WO2005078273A1 - Hochdruckpumpe, insbesondere für eine kraftstoffeinspritzeinrichtung einer brennkraftmaschine - Google Patents

Hochdruckpumpe, insbesondere für eine kraftstoffeinspritzeinrichtung einer brennkraftmaschine Download PDF

Info

Publication number
WO2005078273A1
WO2005078273A1 PCT/EP2005/050126 EP2005050126W WO2005078273A1 WO 2005078273 A1 WO2005078273 A1 WO 2005078273A1 EP 2005050126 W EP2005050126 W EP 2005050126W WO 2005078273 A1 WO2005078273 A1 WO 2005078273A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
valve member
lateral surface
section
sealing surface
Prior art date
Application number
PCT/EP2005/050126
Other languages
English (en)
French (fr)
Inventor
Nestor Rodriguez-Amaya
Michael Mennicken
Peter Brendle
Falko Bredow
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102004027825A external-priority patent/DE102004027825A1/de
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to US10/586,872 priority Critical patent/US20080240952A1/en
Priority to JP2006523020A priority patent/JP2007501913A/ja
Priority to EP05701509A priority patent/EP1716332A1/de
Publication of WO2005078273A1 publication Critical patent/WO2005078273A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/02Check valves with guided rigid valve members
    • F16K15/06Check valves with guided rigid valve members with guided stems
    • F16K15/063Check valves with guided rigid valve members with guided stems the valve being loaded by a spring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/46Valves
    • F02M59/462Delivery valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/0404Details or component parts
    • F04B1/0452Distribution members, e.g. valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • F04B53/1002Ball valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/02Check valves with guided rigid valve members
    • F16K15/04Check valves with guided rigid valve members shaped as balls
    • F16K15/044Check valves with guided rigid valve members shaped as balls spring-loaded
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/02Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
    • F02M59/10Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by the piston-drive
    • F02M59/102Mechanical drive, e.g. tappets or cams

Definitions

  • High-pressure pump in particular for a fuel injection device of an internal combustion engine
  • the invention is based on a high-pressure pump, in particular for a fuel injection device of an internal combustion engine according to the preamble of claim 1.
  • Such a high pressure pump is known from DE 198 60 672 AI.
  • This high-pressure pump has at least one pump element with a pump piston which is driven in a lifting movement and delimits a pump working space.
  • fuel is drawn in from a fuel inlet via an inlet valve, and during the delivery stroke of the pump piston, fuel is displaced from the pump work space via an outlet valve.
  • the inlet valve has a valve member with a sealing surface inclined to its longitudinal axis, with which it cooperates with a valve seat arranged in a valve housing.
  • the outlet valve has a spherical valve member which interacts with a valve seat arranged in a valve housing.
  • a flow cross-section between the valve member and the valve housing is released by the respective valve member in the open state, when the sealing surface is lifted off the valve seat.
  • the smallest flow cross-section is arranged between the valve member and the valve housing in the area of the sealing surface of the valve member, as a result of which there is a high flow velocity and correspondingly a low static pressure in the area of the sealing area and consequently only a small in Force acting in the opening direction of the valve member.
  • even forces in the closing direction can act on the valve member.
  • the high pressure pump according to the invention with the features according to claim 1 has the advantage that the
  • FIG. 1 shows a high pressure pump for a fuel injection device of an internal combustion engine
  • FIG. 2 shows an inlet valve of the high pressure pump in an enlarged illustration in a longitudinal section
  • FIG. 3 shows a modified embodiment of the inlet valve
  • FIG. 4 shows an outlet valve of the high pressure pump in a longitudinal section.
  • the high-pressure pump 10 for a fuel injection device of an internal combustion engine, which is preferably a self-igniting internal combustion engine.
  • the high-pressure pump 10 delivers fuel under high pressure into a reservoir 12, from which fuel is taken for injection at the internal combustion engine.
  • the high-pressure pump 10 is supplied with fuel by a feed pump 14.
  • the high-pressure pump 10 has at least one pump element 16, which is driven at least indirectly by a drive shaft 18 of the high-pressure pump 10 in a lifting movement Has pump piston 20.
  • the pump piston 20 is tightly guided in a cylinder bore 22 that extends at least approximately radially to the drive shaft 18 and delimits a pump work chamber 24 in the outer end region of the cylinder bore 22 facing away from the drive shaft 18.
  • the drive shaft 18 has a cam or a shaft section 26 that is eccentric to its axis of rotation 19 , via which the stroke movement of the pump piston 20 is effected during the rotary movement of the drive shaft 18.
  • the pump working space 24 is via a opening in the pump working space 24 as
  • Check valve designed inlet valve 30 can be connected to a fuel supply from the feed pump 14.
  • the pump work chamber 24 can also be connected to a fuel outlet to the reservoir 12 via an outlet valve 32 that opens out of the pump work chamber 24 and is designed as a check valve.
  • Inlet valve 30 opened because the feed pump 14 generates a higher pressure than the pressure prevailing in the pump work chamber 24, so that fuel delivered by the feed pump 14 is drawn into the pump work chamber 24.
  • the outlet valve 32 is at the suction stroke of the
  • the inlet valve 30 is described in more detail by way of example with reference to FIG. 2.
  • the inlet valve 30 is inserted, for example, into a bore 34 of a housing part 36 of the high-pressure pump 10 that adjoins the cylinder bore 22 radially outward.
  • the bore 34 is larger in diameter than the cylinder bore 22.
  • the housing part 36 can be, for example, a cylinder head which is connected to a other housing part, in which the drive shaft 18 is mounted, is connected or a housing part in which the drive shaft 18 is also mounted.
  • a fuel feed channel 38 which is connected to the feed pump 14, opens into the bore 34 near its end region facing the cylinder bore 22, for example approximately radially to the axis of the bore 34.
  • the inlet valve 30 has a valve housing 40 in which there is a bore 42 which is stepped several times in diameter.
  • the bore 42 has a section 42a with a small diameter, a section 42b with a larger diameter adjoining the section 42a to the pump work chamber 24, a section 42c adjoining the section 42b to the pump work chamber 24 and a section 42c to the pump work chamber 24 on subsequent section 42d.
  • the inlet valve 30 has a piston-shaped valve member 44, which is displaceably guided with a cylindrical shaft 44a in the bore section 42a.
  • the valve member 44 also has a head 46 adjoining the shaft 44a and enlarged in diameter compared to the shaft 44a, a sealing surface 48 being arranged on the valve member 44 at the transition from the head 46 to the shaft 44a.
  • the sealing surface 48 extends at an angle ⁇ inclined to the longitudinal axis 45 of the valve member 44 in such a way that the sealing surface 48 approaches the longitudinal axis 45 towards the stem 44a.
  • the sealing surface 48 is preferably at least approximately frustoconical.
  • the head 46 of the valve member 44 can be at least approximately cylindrical.
  • the head 46 of the valve member 44 faces the pump working chamber 24.
  • the end 44a of the valve member 44 protrudes from the bore section 42a with its end facing away from the head 46 and a prestressed closing spring 43 engages it.
  • At least one inlet channel 50 is introduced into the valve housing 40 and opens into the bore section 42b.
  • several, for example three, inlet channels 50 are provided which are uniformly distributed over the circumference of the valve housing 40.
  • the bore section 42c is designed such that its diameter widens away from the bore section 42b towards the bore section 42d.
  • the lateral surface of the bore section 42c is preferably frustoconical, but can also be shaped in any other way, for example concave or convex.
  • the lateral surface of the bore section 42c is inclined at an angle ⁇ to the longitudinal axis 45 of the valve member 44.
  • the angle of inclination ⁇ of the lateral surface of the bore section 42c is preferably somewhat larger than the angle ⁇ at which the sealing surface 48 of the valve member 44 is inclined, but can also be somewhat smaller than the angle ⁇ .
  • the bore section 42c forms a valve seat with which the sealing surface 48 of the valve member 44 cooperates. In the closed state, the valve member 44 rests with its sealing surface 48 on the bore section 42c, the sealing surface 48 being in contact with the edge of the bore section 42c facing the bore section 42b due to the difference between the inclination angles ⁇ and ⁇ .
  • the bore section 42d is designed such that its diameter moves away from the bore section 42c
  • the lateral surface of the bore section 42d is preferably frustoconical, but can also be shaped in any other way, for example concave or convex.
  • the lateral surface of the bore section 42d is inclined at an angle ⁇ to the longitudinal axis 45 of the valve member 44.
  • the angle ⁇ , at which the lateral surface of the bore section 42d is inclined to the longitudinal axis 45, is smaller than the angle ⁇ , at which the lateral surface of the bore section 42c
  • Longitudinal axis 45 extends inclined.
  • the undercut 42e preferably has a lateral surface running at least approximately parallel to the longitudinal axis 45.
  • the outer diameter of the head 46 of the valve member 44 is slightly smaller than the diameter of the undercut 42e, so that the edge at the transition from the head 46 to the sealing surface 48 can dip somewhat into the undercut 42e in the closed state. The undercut 42e thus avoids a collision between the head 46 of the valve member 44 and the valve housing 40.
  • Valve housing 40 with the bore sections 42c and 42d, the angles of inclination ⁇ and ⁇ of which are different, is achieved in that in the open state, when the valve member 44 is raised with its sealing surface 48 from the bore section 42c forming the valve seat, the area 52 of the smallest flow cross section between the cylindrical portion of the head 46 of the valve member 44 and the bore portion 42d. In this area 52 of the smallest flow cross section, the highest is when the inlet valve 30 is open
  • the region 52 is thus arranged downstream of the sealing surface 48 of the valve member 44 in the flow direction of the fuel from the inlet channel 50 into the pump work chamber 24.
  • This static pressure acting on the sealing surface 48 of the valve member 44 generates a force acting on the valve member 44 in the opening direction and thus supports the Opening movement of the valve member 44 and the stable arrangement of the valve member 44 in its open state.
  • the inlet valve 30 opens when the force generated in the opening direction on the valve member 44 by the pressure prevailing in the fuel inlet 38, which acts on the part of the sealing surface 48 arranged within the valve seat 42c, is greater than the sum is the force generated by the pressure on the valve member 44 in the pump working space 24 and the force generated by the closing spring 43.
  • the valve member 44 with its sealing surface 48 is lifted off the valve seat 42c, the entire sealing surface 48 is pressurized, the area 52 having the smallest being arranged
  • FIG. 3 shows a modified embodiment of the inlet valve 30, in which the basic structure is the same as in the embodiment according to FIG. 2, but the valve member 44 is modified.
  • the head 46 of the valve member 44 has, toward its end facing the shaft 44a, an area 47 with a reduced diameter compared to the remaining diameter of the head 46.
  • the area 47 of the head 46 of the valve member 44 which has a reduced diameter, is arranged such that, when the valve member 44 is arranged in its closed position, it lies opposite the transition between the first lateral surface 42c and the second lateral surface 42d of the valve housing 40. Due to the reduction in diameter in the area 47, a collision of the head 46 of the Avoided valve member 44 with the valve housing 40.
  • a shoulder is formed on the head 46 of the valve member 44 at its transition to the sealing surface 48.
  • the transition from the area 47 to the remaining part of the head 46 of the valve member 44 with a large diameter can be rounded as shown in FIG.
  • the head 46 of the valve member 44 can be approximately cylindrical as shown in FIG. 2 or approximately frustoconical as shown in FIG. 3, the diameter of the head 46 increasing
  • Exhaust valve 32 is described in more detail below by way of example with reference to FIG. 4.
  • the outlet valve 32 is inserted, for example, into a bore 54 in the housing part 36.
  • a fuel drain channel 56 which is connected to the accumulator 12, opens into the bore 54 approximately radially to its longitudinal axis.
  • the housing part 36 forms a valve housing for the outlet valve 32, alternatively a separate valve housing for the outlet valve 32 inserted into the housing part 36 can also be provided.
  • the bore 54 in the housing part 36 has a multiple stepped diameter and has a small-diameter section 54a opening into the pump working space 24.
  • a further bore portion 54b adjoins the bore portion 54a away from the pump workspace 24, the diameter of which increases away from the pump workspace 24.
  • the bore section 54b is preferably at least approximately frustoconical, but can alternatively also have a concave or convex curved surface.
  • the lateral surface of the bore section 54b extends at an angle ⁇ inclined to the longitudinal axis 55 of the bore 54.
  • a further bore section 54c adjoins the bore section 54b away from the pump working space 24, the latter Diameter increases away from the pump working space 24.
  • the bore section 54c is preferably at least approximately frustoconical, but can alternatively also have a concave or convex curved surface.
  • the outer surface of the bore section 54b is preferably at least approximately frustoconical, but can alternatively also have a concave or convex curved surface.
  • the outer surface of the bore section 54b is preferably at least approximately frustoconical, but can alternatively also have a concave or convex curved surface.
  • Bore section 54c extends at an angle ⁇ inclined to the longitudinal axis 55 of the bore 54, the angle ⁇ being smaller than the angle ⁇ .
  • a further bore portion 54d with a constant diameter can be connected to the bore portion 54c and extends to the outside of the housing part 36.
  • a closure element 58 is inserted, for example screwed, into the bore section 54d from the outside of the housing part 36.
  • the outlet valve 32 has a valve member 60 which is at least approximately spherical.
  • a closing spring 62 can be provided, which is clamped between the valve member 60 and the closure element 58 and through which the valve member 60 is pressed toward the pump working space 24.
  • the valve member 60 cooperates with a sealing surface 64, which is formed by part of its surface, with the bore section 54b, which forms a valve seat for the valve member 60.
  • the valve member 60 is held by the closing spring 62 with its sealing surface 64 in contact with the valve seat 54b.
  • the outlet valve 32 opens because the force generated by the pressure acting on the valve member 60 in the opening direction is greater than the force of the closing spring 62.
  • a flow cross section is released between the sealing surface 64 of the valve member 60 and the valve seat 54b.
  • a region 66 with a released flow cross section is likewise arranged between the circumference of the valve member 60 and the bore section 54c, the flow cross section when the valve is open is smaller in the region 66 than the flow cross section released between the sealing surface 64 and the valve seat 54b. Throttling of the fuel flow when flowing through the opened outlet valve 32 thus takes place in the area 66 with the smallest flow cross-section and not in the area of the sealing surface 64 of the valve member 60. In the area of the sealing surface 64 of the valve member 60 there is therefore a lower flow velocity than in the area 66 of the smallest flow cross-section and therefore a higher static pressure than in area 66.
  • valve member 60 When the outlet valve 32 is opened, when its valve member 60 lifts with its sealing surface 64 from the valve seat 54b, the surface area of the valve member 60 under pressure is increased, since then it is no longer only the surface lying inside the valve seat 54b that is pressurized but the larger surface with the area 66 out. A large compressive force therefore acts on the valve member 60
  • Opening direction that holds the valve member 60 stably in its open state even when a large amount of fuel flows through the exhaust valve 32 at a high flow rate.
  • both the flow cross-section released between its sealing surface 64 and the valve seat 54b and the flow cross-section released in the region 66 increase, the flow cross-section released in the region 66 always being smaller than that between the sealing surface 64 and the valve seat 54b approved flow cross-section.
  • the angle ⁇ at which the valve seat 54b is inclined to the longitudinal axis 55 of the bore 54, can be chosen large, so that the valve seat 54b is relatively flat and thus has a high wear resistance.
  • the outlet valve 32 is designed as described above for FIG. 4, while the inlet valve 30 can be designed as a simple conical seat or ball valve.
  • a valve as described with reference to FIG. 4 as an outlet valve with a spherical valve member can also be used as an inlet valve on a high-pressure pump.
  • a valve as described with reference to FIG. 2 or 3 as an inlet valve with a valve member with a conical sealing surface can also be used as an outlet valve on a high-pressure pump.
  • both the inlet valve 30 and the outlet valve 32 are preferably designed as described above for FIGS. 2 or 3 and 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Details Of Reciprocating Pumps (AREA)

Abstract

Die Hochdruckpumpe weist wenigstens ein Pumpenelement (16) auf, in den beim Saughub eines Pumpenkolbens (20) über ein Einlassventil (30) Kraftstoff aus einem Kraftstoffzulauf (50) angesaugt wird und aus dem beim Förderhub des Pumpenkolbens (20) über ein Auslassventil (32) Kraftstoff verdrängt wird. Das Einlassventil (30) weist ein Ventilglied (44) auf, das mit einer zu seiner Längsachse (45) geneigten Dichtfläche (48) mit einem in einem Ventilgehäuse (40) angeordneten Ventilsitz (42c) zusammenwirkt, wobei durch das Ventilglied (44) in geöffnetem Zustand, wenn dieses mit seiner Dichtfläche (48) vom Ventilsitz (42c) abgehoben ist, zwischen dem Ventilglied (44) und dem Ventilgehäuse (40) ein Durchflussquerschnitt zwischen dem Kraftstoffzulauf (50) und dem Pumpenarbeitsraum (24) freigegeben wird. In geöffnetem Zustand des Ventilglieds (44) ist ein Bereich (52) mit dem kleinsten Durchflussquerschnitt zwischen dem Ventilglied (44) und dem Ventilgehäuse (40) in Strömungsrichtung vom Kraftstoffzulauf (50) zum Pumpenarbeitsraum (24) stromabwärts nach der Dichtfläche (48) des Ventilglieds (44) angeordnet.

Description

Hochdruckpumpe, insbesondere für eine Kraftstoffeinspritzeinrichtung einer Brennkraftmaschine
Stand der Technik
Die Erfindung geht aus von einer Hochdruckpumpe, insbesondere für eine Kraftstoffeinspritzeinrichtung einer Brennkraftmaschine nach der Gattung des Anspruchs 1.
Eine solche Hochdruckpumpe ist durch die DE 198 60 672 AI bekannt. Diese Hochdruckpumpe weist wenigstens ein Pumpenelement auf mit einem in einer Hubbewegung angetriebenen Pumpenkolben, der einen Pumpenarbeitsraum begrenzt. Beim Saughub des Pumpenkolbens wird über ein Einlassventil Kraftstoff aus einem KraftstoffZulauf angesaugt und beim Förderhub des Pumpenkolbens wird über ein Auslassventil Kraftstoff aus dem Pumpenarbeitsraum verdrängt. Das Einlassventil weist ein Ventilglied mit einer zu seiner Längsachse geneigten Dichtfläche auf, mit der dieses mit einem in einem Ventilgehäuse angeordneten Ventilsitz zusammenwirkt. Das Auslassventil weist ein kugelförmiges Ventilglied auf, das mit einem in einem Ventilgehäuse angeordneten Ventilsitz zusammenwirkt. Durch das jeweilige Ventilglied wird in geöffnetem Zustand, wenn dieses mit seiner Dichtfläche vom Ventilsitz abgehoben ist, zwischen dem Ventilglied und dem Ventilgehäuse ein Durchflussquerschnitt freigegeben. In geöffnetem Zustand des Ventils ist dabei der kleinste Durchflussquerschnitt zwischen dem Ventilglied und dem Ventilgehäuse im Bereich der Dichtfläche des Ventilglieds angeordnet, wodurch sich dort eine hohe Strömungsgeschwindigkeit und entsprechend ein geringer statischer Druck im Bereich der Dichtfläche ergeben und infolgedessen nur eine geringe in Öffnungsrichtung des Ventilglieds wirkende Kraft. Es können je nach Hub des Venitlglieds und Druckdifferenz sogar Kräfte in Schließrichtung auf das Ventilglied wirken. Zum Offenhalten des Einlassventils ist daher eine große Druckdifferenz zwischen dem Kraftstoffzulauf und dem
Pumpenarbeitsraum erforderlich, was wiederum einen hohen Druck im Kraftstoffzulauf und damit eine entsprechend groß dimensionierte Förderpumpe zur Erzeugung dieses Drucks erfordert. Bei der Durchströmung des Einlassventils tritt darüberhinaus ein großer Druckverlust auf, wodurch die Befüllung des Pumpenarbeitsraums erschwert wird. Dieser Druckverlust entspricht der erforderlichen Druckdifferenz zur Befüllung des Pumpenarbeitsraums. Das Auslassventil neigt durch die entstehenden hydraulischen Kräfte zum Schwingen, so dass das Auslassventil ständig öffnet und schließt, wodurch das Betriebsverhalten der Hochdruckpumpe beeinträchtigt wird und eine hohe Belastung der Hochdruckpumpe infolge von im Pumpenarbeitsraum bei geschlossenem Auslassventil auftretenden Druckspitzen verursacht wird.
Vorteile der Erfindung
Die erfindungsgemäße Hochdruckpumpe mit den Merkmalen gemäß Anspruch 1 hat demgegenüber den Vorteil, dass zum
Offenhalten des Einlassventils und/oder des Auslassventils nur eine geringe Druckdifferenz vor und nach dem Ventil erforderlich ist, da durch die Verlagerung des kleinsten Durchflussquerschnitts von der Dichtfläche weg nach außen sich im Bereich der Dichtfläche ein höherer statischer
Druck ergibt, durch den eine große in Öffnungsrichtung auf das Ventilglied wirkende Kraft erzeugt wird. Der Druck im Kraftstoffzulauf kann dadurch relativ gering gehalten werden, was eine entsprechend kleiner dimensionierte Förderpumpe ermöglicht, und infolge der geringeren
Druckverluste bei der Durchströmung des Einlassventils wird die Befüllung des Pumpenarbeitsraums verbessert. Beim Auslassventil wird durch die Verlagerung des kleinsten Durchflussquerschnitts ein stabiles Öffnen sichergestellt, so dass die Belastung der Hochdruckpumpe verringert ist.
In den abhängigen Ansprüchen sind vorteilhafte Ausgestaltungen und Weiterbildungen der erfindungsgemäßen Hochdruckpumpe angegeben. Durch die Ausbildung gemäß Anspruch 2 ist die Anordnung des kleinsten Durchflussquerschnitts stromabwärts nach der Dichtfläche des Ventilglieds auf einfache Weise ermöglicht.
Zeichnung
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 eine Hochdruckpumpe für eine Kraftstoffeinspritzeinrichtung einer Brennkraftmaschine, Figur 2 ein Einlassventil der Hochdruckpumpe in vergrößerter Darstellung in einem Längsschnitt, Figur 3 eine modifizierte Ausführung des Einlassventils und Figur 4 ein Auslassventil der Hochdruckpumpe in einem Längsschnitt.
Beschreibung des Ausführungsbeispiels
In Figur 1 ist eine Hochdruckpumpe 10 für eine Kraftstoffeinspritzeinrichtung einer Brennkraftmaschine dargestellt, die vorzugsweise eine selbstzündende Brennkraftmaschine ist. Durch die Hochdruckpumpe 10 wird Kraftstoff unter Hochdruck in einen Speicher 12 gefördert, aus dem Kraftstoff zur Einspritzung an der Brennkraftmaschine entnommen wird. Der Hochdruckpumpe 10 wird durch eine Förderpumpe 14 Kraftstoff zugeführt. Die Hochdruckpumpe 10 weist wenigstens ein Pumpenelement 16 auf, das einen zumindest mittelbar durch eine Antriebswelle 18 der Hochdruckpumpe 10 in einer Hubbewegung angetriebenen Pumpenkolben 20 aufweist. Der Pumpenkolben 20 ist in einer zumindest annähernd radial zur Antriebswelle 18 verlaufenden Zylinderbohrung 22 dicht geführt und begrenzt in dem der Antriebswelle 18 abgewandten äusseren Endbereich der Zylinderbohrung 22 einen Pumpenarbeitsraum 24. Die Antriebswelle 18 weist einen Nocken oder einen zu ihrer Drehachse 19 exzentrischen Wellenabschnitt 26 auf, über den bei der Drehbewegung der Antriebswelle 18 die Hubbewegung des Pumpenkolbens 20 bewirkt wird. Der Pumpenarbeitsraum 24 ist über ein in den Pumpenarbeitsraum 24 öffnendes, als
Rückschlagventil ausgebildetes Einlassventil 30 mit einem Kraftstoffzulauf von der Förderpumpe 14 her verbindbar. Der Pumpenarbeitsraum 24 ist außerdem über ein aus dem Pumpenarbeitsraum 24 öffnendes, als Rückschlagventil ausgebildetes Auslassventil 32 mit einem Kraftstoffablauf zum Speicher 12 hin verbindbar. Beim Saughub bewegt sich der Pumpenkolben 20 in der Zylinderbohrung 22 radial nach innen, so dass das Volumen des Pumpenarbeitsraums 24 vergrößert wird. Beim Saughub des Pumpenkolbens 20 ist wegen der dabei bestehenden Druckdifferenz das
Einlassventil 30 geöffnet, da von der Förderpumpe 14 ein höherer Druck erzeugt wird als der im Pumpenarbeitsraum 24 herrschende Druck, so dass von der Förderpumpe 14 geförderter Kraftstoff in den Pumpenarbeitsraum 24 angesaugt wird. Das Auslassventil 32 ist beim Saughub des
Pumpenkolbens 20 geschlossen, da im Speicher 12 ein höherer Druck als im Pumpenarbeitsraum 24 herrscht.
Nachfolgend wird beispielhaft das Einlassventil 30 anhand der Figur 2 näher beschrieben. Das Einlassventil 30 ist beispielsweise in eine sich radial nach aussen an die Zylinderbohrung 22 anschliessende Bohrung 34 eines Gehäuseteils 36 der Hochdruckpumpe 10 eingesetzt. Die Bohrung 34 ist dabei im Durchmesser gegenüber der Zylinderbohrung 22 größer ausgebildet. Das Gehäuseteil 36 kann beispielsweise ein Zylinderkopf sein, der mit einem anderen Gehäuseteil, in dem die Antriebswelle 18 gelagert ist, verbunden ist oder ein Gehäuseteil sein, in dem auch die Antriebswelle 18 gelagert ist. In die Bohrung 34 mündet nahe deren der Zylinderbohrung 22 zugewandtem Endbereich beispielsweise etwa radial zur Achse der Bohrung 34 ein Kraftstoffzulaufkanal 38, der mit der Förderpumpe 14 verbunden ist. Das Einlassventil 30 weist ein Ventilgehäuse 40 auf, in dem eine im Durchmesser mehrfach gestufte Bohrung 42 vorhanden ist. Die Bohrung 42 weist einen im Durchmesser kleinen Abschnitt 42a auf, einen sich an den Abschnitt 42a zum Pumpenarbeitsraum 24 anschließenden Abschnitt 42b mit größerem Durchmesser, einen sich an den Abschnitt 42b zum Pumpenarbeitsraum 24 hin anschließenden Abschnitt 42c und einen sich an den Abschnitt 42c zum Pumpenarbeitsraum 24 hin anschließenden Abschnitt 42d auf. Das Einlassventil 30 weist ein kolbenförmiges Ventilglied 44 auf, das mit einem zylindrischen Schaft 44a im Bohrungsabschnitt 42a verschiebbar geführt ist. Das Ventilglied 44 weist außerdem einen an den Schaft 44a anschließenden, im Durchmesser gegenüber dem Schaft 44a vergrößerten Kopf 46 auf, wobei am Übergang vom Kopf 46 zum Schaft 44a eine Dichtfläche 48 am Ventilglied 44 angeordnet ist. Die Dichtfläche 48 verläuft unter einem Winkel γ geneigt zur Längsachse 45 des Ventilglieds 44, derart, dass sich die Dichtfläche 48 der Längsachse 45 zum Schaft 44a hin annähert. Die Dichtfläche 48 ist vorzugsweise zumindest annähernd kegelstumpfförmig ausgebildet. An die Dichtfläche 48 anschließend kann der Kopf 46 des Ventilglieds 44 zumindest annähernd zylinderförmig ausgebildet sein. Der Kopf 46 des Ventilglieds 44 weist zum Pumpenarbeitsraum 24. Der Schaft 44a des Ventilglieds 44 ragt mit seinem dem Kopf 46 abgewandten Ende aus dem Bohrungsabschnitt 42a heraus und an diesem greift eine vorgespannte Schließfeder 43 an.
Im Ventilgehäuse 40 ist wenigstens ein Zulaufkanal 50 eingebracht, der in den Bohrungsabschnitt 42b mündet. Vorzugsweise sind mehrere, beispielsweise drei über den Umfang des Ventilgehäuses 40 gleichmäßig verteilte Zulaufkanäle 50 vorgesehen. Der Bohrungsabschnitt 42c ist derart ausgebildet, dass sich dessen Durchmesser vom Bohrungsabschnitt 42b weg zum Bohrungsabschnitt 42d hin erweitert. Die Mantelfläche des Bohrungsabschnitts 42c ist dabei vorzugsweise kegelstumpfförmig ausgebildet, kann jedoch auch beliebig anders geformt sein, beispielsweise konkav oder konvex gewölbt. Die Mantelfläche des Bohrungsabschnitts 42c verläuft unter einem Winkel α zur Längsachse 45 des Ventilglieds 44 geneigt. Der Neigungswinkel α der Mantelfläche des Bohrungsabschnitts 42c ist vorzugsweise etwas größer als der Winkel γ, unter dem die Dichtfläche 48 des Ventilglieds 44 geneigt ist, kann jedoch auch etwas kleiner als der Winkel γ sein. Der Bohrungsabschnitt 42c bildet einen Ventilsitz, mit dem die Dichtfläche 48 des Ventilglieds 44 zusammenwirkt. In geschlossenem Zustand liegt das Ventilglied 44 mit seiner Dichtfläche 48 am Bohrungsabschnitt 42c an, wobei die Anlage der Dichtfläche 48 infolge der Differenz zwischen den Neigungswinkeln α und γ an dem dem Bohrungsabschnitt 42b zugewandten Rand des Bohrungsabschnitts 42c erfolgt.
Der Bohrungsabschnitt 42d ist derart ausgebildet, dass sich dessen Durchmesser vom Bohrungsabschnitt 42c weg zum
Pumpenarbeitsräum 24 hin vergrößert. Die Mantelfläche des Bohrungsabschnitts 42d ist dabei vorzugsweise kegelstumpfförmig ausgebildet, kann jedoch auch beliebig anders geformt sein, beispielsweise konkav oder konvex gewölbt. Die Mantelfläche des Bohrungsabschnitts 42d verläuft unter einem Winkel ß zur Längsachse 45 des Ventilglieds 44 geneigt. Der Winkel ß, unter dem die Mantelfläche des Bohrungsabschnitts 42d zur Längsachse 45 geneigt verläuft ist dabei kleiner als der Winkel α, unter dem die Mantelfläche des Bohrungsabschnitts 42c zur
Längsachse 45 geneigt verläuft. Am Übergang zwischen den Bohrungsabschnitten 42c und 42d ist vorzugsweise ein Freistich 42e vorgesehen, um eine einfache Herstellung der beiden Bohrungsabschnitte 42c und 42d mit den unterschiedlichen Neigungswinkeln α und ß zu ermöglichen. Der Freistich 42e weist vorzugsweise eine zumindest annähernd parallel zur Längsachse 45 verlaufende Mantelfläche auf. Der Außendurchmesser des Kopfs 46 des Ventilglieds 44 ist etwas kleiner als der Durchmesser des Freistichs 42e, dass dieser mit der Kante am Übergang vom Kopf 46 zur Dichtfläche 48 in geschlossenem Zustand etwas in den Freistich 42e eintauchen kann. Durch den Freistich 42e wird somit eine Kollision zwischen dem Kopf 46 des Ventilglieds 44 und dem Ventilgehäuse 40 vermieden.
Durch die vorstehend beschriebene Ausbildung des
Ventilgehäuses 40 mit den Bohrungsabschnitten 42c und 42d, deren Neigungswinkel α und ß unterschiedlich sind, wird erreicht, dass in geöffnetem Zustand, wenn das Ventilglied 44 mit seiner Dichtfläche 48 von dem den Ventilsitz bildenden Bohrungsabschnitt 42c abgehoben ist, der Bereich 52 des kleinsten Durchflussquerschnitts zwischen dem zylindrischen Abschnitt des Kopfs 46 des Ventilglieds 44 und dem Bohrungsabschnitt 42d vorhanden ist. In diesem Bereich 52 des geringsten Durchflussquerschnitts ist bei geöffnetem Einlassventil 30 die höchste
Strömungsgeschwindigkeit vorhanden und damit ein geringer statischer Druck. Der Bereich 52 ist somit in Strömungsrichtung des Kraftstoffs vom Zulaufkanal 50 in den Pumpenarbeitsraum 24 stromabwärts nach der Dichtfläche 48 des Ventilglieds 44 angeordnet. Im Bereich der Dichtfläche 48 des Ventilglieds 44 ist somit eine geringere Strömungsgeschwindigkeit vorhanden als im Bereich 52 und entsprechend ein relativ hoher statischer Druck. Dieser auf die Dichtfläche 48 des Ventilglieds 44 wirkende statische Druck erzeugt eine in Öffnungsrichtung auf das Ventilglied 44 wirkende Kraft und unterstützt somit die Öffnungsbewegung des Ventilglieds 44 und die stabile Anordnung des Ventilglieds 44 in seinem geöffneten Zustand.
Beim Saughub des Pumpenkolbens 20 öffnet das Einlassventil 30, wenn die durch den im Kraftstoffzulauf 38 herrschenden Druck, der auf den innerhalb des Ventilsitzes 42c angeordneten Teil der Dichtfläche 48 des Ventilglieds 44 wirkt, in Öffnungsrichtung auf das Ventilglied 44 erzeugte Kraft größer ist als die Summe der durch den im Pumpenarbeitsraum 24 herrschenden Druck auf das Ventilglied 44 erzeugte Kraft und die durch die Schließfeder 43 erzeugten Kraft ist. Wenn das Ventilglied 44 mit seiner Dichtfläche 48 vom Ventilsitz 42c abgehoben ist, so ist die gesamte Dichtfläche 48 druckbeaufschlagt, wobei durch die Anordnung des Bereichs 52 mit dem kleinsten
Durchflussquerschnitt stromabwärts nach der Dichtfläche 48 auf die Dichtfläche 48 ein relativ hoher statischer Druck wirkt, der das Ventilglied 44 in seinem geöffneten Zustand hält. Beim Förderhub des Pumpenkolbens 20 wird durch diesen im Pumpenarbeitsraum 24 ein erhöhter Druck erzeugt, durch den das Einlassventil 30 geschlossen wird.
In Figur 3 ist eine modifizierte Ausführung des Einlassventils 30 dargestellt, bei der der grundsätzliche Aufbau gleich ist wie bei der Ausführung gemäß Figur 2, jedoch das Ventilglied 44 modifiziert ist. Der Kopf 46 des Ventilglieds 44 weist dabei zu dessen dem Schaft 44a zugewandtem Ende hin einen im Durchmesser gegenüber dem übrigen Durchmesser des Kopfes 46 verringerten Bereich 47 auf. Der im Durchmesser verringerte Bereich 47 des Kopfes 46 des Ventilglieds 44 ist derart angeordnet, dass dieser bei in seiner Schließstellung angeordnetem Ventilglied 44 dem Übergang zwischen der ersten Mantelfläche 42c und der zweiten Mantelfläche 42d des Ventilgehäuses 40 gegenüberliegt. Durch die Durchmesserverringerung im Bereich 47 wird eine Kollision des Kopfes 46 des Ventilglieds 44 mit dem Ventilgehäuse 40 vermieden. Durch die Durchmesserverringerung im Bereich 47 ist am Kopf 46 des Ventilglieds 44 an dessen Übergang zur Dichtfläche 48 ein Absatz gebildet. Der Übergang vom Bereich 47 zum übrigen Teil des Kopfes 46 des Ventilglieds 44 mit großem Durchmesser kann wie in Figur 3 dargestellt gerundet ausgebildet sein. Der Kopf 46 des Ventilglieds 44 kann wie in Figur 2 dargestellt etwa zylinderförmig ausgebildet sein oder wie in Figur 3 dargestellt etwa kegelstumpfförmig, wobei sich der Durchmesser des Kopfes 46 zum
Pumpenarbeitsraum 24 hin vergrößert, wodurch die Umströmung des Kopfes 46 des Ventilglieds 44 verbessert wird.
Nachfolgend wird beispielhaft das Auslassventil 32 anhand der Figur 4 näher beschrieben. Das Auslassventil 32 ist beispielsweise in eine Bohrung 54 des Gehäuseteils 36 eingesetzt. In die Bohrung 54 mündet beispielsweise etwa radial zu deren Längsachse ein Kraftstoffablaufkanal 56, der mit dem Speicher 12 verbunden ist. Das Gehäuseteil 36 bildet ein Ventilgehäuse für das Auslassventil 32, wobei alternativ auch ein separates, in das Gehäuseteil 36 eingesetztes Ventilgehäuse für das Auslassventil 32 vorgesehen sein kann. Die Bohrung 54 im Gehäuseteil 36 ist im Durchmesser mehrfach gestuft ausgebildet und weist einen in den Pumpenarbeitsraum 24 mündenden Abschnitt 54a mit kleinem Durchmesser auf. An den Bohrungsabschnitt 54a schließt sich vom Pumpenarbeitsraum 24 weg ein weiterer Bohrungsabschnitt 54b an, dessen Durchmesser sich vom Pumpenarbeitsraum 24 weg vergrößert. Der Bohrungsabschnitt 54b ist vorzugsweise zumindest annähernd kegelstumpfförmig ausgebildet, kann jedoch alternativ auch eine konkav oder konvex gewölbte Mantelfläche aufweisen. Die Mantelfläche des Bohrungsabschnitts 54b verläuft unter einem Winkel α geneigt zur Längsachse 55 der Bohrung 54. An den Bohrungsabschnitt 54b schließt sich vom Pumpenarbeitsraum 24 weg ein weiterer Bohrungsabschnitt 54c an, dessen Durchmesser sich vom Pumpenarbeitsraum 24 weg vergrößert. Der Bohrungsabschnitt 54c ist vorzugsweise zumindest annähernd kegelstumpfförmig ausgebildet, kann jedoch alternativ auch eine konkav oder konvex gewölbte Mantelfläche aufweisen. Die Mantelfläche des
Bohrungsabschnitts 54c verläuft unter einem Winkel ß geneigt zur Längsachse 55 der Bohrung 54, wobei der Winkel ß kleiner ist als der Winkel α. An den Bohrungsabschnitt 54c kann sich ein weiterer Bohrungsabschnitt 54d mit konstantem Durchmesser anschließen, der bis zur Außenseite des Gehäuseteils 36 verläuft. In den Bohrungsabschnitt 54d ist von der Außenseite des Gehäuseteils 36 her ein Verschlußelement 58 eingesetzt, beispielsweise eingeschraubt .
Das Auslassventil 32 weist ein Ventilglied 60 auf, das zumindest annähernd kugelförmig ausgebildet ist. Es kann eine Schließfeder 62 vorgesehen sein, die zwischen dem Ventilglied 60 und dem Verschlußelement 58 eingespannt ist und durch die das Ventilglied 60 zum Pumpenarbeitsraum 24 hin gedrückt wird. Das Ventilglied 60 wirkt mit einer Dichtfläche 64, die durch einen Teil seiner Oberfläche gebildet ist, mit dem Bohrungsabschnitt 54b zusammen, der einen Ventilsitz für das Ventilglied 60 bildet. Bei geringem Druck im Pumpenarbeitsraum 24 wird das Ventilglied 60 durch die Schließfeder 62 mit seiner Dichtfläche 64 in Anlage am Ventilsitz 54b gehalten. Am Ventilglied 60 ist in geschlossenem Zustand nur ein relativ kleiner Teil der Oberfläche entsprechend etwa dem Durchmesser des Bohrungsabschnitts 54a von dem im Pumpenarbeitsraum 24 herrschenden Druck beaufschlagt. Wenn der Druck im Pumpenarbeitsraum 24 steigt, so öffnet das Auslassventil 32, da die durch den auf das Ventilglied 60 wirkenden Druck erzeugte Kraft in Öffnungsrichtung größer ist als die Kraft der Schließfeder 62. Beim Öffnen des Auslassventils 32 wird zwischen der Dichtfläche 64 des Ventilglieds 60 und dem Ventilsitz 54b ein Durchflussquerschnitt freigegeben. Zwischen dem Umfang des Ventilglieds 60 und dem Bohrungsabschnitt 54c ist ebenfalls ein Bereich 66 mit einem freigegebenen Durchflussquerschnitt angeordnet, wobei der Durchflussquerschnitt bei geöffnetem Ventil im Bereich 66 kleiner ist als der zwischen der Dichtfläche 64 und dem Ventilsitz 54b freigegebene Durchflussquerschnitt. Eine Drosselung der KraftstoffStrömung bei der Durchströmung des geöffneten Auslassventils 32 erfolgt somit im Bereich 66 mit dem geringesten Durchflussquerschnitt und nicht im Bereich der Dichtfläche 64 des Ventilglieds 60. Im Bereich der Dichtfläche 64 des Ventilglieds 60 ist somit eine geringere Strömungsgeschwindigkeit vorhanden als im Bereich 66 des kleinsten Durchflussquerschnitts und daher ein höherer statischer Druck als im Bereich 66.
Beim Öffnen des Auslassventils 32, wenn dessen Ventilglied 60 mit seiner Dichtfläche 64 vom Ventilsitz 54b abhebt, wird die druckbeaufschlagte Oberfläche des Ventilglieds 60 vergrößert, da dann nicht mehr nur die innerhalb des Ventilsitzes 54b liegende Oberfläche druckbeaufschlagt ist sondern die größere Oberfläche mit zum Bereich 66 hin. Auf das Ventilglied 60 wirkt daher eine große Druckraft in
Öffnungsrichtung, die das Ventilglied 60 stabil in seinem geöffneten Zustand hält, auch wenn eine große Kraftstoffmenge mit hoher Strömungsgeschwindigkeit das Auslassventil 32 durchströmt. Mit zunehmendem Hub des Ventilglieds 60 in Öffnungsrichtung vergrößert sich sowohl der zwischen dessen Dichtfläche 64 und dem Ventilsitz 54b freigegebene Durchflussquerschnitt als auch der im Bereich 66 freigegebene Durchlussquerschnitt, wobei der im Bereich 66 freigegebene Durchflussquerschnitt stets kleiner ist als der zwischen der Dichtfläche 64 und dem Ventilsitz 54b freigegebene Durchflussquerschnitt. Der Winkel α, unter dem der Ventilsitz 54b zur Längsachse 55 der Bohrung 54 geneigt ist, kann groß gewählt werden, so dass der Ventilsitz 54b relativ flach ist und damit eine hohe Verschleißbeständigkeit aufweist .
Bei einer Hochdruckpumpe kann vorgesehen sein, dass nur das Einlassventil 30 wie vorstehend zu Figur 2 oder 3 beschrieben ausgebildet ist, während das Auslassventil 32 als einfaches Kugel- oder Kegelventil ausgebildet ist. Alternativ kann auch vorgesehen sein, dass bei einer
Hochdruckpumpe nur das Auslassventil 32 wie vorstehend zu Figur 4 beschrieben ausgebildet ist, während das Einlassventil 30 als einfaches Kegelsitz- oder Kugelventil ausgebildet sein kann. Außerdem kann auch ein wie anhand Figur 4 als Auslassventil beschriebenes Ventil mit einem kugelförmigen Ventilglied als Einlassventil an einer Hochdruckpumpe verwendet werden . Entsprechend kann auch ein wie anhand Figur 2 oder 3 als Einlassventil beschriebenes Ventil mit einem Ventilglied mit kegelförmiger Dichtfläche als Auslassventil an einer Hochdruckpumpe verwendet werden. Vorzugsweise sind bei einer Hochdruckpumpe sowohl das Einlassventil 30 als auch das Auslassventil 32 wie vorstehend zu den Figuren 2 oder 3 und 4 beschrieben ausgebildet.

Claims

Ansprüche
1. Hochdruckpumpe, insbesondere für eine Kraftstoffeinspritzeinrichtung einer Brennkraftmaschine, mit wenigstens einem Pumpenelement (16), das einen in einer Hubbewegung angetriebenen Pumpenkolben (20) aufweist, der einen Pumpenarbeitsraum (24) begrenzt, in den beim Saughub des Pumpenkolbens (20) über ein Einlassventil (30) Kraftstoff aus einem Kraftstoffzulauf (50) angesaugt wird und aus dem beim Förderhub des Pumpenkolbens (20) über ein Auslassventil (32) Kraftstoff in einen Hochdruckbereich (56,12) verdrängt wird, wobei das Einlassventil (30) und/oder das Auslassventil (32) ein Ventilglied (44; 60) aufweist, das mit einer Dichtfläche (48; 64) mit einem in einem Ventilgehäuse (40; 36) angeordneten Ventilsitz (42c; 54b) zusammenwirkt, wobei durch das Ventilglied (44; 60) in geöffnetem Zustand, wenn dieses mit seiner Dichtfläche (48; 64) vom Ventilsitz (42c; 54b) abgehoben ist, zwischen dem Ventilglied (44; 60) und dem Ventilgehäuse (40; 36) ein Durchflussquerschnitt freigegeben wird, dadurch gekennzeichnet, dass in geöffnetem Zustand des Ventilglieds (44; 60) ein Bereich (52; 66) mit dem kleinsten Durchflussquerschnitt zwischen dem Ventilglied (44; 60) und dem Ventilgehäuse (40; 36) in Strömungsrichtung des das Ventil (30; 32) durchströmenden Kraftstoffs stromabwärts nach der Dichtfläche (48; 64) des Ventilglieds (44; 60) angeordnet ist.
2. Hochdruckpumpe nach Anspruch 1, dadurch gekennzeichnet, dass das Ventilgehäuse (40; 36) eine erste zu ihrer
Längsachse (45; 55) geneigte, das Ventilglied (44; 60) umgebende Mantelfläche (42c; 54b) aufweist, die den Ventilsitz bildet, und eine sich an die erste Mantelfläche
(42c; 54b) anschließende zweite zu ihrer Längsachse (45; 55) geneigte, das Ventilglied (44; 60) umgebende Mantelfläche (42d;54c) aufweist, dass der Neigungswinkel (ß) der zweiten Mantelfläche (42d;54c) bezüglich der Längsachse (45; 55) geringer ist als der Neigungswinkel (α) der ersten Mantelfläche (42c; 54b) und dass in geöffnetem Zustand des Ventilglieds (44; 60) der Bereich (52; 66) des kleinsten Durchflussquerschnitts zwischen dem Ventilglied (44; 60) und der zweiten Mantelfläche (42d;54c) des Ventilgehäuses
(40; 36) angeordnet ist.
3. Hochdruckpumpe nach Anspruch 2, dadurch gekennzeichnet, dass die erste Mantelfläche (42c; 54b) und/oder die zweite
Mantelfläche (42d;54c) des Ventilgehäuses (40; 36) zumindest annähernd kegelstumpfförmig ausgebildet ist.
4. Hochdruckpumpe nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Dichtfläche (48) des Ventilglieds
(44) zumindest annähernd kegelstumpfförmig ausgebildet ist und vorzugsweise unter einem anderen Winkel (γ) zur Längsachse (45) der ersten Mantelfläche (42c) geneigt ist als der Winkel (α) , unter dem die erste Mantelfläche (42c) des Ventilgehäuses (40) zu ihrer Längsachse (45) geneigt ist.
5. Hochdruckpumpe nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass am Übergang zwischen der ersten Mantelfläche (42c) und der zweiten Mantelfläche (42d) des
Ventilgehäuses (40) ein Freistich (42e) vorgesehen ist, der vorzugsweise eine zumindest annähernd parallel zur Längsachse (45) verlaufende Mantelfläche aufweist.
6. Hochdruckpumpe nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass die Dichtfläche (48) am Ventilglied (44) am Übergang zwischen einem Schaft (44a) des Ventilglieds (44) und einem im Querschnitt gegenüber dem Schaft (44a) vergrößerten Kopf (46) des Ventilglieds (44) angeordnet ist und dass am Kopf (46) des Ventilglieds (44) ein Bereich (47) mit gegenüber dem übrigen Querschnitt des Kopfes (46) verringertem Querschnitt vorgesehen ist, der dem Übergang zwischen der ersten Mantelfläche (42c) und der zweiten Mantelfläche (42d) im Ventilgehäuse (40) gegenüberliegt .
7. Hochdruckpumpe nach einem der Ansprüche 1 bis 3 oder 5, dadurch gekennzeichnet, dass das Ventilglied (60) zumindest annähernd kugelförmig ausgebildet ist und dass die Dichtfläche (64) durch einen Bereich der Oberfläche des Ventilglieds (60) gebildet ist.
8. Hochdruckpumpe nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass in geöffnetem Zustand des Ventilglieds (44; 60) im Bereich von dessen Dichtfläche (48; 64) ein höherer statischer Druck herrscht als im
Bereich (52; 66) des kleinsten Durchflussquerschnitts und dass durch den auf die Dichtfläche (48; 64) wirkenden Druck eine Kraft in Öffnungsrichtung auf das Ventilglied (44; 60) erzeugt wird.
PCT/EP2005/050126 2004-02-11 2005-01-13 Hochdruckpumpe, insbesondere für eine kraftstoffeinspritzeinrichtung einer brennkraftmaschine WO2005078273A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/586,872 US20080240952A1 (en) 2004-02-11 2005-01-13 High-Pressure Pump, in Particular for a Fuel Injection System of an Internal Combustion Engine
JP2006523020A JP2007501913A (ja) 2004-02-11 2005-01-13 特に内燃機関の燃料噴射装置に用いられる高圧ポンプ
EP05701509A EP1716332A1 (de) 2004-02-11 2005-01-13 Hochdruckpumpe, insbesondere f ür eine kraftstoffeinspritzein richtung einer brennkraftmaschine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102004006700.7 2004-02-11
DE102004006700 2004-02-11
DE102004027825A DE102004027825A1 (de) 2004-02-11 2004-06-08 Hochdruckpumpe, insbesondere für eine Kraftstoffeinspritzeinrichtung einer Brennkraftmaschine
DE102004027825.3 2004-06-08

Publications (1)

Publication Number Publication Date
WO2005078273A1 true WO2005078273A1 (de) 2005-08-25

Family

ID=34862902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/050126 WO2005078273A1 (de) 2004-02-11 2005-01-13 Hochdruckpumpe, insbesondere für eine kraftstoffeinspritzeinrichtung einer brennkraftmaschine

Country Status (4)

Country Link
EP (1) EP1716332A1 (de)
JP (1) JP2007501913A (de)
KR (1) KR20060127128A (de)
WO (1) WO2005078273A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1701032A1 (de) * 2005-03-01 2006-09-13 Jtekt Corporation Rückschlagventil für Kraftstoffeinspritzpumpe
WO2007073985A1 (de) * 2005-12-23 2007-07-05 Robert Bosch Gmbh Hochdruckpumpe, insbesondere für eine kraftstoffeinspritzeinrichtung einer brennkraftmaschine
WO2007116053A1 (de) * 2006-04-11 2007-10-18 Continental Automotive Gmbh Radialkolbenpumpe zur kraftstoff-hochdruckversorgung bei einer brennkraftmaschine
WO2010000512A1 (de) * 2008-07-02 2010-01-07 Robert Bosch Gmbh Hochdruckpumpe
WO2012034734A1 (de) * 2010-09-13 2012-03-22 Robert Bosch Gmbh Ventil, insbesondere einer hydraulischen kolbenpumpe
EP2644954A1 (de) * 2012-03-30 2013-10-02 TI Group Automotive Systems, L.L.C. Ventilanordnung eines Kraftstoffsystems
FR2994240A1 (fr) * 2012-08-01 2014-02-07 Porsche Ag Soupape de commande pour flux de fluides
WO2016120081A1 (de) * 2015-01-29 2016-08-04 Robert Bosch Gmbh Verstelleinrichtung und brennstoffeinspritzanlage mit einer verstelleinrichtung

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5491425B2 (ja) * 2011-01-20 2014-05-14 株式会社デンソー 高圧ポンプ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0061534A1 (de) * 1981-03-27 1982-10-06 Robert Bosch Gmbh Druckventil für eine Brennstoffeinspritzpumpe
US4509491A (en) * 1982-11-09 1985-04-09 Diesel Kiki Co., Ltd. Overflow valve for distributor-type fuel injection pumps
EP0516759A1 (de) * 1990-02-19 1992-12-09 Saab Automobile Geräuschloses rückschlagventil für pulsierende strömungen.
DE19860672A1 (de) 1998-12-29 2000-07-13 Bosch Gmbh Robert Kolbenpumpe zur Kraftstoffhochdruckerzeugung
EP1058783A1 (de) * 1997-10-09 2000-12-13 Robert Bosch Gmbh Radialkolbenpumpe zur kraftstoffhochdruckversorgung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0061534A1 (de) * 1981-03-27 1982-10-06 Robert Bosch Gmbh Druckventil für eine Brennstoffeinspritzpumpe
US4509491A (en) * 1982-11-09 1985-04-09 Diesel Kiki Co., Ltd. Overflow valve for distributor-type fuel injection pumps
EP0516759A1 (de) * 1990-02-19 1992-12-09 Saab Automobile Geräuschloses rückschlagventil für pulsierende strömungen.
EP1058783A1 (de) * 1997-10-09 2000-12-13 Robert Bosch Gmbh Radialkolbenpumpe zur kraftstoffhochdruckversorgung
DE19860672A1 (de) 1998-12-29 2000-07-13 Bosch Gmbh Robert Kolbenpumpe zur Kraftstoffhochdruckerzeugung

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1701032A1 (de) * 2005-03-01 2006-09-13 Jtekt Corporation Rückschlagventil für Kraftstoffeinspritzpumpe
WO2007073985A1 (de) * 2005-12-23 2007-07-05 Robert Bosch Gmbh Hochdruckpumpe, insbesondere für eine kraftstoffeinspritzeinrichtung einer brennkraftmaschine
JP2009520908A (ja) * 2005-12-23 2009-05-28 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 高圧ポンプ、殊に内燃機関の燃料噴射装置のための高圧ポンプ
JP4763801B2 (ja) * 2005-12-23 2011-08-31 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 高圧ポンプ、殊に内燃機関の燃料噴射装置のための高圧ポンプ
KR101118346B1 (ko) * 2005-12-23 2012-03-09 로베르트 보쉬 게엠베하 엔진의 연료 분사 장치용 고압 펌프
US8272856B2 (en) 2005-12-23 2012-09-25 Robert Bosch Gmbh High-pressure pump, in particular for a fuel injection apparatus of an internal combustion engine
WO2007116053A1 (de) * 2006-04-11 2007-10-18 Continental Automotive Gmbh Radialkolbenpumpe zur kraftstoff-hochdruckversorgung bei einer brennkraftmaschine
US7775190B2 (en) 2006-04-11 2010-08-17 Continental Automotive Gmbh Radial piston pump for supplying fuel at high pressure to an internal combustion engine
WO2010000512A1 (de) * 2008-07-02 2010-01-07 Robert Bosch Gmbh Hochdruckpumpe
WO2012034734A1 (de) * 2010-09-13 2012-03-22 Robert Bosch Gmbh Ventil, insbesondere einer hydraulischen kolbenpumpe
EP2644954A1 (de) * 2012-03-30 2013-10-02 TI Group Automotive Systems, L.L.C. Ventilanordnung eines Kraftstoffsystems
KR20130111346A (ko) * 2012-03-30 2013-10-10 티아이 그룹 오토모티브 시스템즈 엘엘씨 연료 시스템 밸브 어셈블리
CN103362711A (zh) * 2012-03-30 2013-10-23 Ti集团自动推进系统有限责任公司 燃油系统的阀组件
US9027594B2 (en) 2012-03-30 2015-05-12 Ti Group Automotive Systems, L.L.C. Fuel system valve assembly
EP2644954B1 (de) 2012-03-30 2017-03-08 TI Group Automotive Systems, L.L.C. Ventilanordnung eines Kraftstoffsystems
KR102057140B1 (ko) 2012-03-30 2020-01-14 티아이 그룹 오토모티브 시스템즈 엘엘씨 연료 시스템 밸브 어셈블리
EP2644954B2 (de) 2012-03-30 2020-12-23 TI Group Automotive Systems, L.L.C. Ventilanordnung eines Kraftstoffsystems
FR2994240A1 (fr) * 2012-08-01 2014-02-07 Porsche Ag Soupape de commande pour flux de fluides
US9303787B2 (en) 2012-08-01 2016-04-05 Dr. Ing.H.C. F. Porsche Aktiengesellschaft Thermostatic slide valve for a motor vechicle
WO2016120081A1 (de) * 2015-01-29 2016-08-04 Robert Bosch Gmbh Verstelleinrichtung und brennstoffeinspritzanlage mit einer verstelleinrichtung

Also Published As

Publication number Publication date
KR20060127128A (ko) 2006-12-11
EP1716332A1 (de) 2006-11-02
JP2007501913A (ja) 2007-02-01

Similar Documents

Publication Publication Date Title
EP1966481B1 (de) Hochdruckpumpe, insbesondere für eine kraftstoffeinspritzeinrichtung einer brennkraftmaschine
WO2005078273A1 (de) Hochdruckpumpe, insbesondere für eine kraftstoffeinspritzeinrichtung einer brennkraftmaschine
WO2005052358A1 (de) Ventil, insbesondere für eine hochdruckpumpe einer kraftstoffeinspritzeinrichtung für eine brennkraftmaschine
EP2129903B1 (de) Kraftstoffinjektor mit einer zusätzlichen ablaufdrossel oder mit einer verbesserten anordnung derselben im steuerventil
EP1784571B1 (de) Hochdruckpumpe für eine kraftstoffeinspritzeinrichtung einer brennkraftmaschine
WO2005124153A1 (de) Hochdruckpumpe für eine kraftstoffeinspritzeinrichtung einer brennkraftmaschine
WO2004109093A1 (de) Rückschlagventil, insbesondere für eine hochdruckpumpe einer kraftstoffeinspritzeinrichtung für eine brennkraftmaschine
DE102004027825A1 (de) Hochdruckpumpe, insbesondere für eine Kraftstoffeinspritzeinrichtung einer Brennkraftmaschine
EP1357283A2 (de) Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
EP1736662B1 (de) Rückschlagventil, insbesondere für eine Hochdruckpumpe einer Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
EP1759115B1 (de) Hochdruckpumpe für eine kraftstoffeinspritzeinrichtung einer brennkraftmaschine
WO2002103197A1 (de) Kraftstoffeinspritzeinrichtung für eine brennkraftmaschine
WO2001025622A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
WO2005040598A1 (de) Ventil zur steuerung einer verbindung in einem hochdruckflüssigkeitssystem, insbesondere einer kraftstoffeinspritzeinrichtung für eine brennkraftmaschine
WO2003074865A1 (de) Einrichtung zur druckmodulierten formung des einspritzverlaufes
EP1384000B1 (de) Kraftstoffeinspritzeinrichtung für eine brennkraftmaschine
DE102005014180A1 (de) Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
DE10259955A1 (de) Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
DE10164395A1 (de) Kraftstoffeinspritzvorrichtung für Brennkraftmaschinen
DE10139545A1 (de) Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
DE102004040141A1 (de) Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
EP1383999A2 (de) Kraftstoffeinspritzeinrichtung für eine brennkraftmaschine
DE10310585A1 (de) Pumpe-Düse-Einheit
DE10146532A1 (de) Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
DE102005060663A1 (de) Pumpe-Düse-Einrichtung für eine Brennkraftmaschine, insbesondere für ein Kraftfahrzeug

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005701509

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006523020

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10586872

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067016092

Country of ref document: KR

Ref document number: 2941/CHENP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 200580004777.4

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2005701509

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067016092

Country of ref document: KR