JP2009276022A - Heat pipe - Google Patents

Heat pipe Download PDF

Info

Publication number
JP2009276022A
JP2009276022A JP2008129567A JP2008129567A JP2009276022A JP 2009276022 A JP2009276022 A JP 2009276022A JP 2008129567 A JP2008129567 A JP 2008129567A JP 2008129567 A JP2008129567 A JP 2008129567A JP 2009276022 A JP2009276022 A JP 2009276022A
Authority
JP
Japan
Prior art keywords
heat pipe
heat
wick
suspended
working fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008129567A
Other languages
Japanese (ja)
Inventor
Masashi Ikeda
匡視 池田
Toshiaki Nakamura
敏明 中村
Yuichi Kimura
裕一 木村
Masabumi Katsuta
正文 勝田
Yusuke Yoshida
雄亮 吉田
Kensuke Ebihara
健介 海老原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Waseda University
Original Assignee
Furukawa Electric Co Ltd
Waseda University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Waseda University filed Critical Furukawa Electric Co Ltd
Priority to JP2008129567A priority Critical patent/JP2009276022A/en
Publication of JP2009276022A publication Critical patent/JP2009276022A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pipe having excellent heat transfer performance by improving heat transfer rate of an evaporation part. <P>SOLUTION: The heat pipe is provided with a container having a closed hollow part formed inside, a wick arrange on the inner wall of the container and having capillary force, and working fluid filled in the container and having a predetermined amount of suspended metallic fine particles. The wick includes a meshy wick. At least part of the metallic fine particles is trapped between meshes of the meshy wick, and the remaining is present in the suspended state within the working fluid. The metallic fine particles are trapped in a portion positioned in the evaporation part of the meshy wick. The size of the metallic fine particles is within a range of 20-150 μm. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、半導体素子などの被冷却素子の冷却デバイスに利用されるヒートパイプ、特に金属微粒子をけん濁させた作動液を利用したヒートパイプに関する。   The present invention relates to a heat pipe used for a cooling device for an element to be cooled such as a semiconductor element, and more particularly to a heat pipe using a working fluid in which metal fine particles are suspended.

従来、筐体の中に配置されるCPU、素子等の発熱部品の発熱量、発熱密度が増大し、これらを効率的に放熱する高性能のヒートシンクが求められている。ベースプレートと放熱フィンを組み合わせヒートシンクでは、筐体内における配置上の制限を受け、発熱量の増大に対応することが難しくなり、更に、ヒートパイプを組み合わせたヒートシンクが使用されるようになった。このようにヒートパイプを使用することによって、大量の熱を効率的に所望の場所に移動して、放熱することができる。   2. Description of the Related Art Conventionally, the heat generation amount and heat generation density of heat generating components such as CPUs and elements arranged in a housing are increased, and a high performance heat sink that efficiently dissipates these has been demanded. The heat sink combining the base plate and the heat radiating fins is limited in arrangement within the housing, making it difficult to cope with an increase in the amount of heat generation, and further, a heat sink combining a heat pipe has been used. By using the heat pipe in this way, a large amount of heat can be efficiently moved to a desired place and radiated.

ヒートパイプの内部には作動流体の流路となる空間が設けられ、その空間に収容された作動流体が、蒸発、凝縮等の相変化や移動をすることによって、熱の移動が行われる。即ち、ヒートパイプの吸熱側において、ヒートパイプを構成する容器の材質中を熱伝導して伝わってきた被冷却部品が発する熱により、作動流体が蒸発し、その蒸気がヒートパイプの放熱側に移動する。放熱側においては、作動流体の蒸気は冷却され再び液相状態に戻る。このように液相状態に戻った作動流体は再び吸熱側に移動(還流)する。このような作動流体の相変態や移動によって熱の移動が行われる。   A space serving as a flow path for the working fluid is provided inside the heat pipe, and the working fluid accommodated in the space undergoes a phase change or movement such as evaporation or condensation, thereby transferring heat. That is, on the heat absorption side of the heat pipe, the working fluid evaporates due to the heat generated by the parts to be cooled that are conducted through the material of the container constituting the heat pipe, and the vapor moves to the heat radiation side of the heat pipe. To do. On the heat radiating side, the working fluid vapor is cooled and returned to the liquid phase again. The working fluid that has returned to the liquid phase in this way moves (refluxs) again to the heat absorption side. Heat is transferred by such phase transformation and movement of the working fluid.

一方で、ヒートパイプの熱移動能力を一層高めようと各種提案がなされている。特開2003−148887号公報には、ヒートパイプ本体とヒートパイプ内に配置された多孔質金属体との密着性を向上させて熱交換効率を向上するヒートパイプが開示されている。   On the other hand, various proposals have been made to further increase the heat transfer capability of the heat pipe. Japanese Patent Laid-Open No. 2003-148887 discloses a heat pipe that improves the heat exchange efficiency by improving the adhesion between the heat pipe body and the porous metal body disposed in the heat pipe.

即ち、開示されたヒートパイプは、密閉状態の中空部を有するヒートパイプ本体と、ヒートパイプ本体の内周面に形成された多孔質金属体層と、ヒートパイプ本体に封入された作動流体とを備えたヒートパイプである。上述した多孔質金属体層がヒートパイプ本体の内面に密着されると共に、多孔質金属体層がヒートパイプ本体に接する外側層と外側層の内側に配置される内側層とから構成されている。内側層が多孔質により構成されると共に、外側層が内側層より緻密に形成されている。   That is, the disclosed heat pipe includes a heat pipe body having a sealed hollow portion, a porous metal body layer formed on the inner peripheral surface of the heat pipe body, and a working fluid sealed in the heat pipe body. It is a equipped heat pipe. The porous metal body layer described above is in close contact with the inner surface of the heat pipe body, and the porous metal body layer includes an outer layer in contact with the heat pipe body and an inner layer disposed inside the outer layer. The inner layer is made of a porous material, and the outer layer is formed more densely than the inner layer.

更に、特開2004−85108号公報には、熱媒の熱伝導率と熱拡散率とを高めるための熱伝導促進方法が開示されている。開示された方法においては、熱媒の流体内に超微細粒子固体(20ナノメートル以下)を浮遊するが如く混在させた作動液を利用し、ヒートパイプの熱伝導促進をする方法である。混在させる超微粒子固体は20ナノメートル以下であるので、熱媒流体中に何らの抵抗なく、流体と共に分離することなく循環する。   Furthermore, Japanese Unexamined Patent Application Publication No. 2004-85108 discloses a method for promoting heat conduction for increasing the thermal conductivity and thermal diffusivity of the heat medium. In the disclosed method, the heat conduction of the heat pipe is promoted by using a working fluid in which ultrafine particle solids (20 nanometers or less) are mixed as if floating in the fluid of the heat medium. Since the ultrafine solid particles to be mixed are 20 nanometers or less, they circulate in the heat transfer fluid without any resistance and without separation with the fluid.

図5は、特開2004−85108号公報に開示された冷凍サイクル循環系の構造を説明する図である。図5に示すように、冷凍圧縮器101とシェルアンドチューブ式凝縮器102およびシェルアンドチューブ式蒸発器103内を循環する冷媒の熱交換を行うために、凝縮器内熱交換チューブ103や蒸発器内熱交換チューブ105内には熱媒が導入循環される。   FIG. 5 is a diagram for explaining the structure of the refrigeration cycle circulation system disclosed in Japanese Patent Application Laid-Open No. 2004-85108. As shown in FIG. 5, in order to perform heat exchange of the refrigerant circulating in the refrigeration compressor 101, the shell-and-tube condenser 102, and the shell-and-tube evaporator 103, the heat exchange tube 103 in the condenser and the evaporator A heat medium is introduced and circulated in the inner heat exchange tube 105.

即ち、シェルアンドチューブ式凝縮器102は、高圧吐出管108からの冷媒高圧ガス119の入るシェルとこのシェル内に配管されて冷媒高圧ガス119との熱交換を行うための凝縮器内熱交換チューブ103等とからなり、凝縮器内熱交換チューブ103内にはクーリングタワ106から冷却水ポンプ114を介して凝縮器冷却水118が導入され、循環する。なお、この凝縮器冷却水118が上述した熱媒に相当する。冷凍装置の液化ガス冷媒に超微粒子固体を混入した冷媒も上述した熱媒に相当する。   That is, the shell-and-tube condenser 102 is a heat exchange tube in the condenser for exchanging heat between the shell containing the refrigerant high-pressure gas 119 from the high-pressure discharge pipe 108 and the refrigerant high-pressure gas 119. The condenser cooling water 118 is introduced from the cooling tower 106 through the cooling water pump 114 and circulates in the heat exchange tube 103 in the condenser. The condenser cooling water 118 corresponds to the heat medium described above. A refrigerant obtained by mixing ultrafine solids into a liquefied gas refrigerant of a refrigeration apparatus also corresponds to the above-described heat medium.

更に、シェルアンドチューブ式蒸発器104は蒸発器内ブライン冷媒112の導入されるシェルアンドチューブ式蒸発器104とこの中に配管され冷媒ガスが導入される蒸発器内熱交換チューブ105等とからなり、蒸発器内熱交換チューブ105内には冷媒液管109より膨張弁110を介して冷媒ガス111が導入され、シェルアンドチューブ式蒸発器104内には空気冷却器107のファンコイル式冷却器113から蒸発器内にブランイン冷媒112が導入され、この蒸発器内ブライン冷媒112はブラインポンプ115を介して空気冷却器107側に戻され、空気冷却器ファン116により冷却されて循環する。この蒸発器内ブライン冷媒112が上述した熱媒に当る。
特開2003−148887号公報 特開2004−85108号公報
Further, the shell-and-tube evaporator 104 includes a shell-and-tube evaporator 104 into which the in-evaporator brine refrigerant 112 is introduced, an evaporator internal heat exchange tube 105 into which the refrigerant gas is introduced, and the like. The refrigerant gas 111 is introduced from the refrigerant liquid pipe 109 through the expansion valve 110 into the evaporator heat exchange tube 105, and the fan coil type cooler 113 of the air cooler 107 is introduced into the shell and tube type evaporator 104. Then, the Bran-in refrigerant 112 is introduced into the evaporator, and the brine refrigerant 112 in the evaporator is returned to the air cooler 107 side via the brine pump 115 and is cooled and circulated by the air cooler fan 116. The in-evaporator brine refrigerant 112 hits the heat medium described above.
JP 2003-148887 A JP 2004-85108 A

特許文献1に開示された方法では、ヒートパイプ内面に焼結体などの多孔質金属を施す場合には、ヒートパイプの性能を一定にするために、多孔質の厚さを均一にする必要があり、厚さを均一にする作業は困難であった。更に、ヒートパイプの蒸発部の面積を増加させるために該当部分に多孔質部材を塗布する場合には、多孔質部材の厚さをある程度厚くする必要がある。しかし、多孔質部材を厚くすると、この部分での流路抵抗が大きくなり、作動液の蒸発が妨げられ、ヒートパイプの特性が劣化することがあった。   In the method disclosed in Patent Document 1, when a porous metal such as a sintered body is applied to the inner surface of the heat pipe, it is necessary to make the porous thickness uniform in order to make the performance of the heat pipe constant. The work to make the thickness uniform was difficult. Furthermore, when a porous member is applied to a corresponding portion in order to increase the area of the evaporation part of the heat pipe, it is necessary to increase the thickness of the porous member to some extent. However, when the porous member is thickened, the flow path resistance at this portion increases, the evaporation of the working fluid is hindered, and the characteristics of the heat pipe may be deteriorated.

特許文献2に開示された方法では、超微粒子を浮遊させた作動液を利用する場合には、超微粒子と作動液の相性によっては浮遊させることが困難であった。更に、入手できる超微粒子にも制限があるために、利用範囲が限られるなどの問題点があった。   In the method disclosed in Patent Document 2, when using a working fluid in which ultrafine particles are suspended, it is difficult to float depending on the compatibility between the ultrafine particles and the working fluid. Furthermore, since the available ultrafine particles are also limited, there is a problem that the range of use is limited.

本発明の目的は、上述した従来の問題点に鑑みてなされたものであり、蒸発部の熱伝達率を向上させ、伝熱性能に優れたヒートパイプを提供することにある。   An object of the present invention has been made in view of the above-described conventional problems, and is to provide a heat pipe that improves the heat transfer coefficient of the evaporation section and has excellent heat transfer performance.

発明者は、上述した問題点を解決するために鋭意研究を重ねた。その結果、作動液に金属の微粒子をけん濁させた流体を使用すると、流体の熱伝導を向上させることができ、ヒートパイプの蒸発部の熱性能を高めることができることが判明した。更に、ヒートパイプのコンテナ内にメッシュ等のウイックを用いて、所定の大きさの金属微粒子をけん濁させた作動液を使用すると、ウイックの蒸発部に位置する部分に金属の微粒子が捕捉されて、上述した流体の熱伝導を向上させることと合わせて、蒸発部の熱伝達率が著しく向上することが判明した。   The inventor has intensively studied to solve the above-described problems. As a result, it has been found that the use of a fluid in which metal fine particles are suspended in the working fluid can improve the heat conduction of the fluid and can improve the thermal performance of the evaporation portion of the heat pipe. In addition, when using a working fluid in which metal particles of a predetermined size are suspended using a wick such as a mesh in the heat pipe container, the metal particles are trapped in the portion located in the evaporation part of the wick. It has been found that the heat transfer coefficient of the evaporating part is remarkably improved in combination with improving the heat conduction of the fluid described above.

一方で、ウイックに捕捉される金属微粒子が大きすぎると、蒸発部における流路抵抗が大きくなり、作動液の蒸発が妨げられ、ヒートパイプの特性が劣化することがある。従って、金属の微粒子の大きさおよび量が、蒸発部の熱伝達率を向上させる上で、重要な要素になっていることが判明した。
この発明は上述した研究結果に基づきなされたものである。
On the other hand, if the metal fine particles captured by the wick are too large, the flow path resistance in the evaporation section increases, the evaporation of the hydraulic fluid is hindered, and the characteristics of the heat pipe may deteriorate. Therefore, it has been found that the size and amount of the metal fine particles are important factors in improving the heat transfer coefficient of the evaporation section.
The present invention has been made based on the above-described research results.

この発明のヒートパイプの第1の態様は、内部に密閉された空洞部を有するコンテナと、前記コンテナの内壁に配置された毛管力を備えたウイックと、前記コンテナ内に封入された、所定量の金属の微粒子をけん濁させた作動流体とを備えたヒートパイプである。   According to a first aspect of the heat pipe of the present invention, a container having a hollow portion sealed inside, a wick having a capillary force disposed on an inner wall of the container, and a predetermined amount enclosed in the container And a working fluid in which fine metal particles are suspended.

この発明のヒートパイプの第2の態様は、前記ウイックがメッシュ状ウイックからなっており、前記金属の微粒子の少なくとも一部が、前記メッシュ状ウイックのメッシュ間に捕捉され、残りが前記作動流体内にけん濁状態で存在するヒートパイプである。   According to a second aspect of the heat pipe of the present invention, the wick is formed of a mesh wick, and at least a part of the metal fine particles is captured between the mesh of the mesh wick, and the rest is in the working fluid. It is a heat pipe that exists in a suspended state.

この発明のヒートパイプの第3態様は、前記メッシュ状ウイックの蒸発部に位置する部分に、前記金属の微粒子が捕捉されているヒートパイプである。   A third aspect of the heat pipe of the present invention is a heat pipe in which the metal fine particles are captured in a portion located in the evaporation portion of the mesh wick.

この発明のヒートパイプの第4の態様は、前記金属の微粒子の大きさが20nmを超え、150μm以下の範囲内であるヒートパイプである。   A fourth aspect of the heat pipe of the present invention is a heat pipe in which the size of the metal fine particles is in the range of more than 20 nm and not more than 150 μm.

この発明のヒートパイプの第5の態様は、前記作動液に対する、前記金属の微粒子のけん濁量が1〜13重量%の範囲内であるヒートパイプである。   A fifth aspect of the heat pipe of the present invention is the heat pipe in which the amount of suspension of the fine metal particles in the working fluid is in the range of 1 to 13% by weight.

この発明のヒートパイプの第6の態様は、前記金属の微粒子が銀微粒子からなり、前記作動液が純水からなっているヒートパイプである。   A sixth aspect of the heat pipe of the present invention is a heat pipe in which the fine metal particles are made of silver fine particles and the working fluid is made of pure water.

この発明のヒートパイプの第7の態様は、前記コンテナの内壁にグルーブを備えているヒートパイプである。   A seventh aspect of the heat pipe of the present invention is a heat pipe having a groove on the inner wall of the container.

この発明のヒートパイプの第8の態様は、前記ウイックがメッシュ状ウイックを複数枚重ねて巻付けて形成されているヒートパイプである。   An eighth aspect of the heat pipe of the present invention is a heat pipe in which the wick is formed by overlapping a plurality of mesh-like wicks.

この発明によると、ヒートパイプの蒸発部の熱伝達率を向上させることができるので、該当部分の熱性能を向上させることが可能となり、ヒートパイプの伝熱性能を向上させることができる。
更に、この発明によると、メッシュなどの加工性のよい材料をウィックとして利用できるため,ヒートパイプの性能を安定化させることが容易となる。
更に、ウィックとしては、メッシュなどの入手しやすいものを利用できるので、従来の微粒子を浮遊させた作動液を利用したヒートパイプよりも、製造コストを抑えることができる。
According to this invention, since the heat transfer coefficient of the evaporation part of the heat pipe can be improved, it is possible to improve the heat performance of the corresponding part, and the heat transfer performance of the heat pipe can be improved.
Furthermore, according to the present invention, a material with good workability such as a mesh can be used as a wick, so that it becomes easy to stabilize the performance of the heat pipe.
Furthermore, since an easily available material such as a mesh can be used as the wick, the manufacturing cost can be reduced as compared with a heat pipe using a working fluid in which fine particles are suspended.

以下、この発明のヒートパイプの態様を、図面を参照しながら詳細に説明する。
この発明のヒートパイプの1つの態様は、内部に密閉された空洞部を有するコンテナと、前記コンテナの内壁に配置された毛細管力を備えたウイックと、前記コンテナ内に封入された、所定量の金属の微粒子をけん濁させた作動流体とを備えたヒートパイプである。上述したウイックがメッシュ状ウイックからなっており、金属の微粒子の少なくとも一部が、メッシュ状ウイックのメッシュ間に捕捉され、残りが作動流体内にけん濁状態で存在する。
Hereinafter, embodiments of the heat pipe of the present invention will be described in detail with reference to the drawings.
One aspect of the heat pipe of the present invention includes a container having a hollow portion sealed inside, a wick having a capillary force disposed on the inner wall of the container, and a predetermined amount enclosed in the container. A heat pipe including a working fluid in which metal fine particles are suspended. The wick described above is composed of a mesh-like wick, and at least a part of the metal fine particles is trapped between the mesh-like wicks, and the rest is present in a suspended state in the working fluid.

ヒートパイプは、例えば銅、アルミニウムなどの熱伝導性に優れた金属で作製された密閉されたコンテナの中に、脱気された状態で作動液が封入されている。コンテナは丸型、板状、扁平状等があり、コンテナの内壁には、グルーブが形成されており、グルーブの形成された内壁に、毛細管力を備えたウイックが密着して配置されている。この発明のヒートパイプにおいては、作動液として、金属の微粒子を水にけん濁させたものを使用している。   In the heat pipe, the working fluid is sealed in a sealed state made of a metal having excellent thermal conductivity such as copper or aluminum. The container has a round shape, a plate shape, a flat shape, and the like, and a groove is formed on the inner wall of the container, and a wick having a capillary force is disposed in close contact with the inner wall on which the groove is formed. In the heat pipe of the present invention, a working liquid in which fine metal particles are suspended in water is used.

上述したように、ヒートパイプの内部には作動流体の流路となる空間が設けられ、その空間に収容された作動流体が、蒸発、凝縮等の相変化や移動をすることによって、熱の移動が行われる。即ち、ヒートパイプの吸熱側において、ヒートパイプを構成する容器の材質中を熱伝導して伝わってきた被冷却部品が発する熱により、作動流体が蒸発し、その蒸気がヒートパイプの放熱側に移動する。放熱側においては、作動流体の蒸気は冷却され再び液相状態に戻る。このように液相状態に戻った作動流体は再び吸熱側に移動(還流)する。このような作動流体の相変態や移動によって熱の移動が行われる。   As described above, a space serving as a flow path of the working fluid is provided inside the heat pipe, and the working fluid accommodated in the space undergoes a phase change or movement such as evaporation or condensation to move heat. Is done. That is, on the heat absorption side of the heat pipe, the working fluid evaporates due to the heat generated by the parts to be cooled that are conducted through the material of the container constituting the heat pipe, and the vapor moves to the heat radiation side of the heat pipe. To do. On the heat radiating side, the working fluid vapor is cooled and returned to the liquid phase again. The working fluid that has returned to the liquid phase in this way moves (refluxs) again to the heat absorption side. Heat is transferred by such phase transformation and movement of the working fluid.

この発明のヒートパイプにおいては、ヒートパイプの蒸発部に対応するコンテナの内壁部に密着して配置されたメッシュ状ウイックのメッシュ間、即ち、金属細線材を縦横方向に交互に織り込んで形成された、少なくとも縦方向の金属細線材と横方向の金属線材の交点を含む部分、および、概ね矩形の空間に、金属の微粒子の少なくとも一部が捕捉され、残りが作動流体内にけん濁状態で存在する。メッシュ状ウイックは、通常上述した金属細線材のシート状のウイックで、何枚かのメッシュを重ね合わせて使用する。   In the heat pipe of the present invention, it is formed between meshes of mesh-like wicks arranged in close contact with the inner wall part of the container corresponding to the evaporation part of the heat pipe, that is, by alternately weaving metal thin wires in the vertical and horizontal directions. At least a part of the metal fine particles are trapped in the part including the intersection of at least the longitudinal metal wire and the transverse metal wire, and the substantially rectangular space, and the rest is suspended in the working fluid. To do. A mesh-like wick is usually a sheet-like wick of a metal fine wire described above, and several meshes are used in an overlapping manner.

また、重ね合わせたメッシュ状ウイックを一方から巻付けたり、折り曲げて重ね合わせたりして使用する。従って、積層されたメッシュ状ウイックの各々の上述したメッシュ間に金属の微粒子の少なくとも一部が捕捉される。このように蒸発部に位置するメッシュ状ウイックに捕捉された金属の微粒子によって、蒸発部における熱伝導が高くなる。更に、残りの金属の微粒子が作動液中にけん濁状態で存在するので、流体としての作動液の熱伝導を向上させることができる。   The overlapped mesh-like wick is wound from one side or folded and overlapped for use. Accordingly, at least a part of the metal fine particles is captured between the meshes of each of the laminated mesh wicks. Thus, the metal fine particles trapped by the mesh-like wick located in the evaporation portion increase the heat conduction in the evaporation portion. Furthermore, since the remaining fine metal particles are present in a suspended state in the working fluid, the heat conduction of the working fluid as a fluid can be improved.

金属の微粒子が大きすぎると、メッシュ間の空間を捕捉された金属の微粒子が閉塞して、流路抵抗が大きくなり、作動液の蒸発が妨げられる。一方、金属の微粒子が小さすぎると、メッシュ間の空間に金属の微粒子が捕捉されないので、蒸発部の熱伝達率が向上しない。従って、金属の微粒子の大きさは、20nm超から150μmの範囲内である。好ましくは、20nm超から60nmの範囲内である。   If the metal fine particles are too large, the metal fine particles trapped in the space between the meshes are blocked, the flow path resistance is increased, and the evaporation of the working fluid is hindered. On the other hand, if the metal fine particles are too small, the metal fine particles are not trapped in the space between the meshes, and the heat transfer coefficient of the evaporation section is not improved. Therefore, the size of the metal fine particles is in the range of more than 20 nm to 150 μm. Preferably, it is in the range of more than 20 nm to 60 nm.

金属の微粒子をけん濁させる作動液としては、純水が望ましい。金属の微粒子としては、銀粒子が好ましい。純水にけん濁させる銀粒子の量は、1から13wt%の範囲内である。ここで,1重量%は金属微粒子をけん濁させた作動液の全重量のうち1%の重量が金属微粒子であることを意味する.純水にけん濁させる銀粒子の量が1wt%未満と少ない場合には、流体の熱伝導を効果的に向上させることが困難であり、メッシュ状ウイックに捕捉される銀粒子の量が少なく、蒸発部における熱伝導を高めることが困難である。一方、純水にけん濁させる銀粒子の量が13wt%を超えて多い場合には、効果的にけん濁させることが難しく、流路抵抗が大きくなって、作動液の蒸発が妨げられて、熱伝導を効果的に向上させることが難しくなる。   Pure water is desirable as the working fluid for suspending the metal fine particles. Silver particles are preferred as the metal fine particles. The amount of silver particles suspended in pure water is in the range of 1 to 13 wt%. Here, 1% by weight means that 1% of the total weight of the working fluid in which fine metal particles are suspended is fine metal particles. When the amount of silver particles suspended in pure water is less than 1 wt%, it is difficult to effectively improve the heat conduction of the fluid, and the amount of silver particles captured by the mesh wick is small, It is difficult to increase heat conduction in the evaporation section. On the other hand, when the amount of silver particles suspended in pure water exceeds 13 wt%, it is difficult to effectively suspend, the flow resistance increases, and the evaporation of the working fluid is hindered. It becomes difficult to improve heat conduction effectively.

純水にけん濁された銀粒子は、上述したように、蒸発部に位置するメッシュ状ウイックに一部が捕捉され、残りは、けん濁状態で存在する。ヒートパイプの作動中に、蒸発部で蒸発した作動液は、放熱フィン等が熱的に接続された凝縮部に移動し、冷却されて液相に戻った作動液がメッシュ状ウイック、コンテナ内壁に形成されたグルーブ等による毛細管力によって、蒸発部に還流する。   As described above, a part of the silver particles suspended in pure water is captured by the mesh wick located in the evaporation section, and the rest exists in a suspended state. During the operation of the heat pipe, the working fluid evaporated in the evaporation section moves to the condensing section where the radiating fins etc. are thermally connected, and the cooled working fluid returns to the liquid phase on the mesh wick and the inner wall of the container It recirculates to the evaporation section by the capillary force generated by the formed groove or the like.

このように、蒸発部、凝縮部で気相、液相と相変化しながら熱を移動する際に、純水中にけん濁された金属の微粒子は、蒸発部以外の部位に配置されたメッシュ状ウイック、コンテナ内壁に形成されたグルーブに捕捉されることなく、コンテナ内を循環して、流体としての熱伝導を高める。なお、蒸発部に位置するコンテナ内の内壁に接触して配置されたメッシュ状ウイックに捕捉された金属の微粒子は、例えば、堆積されたように適量で固まって存在している。   In this way, when transferring heat while changing the phase between the vapor phase and the liquid phase in the evaporation unit and the condensation unit, the fine metal particles suspended in pure water are arranged in a part other than the evaporation unit. The wick circulates in the container without being trapped by the grooves formed on the inner wall of the container, thereby increasing the heat conduction as a fluid. Note that the metal fine particles captured by the mesh-like wick arranged in contact with the inner wall of the container located in the evaporation section are solidified in an appropriate amount as deposited, for example.

その状態は、純水中に金属の微粒子がけん濁された作動液の流路抵抗が、上述した作動液の気相、液相の相変化による熱の円滑な移動が可能なように大きくなく、維持される状態である。なお、金属の微粒子は、還元または脱硫化されて、有機保護皮膜が除去された金属の微粒子である。還元または脱硫化は、金属の微粒子を500℃以上の高温に加熱することによって行われ、同時に金属の微粒子の有機保護皮膜を除去することができる。   The state is not so large that the flow resistance of the working fluid in which fine metal particles are suspended in pure water enables the smooth movement of heat due to the above-described gas phase and liquid phase change of the working fluid. It is a state that is maintained. The metal fine particles are metal fine particles from which the organic protective film has been removed by reduction or desulfurization. The reduction or desulfurization is performed by heating the metal fine particles to a high temperature of 500 ° C. or more, and at the same time, the organic protective film of the metal fine particles can be removed.

この発明のヒートパイプの1つの態様を、実施例によって説明する。
ヒートパイプ容器(コンテナ)としては、長さ200mm、φ6mmの純銅製の丸管を1mm厚さに、扁平状に加工したものを利用した。次に、コンテナの内壁に密着させて配置されるメッシュ状ウイックとして、シート状の80μm#120メッシュを、一方の端部から巻いて、幅2.3mmの5層からなるウイックを形成した。
One embodiment of the heat pipe of the present invention will be described with reference to examples.
As the heat pipe container (container), a round pipe made of pure copper having a length of 200 mm and a diameter of 6 mm and having a thickness of 1 mm was used. Next, as a mesh-like wick placed in close contact with the inner wall of the container, a sheet-like 80 μm # 120 mesh was wound from one end to form a wick composed of five layers having a width of 2.3 mm.

作動液としては、40nmの銀粒子を脱硫化し、それを純水にけん濁させたものを作動液とした。ここで、脱硫化は銀粒子を500℃以上の高温に加熱することにより実施し、同時に、銀粒子の有機保護皮膜を除去している。上述したように高温に過熱して脱硫化し、有機保護皮膜を除去するプロセスを施さない場合には、ヒートパイプの動作中に、銀粒子から不凝縮ガスが発生し、作動液としての信頼性が低くなった。   As the hydraulic fluid, a fluid obtained by desulfurizing 40 nm silver particles and suspending it in pure water was used. Here, the desulfurization is performed by heating the silver particles to a high temperature of 500 ° C. or higher, and at the same time, the organic protective film of the silver particles is removed. As described above, when the process of removing the organic protective film is not performed by overheating to a high temperature, non-condensable gas is generated from the silver particles during the operation of the heat pipe, and the reliability as the working fluid is high. It became low.

作動液にけん濁させる銀粒子の量を変化させて、蒸発部の熱伝達率の変化を調べた。即ち、コンテナ内への作動液の封入量を約17重量%として変化させず(作動液の量は一定)、純水にけん濁させる銀粒子の量を、0、1、6、13重量%と変化させたときの、蒸発部の熱伝達率を評価した。その結果を図1に示す。図1では、横軸に銀粒子の量(重量%)を示し、縦軸に熱伝達率(W/mK)を示している。合わせて、所謂ボトムヒートとなるようにヒートパイプを0度、45度、90度と傾斜させたときのそれぞれの場合における銀粒子の量および熱伝達率を図1に示す。 The amount of silver particles suspended in the working fluid was changed, and changes in the heat transfer coefficient of the evaporation part were examined. That is, the amount of the working fluid enclosed in the container is not changed to about 17% by weight (the amount of the working fluid is constant), and the amount of silver particles suspended in pure water is 0, 1, 6, 13% by weight. The heat transfer coefficient of the evaporating part was evaluated. The result is shown in FIG. In FIG. 1, the horizontal axis indicates the amount (% by weight) of silver particles, and the vertical axis indicates the heat transfer coefficient (W / m 2 K). In addition, FIG. 1 shows the amount of silver particles and the heat transfer coefficient in each case when the heat pipe is inclined at 0 °, 45 °, and 90 ° so as to achieve a so-called bottom heat.

図1に示すグラフから明らかなように、銀粒子をけん濁させないときには、蒸発部の熱伝達率は、概ね9000(W/mK)であるが、銀粒子を概ね1重量%けん濁させたときには、蒸発部の熱伝達率は、ヒートパイプの傾斜角度に関係なく概ね10、000(W/mK)を超えている。このように、純水に銀粒子をけん濁させたときには、蒸発部の熱伝達率が向上していることが示されており、今回実験を行った条件では、純水にけん濁させた銀粒子の量が6重量%のときに、最大32.6%の熱伝達率の向上が見られた。 As is clear from the graph shown in FIG. 1, when the silver particles are not suspended, the heat transfer coefficient of the evaporation part is approximately 9000 (W / m 2 K), but the silver particles are suspended by approximately 1% by weight. When this occurs, the heat transfer coefficient of the evaporating part generally exceeds 10,000 (W / m 2 K) regardless of the inclination angle of the heat pipe. Thus, it is shown that when silver particles are suspended in pure water, the heat transfer coefficient of the evaporation section is improved. Under the conditions of this experiment, silver suspended in pure water is shown. When the amount of particles was 6% by weight, a heat transfer coefficient improvement of up to 32.6% was observed.

なお、純水にけん濁させた銀粒子の量が13重量%のときには、ヒートパイプの傾斜角が0度では、純水に銀粒子をけん濁させなかったときの蒸発部の熱伝達率と同様に概ね9000(W/mK)に戻っている。純水にけん濁させた銀粒子の量が13重量%を超えてくると、蒸発部の熱伝達率に向上が見られなくなっている。従って、純水にけん濁させる金属の微粒子(銀粒子)の量は、1から13重量%の範囲内であることが好ましい。 When the amount of silver particles suspended in pure water is 13% by weight, the heat transfer coefficient of the evaporation part when the silver particles are not suspended in pure water when the inclination angle of the heat pipe is 0 degree Similarly, it returns to 9000 (W / m 2 K). When the amount of silver particles suspended in pure water exceeds 13% by weight, the heat transfer coefficient of the evaporation part is not improved. Therefore, the amount of fine metal particles (silver particles) suspended in pure water is preferably in the range of 1 to 13% by weight.

なお、ヒートパイプの傾斜角度によって、純水にけん濁させた銀粒子の量が同じでも、蒸発部における熱伝達率に大きな差が生じている。例えば、純水にけん濁させた銀粒子の量が6重量%のときには、ヒートパイプの傾斜角度が90度では、130、000(W/mK)と非常に高い熱伝達率を示している。また、ヒートパイプの傾斜角度が0度の場合であっても、純水にけん濁させた銀粒子の量が6重量%のときには、蒸発部における熱伝達率は、110、000(W/mK)であり、依然として高い熱伝達率を示している。この値は、純水にけん濁させた銀粒子の量が1重量%のときの、ヒートパイプの傾斜角度が45度である場合の蒸発部における熱伝達率と概ね同一の高さである。 Even if the amount of silver particles suspended in pure water is the same depending on the inclination angle of the heat pipe, there is a large difference in the heat transfer coefficient in the evaporation section. For example, when the amount of silver particles suspended in pure water is 6% by weight, if the inclination angle of the heat pipe is 90 degrees, the heat transfer coefficient is as high as 130,000 (W / m 2 K). Yes. Even when the inclination angle of the heat pipe is 0 degree, when the amount of silver particles suspended in pure water is 6% by weight, the heat transfer coefficient in the evaporation section is 110,000 (W / m 2 K), still showing a high heat transfer coefficient. This value is approximately the same height as the heat transfer coefficient in the evaporation section when the inclination angle of the heat pipe is 45 degrees when the amount of silver particles suspended in pure water is 1% by weight.

上述したように、純水に0、1、6、13重量%の量の銀粒子をけん濁させた作動液を使用して、ヒートパイプを作動させ、蒸発部の熱伝達率を測定したヒートパイプを切り開いて、メッシュ状ウイックに付着している銀粒子の状態を調査した。その結果を図2に示す。蒸発部、凝縮部、その中間の断熱部のそれぞれについてメッシュ状ウイックに付着している銀粒子の状態をそれぞれ示す。   As described above, using a working fluid in which silver particles of 0, 1, 6, 13% by weight are suspended in pure water, the heat pipe is operated and the heat transfer coefficient of the evaporation part is measured. The pipe was cut open, and the state of the silver particles adhering to the mesh wick was investigated. The result is shown in FIG. The state of the silver particles adhering to the mesh wick is shown for each of the evaporating part, the condensing part, and the intermediate heat insulating part.

純水に銀粒子をけん濁していない状態では、勿論、蒸発部、凝縮部、中間部に銀粒子の付着は無い。純水に1重量%の銀粒子をけん濁している状態では、凝縮部、中間部に銀粒子の付着は見られないものの、蒸発部には、銀粒子の付着が見られる。純水にけん濁する銀粒子の量を6重量%とした状態では、純水に1重量%の銀粒子をけん濁している状態よりも、蒸発部における銀粒子の付着量が多くなっている。この場合も、凝縮部、中間部に銀粒子の付着は見られない。純水にけん濁する銀粒子の量を13重量%とした状態では、純水に6重量%の銀粒子をけん濁している状態よりも、蒸発部における銀粒子の付着量が多くなっている。この場合も、凝縮部、中間部に銀粒子の付着は見られない。   In the state where the silver particles are not suspended in the pure water, of course, there is no adhesion of silver particles to the evaporation part, the condensation part, and the intermediate part. In a state where 1 wt% silver particles are suspended in pure water, no silver particles adhere to the condensation part and the intermediate part, but silver particles adhere to the evaporation part. In the state where the amount of silver particles suspended in pure water is 6% by weight, the amount of silver particles adhering to the evaporation portion is larger than in the state where 1% by weight silver particles are suspended in pure water. . Also in this case, no adhesion of silver particles is observed in the condensation part and the intermediate part. In the state where the amount of silver particles suspended in pure water is 13% by weight, the amount of silver particles adhering to the evaporation portion is larger than in the state where 6% by weight silver particles are suspended in pure water. . Also in this case, no adhesion of silver particles is observed in the condensation part and the intermediate part.

上述したように、何れの場合も、蒸発部に銀粒子の付着が見られるものの、凝縮部および中間部には、銀粒子の付着が見られない。このことは、メッシュ状ウイックの蒸発部における部位にのみ、粒径40nmの大きさの銀粒子が捕捉され、メッシュ状ウイックの凝縮部および中間部における部位では、粒径40nmの大きさの銀粒子が捕捉されていないことを示している。このように、蒸発部に銀粒子が固まって存在していることが確認された。従って、作動液にけん濁された金属の微粒子の一部が、蒸発部のメッシュ間に捕捉されて、直接蒸発部の熱伝達率を向上させ、残りがけん濁状態のまま作動液中に存在して、流体の熱伝達率を向上させている。   As described above, in any case, silver particles adhere to the evaporation part, but no silver particles adhere to the condensing part and the intermediate part. This is because silver particles having a particle size of 40 nm are captured only at the site in the evaporation part of the mesh wick, and silver particles having a particle size of 40 nm are captured at the site in the condensing part and the middle part of the mesh wick. Is not captured. Thus, it was confirmed that the silver particles were solidified in the evaporation part. Therefore, some of the metal fine particles suspended in the hydraulic fluid are trapped between the meshes of the evaporation section, improving the heat transfer coefficient of the direct evaporation section, and the rest in the hydraulic fluid while remaining suspended. Thus, the heat transfer coefficient of the fluid is improved.

図3は、純水にけん濁された銀粒子の量が1、6、13重量%のときの、メッシュ間に捕捉された銀粒子の状態を示す部分拡大図である。図3(a)は、純水にけん濁させた銀粒子の量が1重量%のときの蒸発部のメッシュ間に銀粒子の捕捉状況を示す。図3(b)は、純水にけん濁させた銀粒子の量が6重量%のときの蒸発部のメッシュ間に銀粒子の捕捉状況を示す。図3(c)は、純水にけん濁させた銀粒子の量が13重量%のときの蒸発部のメッシュ間に銀粒子の捕捉状況を示す。図3に示すように、それぞれ金属細線材を交互に編組して形成されたシート状のメッシュが積層されて形成された空間、および、縦方向の金属細線材と横方向の金属細線材の交点付近に、銀粒子が捕捉されて固まって存在している状態が示されている。   FIG. 3 is a partially enlarged view showing the state of silver particles trapped between meshes when the amount of silver particles suspended in pure water is 1, 6 and 13% by weight. FIG. 3A shows a state of capturing silver particles between the meshes of the evaporation part when the amount of silver particles suspended in pure water is 1% by weight. FIG.3 (b) shows the capture | acquisition condition of a silver particle between the meshes of an evaporation part when the quantity of the silver particle suspended in the pure water is 6 weight%. FIG.3 (c) shows the capture | acquisition condition of a silver particle between the meshes of an evaporation part when the quantity of the silver particle suspended in the pure water is 13 weight%. As shown in FIG. 3, a space formed by laminating sheet-like meshes formed by alternately braiding metal fine wires, and an intersection of a metal thin wire in the vertical direction and a metal fine wire in the horizontal direction The state where silver particles are captured and solidified is shown in the vicinity.

上述した空間に銀粒子が占有する状態(即ち、目詰まり率)を調べた結果、純水にけん濁された銀粒子の量が1重量%のときの目詰まり率は、28.4%であった。純水にけん濁された銀粒子の量が6重量%のときの目詰まり率は、44.7%であった。更に、純水にけん濁された銀粒子の量が13重量%のときの目詰まり率は、90.7%であった。   As a result of examining the state in which the silver particles occupy the space described above (that is, the clogging rate), the clogging rate when the amount of silver particles suspended in pure water is 1% by weight is 28.4%. there were. The clogging rate when the amount of silver particles suspended in pure water was 6% by weight was 44.7%. Furthermore, the clogging rate when the amount of silver particles suspended in pure water was 13% by weight was 90.7%.

図3から明らかなように、純水にけん濁された銀粒子の量が13重量%のときの目詰まり率は、90.7%となり、蒸発部における流路抵抗が大きくなり、作動液の蒸発が妨げられて、放熱効率が低下することがわかる。これに対して、純水にけん濁された銀粒子の量が1重量%および6重量%のときの目詰まり率は、28.4%、44.7%であり、蒸発部における流路抵抗が小さく、作動液の蒸発が妨げられることは無い。   As is apparent from FIG. 3, the clogging rate when the amount of silver particles suspended in pure water is 13% by weight is 90.7%, the flow path resistance in the evaporation section is increased, and the working fluid It can be seen that evaporation is hindered and heat dissipation efficiency is reduced. On the other hand, the clogging rates when the amount of silver particles suspended in pure water is 1% by weight and 6% by weight are 28.4% and 44.7%, respectively, and the channel resistance in the evaporation section The evaporation of the working fluid is not hindered.

図4は、図1を参照して説明した蒸発部と反対側の端部に熱入力を加えた場合の、蒸発部の熱伝達率を示すグラフである。図4において、同様に、横軸に銀粒子の量(重量%)を示し、縦軸に熱伝達率(W/mK)を示している。合わせて、ヒートパイプを0度、90度(所謂ボトムヒート)と傾斜させたときのそれぞれの場合における銀粒子の量および熱伝達率を図4に示す。図4に示すグラフから明らかなように、純水にけん濁させた銀粒子の量、ヒートパイプの傾斜に殆ど関係なく、銀粒子をけん濁させない状態の作動液の場合と同様に、蒸発部の熱伝達率の向上は見られなかった。 FIG. 4 is a graph showing the heat transfer coefficient of the evaporation part when heat input is applied to the end opposite to the evaporation part described with reference to FIG. In FIG. 4, similarly, the horizontal axis indicates the amount (% by weight) of silver particles, and the vertical axis indicates the heat transfer coefficient (W / m 2 K). In addition, FIG. 4 shows the amount of silver particles and the heat transfer coefficient in each case when the heat pipe is inclined at 0 degrees and 90 degrees (so-called bottom heat). As is clear from the graph shown in FIG. 4, the evaporation section is almost the same as in the case of the working fluid in a state where the silver particles are not suspended regardless of the amount of silver particles suspended in pure water and the inclination of the heat pipe. There was no improvement in heat transfer coefficient.

図4に示す状態では、銀粒子がけん濁された作動液の流体としての熱伝達率に寄与する働きは殆ど現われていない。従って、純水に銀粒子をけん濁させるだけでは、蒸発部の熱伝達率が顕著に向上することはない。蒸発部におけるメッシュ状ウイックに銀粒子を捕捉させて、蒸発部に銀粒子が固まる状態が、熱伝達率の向上に寄与している。
上述したところから、所定の大きさの金属の微粒子を所定量けん濁させ、蒸発部におけるメッシュウイックの部位に金属の微粒子を捕捉させた状態では、蒸発部の熱伝達率が顕著に向上することが明らかになっている。
In the state shown in FIG. 4, the function which contributes to the heat transfer rate as the fluid of the hydraulic fluid in which silver particles are suspended hardly appears. Therefore, simply suspending silver particles in pure water does not significantly improve the heat transfer coefficient of the evaporation section. The state in which the silver particles are captured by the mesh-like wick in the evaporation part and the silver particles are solidified in the evaporation part contributes to the improvement of the heat transfer coefficient.
From the above, in a state where a predetermined amount of fine metal particles are suspended and the fine metal particles are trapped at the mesh wick portion in the evaporation portion, the heat transfer coefficient of the evaporation portion is significantly improved. Has been revealed.

この発明によると、ヒートパイプの蒸発部の熱伝達率を向上させることができるので、該当部分の熱性能を向上させることが可能となり、ヒートパイプの伝熱性能を向上させることができる。   According to this invention, since the heat transfer coefficient of the evaporation part of the heat pipe can be improved, it is possible to improve the heat performance of the corresponding part, and the heat transfer performance of the heat pipe can be improved.

図1は、作動液にけん濁させる銀粒子の量を変化させて、蒸発部の熱伝達率の変化を調べた結果を示すグラフである。FIG. 1 is a graph showing the results of examining the change in the heat transfer coefficient of the evaporation section by changing the amount of silver particles suspended in the working fluid. 純水に0、1、6、13重量%の量の銀粒子をけん濁させた作動液を使用して、ヒートパイプを作動させ、蒸発部の熱伝達率を測定したヒートパイプを切り開いて、メッシュ状ウイックに付着している銀粒子の状態を調査した結果を示す図である。Using a working fluid in which silver particles of 0, 1, 6, 13% by weight are suspended in pure water, the heat pipe is operated, and the heat pipe whose heat transfer coefficient of the evaporation part is measured is opened, It is a figure which shows the result of having investigated the state of the silver particle adhering to a mesh-like wick. 図3は、純水にけん濁された銀粒子の量が1、6、13重量%のときの、メッシュ間に捕捉された銀粒子の状態を示す部分拡大図である。FIG. 3 is a partially enlarged view showing the state of silver particles trapped between meshes when the amount of silver particles suspended in pure water is 1, 6 and 13% by weight. 図4は、図1を参照して説明した蒸発部と反対側の端部に熱入力を加えた場合の、蒸発部の熱伝達率を示すグラフである。FIG. 4 is a graph showing the heat transfer coefficient of the evaporation part when heat input is applied to the end opposite to the evaporation part described with reference to FIG. 図5は、従来の冷凍サイクル循環系の構造を説明する図である。FIG. 5 is a diagram illustrating the structure of a conventional refrigeration cycle circulation system.

符号の説明Explanation of symbols

1 縦方向の金属細線材
2 横方向の金属細線材
3 捕捉された銀粒子

DESCRIPTION OF SYMBOLS 1 Metal fine wire 2 of a vertical direction Metal fine wire 3 of a horizontal direction 3 Captured silver particle

Claims (8)

内部に密閉された空洞部を有するコンテナと、
前記コンテナの内壁に配置された毛細管力を備えたウイックと、
前記コンテナ内に封入された、所定量の金属の微粒子をけん濁させた作動流体とを備えたヒートパイプ。
A container having a sealed cavity inside;
A wick with capillary force located on the inner wall of the container;
A heat pipe provided with a working fluid in which a predetermined amount of metal fine particles suspended in a container is suspended.
前記ウイックがメッシュ状ウイックからなっており、前記金属の微粒子の少なくとも一部が、前記メッシュ状ウイックのメッシュ間に捕捉され、残りが前記作動流体内にけん濁状態で存在する請求項1に記載のヒートパイプ。   The said wick consists of mesh-like wicks, At least one part of the said metal microparticle is capture | acquired between the meshes of the said mesh-like wick, The remainder exists in the said working fluid in a suspended state. Heat pipe. 前記ヒートパイプの蒸発部に対応する部分の前記メッシュ状ウイックに、前記金属の微粒子が捕捉されている、請求項2に記載のヒートパイプ。   The heat pipe according to claim 2, wherein the metal fine particles are captured by the mesh-like wick corresponding to the evaporation portion of the heat pipe. 前記金属の微粒子の大きさが20nmを超え、150μm以下の範囲内である、請求項1から3の何れか1項に記載のヒートパイプ。   The heat pipe according to any one of claims 1 to 3, wherein a size of the metal fine particles is in a range of more than 20 nm and 150 µm or less. 前記作動液に対する、前記金属の微粒子のけん濁量が1〜13重量%の範囲内である、請求項1から4の何れか1項に記載のヒートパイプ。   The heat pipe according to any one of claims 1 to 4, wherein a suspension amount of the metal fine particles with respect to the hydraulic fluid is within a range of 1 to 13% by weight. 前記金属の微粒子が銀微粒子からなり、前記作動液が純水からなっている、請求項1から5の何れか1項に記載のヒートパイプ。   The heat pipe according to any one of claims 1 to 5, wherein the metal fine particles are made of silver fine particles, and the hydraulic fluid is made of pure water. 前記コンテナの内壁にグルーブを備えている、請求項1から6の何れか1項に記載のヒートパイプ。   The heat pipe according to any one of claims 1 to 6, wherein a groove is provided on an inner wall of the container. 前記ウイックがメッシュ状ウイックを複数枚重ねて巻付けて形成されている、請求項1から7の何れか1項に記載のヒートパイプ。
The heat pipe according to any one of claims 1 to 7, wherein the wick is formed by overlapping and winding a plurality of mesh-like wicks.
JP2008129567A 2008-05-16 2008-05-16 Heat pipe Pending JP2009276022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008129567A JP2009276022A (en) 2008-05-16 2008-05-16 Heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008129567A JP2009276022A (en) 2008-05-16 2008-05-16 Heat pipe

Publications (1)

Publication Number Publication Date
JP2009276022A true JP2009276022A (en) 2009-11-26

Family

ID=41441624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008129567A Pending JP2009276022A (en) 2008-05-16 2008-05-16 Heat pipe

Country Status (1)

Country Link
JP (1) JP2009276022A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016040505A (en) * 2014-08-12 2016-03-24 国立大学法人横浜国立大学 Cooler, cooling device using the same, and cooling method of heating element
JP2020067269A (en) * 2018-10-19 2020-04-30 国立大学法人電気通信大学 Heat pipe and method for manufacturing heat pipe
WO2022102163A1 (en) * 2020-11-16 2022-05-19 株式会社フジクラ Heat pipe

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3587725A (en) * 1968-10-16 1971-06-28 Hughes Aircraft Co Heat pipe having a substantially unidirectional thermal path
JPS52147358A (en) * 1976-05-31 1977-12-07 Siemens Ag Heat transfer tube
JPH1079459A (en) * 1996-09-04 1998-03-24 Riyoosan:Kk Heat sink, excellent in heat dissipation effect for semiconductor element use
JPH11351770A (en) * 1998-06-10 1999-12-24 Fujikura Ltd Heat pipe
JP2003148887A (en) * 2001-11-15 2003-05-21 Mitsubishi Materials Corp Heat pipe and its manufacturing method
JP2004085108A (en) * 2002-08-28 2004-03-18 Keisuke Kasahara Method for accelerating heat conduction of heat medium, and heat medium product
JP3124878U (en) * 2006-06-20 2006-08-31 蔡樺欣 Superconducting tube
US7213637B2 (en) * 2003-10-31 2007-05-08 Hon Hai Precision Industry Co., Ltd. Heat pipe operating fluid, heat pipe, and method for manufacturing the heat pipe
JP2008051389A (en) * 2006-08-24 2008-03-06 Asahi Kasei Fibers Corp Heat pipe type heat transfer device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3587725A (en) * 1968-10-16 1971-06-28 Hughes Aircraft Co Heat pipe having a substantially unidirectional thermal path
JPS52147358A (en) * 1976-05-31 1977-12-07 Siemens Ag Heat transfer tube
JPH1079459A (en) * 1996-09-04 1998-03-24 Riyoosan:Kk Heat sink, excellent in heat dissipation effect for semiconductor element use
JPH11351770A (en) * 1998-06-10 1999-12-24 Fujikura Ltd Heat pipe
JP2003148887A (en) * 2001-11-15 2003-05-21 Mitsubishi Materials Corp Heat pipe and its manufacturing method
JP2004085108A (en) * 2002-08-28 2004-03-18 Keisuke Kasahara Method for accelerating heat conduction of heat medium, and heat medium product
US7213637B2 (en) * 2003-10-31 2007-05-08 Hon Hai Precision Industry Co., Ltd. Heat pipe operating fluid, heat pipe, and method for manufacturing the heat pipe
JP3124878U (en) * 2006-06-20 2006-08-31 蔡樺欣 Superconducting tube
JP2008051389A (en) * 2006-08-24 2008-03-06 Asahi Kasei Fibers Corp Heat pipe type heat transfer device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016040505A (en) * 2014-08-12 2016-03-24 国立大学法人横浜国立大学 Cooler, cooling device using the same, and cooling method of heating element
JP2020067269A (en) * 2018-10-19 2020-04-30 国立大学法人電気通信大学 Heat pipe and method for manufacturing heat pipe
JP7284988B2 (en) 2018-10-19 2023-06-01 国立大学法人電気通信大学 Heat pipe manufacturing method
WO2022102163A1 (en) * 2020-11-16 2022-05-19 株式会社フジクラ Heat pipe

Similar Documents

Publication Publication Date Title
Rashidi et al. Applications of nanofluids in condensing and evaporating systems: a review
JP4524289B2 (en) Cooling system with bubble pump
JP3202014B2 (en) Micro cooling device
TWI778292B (en) Cooling device and cooling system using cooling device
US20110000649A1 (en) Heat sink device
US20070230128A1 (en) Cooling apparatus with surface enhancement boiling heat transfer
JP2006503436A (en) Plate heat transfer device and manufacturing method thereof
US7007746B2 (en) Circulative cooling apparatus
JP2003240462A (en) Heat transfer device with self-adjusting wick and method of manufacturing the heat transfer device
JP2020076554A (en) heat pipe
JP2007518953A (en) Plate heat transfer device
JP2013243249A (en) Heat transfer surface for ebullient cooling and ebullient cooling device
US10618373B2 (en) Heat exchanger
US20170051954A1 (en) Refrigeration system with phase change material heat exchanger
JP5765045B2 (en) Loop heat pipe and manufacturing method thereof
JP2009115346A (en) Heat pipe
JP2006284020A (en) Heat pipe
JP2009276022A (en) Heat pipe
ITRM20060587A1 (en) HEAT EXCHANGER WITH ABSORPTION CORE FOR UTILIZATION IN REFRIGERATION SYSTEMS
JP2010133686A (en) Heat pipe and cooler
Chen et al. High power electronic component
JP2008241180A (en) Heat transfer tube for heat pipe and heat pipe
JP2011142298A (en) Boiling cooler
US20050284612A1 (en) Piezo pumped heat pipe
JP2009024996A (en) Method of manufacturing heat pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120813

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121207