EP1899669B1 - Plate heat exchanger with exchanging structure forming several channels in a passage - Google Patents

Plate heat exchanger with exchanging structure forming several channels in a passage Download PDF

Info

Publication number
EP1899669B1
EP1899669B1 EP06778947.9A EP06778947A EP1899669B1 EP 1899669 B1 EP1899669 B1 EP 1899669B1 EP 06778947 A EP06778947 A EP 06778947A EP 1899669 B1 EP1899669 B1 EP 1899669B1
Authority
EP
European Patent Office
Prior art keywords
passage
channels
channel
wave
exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06778947.9A
Other languages
German (de)
French (fr)
Other versions
EP1899669A2 (en
Inventor
Frédéric Crayssac
Sophie Deschodt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP1899669A2 publication Critical patent/EP1899669A2/en
Application granted granted Critical
Publication of EP1899669B1 publication Critical patent/EP1899669B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04975Construction and layout of air fractionation equipments, e.g. valves, machines adapted for special use of the air fractionation unit, e.g. transportable devices by truck or small scale use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • F25J5/002Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • F25J5/002Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger
    • F25J5/005Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger in a reboiler-condenser, e.g. within a column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/02Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/04Down-flowing type boiler-condenser, i.e. with evaporation of a falling liquid film
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/20Particular dimensions; Small scale or microdevices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0033Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cryogenic applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2260/00Heat exchangers or heat exchange elements having special size, e.g. microstructures
    • F28F2260/02Heat exchangers or heat exchange elements having special size, e.g. microstructures having microchannels

Definitions

  • the present invention relates to a cryogenic separation apparatus comprising at least one plate and fin heat exchanger according to the preamble of claim 1.
  • FR 2 789 165 describes such an apparatus.
  • plate and fin heat exchangers there are different types of plate and fin heat exchangers, each adapted to a field of use.
  • the invention is advantageously applied to a heat exchanger of an air separation unit or H 2 / CO (hydrogen / carbon monoxide) mixtures by cryogenic distillation.
  • This exchanger can be a main exchange line of an air separation apparatus, which cools the incoming air by indirect heat exchange with the cold products from the distillation column, a subcooler or a vaporizer / condenser.
  • exchangers consist of plates between which are inserted waves or fins, thus forming a stack of so-called “cold” passages and so-called “hot” passages.
  • Commonly used exchange waves are straight waves, perforated waves, and partial offset or "serrated” waves.
  • the hydraulic diameters (Dh) of the waves conventionally used in soldered plate and fin exchangers are between 1 and 6 mm. These exchange waves are currently formed using a press.
  • the exchange surface that separates two fluids consists of a so-called “primary” surface corresponding to the flat surface between the two fluids and a so-called “secondary” surface generally consisting of fins perpendicular to the primary surface and forming thus an exchange wave. It is the number of inserted fins (density of the wave) and the height of the fins which create the increase of the exchange surface.
  • the denser the wave the larger the exchange surface.
  • the press tool used to manufacture the wave makes it possible to obtain maximum densities of 1023 to 1102 waves per meter.
  • the density of the selected wave may be smaller when it is preferable to limit the pressure drops.
  • safety constraints limit the number of waves per meter to values well below the maximum values that can be manufactured.
  • the fins have a temperature gradient. Beyond a certain height of fin (wave), the area in the middle of the fin exchange significantly less well. There is therefore an optimum wave height corresponding to an optimum fin coefficient value.
  • the wavelengths commonly used vary from 3 to 10 mm.
  • This turbulence can be generated by a modification of the shape of the channels or by the insertion of obstacles generating turbulence (ex: perforated straight wave, partial offset or "serrated”, with sinuous generators or “herringbone”, with shutters, insertion of mini-fins, windows, ).
  • nucleation sites are micro-cavities of various sizes and shapes (re-entrant cavities) present on the surface or through a porous layer.
  • micro-exchangers Recently there appeared a type of exchangers called micro-exchangers.
  • EP-A-1008826 describes a plate heat exchanger with at least one of the passages containing closed tube-shaped auxiliary passages, the maximum width of which is greater than 50% of the distance between two adjacent plates.
  • the exchangers can only be improved by increasing the exchange coefficient (k) and / or by increasing the exchange surface (S).
  • micro-channel type technology is very expensive (micro-machining of the channels) and remains today reserved for exchangers of very small size: it does not concern today the applications, such as the separation of air in which the flow rate and the difference in temperature are important.
  • the proposed solution aims to increase the exchange surface by incorporating the already existing surfaces (called “primary” and “secondary”) a third exchange surface called “tertiary” surface.
  • each channel is in contact with at least three other channels or a plate and two other channels.
  • the plate may be a plate defining a passage or a secondary plate located in the passage.
  • a cryogenic separation apparatus comprising at least one exchanger as described above.
  • an air separation apparatus in which a main exchange line and / or a vaporizer-condenser and / or a subcooler is an exchanger as described above. .
  • the heat exchanger 1 shown consists of a stack of parallel rectangular plates 2 all identical, which define between them a plurality of passages for fluids to put in indirect heat exchange relationship.
  • these passages are successively and cyclically passages 3 for a first fluid, 4 for a second fluid and 5 for a third fluid. It will be understood that the invention covers two-fluid exchangers only or any number of fluids.
  • Each passage 3 to 5 is bordered by closing bars 6 which delimit it leaving free windows 7 input / output of the corresponding fluid.
  • wave-waves or corrugated fins 8 serving both thermal fins, spacers between the plates, especially during brazing and to prevent any deformation of the plates during the implementation of fluids under pressure and guiding the flow of fluids.
  • the stack of plates, closing bars and wave-spacers is generally made of aluminum or aluminum alloy and is assembled in a single operation by soldering in the oven.
  • Fluid inlet / outlet boxes 9, of generally semi-cylindrical shape, are then welded to the exchanger body thus produced so as to cover the rows of corresponding inlet / outlet windows, and they are connected to conduits 10 for supplying and evacuating fluids.
  • the channels can be formed using various techniques, as described in Anton GRUSS's "Micro heat exchangers" in Techniques de l'In deepur, 06-2002.
  • the solution of the Figure 3B consists in replacing the exchange wave conventionally used of the Figure 3A by several exchange waves 13 of the same type but of smaller wavelength. These new waves inserted in the same passage of the exchanger are assembled using thin sheets covered with solder 13. These sheets called “tertiary surface sheet” constitute the added surface called “tertiary”. In the example there are two sheets separating three waves.
  • the hydraulic diameters are of the order of magnitude of the channel width of a conventional wave (1 / n-e).
  • the increase in the number of waves to be stacked in the exchanger causes an increase in the manufacturing cost thereof.
  • the installation cost remains the same.
  • the solution of the Figure 4B consists in replacing the exchange wave conventionally used of the Figure 4A by a structured wave 17 comprising numerous mini-channels 19 with a square section. This wave can be manufactured by extrusion.
  • the extrusion manufacturing method makes it possible to imagine any type of channel section shape (rectangular, triangular, round, rhombic, ).
  • the Figure 4C shows channels of triangular section.
  • the main parameters are the height of the passage, the number of channels per passage height, the number of channels per meter of passage width and all the parameters which concern the geometric shape of the channels used (height, width, diameter of the channel ,. ..).
  • This method of manufacture also allows the possibility of inserting micro or mini fins inside the channels to further increase the exchange surface and / or drain a liquid.
  • the length of the channels can be divided into several extruded wave modules spaced a few millimeters apart to allow inter-channel communication.
  • the solution of the Figure 5B consists in replacing the exchange wave conventionally used of the Figure 5A by an adequate number of capillary tubes.
  • the arrangement of the capillary tubes is easily arranged because of their shape.
  • the capillary tubes are covered with solder to ensure the mechanical assembly of the assembly.
  • the adjustable parameters are the height of the passage, the diameter of the capillary tubes, the thickness of the capillary tubes or the number of capillary tubes per m 2 .
  • the diameter of the capillary corresponds to the maximum diameter in order to obtain a gain in exchange surface area compared to the conventional solution, a smaller diameter will give a much greater gain in exchange surface area.

Description

La présente invention se rapporte à un appareil de séparation cryogénique comprenant au moins un échangeur de chaleur à plaques et ailettes selon le préambule de la revendication 1. FR 2 789 165 décrit un tel appareil.The present invention relates to a cryogenic separation apparatus comprising at least one plate and fin heat exchanger according to the preamble of claim 1. FR 2 789 165 describes such an apparatus.

Il existe différents types d'échangeurs de chaleur à plaques et ailettes, adaptés chacun à un domaine d'utilisation. En particulier, l'invention s'applique de façon avantageuse à un échangeur de chaleur d'une unité de séparation d'air ou de mélanges H2/CO (hydrogène/monoxyde de carbone) par distillation cryogénique.There are different types of plate and fin heat exchangers, each adapted to a field of use. In particular, the invention is advantageously applied to a heat exchanger of an air separation unit or H 2 / CO (hydrogen / carbon monoxide) mixtures by cryogenic distillation.

Cet échangeur peut être une ligne d'échange principale d'un appareil de séparation d'air, qui refroidit l'air entrant par échange de chaleur indirect avec les produits froids issus de la colonne de distillation, un sous-refroidisseur ou un vaporiseur/condenseur.This exchanger can be a main exchange line of an air separation apparatus, which cools the incoming air by indirect heat exchange with the cold products from the distillation column, a subcooler or a vaporizer / condenser.

La technologie couramment utilisée pour ces échangeurs est celle des échangeurs en aluminium à plaques et ailettes brasés, qui permettent d'obtenir des organes très compacts offrant une grande surface d'échange.The technology commonly used for these exchangers is that of aluminum exchangers with brazed plates and fins, which make it possible to obtain very compact members with a large exchange surface.

Ces échangeurs sont constitués de plaques entre lesquelles sont insérées des ondes ou ailettes, formant ainsi un empilage de passages dits « froids » et de passages dits « chauds ».These exchangers consist of plates between which are inserted waves or fins, thus forming a stack of so-called "cold" passages and so-called "hot" passages.

Les ondes d'échange couramment utilisées sont des ondes droites, ondes perforées, et ondes à décalage partiel ou « serrated ».Commonly used exchange waves are straight waves, perforated waves, and partial offset or "serrated" waves.

Ces ondes se caractérisent à l'aide des paramètres suivants :

h (mm) :
hauteur de l'onde (de 3 à10 mm).
e (mm) :
épaisseur de l'onde (de 0,2 à 0,6 mm).
n (m-1 ou pouce-1) :
nombre d'ondes par unité de longueur (de 177 à 1102 ondes/m).
perf (%) :
taux de perforation (5% pour les ondes perforées).
Is (mm) :
longueur de décalage (pour les ondes à décalage partiel ou « serrated »).
These waves are characterized by the following parameters:
h (mm):
wave height (from 3 to 10 mm).
e (mm):
wave thickness (0.2 to 0.6 mm).
n (m -1 or inch -1 ):
number of waves per unit length (from 177 to 1102 waves / m).
perf (%):
perforation rate (5% for perforated waves).
I s (mm):
offset length (for partial offset or "serrated" waves).

Ainsi les diamètres hydrauliques (Dh) des ondes classiquement utilisées dans les échangeurs à plaques et ailettes brasées sont compris entre 1 et 6 mm. Ces ondes d'échange sont actuellement formées à l'aide d'une presse.Thus, the hydraulic diameters (Dh) of the waves conventionally used in soldered plate and fin exchangers are between 1 and 6 mm. These exchange waves are currently formed using a press.

Divers moyens permettent d'augmenter la surface d'échange.Various means make it possible to increase the exchange surface.

La surface d'échange qui sépare deux fluides, se compose d'une surface dite « primaire » correspondant à la surface plane entre les deux fluides et d'une surface dite « secondaire » généralement constituée d'ailettes perpendiculaires à la surface primaire et formant ainsi une onde d'échange. C'est le nombre d'ailettes insérées (densité de l'onde) et la hauteur des ailettes qui créent l'augmentation de la surface d'échange.The exchange surface that separates two fluids, consists of a so-called "primary" surface corresponding to the flat surface between the two fluids and a so-called "secondary" surface generally consisting of fins perpendicular to the primary surface and forming thus an exchange wave. It is the number of inserted fins (density of the wave) and the height of the fins which create the increase of the exchange surface.

Plus l'onde est dense, plus la surface d'échange est grande. Cependant il existe une limite de fabrication ou des contraintes dus au procédé. L'outil de presse utilisé pour fabriquer l'onde, permet d'obtenir des densités maximales de 1023 à 1102 ondes par mètre. La densité de l'onde sélectionnée peut être plus petite lorsqu'il est préférable de limiter les pertes de charge. De plus, dans certaines conditions de fonctionnement comme celui des vaporiseurs/condenseurs à bain, des contraintes liées à la sécurité limitent le nombre d'ondes par mètre à des valeurs bien inférieures aux valeurs maximales qui peuvent être fabriquées.The denser the wave, the larger the exchange surface. However, there is a manufacturing limit or constraints due to the process. The press tool used to manufacture the wave, makes it possible to obtain maximum densities of 1023 to 1102 waves per meter. The density of the selected wave may be smaller when it is preferable to limit the pressure drops. In addition, under certain operating conditions such as bath vaporizers / condensers, safety constraints limit the number of waves per meter to values well below the maximum values that can be manufactured.

Les ailettes présentent un gradient de température. Au-delà d'une certaine hauteur d'ailette (d'onde), la zone située au milieu de l'ailette échange nettement moins bien. Il existe donc une hauteur d'onde optimale correspondant à une valeur de coefficient d'ailette optimale. Les hauteurs d'onde couramment utilisées varient de 3 à 10 mm.The fins have a temperature gradient. Beyond a certain height of fin (wave), the area in the middle of the fin exchange significantly less well. There is therefore an optimum wave height corresponding to an optimum fin coefficient value. The wavelengths commonly used vary from 3 to 10 mm.

Il est également possible d'augmenter le coefficient d'échange.It is also possible to increase the exchange coefficient.

Plus le fluide est turbulent, meilleur est le coefficient d'échange. Cette turbulence peut être générée par une modification de la forme des canaux ou par l'insertion d'obstacles générateurs de turbulence (ex : onde droite perforée, à décalage partiel ou « serrated », à génératrices sinueuses ou « herringbone », à persiennes, insertion de mini-ailettes, fenêtres, ...).The more turbulent the fluid, the better the exchange coefficient. This turbulence can be generated by a modification of the shape of the channels or by the insertion of obstacles generating turbulence (ex: perforated straight wave, partial offset or "serrated", with sinuous generators or "herringbone", with shutters, insertion of mini-fins, windows, ...).

Dans le cas de la vaporisation d'un fluide, une surface qui comporte un plus grand nombre de sites de nucléation présente un meilleur coefficient d'échange. Ces sites de nucléation sont des micro-cavités de diverses tailles et formes (cavités ré-entrantes) présents en surface ou au travers d'une couche poreuse.In the case of the vaporization of a fluid, a surface that has a larger number of nucleation sites has a better exchange coefficient. These nucleation sites are micro-cavities of various sizes and shapes (re-entrant cavities) present on the surface or through a porous layer.

Dans le cas de la condensation d'un fluide, l'épaisseur du film liquide détériore le coefficient d'échange. Il est donc intéressant de drainer le liquide par la présence de rainures, de perforations ou de reliefs.In the case of the condensation of a fluid, the thickness of the liquid film deteriorates the exchange coefficient. It is therefore interesting to drain the liquid by the presence of grooves, perforations or reliefs.

Récemment il est apparu un type d'échangeurs appelés micro-échangeurs.Recently there appeared a type of exchangers called micro-exchangers.

Il s'agit d'échangeurs ayant des canaux de diamètres hydrauliques inférieurs au millimètre. La diminution de la taille des canaux permet de développer la surface d'échange thermique (gain en compacité de l'appareil). Le coefficient d'échange devient alors pratiquement inversement proportionnel au diamètre hydraulique.These are exchangers with channels of hydraulic diameters smaller than one millimeter. The reduction in the size of the channels makes it possible to develop the heat exchange surface (gain in compactness of the apparatus). The exchange coefficient then becomes practically inversely proportional to the hydraulic diameter.

S. Kandlikar dans "First International Conference on microchannels and minichannels 2003, « Extending the applicability of the flow boiling correlation to low Reynolds number flows in microchannels » propose la classification suivante, en fonction du diamètre hydraulique des canaux :

  • c Mini-canaux tels que : 1 mm<Dh<3mm (correspondants aux grandeurs de Dh des ondes actuelles).
  • c Mini-canaux tels que : 200µm<Dh<1mm.
  • c Micro-canaux tels que : Dh<200µm.
S. Kandlikar in "First International Conference on microchannels and minichannels 2003," Extending the applicability of the flow boiling correlation to low Reynolds number flows in microchannels " proposes the following classification, according to the hydraulic diameter of the channels:
  • c Mini-channels such as: 1 mm <Dh <3mm (corresponding to the Dh values of the current wave).
  • c Mini-channels such as: 200μm <Dh <1mm.
  • c Micro-channels such as: Dh <200μm.

Pour les mini-canaux (200µm<Dh<3mm) : les lois des écoulements pour les conduites classiques s'appliquent encoreFor mini-channels (200μm <Dh <3mm): the flow laws for conventional pipes still apply

Pour les micro-canaux (Dh<200µm) : Les effets de surface prennent une importance considérable et les lois d'écoulement classiques ne s'appliquent plus.For micro-channels (Dh <200μm): Surface effects are of considerable importance and conventional flow laws no longer apply.

EP-A-1008826 décrit un échangeur à plaques dont au moins un des passages contient des passages auxiliaires fermés en forme de tube, dont la largeur maximale est supérieure à 50% de la distance entre deux plaques adjacentes. EP-A-1008826 describes a plate heat exchanger with at least one of the passages containing closed tube-shaped auxiliary passages, the maximum width of which is greater than 50% of the distance between two adjacent plates.

La quantité de flux échangée à travers un échangeur est donnée par la relation suivante : φ = k × S × Δ T

Figure imgb0001
The quantity of flow exchanged through an exchanger is given by the following relation: φ = k × S × Δ T
Figure imgb0001

Pour un ΔT donné, l'amélioration des échangeurs ne peut s'effectuer que par l'augmentation du coefficient d'échange (k) et/ou par l'augmentation de la surface d'échange (S).For a given ΔT, the exchangers can only be improved by increasing the exchange coefficient (k) and / or by increasing the exchange surface (S).

Dans le cas des échangeurs à plaques et ailettes brasées, l'augmentation de la surface d'échange par une surface dite « secondaire » atteint ses limites de part la fabrication et/ou des contraintes de procédé. L'augmentation du coefficient d'échange par la création de turbulences est intéressante mais présente deux contraintes principales :

  • une augmentation des pertes de charge induite par l'augmentation des turbulences.
  • une augmentation du coût de fabrication dû à la complexité des géométries.
In the case of brazed plate and fin exchangers, the increase of the exchange surface by a so-called "secondary" surface reaches its limits due to manufacturing and / or process constraints. The increase of the exchange coefficient by the creation of turbulence is interesting but presents two main constraints:
  • an increase in pressure losses induced by the increase in turbulence.
  • an increase in the manufacturing cost due to the complexity of the geometries.

Ainsi, la création d'une nouvelle forme d'onde ne peut engendrer des gains de coefficient d'échange nettement meilleurs par rapport aux ondes déjà existantes. Quant à la création de sites de nucléation et au drainage de liquide, ces deux méthodes ne concernent qu'un type particulier d'échange à savoir la vaporisation ou la condensation.Thus, the creation of a new waveform can not generate much better exchange coefficient gains compared to existing waves. As regards the creation of nucleation sites and liquid drainage, these two methods only concern a particular type of exchange, namely vaporization or condensation.

Il semble donc difficile d'améliorer fortement les échangeurs à plaques et ailettes brasées en utilisant les mêmes axes de développement que ceux décrits précédemment.It therefore seems difficult to greatly improve the brazed plate and fin exchangers using the same axes of development as those described above.

En outre, la technologie type micro-canaux est très coûteuse (micro-usinage des canaux) et reste aujourd'hui réservée à des échangeurs de très petite dimension : elle ne concerne pas aujourd'hui les applications, telle que la séparation d'air dans lesquelles le débit et la différence de température sont importants.In addition, the micro-channel type technology is very expensive (micro-machining of the channels) and remains today reserved for exchangers of very small size: it does not concern today the applications, such as the separation of air in which the flow rate and the difference in temperature are important.

La solution proposée vise à augmenter la surface d'échange en incorporant aux surfaces déjà existantes (dites « primaire » et « secondaire ») une troisième surface d'échange dite surface « tertiaire ».The proposed solution aims to increase the exchange surface by incorporating the already existing surfaces (called "primary" and "secondary") a third exchange surface called "tertiary" surface.

Nous proposons trois dispositifs qui permettent d'ajouter une surface dite « tertiaire » aux ondes d'échange actuellement utilisées dans les échangeurs à plaques et ailettes brasées :

  • passage d'échange « multi-ondes »
  • ondes d'échange « mini-canaux », ondes extrudées
  • ondes d'échange « mini-canaux », tubes capillaires
We propose three devices that allow to add a so-called "tertiary" surface to the exchange waves currently used in brazed plate and fin exchangers:
  • "multi-wave" exchange passage
  • "mini-channel" exchange waves, extruded waves
  • "mini-channel" exchange waves, capillary tubes

Selon un objet de l'invention, il est prévu un appareil selon la revendication 1.According to one object of the invention, there is provided an apparatus according to claim 1.

De préférence chaque canal est en contact avec au moins trois autres canaux ou une plaque et deux autres canaux. La plaque peut être une plaque définissant un passage ou une plaque secondaire située dans le passage.Preferably each channel is in contact with at least three other channels or a plate and two other channels. The plate may be a plate defining a passage or a secondary plate located in the passage.

Selon d'autres aspects facultatifs :

  • la structure est composée d'une pluralité de cylindres ;
  • à l'intérieur d'un passage, il y a au moins une plaque secondaire de forme générale plate parallèle aux plaques définissant les passages ;
  • la structure est formée d'une superposition d'ondes d'échange, chaque paire d'ondes d'échange adjacentes étant éventuellement séparée par une plaque secondaire ;
  • la structure est formée d'un corps unique contenant une pluralité de canaux ;
  • un canal a un diamètre hydraulique entre 200 µm et 1 mm ;
  • un canal a un diamètre hydraulique inférieur à 200 µm ;
  • un passage a une hauteur d'entre 3 et 18 mm ;
  • les canaux ont une section circulaire, ovale, carrée, rectangulaire, triangulaire ou en losange.
According to other optional aspects:
  • the structure is composed of a plurality of cylinders;
  • inside a passage, there is at least one secondary plate of generally flat shape parallel to the plates defining the passages;
  • the structure is formed of a superposition of exchange waves, each pair of adjacent exchange waves possibly being separated by a secondary plate;
  • the structure is formed of a single body containing a plurality of channels;
  • a channel has a hydraulic diameter between 200 μm and 1 mm;
  • a channel has a hydraulic diameter of less than 200 μm;
  • a passage at a height of between 3 and 18 mm;
  • the channels have a circular, oval, square, rectangular, triangular or diamond-shaped section.

Selon une autre objet de l'invention, il est prévu un appareil de séparation cryogénique comprenant au moins un échangeur tel que décrit ci-dessus.According to another object of the invention, there is provided a cryogenic separation apparatus comprising at least one exchanger as described above.

Selon une autre objet de l'invention, il est prévu un appareil de séparation d'air dans lequel une ligne d'échange principale et/ou un vaporiseur-condenseur et/ou un sous-refroidisseur est un échangeur tel que décrit ci-dessus.According to another object of the invention, there is provided an air separation apparatus in which a main exchange line and / or a vaporizer-condenser and / or a subcooler is an exchanger as described above. .

L'invention sera décrite en plus de détail en se référant aux dessins dans lesquels :

  • La Figure 2 des dessins annexés représente en perspective, avec des arrachements partiels, un exemple d'un tel échangeur de chaleur, de structure classique, auquel s'applique l'invention.
  • Les Figures 3A, 4A et 5A représentent un passage d'échangeur vu dans le sens d'écoulement des fluides selon l'art antérieur et les Figures 3B, 4B, 4C et 5B représentent un passage d'échangeur vu dans le sens d'écoulement des fluides selon l'invention.
The invention will be described in more detail with reference to the drawings in which:
  • The Figure 2 The attached drawings show in perspective, with partial detachments, an example of such a heat exchanger, of conventional structure, to which the invention applies.
  • The Figures 3A, 4A and 5A represent an exchanger passage seen in the flow direction of the fluids according to the prior art and the Figures 3B, 4B, 4C and 5B represent an exchanger passage seen in the flow direction of the fluids according to the invention.

Dans la Figure 2, l'échangeur de chaleur 1 représenté est constitué d'un empilement de plaques rectangulaires parallèles 2 toutes identiques, qui définissent entre elles une pluralité de passages pour des fluides à mettre en relation d'échange thermique indirect. Dans l'exemple représenté, ces passages sont successivement et cycliquement des passages 3 pour un premier fluide, 4 pour un deuxième fluide et 5 pour un troisième fluide. Il sera compris que l'invention couvre des échangeurs à deux fluides seulement ou à n'importe lequel nombre de fluides.In the Figure 2 , the heat exchanger 1 shown consists of a stack of parallel rectangular plates 2 all identical, which define between them a plurality of passages for fluids to put in indirect heat exchange relationship. In the example shown, these passages are successively and cyclically passages 3 for a first fluid, 4 for a second fluid and 5 for a third fluid. It will be understood that the invention covers two-fluid exchangers only or any number of fluids.

Chaque passage 3 à 5 est bordé de barres de fermeture 6 qui le délimitent en laissant libres des fenêtres 7 d'entrée/sortie du fluide correspondant. Dans chaque passage sont disposées des ondes-entretoises ou ailettes ondulées 8 servant à la fois d'ailettes thermiques, d'entretoises entre les plaques, notamment lors du brasage et pour éviter toute déformation des plaques lors de la mise en oeuvre de fluides sous pression, et de guidage des écoulements de fluides.Each passage 3 to 5 is bordered by closing bars 6 which delimit it leaving free windows 7 input / output of the corresponding fluid. In each passage are disposed wave-waves or corrugated fins 8 serving both thermal fins, spacers between the plates, especially during brazing and to prevent any deformation of the plates during the implementation of fluids under pressure and guiding the flow of fluids.

L'empilement des plaques, des barres de fermeture et des ondes-entretoises est généralement réalisé en aluminium ou en alliage d'aluminium et est assemblé en une seule opération par brasage au four.The stack of plates, closing bars and wave-spacers is generally made of aluminum or aluminum alloy and is assembled in a single operation by soldering in the oven.

Des boîtes 9 d'entrée/sortie de fluides, de forme générale semi-cylindrique, sont ensuite soudées sur le corps d'échangeur ainsi réalisé de façon à coiffer les rangées de fenêtres d'entrée/sortie correspondantes, et elles sont reliées à des conduites 10 d'amenée et d'évacuation des fluides.Fluid inlet / outlet boxes 9, of generally semi-cylindrical shape, are then welded to the exchanger body thus produced so as to cover the rows of corresponding inlet / outlet windows, and they are connected to conduits 10 for supplying and evacuating fluids.

Les canaux peuvent être formés en utilisant diverses techniques, tels que décrits dans « Micro échangeurs thermiques » d'Anton GRUSS dans Techniques de l'Ingénieur, 06-2002.The channels can be formed using various techniques, as described in Anton GRUSS's "Micro heat exchangers" in Techniques de l'Ingénieur, 06-2002.

La solution de la Figure 3B consiste à remplacer l'onde d'échange classiquement utilisée de la Figure 3A par plusieurs ondes d'échange 13 de même type mais de hauteur d'onde plus petite. Ces nouvelles ondes insérées dans un même passage de l'échangeur sont assemblées à l'aide de fines tôles recouvertes de brasure 13. Ces tôles appelées « tôle de surface tertiaire » constituent la surface ajoutée dite « tertiaire ». Dans l'exemple il y a deux tôles séparant trois ondes.The solution of the Figure 3B consists in replacing the exchange wave conventionally used of the Figure 3A by several exchange waves 13 of the same type but of smaller wavelength. These new waves inserted in the same passage of the exchanger are assembled using thin sheets covered with solder 13. These sheets called "tertiary surface sheet" constitute the added surface called "tertiary". In the example there are two sheets separating three waves.

Tous les types d'ondes qui existent dans le commerce peuvent être utilisés en modifiant et adaptant uniquement la hauteur de l'onde. De ce fait, tous les paramètres qui constituent la géométrie d'un type d'onde sont ajustables (épaisseur, densité, perforation de l'onde,...). Les autres paramètres sont :

  • la hauteur du passage,
  • le nombre d'ondes d'échange par passage,
  • l'épaisseur de la tôle de la surface tertiaire (à priori égale à l'épaisseur de l'onde),
  • la forme de la tôle de la surface tertiaire : pleine ou avec des perforations judicieusement positionnées.
All commercially available wave types can be used by modifying and adapting only the wave height. As a result, all the parameters constituting the geometry of a wave type are adjustable (thickness, density, perforation of the wave, etc.). The other parameters are:
  • the height of the passage,
  • the number of exchange waves per pass,
  • the thickness of the sheet of the tertiary surface (a priori equal to the thickness of the wave),
  • the shape of the sheet of the tertiary surface: solid or with perforations judiciously positioned.

Pour cette technologie "multi-ondes", les diamètres hydrauliques sont de l'ordre de grandeur de la largeur du canal d'une onde classique (1/n-e).For this "multi-wave" technology, the hydraulic diameters are of the order of magnitude of the channel width of a conventional wave (1 / n-e).

On donne ici les gains en surface d'échange pour différentes hauteurs d'onde et par rapport à l'onde classique de densité n équivalente : Configuration classique n*=2 h passage (mm) e onde (mm) n (m-1) w (mm) h canal (mm) h onde (mm) h canal (mm) gain surface 5.1 0.2 551,18 1.61 4.9 2.45 2.25 19% 5.1 0.3 393,7 2.26 4.8 2.45 2.15 25% Configuration classique n*=3 h passage (mm) e onde (mm) n (m-1) w (mm) h canal (mm) h onde (mm) h canal (mm) gain surface 7.13 0.2 944,88 0.86 6.93 2.24 2.04 12% 7.13 0.2 629,92 1.39 6.93 2.24 2.04 24% Configuration classique n*=4 h passage (mm) e onde (mm) n (m-1) w (mm) h canal (mm) h onde (mm) h canal (mm) gain surface 9.63 0.2 944,88 0.86 9.43 2.26 2.06 13% 9.63 0.2 629,92 1.39 9.43 2.26 2.06 27%

n* =
nombre d'ondes sur la hauteur d'un passage (avec des épaisseurs de tôles de surface tertiaire de 0.2mm).
w =
largeur d'un canal.
h canal =
hauteur d'un canal.
Here we give the exchange surface gains for different wave heights and with respect to the classical wave of density n equivalent: Classic configuration * n = 2 h passage (mm) wave (mm) n (m -1 ) w (mm) h channel (mm) h wave (mm) h channel (mm) surface gain 5.1 0.2 551.18 1.61 4.9 2.45 2.25 19% 5.1 0.3 393.7 2.26 4.8 2.45 2.15 25% Classic configuration * n = 3 h passage (mm) wave (mm) n (m -1 ) w (mm) h channel (mm) h wave (mm) h channel (mm) surface gain 7.13 0.2 944.88 0.86 6.93 2.24 2.04 12% 7.13 0.2 629.92 1.39 6.93 2.24 2.04 24% Classic configuration * n = 4 h passage (mm) wave (mm) n (m -1 ) w (mm) h channel (mm) h wave (mm) h channel (mm) surface gain 9.63 0.2 944.88 0.86 9.43 2.26 2.06 13% 9.63 0.2 629.92 1.39 9.43 2.26 2.06 27%
n * =
number of waves on the height of a passage (with tertiary surface plate thicknesses of 0.2mm).
w =
width of a channel.
h channel =
height of a channel.

On se limite ici à des hauteurs de canaux (h canal) de 2 mm minimum (pour des raisons de brasage).Here we limit ourselves to channel heights (h channel) of 2 mm minimum (for brazing reasons).

A volume équivalent, l'augmentation du nombre d'ondes à empiler dans l'échangeur entraîne une augmentation du coût de fabrication de celui-ci. Le coût d'installation reste cependant le même.At an equivalent volume, the increase in the number of waves to be stacked in the exchanger causes an increase in the manufacturing cost thereof. The installation cost, however, remains the same.

La solution de la Figure 4B consiste à remplacer l'onde d'échange classiquement utilisée de la Figure 4A par une onde structurée 17 comportant de nombreux mini-canaux 19 à section carrée. Cette onde peut être fabriquée par extrusion.The solution of the Figure 4B consists in replacing the exchange wave conventionally used of the Figure 4A by a structured wave 17 comprising numerous mini-channels 19 with a square section. This wave can be manufactured by extrusion.

La méthode de fabrication par extrusion permet d'imaginer tout type de forme de section de canaux (rectangulaires, triangulaires, ronds, en losange,...).The extrusion manufacturing method makes it possible to imagine any type of channel section shape (rectangular, triangular, round, rhombic, ...).

La Figure 4C montre des canaux de section triangulaire.The Figure 4C shows channels of triangular section.

Les principaux paramètres sont la hauteur du passage, le nombre de canaux par hauteur de passage, le nombre de canaux par mètre de largeur de passage et tous les paramètres qui concernent la forme géométrique des canaux utilisés (hauteur, largeur, diamètre du canal,...).The main parameters are the height of the passage, the number of channels per passage height, the number of channels per meter of passage width and all the parameters which concern the geometric shape of the channels used (height, width, diameter of the channel ,. ..).

Cette méthode de fabrication permet également la possibilité d'insérer des micro ou mini ailettes à l'intérieur des canaux afin d'augmenter encore la surface d'échange et/ou de drainer un liquide.This method of manufacture also allows the possibility of inserting micro or mini fins inside the channels to further increase the exchange surface and / or drain a liquid.

La longueur des canaux (longueur d'échange du fluide) peut être divisée en plusieurs modules d'ondes extrudées, espacés de quelques millimètres entre-eux afin de permettre une communication entre canaux.The length of the channels (fluid exchange length) can be divided into several extruded wave modules spaced a few millimeters apart to allow inter-channel communication.

On distingue 3 catégories de géométrie en fonction du diamètre hydraulique des canaux (Dh) :

  • canaux tels que Dh soit de l'ordre de grandeur de la largeur des canaux dans les ondes classiques (w=1/n-e).
  • canaux tels que Dh soit compris entre 200 microns et 1 mm (mini-canaux).
  • canaux tels que Dh soit inférieur à 200 microns (micro-canaux).
There are 3 categories of geometry according to the hydraulic diameter of the channels (Dh):
  • channels such as Dh is of the order of magnitude of the width of the channels in conventional waves (w = 1 / ne).
  • channels such as Dh is between 200 microns and 1 mm (mini-channels).
  • channels such as Dh is less than 200 microns (micro-channels).

Les gains en surface d'échange obtenus pour les 3 catégories citées ci-dessus sont les suivants :

  • Pour les canaux, en dehors de l'invention, tels que Dh soit de l'ordre de grandeur de la largeur des canaux dans les ondes classiques (w=1/n-e), on donne ici les gains en surface d'échange (se) pour différentes hauteurs d'onde et par rapport à une onde classique de même hauteur et de densité n équivalente.
Onde classique h=5.1mm Structure extrudée n (m-1) w (mm) se (m2/m2) h canal (mm) gain 551,18 1.61 7.18 2.25 19% 393,7 2.26 5.51 2.25 33 % Onde classique h=7.13mm Structure extrudée n (m-1) w (mm) se (m3/m2) h canal (mm) gain 944,88 0.86 14.73 0.96 40% 629,92 1.39 10.48 1.53 40% Onde classique h=9.63mm Structure extrudée n (m-1) w (mm) se (m2/m2) h canal (mm) gain 944,88 0.86 19.44 0.97 43% 629,92 1.39 13.63 1.69 42% The exchange surface gains obtained for the 3 categories mentioned above are as follows:
  • For the channels, apart from the invention, such that Dh is of the order of magnitude of the width of the channels in the classical waves (w = 1 / ne), the exchange surface gains are given here. ) for different wave heights and with respect to a conventional wave of the same height and density n equivalent.
Classic wave h = 5.1mm Extruded structure n (m -1 ) w (mm) se (m 2 / m 2 ) h channel (mm) gain 551.18 1.61 7.18 2.25 19% 393.7 2.26 5.51 2.25 33% Classic wave h = 7.13mm Extruded structure n (m -1 ) w (mm) se (m 3 / m 2 ) h channel (mm) gain 944.88 0.86 14.73 0.96 40% 629.92 1.39 10.48 1.53 40% Classic wave h = 9.63mm Extruded structure n (m -1 ) w (mm) se (m 2 / m 2 ) h channel (mm) gain 944.88 0.86 19.44 0.97 43% 629.92 1.39 13.63 1.69 42%

Pour les canaux tels que Dh soit compris entre 200 microns et 1 mm (mini-canaux), on donne ici les gains en surface d'échange (se) pour différentes hauteurs d'onde et par rapport à une onde classique de même hauteur et de forte densité n. Onde classique h=5.1 mm Structure extrudée n (m-1) se (m2/m2) h canal (mm) gain 1 102,36 12.36 0.2 161% Onde classique h=7.13mm Structure extrudée n (m-1) se (m2/m2) h canal (mm) gain 1 102,36 16.84 0.2 171 % Onde classique h=9.63mm Structure extrudée n (m-1) se (m2/m2) h canal (mm) gain 1 123,62 20.86 0.2 197% For channels such that Dh is between 200 microns and 1 mm (mini-channels), here we give the exchange surface gains (se) for different wave heights and with respect to a conventional wave of the same height and high density n. Classical wave h = 5.1 mm Extruded structure n (m -1 ) se (m 2 / m 2 ) h channel (mm) gain 1 102.36 12.36 0.2 161% Classic wave h = 7.13mm Extruded structure n (m -1 ) se (m 2 / m 2 ) h channel (mm) gain 1 102.36 16.84 0.2 171% Classic wave h = 9.63mm Extruded structure n (m -1 ) se (m 2 / m 2 ) h channel (mm) gain 1 123.62 20.86 0.2 197%

Pour les canaux tels que Dh soit inférieur à 200 microns (micro-canaux), on donne ici les gains en surface d'échange (se) pour différentes hauteurs d'onde et par rapport à une onde classique de même hauteur et de forte densité n. Onde classique h=5.1 mm Structure extrudée n (m-1) se (m2/m2) h canal (mm) gain 1 102,36 12.36 0.05 717 % Onde classique h=7.13mm Structure extrudée n (m-1) se (m2/m2) h canal (mm) gain 1 102,36 16.84 0.05 741 % Onde classique h=9.63mm Structure extrudée n (m-1) se (m2/m2) h canal (mm) gain 1 123,62 20.86 0.05 818 % For the channels such that Dh is less than 200 microns (micro-channels), here we give the exchange surface gains (se) for different wave heights and compared to a conventional wave of the same height and high density not. Classical wave h = 5.1 mm Extruded structure n (m -1 ) se (m 2 / m 2 ) h channel (mm) gain 1 102.36 12.36 0.05 717% Classic wave h = 7.13mm Extruded structure n (m -1 ) se (m 2 / m 2 ) h channel (mm) gain 1 102.36 16.84 0.05 741% Classic wave h = 9.63mm Extruded structure n (m -1 ) se (m 2 / m 2 ) h channel (mm) gain 1 123.62 20.86 0.05 818%

La solution de la Figure 5B consiste à remplacer l'onde d'échange classiquement utilisée de la Figure 5A par un nombre adéquat de tubes capillaires. L'arrangement des tubes capillaires s'ordonne facilement du fait de leur forme. Les tubes capillaires sont recouverts de brasure afin d'assurer l'assemblage mécanique de l'ensemble.The solution of the Figure 5B consists in replacing the exchange wave conventionally used of the Figure 5A by an adequate number of capillary tubes. The arrangement of the capillary tubes is easily arranged because of their shape. The capillary tubes are covered with solder to ensure the mechanical assembly of the assembly.

Les paramètres ajustables sont la hauteur du passage, le diamètre des tubes capillaires, l'épaisseur des tubes capillaires ou encore le nombre de tubes capillaires par m2.The adjustable parameters are the height of the passage, the diameter of the capillary tubes, the thickness of the capillary tubes or the number of capillary tubes per m 2 .

On donne ici les gains en surface d'échange (se) pour différentes hauteurs d'onde et par rapport à une onde classique de densité équivalente. Dext est le diamètre externe du tube capillaire. Onde classique Solution 7 capillaires par hauteur de passage h passage (mm) n (m-1) Dext (mm) Gain en se 5.1 551,18 1.4 50 % 5.1 393,7 1.4 96 % Onde classique Solution 7 capillaires par hauteur de passage h passage (mm) n (m-1) Dext (mm) Gain en se 7.13 944,88 1.2 23 % 7.13 629,72 1.2 73 % Onde classique Solution 7 capillaires par hauteur de passage h passage (mm) n (m-1) Dext (mm) Gain en se 9.63 944,88 1.4 10% 9.63 629,72 1.4 57 % We give here the exchange surface gains (se) for different wave heights and with respect to a conventional wave of equivalent density. D ext is the external diameter of the capillary tube. Classic wave Solution 7 capillaries per pass height h passage (mm) n (m -1 ) D ext (mm) Gain in 5.1 551.18 1.4 50% 5.1 393.7 1.4 96% Classic wave Solution 7 capillaries per pass height h passage (mm) n (m -1 ) D ext (mm) Gain in 7.13 944.88 1.2 23% 7.13 629.72 1.2 73% Classic wave Solution 7 capillaries per pass height h passage (mm) n (m -1 ) D ext (mm) Gain in 9.63 944.88 1.4 10% 9.63 629.72 1.4 57%

Dans chaque exemple le diamètre du capillaire correspond au diamètre maximal pour obtenir un gain en surface d'échange par rapport à la solution classique, un diamètre plus faible donnera un gain nettement plus important de surface d'échange.In each example, the diameter of the capillary corresponds to the maximum diameter in order to obtain a gain in exchange surface area compared to the conventional solution, a smaller diameter will give a much greater gain in exchange surface area.

Claims (8)

  1. Cryogenic separation apparatus comprising at least one brazed-plate heat exchanger, of the type comprising a stack of parallel plates (2) which define a plurality of fluid-circulation passages (3, 4, 5) of a generally flat shape, closure bars which delimit these passages, distributing means for distributing a fluid to each passage of a first series of passages (3, 5) and means for sending another fluid to a second series of passages (4), in which apparatus at least one passage (3) contains at least one organised exchange structure (15, 17, 21) which forms a plurality of channels (19) in the width of the passage, characterised in that each channel (19) is in contact with either at least two other channels or at least one other channel and one plate (2, 13), also forming at least three channels in the height of the passage, and such that a channel has a hydraulic diameter of at most 1 mm and the channels (19) have a circular, oval, square, rectangular or rhomboid cross section.
  2. Apparatus according to claim 1, wherein the structure is made up of a plurality of cylinders (21).
  3. Apparatus according to either of the preceding claims, comprising, inside a passage (3), at least one secondary plate (13) of a generally flat shape parallel to the plates (2) that define the passages.
  4. Apparatus according to claim 1, wherein the structure is formed by superposing exchange fins (15), each pair of adjacent exchange fins optionally being separated by a secondary plate (13).
  5. Apparatus according to claim 1, wherein the structure is formed of a single body (17) containing a plurality of channels (19).
  6. Apparatus according to any of claims 1 to 5, wherein a channel (19) has a hydraulic diameter of between 200 µm and 1 mm.
  7. Apparatus according to any of claims 1 to 5, wherein a channel (19) has a hydraulic diameter of less than 200 µm.
  8. Air separation apparatus according to claim 1, wherein a main exchange line and/or a vaporizer-condenser and/or a supercooler is an exchanger according to any of claims 1 to 7.
EP06778947.9A 2005-06-09 2006-06-06 Plate heat exchanger with exchanging structure forming several channels in a passage Not-in-force EP1899669B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0551560A FR2887020B1 (en) 2005-06-09 2005-06-09 PLATE HEAT EXCHANGER WITH EXCHANGE STRUCTURE FORMING MULTIPLE CHANNELS IN A PASSAGE
PCT/FR2006/050600 WO2006131685A2 (en) 2005-06-09 2006-06-06 Plate heat exchanger with exchanging structure forming several channels in a passage

Publications (2)

Publication Number Publication Date
EP1899669A2 EP1899669A2 (en) 2008-03-19
EP1899669B1 true EP1899669B1 (en) 2015-08-12

Family

ID=36424039

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06778947.9A Not-in-force EP1899669B1 (en) 2005-06-09 2006-06-06 Plate heat exchanger with exchanging structure forming several channels in a passage

Country Status (6)

Country Link
US (2) US20080210415A1 (en)
EP (1) EP1899669B1 (en)
JP (1) JP2008545946A (en)
CN (2) CN101871744A (en)
FR (1) FR2887020B1 (en)
WO (1) WO2006131685A2 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1781389A2 (en) * 2004-07-23 2007-05-09 Velocys, Inc. Distillation process using microchannel technology
FR2930465B1 (en) * 2008-04-28 2010-09-24 Air Liquide METHOD FOR MANUFACTURING A PLATE HEAT EXCHANGER USING A PLATE ASSEMBLY
FR2930464A1 (en) * 2008-04-28 2009-10-30 Air Liquide Plate heat exchanger fabricating method, involves arranging block between plates, injecting fluid in inner space of block, brazing exchanger, forming depression in hollow space of block to liberate space between plates, and removing block
FR2930466B1 (en) * 2008-04-28 2010-09-17 Air Liquide CALE FOR MAINTAINING PASSAGES OF EXCHANGERS WITH PLATES AND BRASSE FINS
US20110226448A1 (en) * 2008-08-08 2011-09-22 Mikros Manufacturing, Inc. Heat exchanger having winding channels
FR2942657B1 (en) 2009-03-02 2013-05-03 Air Liquide HEAT EXCHANGER WITH PLATES
US9618278B2 (en) * 2009-12-02 2017-04-11 Denkenberger Thermal, Llc Microchannel expanded heat exchanger
DE202011050322U1 (en) * 2011-06-01 2012-09-03 Caradon Stelrad B.V. Roll formed convector sheet
CN102305561A (en) * 2011-08-16 2012-01-04 李永堂 Plate-tube type heat exchanger
DE102012204178B3 (en) * 2012-03-16 2013-03-21 INSTITUT FüR MIKROTECHNIK MAINZ GMBH Microstructure component and method for its production
WO2014137867A1 (en) * 2013-03-02 2014-09-12 James Carl Loebig Microchannel heat exchanger and methods of manufacture
US20140352933A1 (en) * 2013-05-28 2014-12-04 Hamilton Sundstrand Corporation Core assembly for a heat exchanger and method of assembling
CN106123484A (en) * 2015-05-09 2016-11-16 张周卫 Cold three stream plate-fin heat exchanger of LNG low-temperature liquefaction three tier structure
CN105890281A (en) * 2016-04-19 2016-08-24 上海交通大学 Skid-mounted natural gas liquefaction and purification integrated cold box
CZ307349B6 (en) * 2017-02-09 2018-06-20 SUAR.CZ s.r.o. An annular heat exchanger
EP3473961B1 (en) 2017-10-20 2020-12-02 Api Heat Transfer, Inc. Heat exchanger
FR3075340B1 (en) * 2017-12-19 2021-04-30 Air Liquide SPACER ELEMENT WITH SURFACE TEXTURING, ASSOCIATED HEAT EXCHANGER AND MANUFACTURING PROCESS
US10926364B2 (en) 2018-10-03 2021-02-23 Hamilton Sundstrand Corporation Plate-fin heat exchanger core design for improved manufacturing
CN109668458A (en) * 2018-12-20 2019-04-23 中国航空工业集团公司金城南京机电液压工程研究中心 A kind of rib of slab declines scale primary surface heat exchanger
CN109612311A (en) * 2019-01-17 2019-04-12 广东环葆嘉节能科技有限公司 A kind of heat-exchanging component and heat exchanger
CN113474956B (en) * 2019-02-25 2023-01-03 乔治洛德方法研究和开发液化空气有限公司 Device for heat and mass exchange
EP4155649B1 (en) * 2019-09-13 2024-03-20 Alfa Laval Corporate AB Heat exchanger plate and heat exchanger for treatment of a liquid feed
US20230194182A1 (en) * 2021-12-17 2023-06-22 Raytheon Technologies Corporation Heat exchanger with partial-height folded fins
CN114941955B (en) * 2022-05-26 2023-07-21 无锡市豫达换热器有限公司 Composite special-shaped aluminum plate-fin heat exchanger
FR3140420A1 (en) 2022-09-30 2024-04-05 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Heat exchanger with improved heat exchange structure

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2782009A (en) * 1952-03-14 1957-02-19 Gen Motors Corp Heat exchangers
GB2149081B (en) * 1983-11-01 1986-12-10 Boc Group Plc Heat exchangers
DE3521914A1 (en) * 1984-06-20 1986-01-02 Showa Aluminum Corp., Sakai, Osaka HEAT EXCHANGER IN WING PANEL DESIGN
JPS61140792A (en) * 1984-12-14 1986-06-27 Matsushita Electric Ind Co Ltd Heat exchanger
US5372188A (en) * 1985-10-02 1994-12-13 Modine Manufacturing Co. Heat exchanger for a refrigerant system
JPS62233691A (en) * 1986-03-31 1987-10-14 Sumitomo Precision Prod Co Ltd Heat exchanger
JPH0539323Y2 (en) * 1987-05-29 1993-10-05
US5505256A (en) * 1991-02-19 1996-04-09 Rolls-Royce Plc Heat exchangers and methods of manufacture thereof
GB9208645D0 (en) * 1992-04-22 1992-06-10 Boc Group Plc Air separation
SE504799C2 (en) * 1995-08-23 1997-04-28 Swep International Ab Triple circuit heat exchanger
CN1080869C (en) * 1996-04-01 2002-03-13 缪志先 Plate type heat exchanger with integral braze-welded structure
FR2789165B1 (en) * 1999-02-01 2001-03-09 Air Liquide HEAT EXCHANGER, PARTICULARLY PLATE HEAT EXCHANGER OF AN AIR SEPARATION APPARATUS
WO2001027552A1 (en) * 1999-10-08 2001-04-19 Carrier Corporation A plate-type heat exchanger
EP1243886A4 (en) * 1999-12-27 2006-05-03 Sumitomo Prec Products Company Plate fin type heat exchanger for high temperature
FR2819048B1 (en) * 2000-12-28 2005-08-19 Air Liquide WINDED FIN IN HEAT EXCHANGER WITH FLAT PLATES AND CORRESPONDING HEAT EXCHANGER
JP3961443B2 (en) * 2003-04-08 2007-08-22 本田技研工業株式会社 Evaporator

Also Published As

Publication number Publication date
US20080210415A1 (en) 2008-09-04
FR2887020B1 (en) 2007-08-31
WO2006131685A3 (en) 2007-05-18
JP2008545946A (en) 2008-12-18
WO2006131685A2 (en) 2006-12-14
CN101194137B (en) 2010-11-24
FR2887020A1 (en) 2006-12-15
CN101871744A (en) 2010-10-27
CN101194137A (en) 2008-06-04
US20120090354A1 (en) 2012-04-19
EP1899669A2 (en) 2008-03-19

Similar Documents

Publication Publication Date Title
EP1899669B1 (en) Plate heat exchanger with exchanging structure forming several channels in a passage
EP1683590B1 (en) Method for manufacturing a louvered fin for a heat exchanger
WO2014181297A1 (en) Method for producing a heat exchanger module having at least two fluid flow circuits
EP2834584B1 (en) Manufacturing process for a heat exchange module with at least two fluid circuits and heat exchanger obtained by that process
EP1709380A1 (en) Heat exchanger and a corresponding exchange module
FR2865027A1 (en) Corrugated fin for heat exchanger e.g. vaporizer-condenser, has pores, and corrugations, each including vertical legs alternatively connected by top and base of corrugation, where top, base and legs are made of sintered aluminum particles
EP3132222B1 (en) Heat-exchanger module, use with liquid metal and gas
FR2819048A1 (en) CORRUGATED FIN FOR BRAZED PLATE HEAT EXCHANGER AND CORRESPONDING HEAT EXCHANGER
WO2018024765A1 (en) Plate heat exchanger module for which the channels integrate as input a uniform flow distribution zone and a fluid bifurcation zone
FR3044752A1 (en) METHOD OF MAKING A HEAT EXCHANGER WITH AT LEAST TWO CIRCULATING CIRCUITS OF FLUID, LARGE NUMBER OF CHANNELS AND / OR LARGE DIMENSIONS
EP3728976A1 (en) Spacer element with surface texturing, and associated heat exchanger and production method
WO2010100367A1 (en) Air separation apparatus including a plate heat exchanger
EP3728977B1 (en) Heat exchanger comprising elements and plates with surface texturing
FR3043454B1 (en) METHOD OF MAKING A HEAT EXCHANGER MODULE HAVING AT LEAST TWO FLUID CIRCULATION CIRCUITS, WITH HOT ISOSTATIC COMPRESSION STEP
FR2935473A1 (en) Heat exchanger e.g. printed circuit heat exchanger, for heating liquefied natural gas, has auxiliary passage traversing or adjacent to thickness of plates such that passage connects channels of each plate with atmosphere
EP3006156B1 (en) Method of producing a heat exchanger module with at least two fluid flow paths, associated heat exchanger and reactor-exchanger
KR102318527B1 (en) Manufacturing method of cooling block and coolant flow plate for cooling block applied to radiator
EP3728979A1 (en) Spacer element with surface texturing, heat exchanger comprising such an element
FR3101409A3 (en) Spacer element for heat exchanger
FR3140673A1 (en) Method of manufacturing an intermediate element for a heat exchanger
FR3101267A3 (en) A method of manufacturing an intermediate element for a heat exchanger
BE351202A (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080109

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20090429

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602006046272

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F25J0003000000

Ipc: F25J0003040000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F25J 3/04 20060101AFI20150210BHEP

Ipc: F28F 3/02 20060101ALI20150210BHEP

Ipc: F28D 9/00 20060101ALI20150210BHEP

Ipc: F25J 5/00 20060101ALI20150210BHEP

Ipc: F28D 21/00 20060101ALI20150210BHEP

INTG Intention to grant announced

Effective date: 20150306

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 742543

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602006046272

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 742543

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150812

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20150812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151212

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006046272

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

26N No opposition filed

Effective date: 20160513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160606

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160606

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160606

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20060606

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160606

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210622

Year of fee payment: 16

Ref country code: DE

Payment date: 20210618

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006046272

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230103