EP1716332A1 - Hochdruckpumpe, insbesondere f ür eine kraftstoffeinspritzein richtung einer brennkraftmaschine - Google Patents

Hochdruckpumpe, insbesondere f ür eine kraftstoffeinspritzein richtung einer brennkraftmaschine

Info

Publication number
EP1716332A1
EP1716332A1 EP05701509A EP05701509A EP1716332A1 EP 1716332 A1 EP1716332 A1 EP 1716332A1 EP 05701509 A EP05701509 A EP 05701509A EP 05701509 A EP05701509 A EP 05701509A EP 1716332 A1 EP1716332 A1 EP 1716332A1
Authority
EP
European Patent Office
Prior art keywords
valve
valve member
lateral surface
section
sealing surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05701509A
Other languages
English (en)
French (fr)
Inventor
Nestor Rodriguez-Amaya
Michael Mennicken
Peter Brendle
Falko Bredow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102004027825A external-priority patent/DE102004027825A1/de
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1716332A1 publication Critical patent/EP1716332A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/02Check valves with guided rigid valve members
    • F16K15/06Check valves with guided rigid valve members with guided stems
    • F16K15/063Check valves with guided rigid valve members with guided stems the valve being loaded by a spring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/46Valves
    • F02M59/462Delivery valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/0404Details or component parts
    • F04B1/0452Distribution members, e.g. valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • F04B53/1002Ball valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/02Check valves with guided rigid valve members
    • F16K15/04Check valves with guided rigid valve members shaped as balls
    • F16K15/044Check valves with guided rigid valve members shaped as balls spring-loaded
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/02Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
    • F02M59/10Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by the piston-drive
    • F02M59/102Mechanical drive, e.g. tappets or cams

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Details Of Reciprocating Pumps (AREA)

Abstract

Die Hochdruckpumpe weist wenigstens ein Pumpenelement (16) auf, in den beim Saughub eines Pumpenkolbens (20) über ein Einlassventil (30) Kraftstoff aus einem Kraftstoffzulauf (50) angesaugt wird und aus dem beim Förderhub des Pumpenkolbens (20) über ein Auslassventil (32) Kraftstoff verdrängt wird. Das Einlassventil (30) weist ein Ventilglied (44) auf, das mit einer zu seiner Längsachse (45) geneigten Dichtfläche (48) mit einem in einem Ventilgehäuse (40) angeordneten Ventilsitz (42c) zusammenwirkt, wobei durch das Ventilglied (44) in geöffnetem Zustand, wenn dieses mit seiner Dichtfläche (48) vom Ventilsitz (42c) abgehoben ist, zwischen dem Ventilglied (44) und dem Ventilgehäuse (40) ein Durchflussquerschnitt zwischen dem Kraftstoffzulauf (50) und dem Pumpenarbeitsraum (24) freigegeben wird. In geöffnetem Zustand des Ventilglieds (44) ist ein Bereich (52) mit dem kleinsten Durchflussquerschnitt zwischen dem Ventilglied (44) und dem Ventilgehäuse (40) in Strömungsrichtung vom Kraftstoffzulauf (50) zum Pumpenarbeitsraum (24) stromabwärts nach der Dichtfläche (48) des Ventilglieds (44) angeordnet.

Description

Hochdruckpumpe, insbesondere für eine Kraftstoffeinspritzeinrichtung einer Brennkraftmaschine
Stand der Technik
Die Erfindung geht aus von einer Hochdruckpumpe, insbesondere für eine Kraftstoffeinspritzeinrichtung einer Brennkraftmaschine nach der Gattung des Anspruchs 1.
Eine solche Hochdruckpumpe ist durch die DE 198 60 672 AI bekannt. Diese Hochdruckpumpe weist wenigstens ein Pumpenelement auf mit einem in einer Hubbewegung angetriebenen Pumpenkolben, der einen Pumpenarbeitsraum begrenzt. Beim Saughub des Pumpenkolbens wird über ein Einlassventil Kraftstoff aus einem KraftstoffZulauf angesaugt und beim Förderhub des Pumpenkolbens wird über ein Auslassventil Kraftstoff aus dem Pumpenarbeitsraum verdrängt. Das Einlassventil weist ein Ventilglied mit einer zu seiner Längsachse geneigten Dichtfläche auf, mit der dieses mit einem in einem Ventilgehäuse angeordneten Ventilsitz zusammenwirkt. Das Auslassventil weist ein kugelförmiges Ventilglied auf, das mit einem in einem Ventilgehäuse angeordneten Ventilsitz zusammenwirkt. Durch das jeweilige Ventilglied wird in geöffnetem Zustand, wenn dieses mit seiner Dichtfläche vom Ventilsitz abgehoben ist, zwischen dem Ventilglied und dem Ventilgehäuse ein Durchflussquerschnitt freigegeben. In geöffnetem Zustand des Ventils ist dabei der kleinste Durchflussquerschnitt zwischen dem Ventilglied und dem Ventilgehäuse im Bereich der Dichtfläche des Ventilglieds angeordnet, wodurch sich dort eine hohe Strömungsgeschwindigkeit und entsprechend ein geringer statischer Druck im Bereich der Dichtfläche ergeben und infolgedessen nur eine geringe in Öffnungsrichtung des Ventilglieds wirkende Kraft. Es können je nach Hub des Venitlglieds und Druckdifferenz sogar Kräfte in Schließrichtung auf das Ventilglied wirken. Zum Offenhalten des Einlassventils ist daher eine große Druckdifferenz zwischen dem Kraftstoffzulauf und dem
Pumpenarbeitsraum erforderlich, was wiederum einen hohen Druck im Kraftstoffzulauf und damit eine entsprechend groß dimensionierte Förderpumpe zur Erzeugung dieses Drucks erfordert. Bei der Durchströmung des Einlassventils tritt darüberhinaus ein großer Druckverlust auf, wodurch die Befüllung des Pumpenarbeitsraums erschwert wird. Dieser Druckverlust entspricht der erforderlichen Druckdifferenz zur Befüllung des Pumpenarbeitsraums. Das Auslassventil neigt durch die entstehenden hydraulischen Kräfte zum Schwingen, so dass das Auslassventil ständig öffnet und schließt, wodurch das Betriebsverhalten der Hochdruckpumpe beeinträchtigt wird und eine hohe Belastung der Hochdruckpumpe infolge von im Pumpenarbeitsraum bei geschlossenem Auslassventil auftretenden Druckspitzen verursacht wird.
Vorteile der Erfindung
Die erfindungsgemäße Hochdruckpumpe mit den Merkmalen gemäß Anspruch 1 hat demgegenüber den Vorteil, dass zum
Offenhalten des Einlassventils und/oder des Auslassventils nur eine geringe Druckdifferenz vor und nach dem Ventil erforderlich ist, da durch die Verlagerung des kleinsten Durchflussquerschnitts von der Dichtfläche weg nach außen sich im Bereich der Dichtfläche ein höherer statischer
Druck ergibt, durch den eine große in Öffnungsrichtung auf das Ventilglied wirkende Kraft erzeugt wird. Der Druck im Kraftstoffzulauf kann dadurch relativ gering gehalten werden, was eine entsprechend kleiner dimensionierte Förderpumpe ermöglicht, und infolge der geringeren
Druckverluste bei der Durchströmung des Einlassventils wird die Befüllung des Pumpenarbeitsraums verbessert. Beim Auslassventil wird durch die Verlagerung des kleinsten Durchflussquerschnitts ein stabiles Öffnen sichergestellt, so dass die Belastung der Hochdruckpumpe verringert ist.
In den abhängigen Ansprüchen sind vorteilhafte Ausgestaltungen und Weiterbildungen der erfindungsgemäßen Hochdruckpumpe angegeben. Durch die Ausbildung gemäß Anspruch 2 ist die Anordnung des kleinsten Durchflussquerschnitts stromabwärts nach der Dichtfläche des Ventilglieds auf einfache Weise ermöglicht.
Zeichnung
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 eine Hochdruckpumpe für eine Kraftstoffeinspritzeinrichtung einer Brennkraftmaschine, Figur 2 ein Einlassventil der Hochdruckpumpe in vergrößerter Darstellung in einem Längsschnitt, Figur 3 eine modifizierte Ausführung des Einlassventils und Figur 4 ein Auslassventil der Hochdruckpumpe in einem Längsschnitt.
Beschreibung des Ausführungsbeispiels
In Figur 1 ist eine Hochdruckpumpe 10 für eine Kraftstoffeinspritzeinrichtung einer Brennkraftmaschine dargestellt, die vorzugsweise eine selbstzündende Brennkraftmaschine ist. Durch die Hochdruckpumpe 10 wird Kraftstoff unter Hochdruck in einen Speicher 12 gefördert, aus dem Kraftstoff zur Einspritzung an der Brennkraftmaschine entnommen wird. Der Hochdruckpumpe 10 wird durch eine Förderpumpe 14 Kraftstoff zugeführt. Die Hochdruckpumpe 10 weist wenigstens ein Pumpenelement 16 auf, das einen zumindest mittelbar durch eine Antriebswelle 18 der Hochdruckpumpe 10 in einer Hubbewegung angetriebenen Pumpenkolben 20 aufweist. Der Pumpenkolben 20 ist in einer zumindest annähernd radial zur Antriebswelle 18 verlaufenden Zylinderbohrung 22 dicht geführt und begrenzt in dem der Antriebswelle 18 abgewandten äusseren Endbereich der Zylinderbohrung 22 einen Pumpenarbeitsraum 24. Die Antriebswelle 18 weist einen Nocken oder einen zu ihrer Drehachse 19 exzentrischen Wellenabschnitt 26 auf, über den bei der Drehbewegung der Antriebswelle 18 die Hubbewegung des Pumpenkolbens 20 bewirkt wird. Der Pumpenarbeitsraum 24 ist über ein in den Pumpenarbeitsraum 24 öffnendes, als
Rückschlagventil ausgebildetes Einlassventil 30 mit einem Kraftstoffzulauf von der Förderpumpe 14 her verbindbar. Der Pumpenarbeitsraum 24 ist außerdem über ein aus dem Pumpenarbeitsraum 24 öffnendes, als Rückschlagventil ausgebildetes Auslassventil 32 mit einem Kraftstoffablauf zum Speicher 12 hin verbindbar. Beim Saughub bewegt sich der Pumpenkolben 20 in der Zylinderbohrung 22 radial nach innen, so dass das Volumen des Pumpenarbeitsraums 24 vergrößert wird. Beim Saughub des Pumpenkolbens 20 ist wegen der dabei bestehenden Druckdifferenz das
Einlassventil 30 geöffnet, da von der Förderpumpe 14 ein höherer Druck erzeugt wird als der im Pumpenarbeitsraum 24 herrschende Druck, so dass von der Förderpumpe 14 geförderter Kraftstoff in den Pumpenarbeitsraum 24 angesaugt wird. Das Auslassventil 32 ist beim Saughub des
Pumpenkolbens 20 geschlossen, da im Speicher 12 ein höherer Druck als im Pumpenarbeitsraum 24 herrscht.
Nachfolgend wird beispielhaft das Einlassventil 30 anhand der Figur 2 näher beschrieben. Das Einlassventil 30 ist beispielsweise in eine sich radial nach aussen an die Zylinderbohrung 22 anschliessende Bohrung 34 eines Gehäuseteils 36 der Hochdruckpumpe 10 eingesetzt. Die Bohrung 34 ist dabei im Durchmesser gegenüber der Zylinderbohrung 22 größer ausgebildet. Das Gehäuseteil 36 kann beispielsweise ein Zylinderkopf sein, der mit einem anderen Gehäuseteil, in dem die Antriebswelle 18 gelagert ist, verbunden ist oder ein Gehäuseteil sein, in dem auch die Antriebswelle 18 gelagert ist. In die Bohrung 34 mündet nahe deren der Zylinderbohrung 22 zugewandtem Endbereich beispielsweise etwa radial zur Achse der Bohrung 34 ein Kraftstoffzulaufkanal 38, der mit der Förderpumpe 14 verbunden ist. Das Einlassventil 30 weist ein Ventilgehäuse 40 auf, in dem eine im Durchmesser mehrfach gestufte Bohrung 42 vorhanden ist. Die Bohrung 42 weist einen im Durchmesser kleinen Abschnitt 42a auf, einen sich an den Abschnitt 42a zum Pumpenarbeitsraum 24 anschließenden Abschnitt 42b mit größerem Durchmesser, einen sich an den Abschnitt 42b zum Pumpenarbeitsraum 24 hin anschließenden Abschnitt 42c und einen sich an den Abschnitt 42c zum Pumpenarbeitsraum 24 hin anschließenden Abschnitt 42d auf. Das Einlassventil 30 weist ein kolbenförmiges Ventilglied 44 auf, das mit einem zylindrischen Schaft 44a im Bohrungsabschnitt 42a verschiebbar geführt ist. Das Ventilglied 44 weist außerdem einen an den Schaft 44a anschließenden, im Durchmesser gegenüber dem Schaft 44a vergrößerten Kopf 46 auf, wobei am Übergang vom Kopf 46 zum Schaft 44a eine Dichtfläche 48 am Ventilglied 44 angeordnet ist. Die Dichtfläche 48 verläuft unter einem Winkel γ geneigt zur Längsachse 45 des Ventilglieds 44, derart, dass sich die Dichtfläche 48 der Längsachse 45 zum Schaft 44a hin annähert. Die Dichtfläche 48 ist vorzugsweise zumindest annähernd kegelstumpfförmig ausgebildet. An die Dichtfläche 48 anschließend kann der Kopf 46 des Ventilglieds 44 zumindest annähernd zylinderförmig ausgebildet sein. Der Kopf 46 des Ventilglieds 44 weist zum Pumpenarbeitsraum 24. Der Schaft 44a des Ventilglieds 44 ragt mit seinem dem Kopf 46 abgewandten Ende aus dem Bohrungsabschnitt 42a heraus und an diesem greift eine vorgespannte Schließfeder 43 an.
Im Ventilgehäuse 40 ist wenigstens ein Zulaufkanal 50 eingebracht, der in den Bohrungsabschnitt 42b mündet. Vorzugsweise sind mehrere, beispielsweise drei über den Umfang des Ventilgehäuses 40 gleichmäßig verteilte Zulaufkanäle 50 vorgesehen. Der Bohrungsabschnitt 42c ist derart ausgebildet, dass sich dessen Durchmesser vom Bohrungsabschnitt 42b weg zum Bohrungsabschnitt 42d hin erweitert. Die Mantelfläche des Bohrungsabschnitts 42c ist dabei vorzugsweise kegelstumpfförmig ausgebildet, kann jedoch auch beliebig anders geformt sein, beispielsweise konkav oder konvex gewölbt. Die Mantelfläche des Bohrungsabschnitts 42c verläuft unter einem Winkel α zur Längsachse 45 des Ventilglieds 44 geneigt. Der Neigungswinkel α der Mantelfläche des Bohrungsabschnitts 42c ist vorzugsweise etwas größer als der Winkel γ, unter dem die Dichtfläche 48 des Ventilglieds 44 geneigt ist, kann jedoch auch etwas kleiner als der Winkel γ sein. Der Bohrungsabschnitt 42c bildet einen Ventilsitz, mit dem die Dichtfläche 48 des Ventilglieds 44 zusammenwirkt. In geschlossenem Zustand liegt das Ventilglied 44 mit seiner Dichtfläche 48 am Bohrungsabschnitt 42c an, wobei die Anlage der Dichtfläche 48 infolge der Differenz zwischen den Neigungswinkeln α und γ an dem dem Bohrungsabschnitt 42b zugewandten Rand des Bohrungsabschnitts 42c erfolgt.
Der Bohrungsabschnitt 42d ist derart ausgebildet, dass sich dessen Durchmesser vom Bohrungsabschnitt 42c weg zum
Pumpenarbeitsräum 24 hin vergrößert. Die Mantelfläche des Bohrungsabschnitts 42d ist dabei vorzugsweise kegelstumpfförmig ausgebildet, kann jedoch auch beliebig anders geformt sein, beispielsweise konkav oder konvex gewölbt. Die Mantelfläche des Bohrungsabschnitts 42d verläuft unter einem Winkel ß zur Längsachse 45 des Ventilglieds 44 geneigt. Der Winkel ß, unter dem die Mantelfläche des Bohrungsabschnitts 42d zur Längsachse 45 geneigt verläuft ist dabei kleiner als der Winkel α, unter dem die Mantelfläche des Bohrungsabschnitts 42c zur
Längsachse 45 geneigt verläuft. Am Übergang zwischen den Bohrungsabschnitten 42c und 42d ist vorzugsweise ein Freistich 42e vorgesehen, um eine einfache Herstellung der beiden Bohrungsabschnitte 42c und 42d mit den unterschiedlichen Neigungswinkeln α und ß zu ermöglichen. Der Freistich 42e weist vorzugsweise eine zumindest annähernd parallel zur Längsachse 45 verlaufende Mantelfläche auf. Der Außendurchmesser des Kopfs 46 des Ventilglieds 44 ist etwas kleiner als der Durchmesser des Freistichs 42e, dass dieser mit der Kante am Übergang vom Kopf 46 zur Dichtfläche 48 in geschlossenem Zustand etwas in den Freistich 42e eintauchen kann. Durch den Freistich 42e wird somit eine Kollision zwischen dem Kopf 46 des Ventilglieds 44 und dem Ventilgehäuse 40 vermieden.
Durch die vorstehend beschriebene Ausbildung des
Ventilgehäuses 40 mit den Bohrungsabschnitten 42c und 42d, deren Neigungswinkel α und ß unterschiedlich sind, wird erreicht, dass in geöffnetem Zustand, wenn das Ventilglied 44 mit seiner Dichtfläche 48 von dem den Ventilsitz bildenden Bohrungsabschnitt 42c abgehoben ist, der Bereich 52 des kleinsten Durchflussquerschnitts zwischen dem zylindrischen Abschnitt des Kopfs 46 des Ventilglieds 44 und dem Bohrungsabschnitt 42d vorhanden ist. In diesem Bereich 52 des geringsten Durchflussquerschnitts ist bei geöffnetem Einlassventil 30 die höchste
Strömungsgeschwindigkeit vorhanden und damit ein geringer statischer Druck. Der Bereich 52 ist somit in Strömungsrichtung des Kraftstoffs vom Zulaufkanal 50 in den Pumpenarbeitsraum 24 stromabwärts nach der Dichtfläche 48 des Ventilglieds 44 angeordnet. Im Bereich der Dichtfläche 48 des Ventilglieds 44 ist somit eine geringere Strömungsgeschwindigkeit vorhanden als im Bereich 52 und entsprechend ein relativ hoher statischer Druck. Dieser auf die Dichtfläche 48 des Ventilglieds 44 wirkende statische Druck erzeugt eine in Öffnungsrichtung auf das Ventilglied 44 wirkende Kraft und unterstützt somit die Öffnungsbewegung des Ventilglieds 44 und die stabile Anordnung des Ventilglieds 44 in seinem geöffneten Zustand.
Beim Saughub des Pumpenkolbens 20 öffnet das Einlassventil 30, wenn die durch den im Kraftstoffzulauf 38 herrschenden Druck, der auf den innerhalb des Ventilsitzes 42c angeordneten Teil der Dichtfläche 48 des Ventilglieds 44 wirkt, in Öffnungsrichtung auf das Ventilglied 44 erzeugte Kraft größer ist als die Summe der durch den im Pumpenarbeitsraum 24 herrschenden Druck auf das Ventilglied 44 erzeugte Kraft und die durch die Schließfeder 43 erzeugten Kraft ist. Wenn das Ventilglied 44 mit seiner Dichtfläche 48 vom Ventilsitz 42c abgehoben ist, so ist die gesamte Dichtfläche 48 druckbeaufschlagt, wobei durch die Anordnung des Bereichs 52 mit dem kleinsten
Durchflussquerschnitt stromabwärts nach der Dichtfläche 48 auf die Dichtfläche 48 ein relativ hoher statischer Druck wirkt, der das Ventilglied 44 in seinem geöffneten Zustand hält. Beim Förderhub des Pumpenkolbens 20 wird durch diesen im Pumpenarbeitsraum 24 ein erhöhter Druck erzeugt, durch den das Einlassventil 30 geschlossen wird.
In Figur 3 ist eine modifizierte Ausführung des Einlassventils 30 dargestellt, bei der der grundsätzliche Aufbau gleich ist wie bei der Ausführung gemäß Figur 2, jedoch das Ventilglied 44 modifiziert ist. Der Kopf 46 des Ventilglieds 44 weist dabei zu dessen dem Schaft 44a zugewandtem Ende hin einen im Durchmesser gegenüber dem übrigen Durchmesser des Kopfes 46 verringerten Bereich 47 auf. Der im Durchmesser verringerte Bereich 47 des Kopfes 46 des Ventilglieds 44 ist derart angeordnet, dass dieser bei in seiner Schließstellung angeordnetem Ventilglied 44 dem Übergang zwischen der ersten Mantelfläche 42c und der zweiten Mantelfläche 42d des Ventilgehäuses 40 gegenüberliegt. Durch die Durchmesserverringerung im Bereich 47 wird eine Kollision des Kopfes 46 des Ventilglieds 44 mit dem Ventilgehäuse 40 vermieden. Durch die Durchmesserverringerung im Bereich 47 ist am Kopf 46 des Ventilglieds 44 an dessen Übergang zur Dichtfläche 48 ein Absatz gebildet. Der Übergang vom Bereich 47 zum übrigen Teil des Kopfes 46 des Ventilglieds 44 mit großem Durchmesser kann wie in Figur 3 dargestellt gerundet ausgebildet sein. Der Kopf 46 des Ventilglieds 44 kann wie in Figur 2 dargestellt etwa zylinderförmig ausgebildet sein oder wie in Figur 3 dargestellt etwa kegelstumpfförmig, wobei sich der Durchmesser des Kopfes 46 zum
Pumpenarbeitsraum 24 hin vergrößert, wodurch die Umströmung des Kopfes 46 des Ventilglieds 44 verbessert wird.
Nachfolgend wird beispielhaft das Auslassventil 32 anhand der Figur 4 näher beschrieben. Das Auslassventil 32 ist beispielsweise in eine Bohrung 54 des Gehäuseteils 36 eingesetzt. In die Bohrung 54 mündet beispielsweise etwa radial zu deren Längsachse ein Kraftstoffablaufkanal 56, der mit dem Speicher 12 verbunden ist. Das Gehäuseteil 36 bildet ein Ventilgehäuse für das Auslassventil 32, wobei alternativ auch ein separates, in das Gehäuseteil 36 eingesetztes Ventilgehäuse für das Auslassventil 32 vorgesehen sein kann. Die Bohrung 54 im Gehäuseteil 36 ist im Durchmesser mehrfach gestuft ausgebildet und weist einen in den Pumpenarbeitsraum 24 mündenden Abschnitt 54a mit kleinem Durchmesser auf. An den Bohrungsabschnitt 54a schließt sich vom Pumpenarbeitsraum 24 weg ein weiterer Bohrungsabschnitt 54b an, dessen Durchmesser sich vom Pumpenarbeitsraum 24 weg vergrößert. Der Bohrungsabschnitt 54b ist vorzugsweise zumindest annähernd kegelstumpfförmig ausgebildet, kann jedoch alternativ auch eine konkav oder konvex gewölbte Mantelfläche aufweisen. Die Mantelfläche des Bohrungsabschnitts 54b verläuft unter einem Winkel α geneigt zur Längsachse 55 der Bohrung 54. An den Bohrungsabschnitt 54b schließt sich vom Pumpenarbeitsraum 24 weg ein weiterer Bohrungsabschnitt 54c an, dessen Durchmesser sich vom Pumpenarbeitsraum 24 weg vergrößert. Der Bohrungsabschnitt 54c ist vorzugsweise zumindest annähernd kegelstumpfförmig ausgebildet, kann jedoch alternativ auch eine konkav oder konvex gewölbte Mantelfläche aufweisen. Die Mantelfläche des
Bohrungsabschnitts 54c verläuft unter einem Winkel ß geneigt zur Längsachse 55 der Bohrung 54, wobei der Winkel ß kleiner ist als der Winkel α. An den Bohrungsabschnitt 54c kann sich ein weiterer Bohrungsabschnitt 54d mit konstantem Durchmesser anschließen, der bis zur Außenseite des Gehäuseteils 36 verläuft. In den Bohrungsabschnitt 54d ist von der Außenseite des Gehäuseteils 36 her ein Verschlußelement 58 eingesetzt, beispielsweise eingeschraubt .
Das Auslassventil 32 weist ein Ventilglied 60 auf, das zumindest annähernd kugelförmig ausgebildet ist. Es kann eine Schließfeder 62 vorgesehen sein, die zwischen dem Ventilglied 60 und dem Verschlußelement 58 eingespannt ist und durch die das Ventilglied 60 zum Pumpenarbeitsraum 24 hin gedrückt wird. Das Ventilglied 60 wirkt mit einer Dichtfläche 64, die durch einen Teil seiner Oberfläche gebildet ist, mit dem Bohrungsabschnitt 54b zusammen, der einen Ventilsitz für das Ventilglied 60 bildet. Bei geringem Druck im Pumpenarbeitsraum 24 wird das Ventilglied 60 durch die Schließfeder 62 mit seiner Dichtfläche 64 in Anlage am Ventilsitz 54b gehalten. Am Ventilglied 60 ist in geschlossenem Zustand nur ein relativ kleiner Teil der Oberfläche entsprechend etwa dem Durchmesser des Bohrungsabschnitts 54a von dem im Pumpenarbeitsraum 24 herrschenden Druck beaufschlagt. Wenn der Druck im Pumpenarbeitsraum 24 steigt, so öffnet das Auslassventil 32, da die durch den auf das Ventilglied 60 wirkenden Druck erzeugte Kraft in Öffnungsrichtung größer ist als die Kraft der Schließfeder 62. Beim Öffnen des Auslassventils 32 wird zwischen der Dichtfläche 64 des Ventilglieds 60 und dem Ventilsitz 54b ein Durchflussquerschnitt freigegeben. Zwischen dem Umfang des Ventilglieds 60 und dem Bohrungsabschnitt 54c ist ebenfalls ein Bereich 66 mit einem freigegebenen Durchflussquerschnitt angeordnet, wobei der Durchflussquerschnitt bei geöffnetem Ventil im Bereich 66 kleiner ist als der zwischen der Dichtfläche 64 und dem Ventilsitz 54b freigegebene Durchflussquerschnitt. Eine Drosselung der KraftstoffStrömung bei der Durchströmung des geöffneten Auslassventils 32 erfolgt somit im Bereich 66 mit dem geringesten Durchflussquerschnitt und nicht im Bereich der Dichtfläche 64 des Ventilglieds 60. Im Bereich der Dichtfläche 64 des Ventilglieds 60 ist somit eine geringere Strömungsgeschwindigkeit vorhanden als im Bereich 66 des kleinsten Durchflussquerschnitts und daher ein höherer statischer Druck als im Bereich 66.
Beim Öffnen des Auslassventils 32, wenn dessen Ventilglied 60 mit seiner Dichtfläche 64 vom Ventilsitz 54b abhebt, wird die druckbeaufschlagte Oberfläche des Ventilglieds 60 vergrößert, da dann nicht mehr nur die innerhalb des Ventilsitzes 54b liegende Oberfläche druckbeaufschlagt ist sondern die größere Oberfläche mit zum Bereich 66 hin. Auf das Ventilglied 60 wirkt daher eine große Druckraft in
Öffnungsrichtung, die das Ventilglied 60 stabil in seinem geöffneten Zustand hält, auch wenn eine große Kraftstoffmenge mit hoher Strömungsgeschwindigkeit das Auslassventil 32 durchströmt. Mit zunehmendem Hub des Ventilglieds 60 in Öffnungsrichtung vergrößert sich sowohl der zwischen dessen Dichtfläche 64 und dem Ventilsitz 54b freigegebene Durchflussquerschnitt als auch der im Bereich 66 freigegebene Durchlussquerschnitt, wobei der im Bereich 66 freigegebene Durchflussquerschnitt stets kleiner ist als der zwischen der Dichtfläche 64 und dem Ventilsitz 54b freigegebene Durchflussquerschnitt. Der Winkel α, unter dem der Ventilsitz 54b zur Längsachse 55 der Bohrung 54 geneigt ist, kann groß gewählt werden, so dass der Ventilsitz 54b relativ flach ist und damit eine hohe Verschleißbeständigkeit aufweist .
Bei einer Hochdruckpumpe kann vorgesehen sein, dass nur das Einlassventil 30 wie vorstehend zu Figur 2 oder 3 beschrieben ausgebildet ist, während das Auslassventil 32 als einfaches Kugel- oder Kegelventil ausgebildet ist. Alternativ kann auch vorgesehen sein, dass bei einer
Hochdruckpumpe nur das Auslassventil 32 wie vorstehend zu Figur 4 beschrieben ausgebildet ist, während das Einlassventil 30 als einfaches Kegelsitz- oder Kugelventil ausgebildet sein kann. Außerdem kann auch ein wie anhand Figur 4 als Auslassventil beschriebenes Ventil mit einem kugelförmigen Ventilglied als Einlassventil an einer Hochdruckpumpe verwendet werden . Entsprechend kann auch ein wie anhand Figur 2 oder 3 als Einlassventil beschriebenes Ventil mit einem Ventilglied mit kegelförmiger Dichtfläche als Auslassventil an einer Hochdruckpumpe verwendet werden. Vorzugsweise sind bei einer Hochdruckpumpe sowohl das Einlassventil 30 als auch das Auslassventil 32 wie vorstehend zu den Figuren 2 oder 3 und 4 beschrieben ausgebildet.

Claims

Ansprüche
1. Hochdruckpumpe, insbesondere für eine Kraftstoffeinspritzeinrichtung einer Brennkraftmaschine, mit wenigstens einem Pumpenelement (16), das einen in einer Hubbewegung angetriebenen Pumpenkolben (20) aufweist, der einen Pumpenarbeitsraum (24) begrenzt, in den beim Saughub des Pumpenkolbens (20) über ein Einlassventil (30) Kraftstoff aus einem Kraftstoffzulauf (50) angesaugt wird und aus dem beim Förderhub des Pumpenkolbens (20) über ein Auslassventil (32) Kraftstoff in einen Hochdruckbereich (56,12) verdrängt wird, wobei das Einlassventil (30) und/oder das Auslassventil (32) ein Ventilglied (44; 60) aufweist, das mit einer Dichtfläche (48; 64) mit einem in einem Ventilgehäuse (40; 36) angeordneten Ventilsitz (42c; 54b) zusammenwirkt, wobei durch das Ventilglied (44; 60) in geöffnetem Zustand, wenn dieses mit seiner Dichtfläche (48; 64) vom Ventilsitz (42c; 54b) abgehoben ist, zwischen dem Ventilglied (44; 60) und dem Ventilgehäuse (40; 36) ein Durchflussquerschnitt freigegeben wird, dadurch gekennzeichnet, dass in geöffnetem Zustand des Ventilglieds (44; 60) ein Bereich (52; 66) mit dem kleinsten Durchflussquerschnitt zwischen dem Ventilglied (44; 60) und dem Ventilgehäuse (40; 36) in Strömungsrichtung des das Ventil (30; 32) durchströmenden Kraftstoffs stromabwärts nach der Dichtfläche (48; 64) des Ventilglieds (44; 60) angeordnet ist.
2. Hochdruckpumpe nach Anspruch 1, dadurch gekennzeichnet, dass das Ventilgehäuse (40; 36) eine erste zu ihrer
Längsachse (45; 55) geneigte, das Ventilglied (44; 60) umgebende Mantelfläche (42c; 54b) aufweist, die den Ventilsitz bildet, und eine sich an die erste Mantelfläche
(42c; 54b) anschließende zweite zu ihrer Längsachse (45; 55) geneigte, das Ventilglied (44; 60) umgebende Mantelfläche (42d;54c) aufweist, dass der Neigungswinkel (ß) der zweiten Mantelfläche (42d;54c) bezüglich der Längsachse (45; 55) geringer ist als der Neigungswinkel (α) der ersten Mantelfläche (42c; 54b) und dass in geöffnetem Zustand des Ventilglieds (44; 60) der Bereich (52; 66) des kleinsten Durchflussquerschnitts zwischen dem Ventilglied (44; 60) und der zweiten Mantelfläche (42d;54c) des Ventilgehäuses
(40; 36) angeordnet ist.
3. Hochdruckpumpe nach Anspruch 2, dadurch gekennzeichnet, dass die erste Mantelfläche (42c; 54b) und/oder die zweite
Mantelfläche (42d;54c) des Ventilgehäuses (40; 36) zumindest annähernd kegelstumpfförmig ausgebildet ist.
4. Hochdruckpumpe nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Dichtfläche (48) des Ventilglieds
(44) zumindest annähernd kegelstumpfförmig ausgebildet ist und vorzugsweise unter einem anderen Winkel (γ) zur Längsachse (45) der ersten Mantelfläche (42c) geneigt ist als der Winkel (α) , unter dem die erste Mantelfläche (42c) des Ventilgehäuses (40) zu ihrer Längsachse (45) geneigt ist.
5. Hochdruckpumpe nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass am Übergang zwischen der ersten Mantelfläche (42c) und der zweiten Mantelfläche (42d) des
Ventilgehäuses (40) ein Freistich (42e) vorgesehen ist, der vorzugsweise eine zumindest annähernd parallel zur Längsachse (45) verlaufende Mantelfläche aufweist.
6. Hochdruckpumpe nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass die Dichtfläche (48) am Ventilglied (44) am Übergang zwischen einem Schaft (44a) des Ventilglieds (44) und einem im Querschnitt gegenüber dem Schaft (44a) vergrößerten Kopf (46) des Ventilglieds (44) angeordnet ist und dass am Kopf (46) des Ventilglieds (44) ein Bereich (47) mit gegenüber dem übrigen Querschnitt des Kopfes (46) verringertem Querschnitt vorgesehen ist, der dem Übergang zwischen der ersten Mantelfläche (42c) und der zweiten Mantelfläche (42d) im Ventilgehäuse (40) gegenüberliegt .
7. Hochdruckpumpe nach einem der Ansprüche 1 bis 3 oder 5, dadurch gekennzeichnet, dass das Ventilglied (60) zumindest annähernd kugelförmig ausgebildet ist und dass die Dichtfläche (64) durch einen Bereich der Oberfläche des Ventilglieds (60) gebildet ist.
8. Hochdruckpumpe nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass in geöffnetem Zustand des Ventilglieds (44; 60) im Bereich von dessen Dichtfläche (48; 64) ein höherer statischer Druck herrscht als im
Bereich (52; 66) des kleinsten Durchflussquerschnitts und dass durch den auf die Dichtfläche (48; 64) wirkenden Druck eine Kraft in Öffnungsrichtung auf das Ventilglied (44; 60) erzeugt wird.
EP05701509A 2004-02-11 2005-01-13 Hochdruckpumpe, insbesondere f ür eine kraftstoffeinspritzein richtung einer brennkraftmaschine Withdrawn EP1716332A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102004006700 2004-02-11
DE102004027825A DE102004027825A1 (de) 2004-02-11 2004-06-08 Hochdruckpumpe, insbesondere für eine Kraftstoffeinspritzeinrichtung einer Brennkraftmaschine
PCT/EP2005/050126 WO2005078273A1 (de) 2004-02-11 2005-01-13 Hochdruckpumpe, insbesondere für eine kraftstoffeinspritzeinrichtung einer brennkraftmaschine

Publications (1)

Publication Number Publication Date
EP1716332A1 true EP1716332A1 (de) 2006-11-02

Family

ID=34862902

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05701509A Withdrawn EP1716332A1 (de) 2004-02-11 2005-01-13 Hochdruckpumpe, insbesondere f ür eine kraftstoffeinspritzein richtung einer brennkraftmaschine

Country Status (4)

Country Link
EP (1) EP1716332A1 (de)
JP (1) JP2007501913A (de)
KR (1) KR20060127128A (de)
WO (1) WO2005078273A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242019A (ja) * 2005-03-01 2006-09-14 Jtekt Corp 燃料ポンプ用チェック弁
DE102005061886A1 (de) 2005-12-23 2007-07-05 Robert Bosch Gmbh Hochdruckpumpe, insbesondere für eine Kraftstoffeinspritzeinrichtung einer Brennkraftmaschine
DE102006017037B4 (de) 2006-04-11 2015-09-17 Continental Automotive Gmbh Radialkolbenpumpe zur Kraftstoffhochdruckversorgung bei einer Brennkraftmaschine
DE102008040083A1 (de) * 2008-07-02 2010-01-07 Robert Bosch Gmbh Hochdruckpumpe
DE102010040617A1 (de) * 2010-09-13 2012-03-15 Robert Bosch Gmbh Ventil, insbesondere einer hydraulischen Kolbenpumpe
JP5491425B2 (ja) * 2011-01-20 2014-05-14 株式会社デンソー 高圧ポンプ
US9027594B2 (en) * 2012-03-30 2015-05-12 Ti Group Automotive Systems, L.L.C. Fuel system valve assembly
DE102013107950A1 (de) 2012-08-01 2014-02-06 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Ventil
DE102015201520A1 (de) * 2015-01-29 2016-08-04 Robert Bosch Gmbh Verstelleinrichtung und Brennstoffeinspritzanlage mit einer Verstelleinrichtung

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3112100A1 (de) * 1981-03-27 1982-10-07 Robert Bosch Gmbh, 7000 Stuttgart "druckventil fuer eine brennstoffeinspritzpumpe"
JPS5973567U (ja) * 1982-11-09 1984-05-18 株式会社ボッシュオートモーティブ システム 分配型燃料噴射ポンプのオ−バフロ−バルブ
SE465533B (sv) * 1990-02-19 1991-09-23 Saab Automobile Tyst backventil foer pulserande floede
DE19744577A1 (de) * 1997-10-09 1999-04-22 Bosch Gmbh Robert Radialkolbenpumpe zur Kraftstoffhochdruckversorgung
DE19860672A1 (de) 1998-12-29 2000-07-13 Bosch Gmbh Robert Kolbenpumpe zur Kraftstoffhochdruckerzeugung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005078273A1 *

Also Published As

Publication number Publication date
WO2005078273A1 (de) 2005-08-25
JP2007501913A (ja) 2007-02-01
KR20060127128A (ko) 2006-12-11

Similar Documents

Publication Publication Date Title
EP1966481B1 (de) Hochdruckpumpe, insbesondere für eine kraftstoffeinspritzeinrichtung einer brennkraftmaschine
EP1716332A1 (de) Hochdruckpumpe, insbesondere f ür eine kraftstoffeinspritzein richtung einer brennkraftmaschine
WO2005052358A1 (de) Ventil, insbesondere für eine hochdruckpumpe einer kraftstoffeinspritzeinrichtung für eine brennkraftmaschine
DE102004013244A1 (de) Hochdruckpumpe, insbesondere für eine Kraftstoffeinspritzeinrichtung einer Brennkraftmaschine
EP2129903B1 (de) Kraftstoffinjektor mit einer zusätzlichen ablaufdrossel oder mit einer verbesserten anordnung derselben im steuerventil
EP1784571B1 (de) Hochdruckpumpe für eine kraftstoffeinspritzeinrichtung einer brennkraftmaschine
WO2005124153A1 (de) Hochdruckpumpe für eine kraftstoffeinspritzeinrichtung einer brennkraftmaschine
WO2004109093A1 (de) Rückschlagventil, insbesondere für eine hochdruckpumpe einer kraftstoffeinspritzeinrichtung für eine brennkraftmaschine
DE102004027825A1 (de) Hochdruckpumpe, insbesondere für eine Kraftstoffeinspritzeinrichtung einer Brennkraftmaschine
EP1357283A2 (de) Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
EP1736662B1 (de) Rückschlagventil, insbesondere für eine Hochdruckpumpe einer Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
EP1759115B1 (de) Hochdruckpumpe für eine kraftstoffeinspritzeinrichtung einer brennkraftmaschine
WO2002103197A1 (de) Kraftstoffeinspritzeinrichtung für eine brennkraftmaschine
WO2001025622A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
WO2005040598A1 (de) Ventil zur steuerung einer verbindung in einem hochdruckflüssigkeitssystem, insbesondere einer kraftstoffeinspritzeinrichtung für eine brennkraftmaschine
WO2003074865A1 (de) Einrichtung zur druckmodulierten formung des einspritzverlaufes
EP1384000B1 (de) Kraftstoffeinspritzeinrichtung für eine brennkraftmaschine
DE102005014180A1 (de) Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
DE10259955A1 (de) Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
DE10164395A1 (de) Kraftstoffeinspritzvorrichtung für Brennkraftmaschinen
DE10139545A1 (de) Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
DE102004040141A1 (de) Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
WO2002086305A2 (de) Kraftstoffeinspritzeinrichtung für eine brennkraftmaschine
DE10310585A1 (de) Pumpe-Düse-Einheit
DE10146532A1 (de) Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060911

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20090303

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090714