JP2003148887A - Heat pipe and its manufacturing method - Google Patents

Heat pipe and its manufacturing method

Info

Publication number
JP2003148887A
JP2003148887A JP2001350702A JP2001350702A JP2003148887A JP 2003148887 A JP2003148887 A JP 2003148887A JP 2001350702 A JP2001350702 A JP 2001350702A JP 2001350702 A JP2001350702 A JP 2001350702A JP 2003148887 A JP2003148887 A JP 2003148887A
Authority
JP
Japan
Prior art keywords
layer
porous
pipe
slurry
porous metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001350702A
Other languages
Japanese (ja)
Other versions
JP3956678B2 (en
Inventor
Masahiro Wada
正弘 和田
Takumi Shibuya
巧 渋谷
Toshiyuki Cho
俊之 長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2001350702A priority Critical patent/JP3956678B2/en
Publication of JP2003148887A publication Critical patent/JP2003148887A/en
Application granted granted Critical
Publication of JP3956678B2 publication Critical patent/JP3956678B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Powder Metallurgy (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat pipe that improves heat exchange efficiency and a close contact property between a pipe body and a porous metal body layer. SOLUTION: This heat pipe is provided with a pipe body 1 having a hollow part in the closed state; a porous metal body layer 112 formed on the inner peripheral surface of the pipe body 11; and an operating fluid L filled in the pipe body 11. The porous metal body layer 12 is brought into close contact with the inner surface of the pipe body 11. The porous metal body layer 12 is composed of an outer layer and a porous inner layer arranged inside the outer layer. The outer layer is finer than the inner layer, and the inner layer is formed of a foam metal layer in which a skeleton part covering a large number of pores includes therein a large number of internal fine pores smaller in diameter than the aforementioned pores.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、熱伝達路として広
く使用されているヒートパイプに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pipe widely used as a heat transfer path.

【0002】[0002]

【従来の技術】従来のヒートパイプの構造は、例えば、
銅やタングステン製の密封状態のパイプ本体内にウイッ
クと称される網状物や多孔性物質が装着され、脱気状態
のパイプ本体内に、例えば、水やナトリウム等の作動流
体を封入したものがある。
2. Description of the Related Art The structure of a conventional heat pipe is, for example,
A mesh or porous material called wick is installed in a sealed pipe body made of copper or tungsten, and a working fluid such as water or sodium is enclosed in the degassed pipe body. is there.

【0003】このウイックは、パイプ本体内の内面に毛
細管現象を起こすために設けられたもので、前記作動流
体は、気相と液相に変化しやすい媒体であり、ウイック
の部分では液化し、パイプ本体の中空部では蒸発/気化
した状態で存在している。ヒートパイプは、この作動流
体が内在するウイックの内部の毛細管現象による圧力上
昇、すなわち毛細管現象によって作動流体を循環させ内
部の熱サイクルを維持するものである。
This wick is provided for causing a capillarity phenomenon on the inner surface of the pipe body, and the working fluid is a medium that easily changes into a gas phase and a liquid phase, and is liquefied in the wick portion. In the hollow portion of the pipe body, it exists in a vaporized / vaporized state. The heat pipe is for maintaining the internal heat cycle by circulating the working fluid by the pressure increase due to the capillary phenomenon inside the wick in which the working fluid is contained, that is, by the capillary phenomenon.

【0004】[0004]

【発明が解決しようとする課題】ところで、上記従来の
ヒートパイプには、多孔質金属体層とパイプ本体との間
の伝熱性が良くなく熱交換効率が悪いと云う問題と、ヒ
ートパイプを曲げた際に多孔質金属体層がパイプ本体か
ら剥離してしまい、密着性が悪いと云う2つの問題が存
在した。即ち、従来この種のヒートパイプは、次のよう
に製造されていた。まず、ヒートパイプのウイックとし
て使用される多孔質金属体層1は、図4に示すように、
多孔層形成用スラリーをフィルム2上に供給し、所定温
度以上に保持して乾燥させる。すると、スラリー中の非
水溶性炭化水素系有機溶剤が気化し、ガスとして蒸発す
る。この後、更に高温状態で脱脂を行うと、微細な気泡
が多数発生して多孔質金属体層1が形成される。
The conventional heat pipe described above has a problem that the heat transfer efficiency between the porous metal layer and the pipe body is poor and the heat exchange efficiency is poor, and the heat pipe is bent. At that time, the porous metal layer was separated from the pipe body, and there were two problems that the adhesion was poor. That is, this type of heat pipe has been conventionally manufactured as follows. First, as shown in FIG. 4, the porous metal layer 1 used as the wick of the heat pipe is
The slurry for forming a porous layer is supplied onto the film 2 and is kept at a predetermined temperature or higher to be dried. Then, the water-insoluble hydrocarbon-based organic solvent in the slurry is vaporized and evaporated as a gas. After that, when degreasing is further performed at a high temperature, a large number of fine bubbles are generated to form the porous metal body layer 1.

【0005】そして、このようにして作られた多孔質金
属体層1は、フィルム2と接触していた裏面側3は平坦
であるが、表面側4は平坦性が悪く、密着性が良くな
い。そこで、パイプ本体との密着性を確保する為に、裏
面側3がパイプ本体の内面と接触するように配置してヒ
ートパイプを製造していた。しかしながら、この構成に
おいて、多孔質金属体層1は、所詮気孔部分5が全体的
に数多存在するので、この気孔部分5が裏面に多数露出
して密着性を確保するにも限界があり、よって上記2つ
の問題を生じていた。
In the porous metal layer 1 thus produced, the back surface 3 which is in contact with the film 2 is flat, but the front surface 4 has poor flatness and poor adhesion. . Therefore, in order to secure the close contact with the pipe body, the heat pipe is manufactured by arranging the back surface 3 so as to contact the inner surface of the pipe body. However, in this structure, since the porous metal body layer 1 has a large number of pores 5 as a whole, there is a limit in securing a large number of the pores 5 exposed on the back surface, Therefore, the above two problems occur.

【0006】この発明は、このような事情を考慮してな
されたもので、その目的は、パイプ本体と多孔質金属体
層との密着性を向上させて熱交換効率の向上を図ると共
に、曲げ加工しても多孔質層が剥離することのないヒー
トパイプ及びその製造方法を提供することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to improve the heat exchange efficiency by improving the adhesion between the pipe body and the porous metal layer and to bend the pipe. It is an object of the present invention to provide a heat pipe in which the porous layer does not peel off even if it is processed, and a manufacturing method thereof.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、この発明は以下の手段を提供している。請求項1
に係る発明は、密閉状態の中空部を有するパイプ本体
と、該パイプ本体の内周面に形成された多孔質金属体層
と、パイプ本体に封入された作動流体とを備え、前記多
孔質金属体層が前記パイプ本体の内面に密着されると共
に、該多孔質金属体層が前記パイプ本体に接する外側層
と該外側層の内側に配置される内側層とから構成され、
前記内側層が多孔質により構成されると共に、前記外側
層が前記内側層より緻密とされていることを特徴とする
ものである。
In order to achieve the above object, the present invention provides the following means. Claim 1
According to another aspect of the invention, there is provided a pipe main body having a closed hollow portion, a porous metal body layer formed on an inner peripheral surface of the pipe main body, and a working fluid enclosed in the pipe main body. While the body layer is adhered to the inner surface of the pipe body, the porous metal body layer is composed of an outer layer in contact with the pipe body and an inner layer arranged inside the outer layer,
The inner layer is made of a porous material, and the outer layer is denser than the inner layer.

【0008】この発明に係るヒートパイプにおいては、
緻密な外側層がパイプ本体の内周面に密着されるので、
パイプ本体との密着性を向上することができると共に、
多孔質金属体層とパイプ本体との間の高い熱交換効率を
得ることができる。
In the heat pipe according to the present invention,
Since the dense outer layer is adhered to the inner peripheral surface of the pipe body,
It is possible to improve the adhesion with the pipe body,
It is possible to obtain high heat exchange efficiency between the porous metal body layer and the pipe body.

【0009】請求項2に係る発明は、請求項1記載のヒ
ートパイプにおいて、前記内側層は、多数の気孔を覆う
スケルトン部が内部に前記気孔より小径な内部微細気孔
を多数包含する発泡金属層からなることを特徴とするも
のである。
According to a second aspect of the present invention, in the heat pipe according to the first aspect, the inner layer has a skeleton portion covering a large number of pores, and a foamed metal layer including a large number of internal fine pores having a diameter smaller than the pores. It is characterized by consisting of.

【0010】この発明に係るヒートパイプにおいては、
作動流体が大径である発泡金属層の気孔内を流通するこ
とにより、高い透過率が得られ、同時に、小径の内部微
細気孔によって高い毛細管圧力が得られる。
In the heat pipe according to the present invention,
The working fluid circulates in the pores of the foam metal layer having a large diameter, whereby a high permeability is obtained, and at the same time, a high capillary pressure is obtained by the small internal pores having a small diameter.

【0011】請求項3に係る発明は、内部に多孔質金属
体層を備えたヒートパイプを製造する製造方法であっ
て、一定方向に移動する移動フィルム上に、緻密層形成
用スラリーを供給し、その後この緻密層形成用スラリー
の上面に多孔層形成用スラリーを供給し、これら緻密層
形成用スラリーと多孔層形成用スラリーを加熱して、少
なくとも前記緻密層形成用スラリーと多孔層形成用スラ
リーの何れか一方を発泡させ、その後これらを更に加熱
して緻密層と多孔層から成る多孔質金属板を製造し、こ
の多孔質金属板を多孔層が内側となるよう筒状に成形し
てパイプ本体内に挿入貼着することを特徴とするもので
ある。
According to a third aspect of the present invention, there is provided a manufacturing method for manufacturing a heat pipe having a porous metal body layer therein, wherein a dense layer forming slurry is supplied onto a moving film that moves in a fixed direction. Then, the slurry for forming a porous layer is supplied to the upper surface of the slurry for forming a dense layer, and the slurry for forming a dense layer and the slurry for forming a porous layer are heated to at least the slurry for forming a dense layer and the slurry for forming a porous layer. Either one of them is foamed, and then these are further heated to produce a porous metal plate consisting of a dense layer and a porous layer, and this porous metal plate is formed into a tubular shape with the porous layer inside and the pipe is formed. It is characterized in that it is inserted and stuck in the body.

【0012】この発明に係るヒートパイプの製造方法に
おいては、多孔質金属板が緻密層でパイプ本体と接着さ
れると共に、内側に多孔層が形成され、パイプ本体と緻
密層との密着をより強固にすると共に、多孔質金属体層
とパイプ本体との間の高い熱交換効率を得ることができ
る。
In the method of manufacturing the heat pipe according to the present invention, the porous metal plate is adhered to the pipe body with the dense layer and the porous layer is formed inside, so that the adhesion between the pipe body and the dense layer is further strengthened. In addition, high heat exchange efficiency between the porous metal layer and the pipe body can be obtained.

【0013】[0013]

【発明の実施の形態】以下、図面を参照しながら、この
発明の一実施の形態について説明する。図1は、この発
明の第1実施形態に係るヒートパイプを示す断面図であ
る。ここで、ヒートパイプ10は、銅やアルミニウム等
の耐熱材料で円筒状で、かつ、密閉状態とされた中空部
11aを有するパイプ本体11と、このパイプ本体11
の内周面に密着するように配置されたウイックとして作
用する多孔質金属体層12と、前記パイプ本体11内に
封入された水やナトリウム等の作動流体Lとを備えてい
る。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing a heat pipe according to the first embodiment of the present invention. Here, the heat pipe 10 is made of a heat-resistant material such as copper or aluminum, has a cylindrical shape, and has a hollow portion 11a in a sealed state.
It is provided with a porous metal body layer 12 which is arranged so as to be in close contact with the inner peripheral surface of the pipe and acts as a wick, and a working fluid L such as water or sodium sealed in the pipe body 11.

【0014】また、多孔質金属体層12は、パイプ本体
11に接する外側層(緻密層)12aと該外側層12a
の内側に配置される多孔質からなる内側層(発泡金属
層)12bとから構成され、前記外側層12aは内側層
12bより緻密(気孔率が小さい)に形成されている。
The porous metal layer 12 includes an outer layer (dense layer) 12a in contact with the pipe body 11 and the outer layer 12a.
And a porous inner layer (foamed metal layer) 12b disposed inside the inner layer 12b, and the outer layer 12a is formed more densely (having a smaller porosity) than the inner layer 12b.

【0015】[0015]

【表1】 [Table 1]

【0016】表1に緻密層と発泡金属層の気孔率と孔径
の範囲を示す。気孔率の範囲は、互いに重なる範囲を有
する。緻密層では、気孔率が5〜50%、孔径が0.1
〜20μmである。 だだし、300μm程度の大きさ
の孔が構造上、欠陥として生じることが多い。発泡金属
層では、気孔率が70〜97%、孔径が20〜600μ
mである。この孔は、焼結スケルトンが構成する孔であ
る。
Table 1 shows the range of porosity and pore diameter of the dense layer and the foam metal layer. The porosity ranges have ranges that overlap each other. The dense layer has a porosity of 5 to 50% and a pore diameter of 0.1.
Is about 20 μm. However, pores having a size of about 300 μm often occur as defects due to the structure. The metal foam layer has a porosity of 70 to 97% and a pore diameter of 20 to 600 μ.
m. This hole is a hole formed by the sintered skeleton.

【0017】発泡金属層12bは、図2に示すように、
多数の気孔Aを覆うスケルトン部12cからなり、この
スケルトン部12cは内部に前記気孔Aより小径の内部
微細気孔aを多数包含する有孔金属焼結体で形成されて
いる。なお、緻密層は、中実な金属層であってもよい。
The metal foam layer 12b, as shown in FIG.
The skeleton portion 12c covers a large number of pores A, and the skeleton portion 12c is formed of a perforated metal sintered body containing a large number of internal fine pores a having a smaller diameter than the pores A. The dense layer may be a solid metal layer.

【0018】次に、上記構成のヒートパイプの製造方法
について図3に従って説明する。先ず、一定方向Rに移
動する移動フィルム13上に、緻密層形成用スラリー1
4を供給する。緻密層形成用スラリー14は、ドクター
ブレード20によって一定の厚さに成型される。その
後、この緻密層形成用スラリー14の上面に多孔層形成
用スラリー15を供給する。多孔層形成用スラリー15
も同様にドクターブレード21で一定の厚さに成型され
る。
Next, a method of manufacturing the heat pipe having the above structure will be described with reference to FIG. First, the dense layer forming slurry 1 is formed on the moving film 13 that moves in the fixed direction R.
Supply 4. The dense layer forming slurry 14 is molded by the doctor blade 20 to have a constant thickness. Then, the porous layer forming slurry 15 is supplied to the upper surface of the dense layer forming slurry 14. Porous layer forming slurry 15
Similarly, the doctor blade 21 is formed into a certain thickness.

【0019】これら緻密層形成用スラリー14と多孔層
形成用スラリー15は、移動フィルム13によって、発
泡ゾーン16に運ばれ、ここで温度30℃〜80℃、湿
度65%以上の雰囲気下で加熱されて多孔層形成用スラ
リー15を発泡させる。その後、これらを更に乾燥炉1
7で加熱して緻密層12aと多孔層12bから成る多孔
質金属成形体を得る。そして更に、得られた成形体を脱
脂・焼結して多孔質金属板を得る。焼結温度は、900
〜1350℃程度で行われる。焼結処理によって、図2
に示すように、気孔Aを覆うスケルトン部12cで構成
された発泡金属層12bが得られ、スケルトン部12c
には、その内部に前記気孔Aより小径の内部微細気孔a
が多数包含されている有孔金属焼結体となる。このよう
にして形成された、緻密層12aと発泡金属層12bを
有する多孔質金属板を多孔層である発泡金属層12bが
内側となるよう筒状に成形してパイプ本体11内に挿入
し、その後パイプ本体11の内周に密着させる。
The dense layer forming slurry 14 and the porous layer forming slurry 15 are carried by the moving film 13 to the foaming zone 16, where they are heated in an atmosphere having a temperature of 30 ° C. to 80 ° C. and a humidity of 65% or more. The porous layer forming slurry 15 is foamed. After that, these are further dried in the oven 1.
By heating at 7, a porous metal molded body composed of the dense layer 12a and the porous layer 12b is obtained. Then, the obtained molded body is degreased and sintered to obtain a porous metal plate. Sintering temperature is 900
It is performed at about 1350 ° C. Figure 2 shows the result of the sintering process.
As shown in FIG. 5, a metal foam layer 12b composed of a skeleton part 12c covering the pores A is obtained, and the skeleton part 12c is obtained.
Inside, there are internal fine pores a having a smaller diameter than the pores A.
The resulting porous metal sintered body contains a large number of The porous metal plate having the dense layer 12a and the foam metal layer 12b formed in this way is formed into a tubular shape so that the foam metal layer 12b, which is the porous layer, is inside, and is inserted into the pipe body 11, After that, the pipe body 11 is brought into close contact with the inner periphery thereof.

【0020】以上のように構成されたヒートパイプは、
多孔質金属体層12が緻密層12aと、発泡金属層12
bを包含すると共に、緻密層12aをパイプ本体11の
内周面に接着したので、パイプ本体11と多孔質金属体
層12との密着性が向上する。また、密着性が向上する
ことにより、パイプ本体11と多孔質金属体層12との
間の熱交換効率が向上する。更に、ヒートパイプ10を
曲げて配置しても、多孔質金属体層が剥離する虞もな
い。
The heat pipe configured as described above is
The porous metal body layer 12 includes the dense layer 12a and the foam metal layer 12
Since b is included and the dense layer 12a is adhered to the inner peripheral surface of the pipe body 11, the adhesion between the pipe body 11 and the porous metal body layer 12 is improved. In addition, the improved adhesion improves the heat exchange efficiency between the pipe body 11 and the porous metal body layer 12. Further, even if the heat pipe 10 is bent and arranged, there is no fear that the porous metal body layer is peeled off.

【0021】ここで使用される多孔層形成用スラリー1
5の組成は、重量%で、 炭素数5〜8の非水溶性炭化水素系有機溶剤:0.05
〜10%、 界面活性剤:0.05〜5%、 水溶性樹脂結合剤:0.5〜20%、 平均粒径:0.5〜500μmの金属粉:5〜80%、 必要に応じて、多価アルコール、油脂、エーテル、およ
びエステルのうちの1種または2種以上からなる可塑
剤:0.1〜15%、 水:残り、 からなる配合組成を有する混合物である。
Slurry 1 for forming a porous layer used here
The composition of 5 is wt%, and the water-insoluble hydrocarbon organic solvent having 5 to 8 carbon atoms: 0.05
-10%, surfactant: 0.05-5%, water-soluble resin binder: 0.5-20%, average particle size: 0.5-500 μm metal powder: 5-80%, if necessary , A polyhydric alcohol, a fat or oil, an ether, and an ester, or a plasticizer consisting of two or more kinds thereof: 0.1 to 15%, and water: the rest.

【0022】また、前記金属粉は、焼結後発泡金属焼結
体を構成するものであるから、従来の有孔金属焼結体を
含め金属多孔質体に適用されている金属材料で構成して
よく、その平均粒径が0.5μm未満になると焼結体の
高気孔率化が困難になる。一方、その平均粒径が500
μmを越えると、混合原料中での分散性が低下し、均質
な焼結体の製造が困難となる。したがって、その平均粒
径を0.5〜500μm、望ましくは5〜100μmと
定めた。更に、金属粉も割合を5〜80%とするのは、
その割合が5%未満では焼結体の強度が急激に低下し、
80%を越えると高気孔率化が困難になるからである。
Since the metal powder constitutes a foam metal sintered body after sintering, it is composed of a metal material applied to a metal porous body including a conventional porous metal sintered body. If the average particle size is less than 0.5 μm, it becomes difficult to increase the porosity of the sintered body. On the other hand, the average particle size is 500
If it exceeds μm, the dispersibility in the mixed raw material decreases, and it becomes difficult to produce a homogeneous sintered body. Therefore, the average particle size is set to 0.5 to 500 μm, preferably 5 to 100 μm. Furthermore, the ratio of metal powder to 5 to 80% is
If the ratio is less than 5%, the strength of the sintered body will decrease rapidly,
If it exceeds 80%, it becomes difficult to increase the porosity.

【0023】可塑剤として添加される多価アルコール、
油脂、エーテル、及びエステルには、スラリー成形体に
可塑性を付与する作用があるので、必要に応じて添加さ
れるが、その割合が0.1%未満では前記作用に所望の
効果が得られず、一方その割合が15%を越えると多孔
質成形体の強度が急激に低下する。そのため、その割合
を0.1〜15%、望ましくは2〜10%とする。ま
た、上記多価アルコールとしてはエチレングリコール、
ポリエチレングリコール、及びグリセリン、上記油脂と
してイワシ油、菜種油、オリーブ油、上記エーテルとし
て、石油エーテル等が使用される。
A polyhydric alcohol added as a plasticizer,
Fats, ethers, and esters have an action of imparting plasticity to the slurry molded body, and therefore, they are added as necessary, but if the proportion is less than 0.1%, the desired effect cannot be obtained in the action. On the other hand, when the ratio exceeds 15%, the strength of the porous molded body is rapidly reduced. Therefore, the ratio is set to 0.1 to 15%, preferably 2 to 10%. Further, as the polyhydric alcohol, ethylene glycol,
Polyethylene glycol and glycerin, sardine oil, rapeseed oil, olive oil as the above oil and fat, petroleum ether and the like as the above ether are used.

【0024】以上の説明では、多孔層形成用スラリー1
5のみを発泡させる例について説明したが、緻密層形成
用スラリー14と多孔層形成用スラリー15の双方を発
泡させても、緻密層形成用スラリー14の発泡量を小さ
く設定しても、上述の実施の形態と同様の効果が得られ
る。
In the above description, the porous layer forming slurry 1 is used.
Although the example in which only 5 is foamed has been described, even if both the dense layer forming slurry 14 and the porous layer forming slurry 15 are foamed, or if the foaming amount of the dense layer forming slurry 14 is set small, The same effect as the embodiment can be obtained.

【0025】尚、本発明は以上の実施例に限ることなく
本発明の技術思想に基づいて種々の設計変更が可能であ
る。
The present invention is not limited to the above embodiments, and various design changes can be made based on the technical idea of the present invention.

【0026】[0026]

【発明の効果】以上説明したように、請求項1に係る発
明によれば、多孔質金属体層が外側層と該外側層の内側
に配置される内側層とから構成され、パイプ本体に接す
る外側層が多孔質からなる内側層より緻密とされている
ため、パイプ本体と多孔質金属体層との密着性を高める
ことができると共に伝熱効率を向上させることができ、
熱交換効率の向上を図ることができるという効果が得ら
れる。。また、ヒートパイプを曲げ加工しても多孔質金
属体層が剥離することがないという効果が得られる。
As described above, according to the invention of claim 1, the porous metal body layer is composed of the outer layer and the inner layer disposed inside the outer layer, and is in contact with the pipe body. Since the outer layer is denser than the inner layer made of porous material, it is possible to improve the adhesion between the pipe body and the porous metal body layer and improve the heat transfer efficiency,
The effect that the heat exchange efficiency can be improved is obtained. . Further, the effect that the porous metal body layer is not peeled off even when the heat pipe is bent is obtained.

【0027】また、請求項2に係る発明によれば、内側
層は多数の気孔を覆うスケルトン部が内部に前記気孔よ
り小径な内部微細気孔を多数包含する発泡金属層からな
るので、緻密な外側層がパイプ本体の内周面に接着され
るので、パイプ本体との密着性を向上することができる
と共に、多孔質金属体層とパイプ本体との間の高い熱交
換効率を得ることができる。
According to the second aspect of the present invention, the inner layer has a skeleton portion covering a large number of pores and is composed of a metal foam layer containing a large number of internal fine pores having a diameter smaller than the pores. Since the layer is adhered to the inner peripheral surface of the pipe body, the adhesion with the pipe body can be improved, and high heat exchange efficiency between the porous metal body layer and the pipe body can be obtained.

【0028】また、請求項3に係る発明によれば、一定
方向に移動する移動フィルム上に、緻密層形成用スラリ
ーを供給し、その後この緻密層形成用スラリーの上面に
多孔層形成用スラリーを供給し、これら緻密層形成用ス
ラリーと多孔層形成用スラリーを加熱して、少なくとも
前記緻密層形成用スラリーと多孔層形成用スラリーの何
れか一方を発泡させ、その後これらを更に加熱して緻密
層と多孔層から成る多孔質金属板を製造し、この多孔質
金属板を多孔層が内側となるよう筒状に成形してパイプ
本体内に挿入貼着するので、パイプ本体と多孔質金属板
との密着性を向上したヒートパイプを製造することがで
きる。したがって、パイプ本体と多孔質金属体層との密
着性が向上すると、ヒートパイプ全体としての熱交換効
率を向上すると共に曲げ加工しても多孔質金属体層とパ
イプ本体と剥離することのないヒートパイプを製造する
ことができる。
According to the third aspect of the present invention, the dense layer forming slurry is supplied onto the moving film which moves in a certain direction, and then the porous layer forming slurry is formed on the upper surface of the dense layer forming slurry. The slurry is supplied, and the slurry for forming a dense layer and the slurry for forming a porous layer are heated to foam at least one of the slurry for forming a dense layer and the slurry for forming a porous layer, and then these are further heated to form a dense layer. Since a porous metal plate composed of a porous layer and a porous layer is manufactured, and the porous metal plate is formed into a tubular shape with the porous layer facing the inside and is inserted and adhered into the pipe body, the pipe body and the porous metal plate are It is possible to manufacture a heat pipe with improved adhesion. Therefore, when the adhesion between the pipe body and the porous metal body layer is improved, the heat exchange efficiency of the heat pipe as a whole is improved and the heat that does not separate from the porous metal body layer and the pipe body even when bent is formed. Pipes can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の第1実施形態に係るヒートパイプ
を示す断面図である。
FIG. 1 is a sectional view showing a heat pipe according to a first embodiment of the present invention.

【図2】 図1における発泡金属の拡大断面図である。FIG. 2 is an enlarged cross-sectional view of the foam metal in FIG.

【図3】 同ヒートパイプに使用する多孔質金属体層の
製造方法の一例を示す説明図である。
FIG. 3 is an explanatory view showing an example of a method for producing a porous metal body layer used for the heat pipe.

【図4】 従来のヒートパイプに使用される多孔質金属
体層の一例を示す説明図である。
FIG. 4 is an explanatory view showing an example of a porous metal body layer used in a conventional heat pipe.

【符号の説明】[Explanation of symbols]

L 作動流体 10 ヒートパイプ 11 パイプ本体 12 多孔質金属体層 12a 外側層(緻密層) 12b 内側層(発泡金属層) 13 移動フィルム 14 緻密層形成用スラリー 15 多孔層形成用スラリー L working fluid 10 heat pipe 11 Pipe body 12 Porous metal layer 12a Outer layer (dense layer) 12b Inner layer (foam metal layer) 13 Moving film 14 Slurry for forming dense layer 15 Slurry for forming porous layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長 俊之 埼玉県北本市下石戸上1975番地2 三菱マ テリアル株式会社北本製作所内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Toshiyuki Naga             2 1975, Shimoishi Togami, Kitamoto City, Saitama Prefecture             Terial Co., Ltd. Kitamoto Works

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 密閉状態の中空部を有するパイプ本体
と、該パイプ本体の内周面に形成された多孔質金属体層
と、該パイプ本体に封入された作動流体とを備え、前記
多孔質金属体層が前記パイプ本体の内面に密着されると
共に、該多孔質金属体層が前記パイプ本体に接する外側
層と該外側層の内側に配置される内側層とから構成さ
れ、前記内側層が多孔質により構成されると共に、前記
外側層が前記内側層より緻密とされていることを特徴と
するヒートパイプ。
1. A pipe main body having a closed hollow portion, a porous metal body layer formed on an inner peripheral surface of the pipe main body, and a working fluid sealed in the pipe main body. A metal body layer is adhered to the inner surface of the pipe body, and the porous metal body layer is composed of an outer layer in contact with the pipe body and an inner layer arranged inside the outer layer, wherein the inner layer is A heat pipe, characterized in that it is made of a porous material and the outer layer is denser than the inner layer.
【請求項2】 請求項1記載のヒートパイプにおいて、
前記内側層は、多数の気孔を覆うスケルトン部が内部に
前記気孔より小径な内部微細気孔を多数包含する発泡金
属層からなることを特徴とするヒートパイプ。
2. The heat pipe according to claim 1, wherein
The heat pipe according to claim 1, wherein the inner layer is a metal foam layer in which a skeleton portion covering a large number of pores includes a large number of internal fine pores having a diameter smaller than the pores.
【請求項3】 内部に多孔質金属体層を備えたヒートパ
イプを製造する製造方法であって、一定方向に移動する
移動フィルム上に、緻密層形成用スラリーを供給し、そ
の後この緻密層形成用スラリーの上面に多孔層形成用ス
ラリーを供給し、これら緻密層形成用スラリーと多孔層
形成用スラリーを加熱して、少なくとも前記緻密層形成
用スラリーと多孔層形成用スラリーの何れか一方を発泡
させ、その後これらを更に加熱して緻密層と多孔層から
成る多孔質金属板を製造し、この多孔質金属板を多孔層
が内側となるよう筒状に成形してパイプ本体内に挿入貼
着することを特徴とするヒートパイプの製造方法。
3. A manufacturing method for manufacturing a heat pipe having a porous metal layer inside, wherein a slurry for forming a dense layer is supplied onto a moving film that moves in a fixed direction, and then the dense layer is formed. The slurry for forming a porous layer is supplied onto the upper surface of the slurry for heating, and the slurry for forming a dense layer and the slurry for forming a porous layer are heated to foam at least one of the slurry for forming a dense layer and the slurry for forming a porous layer. After that, these are further heated to produce a porous metal plate consisting of a dense layer and a porous layer, and this porous metal plate is formed into a cylindrical shape with the porous layer inside and is inserted and pasted into the pipe body. A method for manufacturing a heat pipe, comprising:
JP2001350702A 2001-11-15 2001-11-15 Heat pipe manufacturing method Expired - Fee Related JP3956678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001350702A JP3956678B2 (en) 2001-11-15 2001-11-15 Heat pipe manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001350702A JP3956678B2 (en) 2001-11-15 2001-11-15 Heat pipe manufacturing method

Publications (2)

Publication Number Publication Date
JP2003148887A true JP2003148887A (en) 2003-05-21
JP3956678B2 JP3956678B2 (en) 2007-08-08

Family

ID=19163146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001350702A Expired - Fee Related JP3956678B2 (en) 2001-11-15 2001-11-15 Heat pipe manufacturing method

Country Status (1)

Country Link
JP (1) JP3956678B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005100897A1 (en) * 2004-04-13 2005-10-27 Sony Corporation Heat transport apparatus, method of manufacturing heat transport apparatus, and electronic equipment
JP2007017115A (en) * 2005-07-11 2007-01-25 ▲玉▼成化工有限公司 Heat pipe
CN100376857C (en) * 2005-02-04 2008-03-26 富准精密工业(深圳)有限公司 Sintered heat pipe and its manufacturing method
CN100395505C (en) * 2005-04-07 2008-06-18 富准精密工业(深圳)有限公司 Sintering type heat pipe and manufacturing method thereof
JP2008286454A (en) * 2007-05-16 2008-11-27 Furukawa Electric Co Ltd:The High performance thin heat pipe
JP2008544489A (en) * 2005-06-10 2008-12-04 クリー インコーポレイテッド Optical device and lamp
CN101586925A (en) * 2008-05-19 2009-11-25 鈤新科技股份有限公司 Temperature-uniforming plate
JP2009276022A (en) * 2008-05-16 2009-11-26 Furukawa Electric Co Ltd:The Heat pipe
JP2010151354A (en) * 2008-12-24 2010-07-08 Sony Corp Heat transport device and electronic apparatus
JP2013083385A (en) * 2011-10-07 2013-05-09 Fujitsu Ltd Loop type heat pipe and method of manufacturing the same
WO2013125820A1 (en) * 2012-02-21 2013-08-29 엘지전자 주식회사 Porous metal structure and manufacturing method therefor
JP2014025610A (en) * 2012-07-25 2014-02-06 Fujikura Ltd Wick manufacturing method and wick structure
CN103900412A (en) * 2013-02-17 2014-07-02 上海交通大学 Through-hole metal foam heat pipe heat exchange device with gradually-changed appearance characteristics
JP2019214142A (en) * 2018-06-11 2019-12-19 株式会社岐阜多田精機 Mold with heat pipe function
EP3605004A1 (en) * 2018-07-30 2020-02-05 Ricoh Company, Ltd. Wick, loop heat pipe, cooling device, electronic device, method of manufacturing porous body, and method of manufacturing wick
WO2022004616A1 (en) * 2020-06-30 2022-01-06 古河電気工業株式会社 Heat transfer device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101680587B1 (en) * 2015-02-25 2016-11-30 (주)위너스라이팅 Cooling device using phase-change material

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005100897A1 (en) * 2004-04-13 2005-10-27 Sony Corporation Heat transport apparatus, method of manufacturing heat transport apparatus, and electronic equipment
CN100376857C (en) * 2005-02-04 2008-03-26 富准精密工业(深圳)有限公司 Sintered heat pipe and its manufacturing method
CN100395505C (en) * 2005-04-07 2008-06-18 富准精密工业(深圳)有限公司 Sintering type heat pipe and manufacturing method thereof
US9412926B2 (en) 2005-06-10 2016-08-09 Cree, Inc. High power solid-state lamp
JP2008544489A (en) * 2005-06-10 2008-12-04 クリー インコーポレイテッド Optical device and lamp
JP2007017115A (en) * 2005-07-11 2007-01-25 ▲玉▼成化工有限公司 Heat pipe
JP2008286454A (en) * 2007-05-16 2008-11-27 Furukawa Electric Co Ltd:The High performance thin heat pipe
JP2009276022A (en) * 2008-05-16 2009-11-26 Furukawa Electric Co Ltd:The Heat pipe
CN101586925A (en) * 2008-05-19 2009-11-25 鈤新科技股份有限公司 Temperature-uniforming plate
JP2010151354A (en) * 2008-12-24 2010-07-08 Sony Corp Heat transport device and electronic apparatus
JP4706754B2 (en) * 2008-12-24 2011-06-22 ソニー株式会社 Heat transport device and electronic equipment
JP2013083385A (en) * 2011-10-07 2013-05-09 Fujitsu Ltd Loop type heat pipe and method of manufacturing the same
WO2013125820A1 (en) * 2012-02-21 2013-08-29 엘지전자 주식회사 Porous metal structure and manufacturing method therefor
JP2014025610A (en) * 2012-07-25 2014-02-06 Fujikura Ltd Wick manufacturing method and wick structure
CN103900412A (en) * 2013-02-17 2014-07-02 上海交通大学 Through-hole metal foam heat pipe heat exchange device with gradually-changed appearance characteristics
JP2019214142A (en) * 2018-06-11 2019-12-19 株式会社岐阜多田精機 Mold with heat pipe function
JP7161169B2 (en) 2018-06-11 2022-10-26 株式会社岐阜多田精機 Mold with heat pipe function
EP3605004A1 (en) * 2018-07-30 2020-02-05 Ricoh Company, Ltd. Wick, loop heat pipe, cooling device, electronic device, method of manufacturing porous body, and method of manufacturing wick
CN110779366A (en) * 2018-07-30 2020-02-11 株式会社理光 Capillary wick, loop heat pipe, electronic device, porous body, and method for manufacturing capillary wick
WO2022004616A1 (en) * 2020-06-30 2022-01-06 古河電気工業株式会社 Heat transfer device

Also Published As

Publication number Publication date
JP3956678B2 (en) 2007-08-08

Similar Documents

Publication Publication Date Title
JP2003148887A (en) Heat pipe and its manufacturing method
JPH09119789A (en) Manufacture of heat pipe
US11780006B2 (en) Method for manufacturing metal foam
US20100181048A1 (en) Heat pipe
US11118844B2 (en) Preparation method for heat pipe
WO2006007721A1 (en) Hybrid wicking materials for use in high performance heat pipes
KR20100098507A (en) Open cell, porous material, and a method of, and mixture for, making same
CN106583738B (en) Improved porous coatings
CN105854633A (en) Porous film and preparation method thereof
JP2019535901A (en) Metal foam manufacturing method
US11612933B2 (en) Preparation method for metal foam
CN113432467A (en) Preparation method of metal ceramic composite capillary core
JP2019526710A (en) Metal foam manufacturing method
JP2003155503A (en) Method for manufacturing porous metal
JP2009092344A (en) Vapor chamber with superior heat transport characteristic
JP3960017B2 (en) Heat pipe manufacturing method
WO2023103438A1 (en) Method for preparing wick, and heat pipe comprising wick
JP2003343987A (en) Manufacturing method for wick structural body
JPH10251711A (en) Production of porous body
JP2008169463A (en) Cobalt-tungsten sputter target, and method for manufacturing the same
CN114618316B (en) Porous metal-ceramic composite membrane material and preparation method thereof
KR102378971B1 (en) Manufacturing method for metal foam
KR100388058B1 (en) Method of Manufacturing Sintered Wick
CN113140351B (en) Slurry for preparing high-porosity electrode foil and preparation method thereof
US20210363024A1 (en) Method for producing porous composite bodies with thermally conductive support structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070430

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees