を備え、ICチップのダウンサイジング化に伴って限られたエリアに配線することが可能なAl−Cuボンディングリボンについて鋭意検討を重ねた結果、Al材とCu材を接合する際の冷間圧延による残留応力を熱処理により緩和して、Al−Cuボンディングリボンに柔軟性を付与することが有効であることを見出し、本発明に至ったものである。   In order to solve the above-described problems of the conventional Al-Cu bonding ribbon, the present inventor eliminates peeling at the bonding interface between Al and Cu, and has excellent looping properties without bending repulsion and feeding failure. As a result of intensive studies on Al-Cu bonding ribbons that can be wired in a limited area with downsizing of IC chips, the result of cold rolling when joining Al and Cu materials The present inventors have found that it is effective to relax the stress by heat treatment and impart flexibility to the Al—Cu bonding ribbon, and have reached the present invention.

即ち、上記課題を解決するため、本発明が提供するAl−Cuボンディングリボンは、Al材とCu材を接合した2層構造のボンディングリボンであって、Al材層の硬度が20〜30Hv及びCu材層の硬度が40〜50Hvであることを特徴とする。この本発明におけるAl−Cuボンディングリボンは、前記Al材とCu材の冷間圧延での接合後に250〜350℃の温度で熱処理されたものであることを特徴とする。   That is, in order to solve the above problems, the Al—Cu bonding ribbon provided by the present invention is a two-layer bonding ribbon in which an Al material and a Cu material are joined, and the hardness of the Al material layer is 20 to 30 Hv and Cu. The material layer has a hardness of 40 to 50 Hv. The Al—Cu bonding ribbon of the present invention is characterized in that it is heat-treated at a temperature of 250 to 350 ° C. after the cold bonding of the Al material and the Cu material.

また、本発明が提供するAl−Cuボンディングリボンの製造方法は、Al材とCu材を接合した2層構造のボンディングリボンの製造方法であって、Al材及びCu材の接合すべき表面を研磨し、両者の研磨面を合わせて冷間圧延により接合した後、250〜350℃の温度で熱処理することによって、Al材層の硬度を20〜30Hvの範囲及びCu材層の硬度を40〜50Hvの範囲とすることを特徴とする。

The method for manufacturing an Al—Cu bonding ribbon provided by the present invention is a method for manufacturing a bonding ribbon having a two-layer structure in which an Al material and a Cu material are bonded, and the surfaces to be bonded of the Al material and the Cu material are polished. Then, after joining both polished surfaces together by cold rolling, heat treatment is performed at a temperature of 250 to 350 ° C., so that the hardness of the Al material layer is in the range of 20 to 30 Hv and the hardness of the Cu material layer is 40 to 50 Hv. It is characterized by being in the range .

上記本発明のAl−Cuボンディングリボンの製造方法においては、前記Al材及びCu材の接合すべき表面を、表面粗さが共にRmaxで5μm以下となるように研磨することが好ましい。また、前記研磨後のAl材とCu材を冷間にて所定の厚さにロール圧延して接合し、所定の幅にスリット加工した後、不活性ガス雰囲気中で1時間以上熱処理することが好ましい。   In the method for producing an Al—Cu bonding ribbon of the present invention, it is preferable that the surfaces to be joined of the Al material and the Cu material are polished so that the surface roughness is less than 5 μm in Rmax. In addition, the polished Al material and Cu material may be cold-rolled to a predetermined thickness, joined, slit processed to a predetermined width, and then heat-treated in an inert gas atmosphere for 1 hour or longer. preferable.

本発明によれば、ループ形成過程においてAlとCuの接合界面での剥れをなくすことができるだけでなく、冷間圧延での接合後に熱処理することで残留応力を緩和してAl−Cuボンディングリボンに柔軟性を与えることができるため、曲げに対する反発や繰り出し不良に起因するボンディング不着をなくし、更には表面の疵付きを防止することができる。   According to the present invention, it is possible not only to eliminate peeling at the bonding interface between Al and Cu in the loop formation process, but also to relieve the residual stress by heat treatment after bonding by cold rolling, thereby reducing the Al-Cu bonding ribbon. Therefore, it is possible to eliminate bonding non-sticking due to repulsion against bending and unsuccessful feeding, and to prevent surface wrinkling.

Al−Cuボンディングリボンを使用した半導体パッケージでのループ形成過程を示す概略の断面図である。It is a schematic sectional drawing which shows the loop formation process in the semiconductor package which uses an Al-Cu bonding ribbon.

本発明のAl−Cuボンディングリボンは、Al材とCu材を接合してなる2層構造、即ちAl材層とCu材層とで構成されたボンディングリボンである。接合に供するAl材は、特に組成が限定されるものではなく、高純度のAl及びAl−Ni系などのAl合金を幅広く使用することができる。また、銅材についても、特に限定されないが、所望の導電性を維持する観点から99.99%以上の純銅を用いることが望ましい。   The Al—Cu bonding ribbon of the present invention is a two-layer structure formed by bonding an Al material and a Cu material, that is, a bonding ribbon composed of an Al material layer and a Cu material layer. The Al material used for joining is not particularly limited in composition, and a wide range of Al alloys such as high-purity Al and Al—Ni can be used. Moreover, although it does not specifically limit about a copper material, It is desirable to use 99.99% or more pure copper from a viewpoint of maintaining desired electroconductivity.

上記2層構造を有する本発明のAl−Cuボンディングリボンでは、冷間圧延によりAl材とCu材を接合した後に250〜350℃の温度範囲で熱処理することによって、圧延により生じた残留応力が緩和ないし除去されると共に、結晶組織の均一化がなされ、2層構造をなすAl材層とCu材層の硬度が低下して柔軟性が向上している。具体的には、Al材層とCu材層の硬度(ビッカース硬度)を、Al材層で20〜30Hvの範囲、及びCu材層で40〜50Hvの範囲となるように調整することが必要である。   In the Al-Cu bonding ribbon of the present invention having the above two-layer structure, the residual stress generated by rolling is alleviated by heat treatment in a temperature range of 250 to 350 ° C. after joining the Al material and the Cu material by cold rolling. In addition to being removed, the crystal structure is made uniform, the hardness of the Al material layer and the Cu material layer having a two-layer structure is lowered, and the flexibility is improved. Specifically, it is necessary to adjust the hardness (Vickers hardness) of the Al material layer and the Cu material layer to be in the range of 20 to 30 Hv for the Al material layer and in the range of 40 to 50 Hv for the Cu material layer. is there.

上記Al材層の硬度が30Hvを超えるか及び/又はCu材層の硬度が50Hvを超えると、ボンディング不着や表面の疵付きが急激に多くなるうえ、ループ形成過程におけるAlとCuの接合界面での剥れが発生しやすくなる。また、上記Al材層とCu材層の硬度は低いほど好ましいが、Al材層の硬度が20Hv未満になるか及び/又はCu材層の硬度が40Hv未満になっても、上記柔軟性向上効果の更なる改善が少なくなり、逆にボンディング不着が発生しやすくなるため好ましくない。   When the hardness of the Al material layer exceeds 30 Hv and / or the hardness of the Cu material layer exceeds 50 Hv, bonding non-bonding and surface wrinkling increase rapidly, and at the bonding interface between Al and Cu in the loop formation process. Peeling easily occurs. The lower the hardness of the Al material layer and the Cu material layer, the better. However, even if the hardness of the Al material layer is less than 20 Hv and / or the hardness of the Cu material layer is less than 40 Hv, the above-described flexibility improvement effect is achieved. This is not preferable because further improvement of the thickness is reduced and bonding non-bonding is likely to occur.

次に、本発明のAl−Cuボンディングリボンの製造方法について具体的に説明する。まず、Al材について、少なくとも接合すべき片側の表面を研磨材により研磨する。この表面研磨によりAl材の表面に形成された酸化皮膜を除去して、新生面を露出させることができる。一方、Cu材においても同様に表面研磨を行い、表面の酸化皮膜を除去して新生面を露出させる。この表面研磨によって接合される表面積が増加するため、表面積が増加した面同士を圧延して接合することにより、Al材とCu材の接合を強固にすることができる。   Next, the method for producing the Al—Cu bonding ribbon of the present invention will be specifically described. First, with respect to the Al material, at least one surface to be joined is polished with an abrasive. By this surface polishing, the oxide film formed on the surface of the Al material can be removed to expose the new surface. On the other hand, the surface of the Cu material is similarly polished to remove the oxide film on the surface and expose the new surface. Since the surface area joined by this surface polishing is increased, the joining of the Al material and the Cu material can be strengthened by rolling and joining the surfaces having the increased surface area.

上記表面研磨工程においては、Al材及びCu材の表面粗さがRmaxで5μm以下になるように研磨することが好ましい。研磨されたAl材及びCu材の両方又は片方の表面粗さがRmaxで5μmよりも大きい場合、次の冷間圧延工程でAl材とCu材を接合することは可能であるが、AlとCuの接合強度が十分でないため、得られたボンディングリボンはループ形成過程においてAlとCuの接合界面で剥れが発生しやすくなるため好ましくない。   In the surface polishing step, polishing is preferably performed so that the surface roughness of the Al material and the Cu material is Rmax of 5 μm or less. When the surface roughness of both or one of the polished Al material and Cu material is larger than 5 μm in Rmax, it is possible to join the Al material and the Cu material in the next cold rolling process. Since the bonding strength is not sufficient, the obtained bonding ribbon is not preferable because peeling easily occurs at the bonding interface between Al and Cu in the loop formation process.

上記のごとく表面研磨されたAl材とCu材は、速やかに次の冷間圧延工程に供給し、ロール圧延機を用いて室温で所定の厚さに圧延することによって、Al材とCu材を強固に接合することができる。Al材及びCu材の表面酸化を避けるために、上記表面研磨から冷間接合までの工程はできるだけ速やかに行うことが望ましい。圧延後の厚さ、即ちAl−Cu接合材の厚さは、目的とするAl−Cuボンディングリボンに応じて変えることができる。また、Al−CuボンディングリボンのAl材層及びCu材層の各厚さは、使用するAl材とCu材の板厚を変えることで変更することが可能である。   The Al material and the Cu material whose surfaces are polished as described above are quickly supplied to the next cold rolling process, and rolled to a predetermined thickness at room temperature using a roll rolling machine, whereby the Al material and the Cu material are It can be firmly joined. In order to avoid surface oxidation of the Al material and the Cu material, it is desirable to perform the steps from the surface polishing to the cold bonding as quickly as possible. The thickness after rolling, that is, the thickness of the Al—Cu bonding material can be changed according to the target Al—Cu bonding ribbon. The thicknesses of the Al material layer and the Cu material layer of the Al-Cu bonding ribbon can be changed by changing the thicknesses of the Al material and the Cu material to be used.

上記冷間圧延工程で得られたAl−Cu接合部材は、スリッタなどを用いてボンディングに使用する幅にスリット加工した後、250〜350℃の温度範囲で熱処理を施す。一般的にCu材は200℃以上の温度で焼鈍することにより、内在する加工ひずみを除去することができる。そして、上記250〜350℃の温度条件で熱処理すれば、Cu材の結晶組織が均質化されると同時に、CuのAl面への拡散が促進されることにより、Al材とCu材との一層強固な接合が実現される。   The Al—Cu bonding member obtained in the cold rolling step is slitted to a width used for bonding using a slitter or the like, and then heat-treated in a temperature range of 250 to 350 ° C. In general, the Cu material can be subjected to annealing at a temperature of 200 ° C. or higher to remove the inherent processing strain. And if it heat-processes on the said 250-350 degreeC temperature conditions, while the crystal structure of Cu material will be homogenized, while spreading | diffusion to the Al surface of Cu is accelerated | stimulated, one layer of Al material and Cu material Strong bonding is realized.

しかも、上記熱処理時の温度と時間を調整することによって、上記のごとく残留応力の緩和除去と結晶組織の均一化を促進させると共に、2層構造をなすAl材層とCu材層の硬度をボンディング材料として最適な硬度にまで低下させ、Al−Cuボンディングリボンに優れた柔軟性を付与することができる。尚、熱処理の時間は、特に制限されるものではないが、必要な効果を得るためには1時間以上とすることが好ましい。また、上記熱処理は、ボンディングリボンの表面酸化を抑えるため、窒素などの不活性ガス雰囲気中で行うことが好ましい。   In addition, by adjusting the temperature and time during the heat treatment, the relaxation of residual stress and the homogenization of the crystal structure are promoted as described above, and the hardness of the Al material layer and the Cu material layer forming the two-layer structure are bonded. The hardness can be lowered to an optimum hardness as a material, and excellent flexibility can be imparted to the Al—Cu bonding ribbon. The heat treatment time is not particularly limited, but is preferably 1 hour or longer in order to obtain a necessary effect. The heat treatment is preferably performed in an inert gas atmosphere such as nitrogen in order to suppress surface oxidation of the bonding ribbon.

上記熱処理温度が250℃未満では、Al材層の硬度を20〜30Hv及びCu材層の硬度を40〜50Hvの範囲に調整することが難しく、Al−Cuボンディングリボンに十分な柔軟性を付与することができない。そのため、曲げに対する反発や繰り出し不良に起因するボンディング不着や表面の疵付きが発生するうえ、ループ形成過程においてAlとCuの接合界面での剥れが生じやすくなる。逆に熱処理時の温度が350℃を超えると、Al材層とCu材層の硬度が低くなり過ぎることでボンディング不着が発生しやすくなる。   When the heat treatment temperature is less than 250 ° C., it is difficult to adjust the hardness of the Al material layer to a range of 20 to 30 Hv and the hardness of the Cu material layer to a range of 40 to 50 Hv, which gives sufficient flexibility to the Al—Cu bonding ribbon. I can't. For this reason, non-bonding due to bending repulsion or unsuccessful feeding and surface wrinkling occur, and peeling at the bonding interface between Al and Cu is likely to occur during the loop formation process. On the contrary, if the temperature during the heat treatment exceeds 350 ° C., the hardness of the Al material layer and the Cu material layer becomes too low and bonding non-bonding is likely to occur.

このようにして得られた本発明のAl−Cuボンディングリボンは、Alの軽量性とCuの導電性を併せ持つと同時に、優れた柔軟性と界面接合強度を有している。そのため、ループ形成過程においてAlとCuの接合界面での剥れをなくすことができるだけでなく、例えば図1に示すようなループ形状を形成するボンディング材料として好適に使用することができる。   The Al—Cu bonding ribbon of the present invention thus obtained has both the lightness of Al and the conductivity of Cu, and at the same time has excellent flexibility and interfacial bonding strength. Therefore, not only can the peeling at the bonding interface between Al and Cu be eliminated during the loop formation process, but it can also be suitably used as, for example, a bonding material for forming a loop shape as shown in FIG.

即ち、Al材層1aとCu材層1bとからなるAl−Cuボンディングリボン1は、まず1stボンディングにおいて、先端部をボンディングツール(図示せず)に這わせるようにして折り曲げ、荷重を加えながらICチップ2のAlプレート面3にAl材層1a側を圧着させる。その後、ボンディングリボン1は、ボンディングツールを介して2ndボンディングの位置まで繰り出され、上記と同様にリードフレーム端子4に対し2ndボンディングが行われる。   That is, the Al-Cu bonding ribbon 1 composed of the Al material layer 1a and the Cu material layer 1b is first bent in the first bonding so that the tip portion is placed over a bonding tool (not shown), and an IC is applied while applying a load. The Al material layer 1 a side is pressure-bonded to the Al plate surface 3 of the chip 2. Thereafter, the bonding ribbon 1 is unwound to the position of 2nd bonding via a bonding tool, and 2nd bonding is performed on the lead frame terminal 4 in the same manner as described above.

優れた柔軟性を有する本発明のボンディングリボンは、上記1stボンディングから2ndボンディングの過程において、AlとCuの接合界面での剥れをなくすことができるうえ、先端部の折り曲げが容易であり且つボンディングツール内壁との摩擦による繰り出し不足(供給不足)を防止することが可能なため、ボンディング不着をなくすことができる。   The bonding ribbon of the present invention having excellent flexibility can eliminate peeling at the bonding interface between Al and Cu in the process from the first bonding to the second bonding, and the tip can be easily bent and bonded. Since it is possible to prevent insufficient feeding (insufficient supply) due to friction with the inner wall of the tool, it is possible to eliminate bonding failure.

Al材としてAl−0.005重量%Ni合金板(幅30mm、厚さ0.32mm)を用意し、その片方の表面を住友3M(株)製の不織布研磨材(「スコッチ・ブライト」、番手#240〜#1000)を用いて研磨した。一方、Cu材として純度99.99%のCu板(幅22mm、厚さ0.38mm)を用意し、その片方の表面を上記と同じ不織布研磨材を用いて研磨した。尚、上記研磨では、Al材及びCu材の表面粗さが共にRmaxで5μm以下となるように研磨した。   An Al-0.005 wt% Ni alloy plate (width 30 mm, thickness 0.32 mm) was prepared as an Al material, and one surface of the non-woven abrasive material (“Scotch Bright” manufactured by Sumitomo 3M Co., Ltd.) # 240 to # 1000). On the other hand, a Cu plate having a purity of 99.99% (width 22 mm, thickness 0.38 mm) was prepared as a Cu material, and one surface thereof was polished using the same nonwoven fabric abrasive as described above. In the above polishing, the Al material and the Cu material were both polished so that the surface roughness was Rmax of 5 μm or less.

上記のごとく片方の表面を研磨したAl材とCu材を、研磨後速やかロール圧延機に供給し、幅が約22mm及び厚さが0.2mmとなるように室温にて圧延した。この冷間圧延によってAl材とCu材が接合され、Al材層とCu材層の2層構造の接合部材が得られた。尚、このAl−Cu接合部材のAl材層及びCu材層の厚さは、共に0.1mmとなった。   The Al material and Cu material whose one surface was polished as described above were supplied to a roll mill immediately after polishing, and rolled at room temperature so that the width was about 22 mm and the thickness was 0.2 mm. By this cold rolling, an Al material and a Cu material were joined, and a joining member having a two-layer structure of an Al material layer and a Cu material layer was obtained. The thicknesses of the Al material layer and the Cu material layer of this Al—Cu bonding member were both 0.1 mm.

次に、このAl−Cu接合部材を、幅が0.2mmになるようにスリット加工してAl−Cuボンディングリボン材を作製した後、窒素ガス雰囲気中において熱処理を実施した。熱処理の条件は、下記表1に示すように試料ごとに熱処理温度を変え、熱処理時間は全ての試料で1時間とした。このように熱処理温度を変えて熱処理することにより、試料1〜5のボンディングリボンを得た。これら試料1〜5のボンディングリボンについて、Al材層とCu材層の硬度(Hv)を下記表1に示す。   Next, the Al—Cu bonding member was slit to have a width of 0.2 mm to produce an Al—Cu bonding ribbon material, and then heat treatment was performed in a nitrogen gas atmosphere. As shown in Table 1 below, the heat treatment conditions were changed for each sample, and the heat treatment time was 1 hour for all samples. Thus, the bonding ribbons of Samples 1 to 5 were obtained by performing the heat treatment while changing the heat treatment temperature. Regarding the bonding ribbons of these samples 1 to 5, the hardness (Hv) of the Al material layer and the Cu material layer is shown in Table 1 below.

得られた試料1〜5のボンディングリボンの各30本について、図1に示すようなループ形状となるボンディングをそれぞれ実施し、ボンディング不着、Cu材層表面の疵、Al−Cu接合界面での界面剥れの各欠陥が発生した本数を調べた。また、参考のために、上記接合部材で熱処理を実施していない試料6についても、同様の評価を行った。得られた結果を下記表1に示す。尚、硬度はビッカース硬度計により測定し、欠陥の発生本数は目視観察により確認した。   For each of the 30 bonding ribbons of the obtained samples 1 to 5, bonding in a loop shape as shown in FIG. 1 was performed, bonding non-bonding, Cu material layer surface wrinkles, interface at the Al-Cu bonding interface The number of peeling defects was examined. For reference, the same evaluation was performed on the sample 6 on which the heat treatment was not performed with the above-described joining member. The obtained results are shown in Table 1 below. The hardness was measured with a Vickers hardness meter, and the number of defects generated was confirmed by visual observation.

Figure 0005500117
Figure 0005500117

上記の結果から分るように、250〜350℃×1時間の条件で熱処理した本発明による試料1〜3では、Al材層の硬度が20〜30Hvの範囲及びCu材層の硬度が40〜50Hvとなり、ボンディング不着、Cu材層表面の疵、Al−Cu界面剥れの欠陥はいずれも発生せず、正常なループ形状のボンディングが可能であった。   As can be seen from the above results, in Samples 1 to 3 according to the present invention heat-treated at 250 to 350 ° C. × 1 hour, the hardness of the Al material layer is in the range of 20 to 30 Hv and the hardness of the Cu material layer is 40 to 50Hv, no bonding failure, wrinkles on the surface of the Cu material layer, and defects of peeling of the Al—Cu interface did not occur, and normal loop-shaped bonding was possible.

一方、熱処理温度を380℃とした比較例の試料4では、Al材層及びCu材層の硬度低下が大きくなり過ぎ、そのためCu材層表面の疵は発生せず且つAl−Cu界面剥れも発生しなかったが、30本中2本にボンディング不着が確認された。また、熱処理温度を200℃とした試料5及び熱処理を実施なかった試料6では、Al材層及びCu材層の硬度が低下せず、30本中27本にボンディング不着が発生し、30本全てにCu材層表面の疵が生じただけでなく、30本中25本にAl−Cu界面の剥れが発生した。   On the other hand, in the sample 4 of the comparative example in which the heat treatment temperature is 380 ° C., the hardness decrease of the Al material layer and the Cu material layer becomes too large, so that the surface of the Cu material layer does not wrinkle and the Al—Cu interface peeling occurs. Although it did not occur, bonding failure was confirmed in 2 out of 30 wires. Further, in Sample 5 in which the heat treatment temperature was 200 ° C. and Sample 6 in which the heat treatment was not performed, the hardness of the Al material layer and the Cu material layer did not decrease, and bonding failure occurred in 27 of 30 samples, and all 30 samples In addition to wrinkles on the surface of the Cu material layer, peeling of the Al—Cu interface occurred in 25 out of 30.

このように熱処理効果が十分でないボンディングリボンでは、ボンディングツール内壁に接触して強い摩擦が生じるため、1stボンディング位置から2ndボンディング位置にボンディングツールが移動する際に、ボンディングリボンが必要量繰り出されずボンディングツール内に留まろうとするため、1stボンディング直後に剥れて不着が発生すると考えられる。また、Al−Cu界面剥れは1stボンディングからループの頂点までの間に発生していたが、AlとCuの拡散が少なく且つ接合面の密着性が弱いうえ、Al面とCu面の硬度差も大きいことから、ループ形成の際に発生すると考えられる。   In such a bonding ribbon that does not have a sufficient heat treatment effect, strong friction occurs due to contact with the inner wall of the bonding tool. Therefore, when the bonding tool moves from the 1st bonding position to the 2nd bonding position, the bonding ribbon is not fed out as much as necessary. Since it tries to stay inside, it is considered that non-sticking occurs immediately after the first bonding. Al-Cu interface peeling occurred from the 1st bonding to the top of the loop, but there was little diffusion of Al and Cu and the adhesion of the joint surface was weak, and the hardness difference between the Al and Cu surfaces. Therefore, it is considered to occur during loop formation.

1 ボンディングリボン
1a Al材層
1b Cu材層
2 ICチップ
3 Alプレート面
4 リードフレーム端子
DESCRIPTION OF SYMBOLS 1 Bonding ribbon 1a Al material layer 1b Cu material layer 2 IC chip 3 Al plate surface 4 Lead frame terminal

Claims (5)

Al材とCu材を接合した2層構造のボンディングリボンであって、Al材層の硬度が20〜30Hv及びCu材層の硬度が40〜50Hvであることを特徴とするAl−Cuボンディングリボン。   A bonding ribbon having a two-layer structure in which an Al material and a Cu material are bonded, wherein the Al material layer has a hardness of 20 to 30 Hv and the Cu material layer has a hardness of 40 to 50 Hv. 前記Al−Cuボンディングリボンは、Al材とCu材の冷間圧延での接合後に250〜350℃の温度で熱処理されたものであることを特徴とする、請求項1に記載のAl−Cuボンディングリボン。   2. The Al—Cu bonding ribbon according to claim 1, wherein the Al—Cu bonding ribbon is heat-treated at a temperature of 250 to 350 ° C. after the cold rolling of the Al material and the Cu material. ribbon. Al材とCu材を接合した2層構造のボンディングリボンの製造方法であって、Al材及びCu材の接合すべき表面を研磨し、両者の研磨面を合わせて冷間圧延により接合した後、250〜350℃の温度で熱処理することによって、Al材層の硬度を20〜30Hvの範囲及びCu材層の硬度を40〜50Hvの範囲とすることを特徴とするAl−Cuボンディングリボンの製造方法。 A manufacturing method of a bonding ribbon having a two-layer structure in which an Al material and a Cu material are bonded, the surfaces to be bonded of the Al material and the Cu material are polished, and both polished surfaces are joined together by cold rolling, A method for producing an Al-Cu bonding ribbon, characterized in that the hardness of the Al material layer is in the range of 20-30 Hv and the hardness of the Cu material layer is in the range of 40-50 Hv by heat treatment at a temperature of 250-350 ° C. . 前記Al材及びCu材の接合すべき表面を、表面粗さが共にRmaxで5μm以下となるように研磨することを特徴とする、請求項3に記載のAl−Cuボンディングリボンの製造方法。   4. The method for producing an Al—Cu bonding ribbon according to claim 3, wherein the surfaces of the Al material and the Cu material to be joined are polished so that the surface roughness is Rmax of 5 μm or less. 前記研磨後のAl材とCu材を冷間にて所定の厚さにロール圧延して接合し、所定の幅にスリット加工した後、不活性ガス雰囲気中で1時間以上熱処理することを特徴とする、請求項3又は4に記載のAl−Cuボンディングリボンの製造方法。   The polished Al material and Cu material are rolled and joined to a predetermined thickness while being cold-rolled, slitted to a predetermined width, and then heat-treated in an inert gas atmosphere for 1 hour or longer. The manufacturing method of the Al-Cu bonding ribbon of Claim 3 or 4.
JP2011091697A 2011-04-18 2011-04-18 Al-Cu bonding ribbon and manufacturing method thereof Expired - Fee Related JP5500117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011091697A JP5500117B2 (en) 2011-04-18 2011-04-18 Al-Cu bonding ribbon and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011091697A JP5500117B2 (en) 2011-04-18 2011-04-18 Al-Cu bonding ribbon and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012227241A JP2012227241A (en) 2012-11-15
JP5500117B2 true JP5500117B2 (en) 2014-05-21

Family

ID=47277105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011091697A Expired - Fee Related JP5500117B2 (en) 2011-04-18 2011-04-18 Al-Cu bonding ribbon and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5500117B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014223352A1 (en) * 2014-11-17 2016-05-19 Robert Bosch Gmbh Connecting arrangement with a multilayer bond wire

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2658528B2 (en) * 1990-08-09 1997-09-30 富士電機株式会社 External lead-out terminal of semiconductor device
JP3460410B2 (en) * 1995-10-20 2003-10-27 ソニー株式会社 Metal lead with bump and method of manufacturing the same
JPH09306945A (en) * 1996-05-16 1997-11-28 Shinko Electric Ind Co Ltd Semiconductor device and package therefor
US20020006526A1 (en) * 1999-10-11 2002-01-17 Polese Frank J. Aluminum silicon carbide and copper clad material and manufacturing process
JP4524570B2 (en) * 2004-03-10 2010-08-18 富士電機システムズ株式会社 Semiconductor device
DE102006025870A1 (en) * 2006-06-02 2007-12-06 Robert Bosch Gmbh Bonding wire for connecting pad and pin of chip, has outer and inner layers, where inner layer has high conductivity, low bending stiffness, low breaking load and low tensile strength than that of outer layers and wire is designed as tape
JP2011192840A (en) * 2010-03-15 2011-09-29 Tanaka Electronics Ind Co Ltd Flat aluminum coated copper ribbon for semiconductor element
WO2011155379A1 (en) * 2010-06-08 2011-12-15 株式会社Neomaxマテリアル Aluminum copper clad material

Also Published As

Publication number Publication date
JP2012227241A (en) 2012-11-15

Similar Documents

Publication Publication Date Title
KR101004866B1 (en) Copper bonding or superfine wire with improved bonding and corrosion properties
JP4212641B1 (en) Aluminum ribbon for ultrasonic bonding
US9960140B2 (en) Metal joining structure using metal nanoparticles and metal joining method and metal joining material
KR20120031005A (en) Copper alloy bonding wire for semiconductor
JP5159001B1 (en) Aluminum alloy bonding wire
JP6029756B2 (en) Semiconductor device and manufacturing method thereof
JP5213146B1 (en) Copper rhodium alloy wire for connecting semiconductor devices
US9236166B2 (en) Core-jacket bonding wire
WO2012049893A1 (en) RECTANGULAR-SHAPED SILVER (Ag) CLAD STEEL-RIBBON FOR HIGH TEMPERATURE SEMICONDUCTOR DEVICE
JP5668087B2 (en) Structure of copper dilute nickel alloy wire for semiconductor device bonding
JP5343069B2 (en) Bonding wire bonding structure
JP4197718B2 (en) High strength copper alloy sheet with excellent oxide film adhesion
JP2008098607A (en) Connection lead wire for solar cell, its production process and solar cell
KR20180041553A (en) Copper alloy wire for ball bonding
JP5500117B2 (en) Al-Cu bonding ribbon and manufacturing method thereof
JP5376356B2 (en) Electronic element mounting method and electronic component mounted by the mounting method
JP6410692B2 (en) Copper alloy bonding wire
JP2009269075A (en) Method and apparatus for manufacturing stacked solder material having stress relaxation layer
TWI399446B (en) Au alloy wire for ball bonding
JP2015080812A (en) Joint method
JP4792713B2 (en) Lead wire, manufacturing method thereof, and solar cell assembly
JP2017136628A (en) In-BASED CLAD MATERIAL
JP2010062236A (en) Electronic component
WO2022163606A1 (en) Aluminum bonding wire for power semiconductor
JP2012019177A (en) WIRE BONDING STRUCTURE USING Al PLATED STEEL WIRE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140225

R150 Certificate of patent or registration of utility model

Ref document number: 5500117

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees