EP1709096A1 - Thermovergilbungsstabile polyurethan-polyharnstoff dispersionen - Google Patents

Thermovergilbungsstabile polyurethan-polyharnstoff dispersionen

Info

Publication number
EP1709096A1
EP1709096A1 EP05700673A EP05700673A EP1709096A1 EP 1709096 A1 EP1709096 A1 EP 1709096A1 EP 05700673 A EP05700673 A EP 05700673A EP 05700673 A EP05700673 A EP 05700673A EP 1709096 A1 EP1709096 A1 EP 1709096A1
Authority
EP
European Patent Office
Prior art keywords
component
dispersions
compounds
weight
groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05700673A
Other languages
English (en)
French (fr)
Inventor
Thorsten Rische
Jürgen Meixner
Torsten Pohl
Thomas Feller
Uwe Klippert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covestro Deutschland AG
Original Assignee
Bayer MaterialScience AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer MaterialScience AG filed Critical Bayer MaterialScience AG
Publication of EP1709096A1 publication Critical patent/EP1709096A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0804Manufacture of polymers containing ionic or ionogenic groups
    • C08G18/0819Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups
    • C08G18/0828Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups containing sulfonate groups or groups forming them
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/2815Monohydroxy compounds
    • C08G18/283Compounds containing ether groups, e.g. oxyalkylated monohydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/758Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing two or more cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/02Polyureas

Definitions

  • the invention relates to novel aqueous polyurethane-polyurea dispersions stabilized against thermal yellowing and having excellent mechanical properties, as well as their production and use.
  • Aqueous binders in particular polyurethane-polyurea (PUR) dispersions, are increasingly being used in the coating of substrates.
  • PUR polyurethane-polyurea
  • the production of aqueous PU dispersions is generally known.
  • the various possibilities for producing such dispersions have been described e.g. summarized by D. Dieterich in an overview article (D. Dieterich, Prog. Org. Coatings 9, 281 (1981)).
  • PUR dispersions are also used as aqueous binders in the field of sizing of glass fibers. Due to the comparatively high temperatures in the coating and drying processes and in the compounding of the sized glass fiber into a plastic matrix, which, for. T. can be significantly more than 200 ° C, there is often undesirable thermal yellowing of the coatings produced.
  • hydrazines and hydrazides are known as chain extenders in polyurethanes, for example from US Pat. No. 4,147,679 or DE-A 23 14 513. Some of them are also used in mixtures with other chain extenders such as diamines (US Pat. No. 3,415,768). They serve to improve the flexibility, hardness, durability and drying of the coatings.
  • the object of the present invention was to provide PUR dispersions which are sufficiently stabilized against thermal yellowing, have excellent mechanical properties and, moreover, are very well tolerated in / or as 1-component or 2-component binders in paints, sizes and coatings are.
  • the invention relates to a process for the production of aqueous polyurethane-polyurea dispersions (PUR dispersions), in which
  • polymeric polyols and / or polyamines with number average molecular weights of 400 to 8,000 g mol
  • A3) optionally low molecular weight compounds with number average molecular weights of 17-400 g / mol selected from the group consisting of mono- and polyalcohols, mono- and polyamines and aminoalcohols,
  • the prepolymer obtained from step A) is either dissolved in aliphatic ketones or, if the preparation has already been carried out in the presence of A6), the prepolymer solution is optionally diluted by further addition of aliphatic ketones and
  • the compounds of component C2) have primary and / or secondary amino groups
  • the invention further relates to the PUR dispersions obtainable by this process.
  • Suitable polyisocyanates of component AI) are the aromatic, araliphatic, aliphatic or cycloaliphatic polyisocyanates known per se to the person skilled in the art, which also include iminooxadiazinedione, isocyanurate, uretdione, urethane, allophanate, biuret, urea, oxadiazinetrione, oxazolidinone and oxazolidinone May have acylurea and / or carbodiimide structures. These can be used individually or in any mixtures with one another in AI).
  • Suitable aromatic, araliphatic, aliphatic or cycloaliphatic polyisocyanates are di- or triisocyanates in the molecular weight range 140 to 400 g / mol accessible by phosgenation or by phosgene-free processes, for example by thermal urethane cleavage, with aliphatic, cycloaliphatic, araliphatic and / or aromatically bound isocyanate groups such as 1,4-diisocyanatobutane, 1,5-diisocyanatopentane, 1,6-diisocyanatohexane (HDI), 2-methyl-1,5-diisocyanatopentane, 1,5-diisocyanato-2,2-dimethylpentane, 2,2,4 - or 2,4,4-trimethyl-l, 6-diisocyanatohexane, 1,10-diisocyanatodecane, 1,3- and 1,4-diisocyanatocyclo
  • AI preferably uses polyisocyanates or polyisocyanate mixtures of the type mentioned above with exclusively aliphatic and / or cycloaliphatic isocyanate groups.
  • Hexamethylene diisocyanate, isophorone diisocyanate and the isomeric bis (4,4'-isocyanatocyclohexyl) methanes and mixtures thereof are particularly preferred.
  • Polymeric polyols or polyamines according to the definition of component A2) typically come from the group of polyacrylates, polyesters, polylactones, polyethers, polycarbonates, polyester carbonates, polyacetals, polyolefins and polysiloxanes and preferably have a functionality based on functionalities of 1 which are reactive toward NCO groups , 5 to 4.
  • Polymeric polyols of the aforementioned type with a number average molecular weight of 600 to 2500 g / mol and with an OH functionality of 2 to 3 are particularly preferred.
  • Polycarbonates containing hydroxyl groups according to the definition of component A2) can be obtained by reacting carbonic acid derivatives, for example diphenyl carbonate, dimethyl carbonate or phosgene, with diols.
  • Such diols are e.g. Ethylene glycol, 1,2- and 1,3-propanediol, 1,3- and 1,4-butanediol, 1,6-hexanediol, 1,8-octanediol, neopentylglycol, 1,4-bishydroxymethylcyclohexane, 2-methyl-l, 3-propanediol, 2,2,4-trimethylpentanediol-1,3, dipropylene glycol, polypropylene glycols, dibutylene glycol, polybutylene glycols, bisphenol A, tetrabromobisphenol A but also lactone-modified diols.
  • Ethylene glycol 1,2- and 1,3-propanediol, 1,3- and 1,4-butanediol, 1,6-hexanediol, 1,8-octanediol, neopentylgly
  • the diol component preferably contains 40 to 100% by weight of hexanediol, preferably 1,6-hexanediol and / or hexanediol derivatives, particularly preferably those derivatives which, in addition to terminal OH groups, have ether or ester groups, such as products which Reaction of 1 mole of hexanediol with at least 1 mole, preferably 1 to 2 moles of caprolactone according to DE-A 17 70 245 or by etherification of hexanediol with themselves to give di- or trihexylene glycol.
  • the preparation of such derivatives is e.g. known from DE-A 15 70 540.
  • the polyether polycarbonate diols described in DE-A 37 17060 can also be used.
  • the hydroxyl polycarbonates are preferably linear, but can optionally be branched by incorporating polyfunctional components, in particular low molecular weight polyols.
  • Glycerol, trimethylolpropane, hexanetriol-1,2,6, butanetriol-1,2,4, trimethylolpropane, pentaerythritol, quinite, mannitol and sorbitol, methylglycoside, 1,3,4,6-dianhydrohexite are suitable for this purpose.
  • Suitable polyether polyols according to the definition of component A2) are the polytetramethylene glycol polyethers known per se in polyurethane chemistry, which e.g. can be prepared via polymerization of tetrahydrofuran by cationic ring opening.
  • polyethers such as the polyols made from styrene oxide, propylene oxide, butylene oxides or epichlorohydrin, in particular propylene oxide, produced using starter molecules.
  • Suitable polyester polyols according to the definition of component A2) are, for example, reaction products of polyhydric, preferably dihydric and optionally additionally trihydric alcohols with polybasic, preferably dihydric, carboxylic acids.
  • the corresponding polycarboxylic anhydrides or corresponding polycarboxylic esters of lower alcohols or mixtures thereof can also be used to produce the polyesters.
  • the polycarboxylic acids may be aliphatic, cycloaliphatic, aromatic and / or heterocyclic and may be substituted, for example substituted by halogen atoms and / or unsaturated,.
  • compounds corresponding to the definition of component A3) can be added to terminate the polyurethane prepolymer.
  • Compounds suitable for this purpose are, for example, aliphatic monoalcohols or monoamines of the stated molecular weight range with 1 to 18 carbon atoms, such as ethanol, n-butanol, ethylene glycol monobutyl ether, 2-ethylhexanol, 1-octanol, 1-dodecanol, 1-hexadecanol, diethyl amine, dibutylamine, ethanolamine, N-methylethanolamine, N, N-diethanolamine, amines of the Jeffamine ® M series (Huntsman Corp. Europe, Belgium) or amino-functional polyethylene oxides and polypropylene oxides.
  • aliphatic monoalcohols or monoamines of the stated molecular weight range with 1 to 18 carbon atoms such as ethanol, n-butanol, ethylene glycol monobutyl ether, 2-ethylhexanol, 1-octanol, 1-dodecanol
  • polyols, aminopolyols or polyamines with a number average molecular weight below 400 g / mol can be used in the process according to the invention.
  • examples include:
  • alkanediols or triols such as ethanediol, 1,2- and 1,3-propanediol, 1,4- and 2,3-butanediol, 1,5-pentanediol, 1,3-dimethylpropanediol, 1,6-hexanediol, Neopentyl glycol, 1,4-cyclohexane dimethanol, 2-methyl-l, 3-propanediol, 2-ethyl-2-butylpropanediol, trimethylpentanediol, positionally isomeric diethyloctanediols, 1,2- and 1,4-cyclohexanediol, hydrogenated bisphenol A [2, 2-bis (4-hydroxycyclohexyl) propane], 2,2-dimethyl-3-hydroxypropionic acid (2,2-dimethyl-3-hydroxypropyl ester), trimethylolethane, trimethylol propane or gly
  • ether diols such as diethylene diglycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, 1,3-butylene glycol or hydroquinone dihydroxyethyl ether,
  • R is an alkylene or arylene radical having 1 to 10 carbon atoms, preferably 2 to 6 carbon atoms, x 2 to 6 and y 3 to 5, such as ⁇ -hydroxybutyl- ⁇ -hydroxy-caproic acid ester, ⁇ -hydroxyhexyl- ⁇ - hydroxybutyric acid ester, adipic acid (ß-hydroxyethyl) ester and terephthalic acid bis (ß-hydroxyethyl) ester and d) Di- and polyamines such as 1,2-diaminoethane, 1,3-diaminopropane, 1,6-diaminohexane, 1,3- and 1,4-phenylenediamine, 4,4'-diphenylmethane diamine, isophoronediamine, mixture of isomers of 2.2 , 4- and 2,4,4-trimethylhexa-methylenediamine, 2-methyl-pentamethylenediamine, diethylenetriamine, 1,3- and 1,4-xyly
  • Substituted hydrazines are also suitable as diamines in the context of the invention, such as, for example, N-methylhydrazine, N, N'-dimethylhydrazine and their homologues, and also acid dihydrazides of adipic acid, ⁇ -methyladipic acid, sebacic acid, hydracrylic acid and terephthalic acid, semicarbazidoalkylene hydrazides, such as, for example ⁇ -semicarbazidopropionic acid hydrazide (described, for example, in DE-A 1770 591), semicarbazidoalkylene-carbazine esters, such as 2-semicarbazidoethylcarbazine ester (described, for example, in DE-A 19 18 504), or also amino-semicarbazide compounds, such as ß- Aminoethylsemic
  • Preferred isocyanate-reactive groups are hydroxyl or amino groups.
  • Suitable ionically or potentially ionically hydrophilizing compounds according to the definition of component A4 are, for example, mono- and dihydroxycarboxylic acids, mono- and diaminocarboxylic acids, mono- and dihydroxysulfonic acids, mono- and diaminosulfonic acids as well as mono- and dihydroxyphosphonic acids or mono- and diaminophosphonic acids and their salts such as dimethylolpropionic acid, Dimethylolbutyric acid, hydroxypivalic acid, N- (2-amino-ethyl) -ß-alanine, 2- (2-amino-ethylamino) -ethanesulfonic acid, ethylenediamine propyl or butyl sulfonic acid, 1,2- or 1,3-propylenediamine -D-efyl sulfonic acid, malic acid, citric acid, glycolic acid, lactic acid, glycine, alanine, taurine, lysine, 3,5
  • Preferred ionic or potentially ionic compounds are those which have carboxy or carboxylate and / or sulfonate groups and / or ammonium groups.
  • Particularly preferred ionic compounds are those which contain carboxyl and / or sulfonate groups as ionic or potentially ionic groups, such as the salts of N- (2-aminoethyl) -ß-alanine, the 2- (2-aminoethylamino) ) ethanesulfonic acid or the addition product of IPDI and acrylic acid (EP-A 0 916 647, Example 1) and dimefhylol propionic acid.
  • carboxyl and / or sulfonate groups as ionic or potentially ionic groups, such as the salts of N- (2-aminoethyl) -ß-alanine, the 2- (2-aminoethylamino) ) ethanesulfonic acid or the addition product of IPDI and acrylic acid (EP-A 0 916 647, Example 1) and dimefhylol propionic acid.
  • Suitable nonionically hydrophilizing compounds are e.g. Polyoxyalkylenefher containing at least one hydroxy or amino group. These polyethers contain from 30% by weight to 100% by weight of building blocks which are derived from ethylene oxide. Linear polyethers with a functionality between 1 and 3 are suitable, but also compounds of the general formula (ILT),
  • R 1 and R 2 each independently represent a divalent aliphatic, cycloaliphatic or aromatic radical having 1 to 18 carbon atoms, which can be interrupted by oxygen and / or nitrogen atoms, and
  • R 3 represents an alkoxy-terminated polyethylene oxide radical.
  • Nonionically hydrophilizing compounds are, for example, also monovalent polyalkylene oxide polyether alcohols having a statistical average of 5 to 70, preferably 7 to 55, ethylene oxide units per molecule, as are obtainable in a manner known per se by alkoxylation of suitable starter molecules (for example in Ullmann's Encyclopedia of Industrial Chemistry, 4 Edition, volume 19, Verlag Chemie, Weinheim pp. 31-38).
  • Suitable starter molecules are, for example, saturated monoalcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, sec-butanol, the isomeric pentanols, hexanols, octanols and nonanols, n-decanol, n-dodecanol, n-tetradecanol, n -Hexadecanol, n-octadecanol, cyclohexanol, the isomeric methylcyclohexanols or hydroxymethylcyclohexane, 3-ethyl-3- hydroxymethyloxetane or tetrahydrofurfuryl alcohol, diethylene glycol monoalkyl ethers such as, for example, diethylene glycol monobutyl ether, unsaturated alcohols such as allyl alcohol, 1,1-d
  • Alkylene oxides suitable for the alkoxylation reaction are, in particular, ethylene oxide and propylene oxide, which can be used in the alkoxylation reaction in any order or in a mixture.
  • the polyalkylene oxide polyether alcohols are either pure polyethylene oxide polyethers or mixed polyalkylene oxide polyethers whose alkylene oxide units consist of at least 30 mol%, preferably at least 40 mol%, of ethylene oxide units.
  • Preferred nonionic compounds are monofunctional mixed polyalkylene oxide polyethers which have at least 40 mol% of ethylene oxide and at most 60 mol% of propylene oxide units.
  • a combination of ionic and nonionic hydrophilizing agents according to the definitions of components A4) and A5) is preferably used in the process according to the invention.
  • Combinations of nonionic and anionic hydrophilizing agents are particularly preferred.
  • hydrazine and / or its hydrates are used as component Cl).
  • hydrazine monohydrate is preferred.
  • chain extenders can also be used in component C2). These correspond to the above definitions of the compounds suitable for A2) - A5) with the proviso that the compounds used in C2) have -NH 2 and / or NH groups.
  • component AI 7 to 45% by weight of component AI), 50 to 91% by weight of component A2), 0 to 30% by weight of compounds A3), 0 to 12% by weight of component A4), 0 are preferred in the process according to the invention up to 15% by weight of component A5), 0.1 to 5.0% by weight of Cl) (based on pure hydrazine N 2 H 4 ) and 0 to 15% by weight of C2), the sum of A4 ) and A5) is 0.1 to 27% by weight and the sum of all components adds up to 100% by weight.
  • component AI 10 to 30% by weight of component AI
  • 65 to 90% by weight of component A2), 0 to 10% by weight of component A3), 0 to 10% by weight of component A4), 0 are particularly preferred up to 15% by weight of component A5)
  • 0.1 to 3.0% by weight of Cl) (based on pure hydrazine N 2 H 4 ) and 0 to 10% by weight of C2), the sum of A4 ) and A5) is 0.1 to 25% by weight and the sum of all components adds up to 100% by weight.
  • component AI 8 to 27% by weight of component AI
  • 65 to 85% by weight of component A2) 65 to 85% by weight of component A2)
  • 0 to 8% by weight of component A3) 0 to 10% by weight of component A4)
  • component A4) 8 to 27% by weight of component AI
  • 65 to 85% by weight of component A2) 65 to 85% by weight of component A2)
  • 0 to 8% by weight of component A3) 0 to 10% by weight of component A4)
  • component A4 8 to 27% by weight of component AI
  • 0 to 8% by weight of component A3 0 to 10% by weight of component A4)
  • 0 to 10% by weight of component A4) are very particularly preferred in the process according to the invention.
  • 0 to 15% by weight of component A5) 1.0 to 2.5% by weight of Cl) (based on pure hydrazine N 2 H 4 ), and 0 to 8% by weight of C2)
  • the sum of A4) and A5) is 0.1 to 25% by weight and the sum of the components adds up to 100% by weight
  • the process according to the invention for producing the aqueous PU dispersions can be carried out in one or more stages in a homogeneous phase or, in the case of a multi-stage reaction, in part in the disperse phase.
  • a dispersing, emulsifying or dissolving step is carried out. This may be followed by a further polyaddition or modification in the disperse phase.
  • acetone process known from the prior art or its derivatives can be used to prepare the aqueous PU dispersions.
  • a summary of these methods can be found in methods of organic chemistry (Houben-Weyl, extension and follow-up volumes to the 4th edition, volume E20, H. Bartl and J. Falbe, Stuttgart, New York, Thieme 1987, pp. 1671 - 1682) , The acetone process is preferred.
  • constituents A2) to A5) which must not have any primary or secondary amino groups and polyisocyanate component AI) for the preparation of a polyurethane prepolymer, are usually introduced in whole or in part and, if appropriate, with a water-miscible solvent A6 which is inert to isocyanate groups ) diluted and heated to higher temperatures, preferably in the range from 50 to 120 ° C.
  • Suitable solvents are the customary aliphatic keto-functional solvents such as, for example, acetone or butanone, which can be added not only at the start of the preparation but also, if appropriate, in part later. Acetone and butanone are preferred. It is possible to carry out the reaction under normal pressure or elevated pressure, e.g. B. above the normal pressure boiling point of a solvent such as acetone.
  • the catalysts known for accelerating the isocyanate addition reaction such as, for example, triethylamine, 1,4-diazabicyclo [2,2,2] octane, dibutyltin oxide, tin dioctoate or dibutyltin dilaurate, tin bis (2-ethylhexanoate) or other organometallic compounds are initially introduced or added later.
  • Dibutyltin dilaurate is preferred.
  • the molar ratio of isocyanate groups to groups reactive with isocyanate is 1.0 to 3.5, preferably 1.1 to 3.0, particularly preferably 1.1 to 2.5.
  • the conversion of components AI) - A5) to the prepolymer takes place partially or completely, but preferably completely.
  • the degree of conversion is usually monitored by monitoring the NCO content of the reaction mixture.
  • Spectroscopic measurements e.g. Infrared or near-infrared spectra, determinations of the refractive index as well as chemical analyzes, such as titrations, of samples taken can be carried out. In this way, polyurethane prepolymers which contain free isocyanate groups are obtained in bulk or in solution.
  • the partial or complete salt formation of the anionically and / or cationically dispersing groups takes place.
  • bases such as ammonia, ammonium carbonate or hydrogen carbonate, trimethylamine, triethylamine, tributylamine, diisopropylethylamine, dimethylethanolamine, diethylethanolamine, triethanolamine, potassium hydroxide or sodium carbonate are used, preferably triethylamine, triethanolamine, dimethylethanolamine or diisopropylethylamine.
  • the amount of the bases is between 50 and 100%, preferably between 60 and 90% of the amount of the anionic groups.
  • cationic groups methyl sulfate or succinic acid are used.
  • non-ionically hydrophilized compounds A5) with ether groups are used, the neutralization step is omitted.
  • the neutralization can also take place at the same time as the dispersion, in which the dispersing water already contains the neutralizing agent.
  • a further process step B if not yet or only partially under A), the prepolymer obtained is dissolved using aliphatic ketones such as acetone or butanone.
  • component Cl) and possible NH 2 - and / or NH-functional components C2) are reacted with the remaining isocyanate groups.
  • This chain extension / termination can be carried out either in solvent before dispersion, during dispersion or in water after dispersion.
  • the chain extension of the prepolymers is preferably carried out before the dispersion.
  • the degree of chain extension that is to say the equivalent ratio of NCO-reactive groups of the compounds used for chain extension in C1) and optionally C2) to free NCO groups of the prepolymer, is usually between 40-200%, preferably between 70-180%, particularly preferably between 80 160% and very particularly preferably between 101-150%, Cl) being added in an amount such that at least 40%, preferably at least 50% and particularly preferably at least 70% of the NCO groups are reacted with compounds of component Cl).
  • Monoamines such as e.g. Diethylamine, dibutylamine, ethanolamine, N-methylethanolamine or N, N-diethanolamine can be used.
  • the amine components C1) and optionally C2) can optionally be used in water or solvent-diluted form in the process according to the invention individually or in mixtures, any sequence of addition being possible in principle.
  • the diluent content is preferably 70 to 95% by weight.
  • component C1) with the compounds from C2) in accordance with the definition of A4) is preferably added and only then with the compounds from C2) in accordance with the definitions of A2) and / or A3).
  • the PU dispersions according to the invention are usually produced from the prepolymers after the chain extension (step C)).
  • the dissolved and chain-extended polyurethane polymer is either introduced into the dispersing water, if appropriate with strong shear, such as vigorous stirring, or, conversely, the dispersing water is stirred into the prepolymer solutions.
  • the water is preferably added to the dissolved prepolymer.
  • a further chain extension can be carried out after the dispersion step by adding further amounts of Cl) and C2), but the chain extension is preferably carried out exclusively before the dispersion.
  • the solvent still contained in the dispersions after the dispersing step is usually subsequently removed by distillation. Removal during dispersion is also possible.
  • the dispersions thus obtained have a solids content of 10 to 70% by weight, preferably 25 to 65% by weight and particularly preferably 30 to 65% by weight.
  • the dispersion can be adjusted to a very fine particle size so that it practically looks like a solution, but very coarse particle settings are also possible, which are also sufficiently stable.
  • aqueous PUR dispersions obtainable according to the invention by means of polyacrylates.
  • polyacrylates an emulsion polymerization of olefinically unsaturated monomers, e.g. Esters made from (meth) acrylic acid and alcohols with 1 to 18 carbon atoms, styrene, vinyl esters or butadiene, as described, for example, in DE-A 19 53 348, EP-A 0 167 188, EP-A 0 189 945 and EP-A 0 308 115 is described.
  • these monomers can also contain functional groups such as hydroxyl, epoxy, methylol or acetoacetoxy groups.
  • the PUR dispersions obtainable according to the invention can be used either alone or in combination with other aqueous binders and crosslinking agents for the production of coating compositions.
  • the auxiliaries and additives known per se from lacquer technology such as e.g. nonionic and / or anionic thickeners, fillers, pigments, waxes, grip agents, dyes, solvents, flow control agents and crosslinking agents are used.
  • the use of additives to reduce thermal yellowing in these aqueous coating compositions is in principle possible, but is not preferred.
  • PUR dispersions according to the invention and also aqueous coating compositions based thereon are preferably used in coatings, sizes and adhesives.
  • Such coatings or sizes can be applied to any substrates such as metal, wood, glass, glass fibers, carbon fibers, stone, ceramic minerals, concrete, hard and flexible plastics of various types, blown and non-woven textiles, leather, paper, hard fibers, Straw and bitumen, which may also be provided with conventional primers prior to coating, can be applied and cured.
  • substrates such as metal, wood, glass, glass fibers, carbon fibers, stone, ceramic minerals, concrete, hard and flexible plastics of various types, blown and non-woven textiles, leather, paper, hard fibers, Straw and bitumen, which may also be provided with conventional primers prior to coating, can be applied and cured.
  • the coating materials can be applied in known ways, e.g. by swiping,
  • the paint film can be dried at room temperature or elevated temperature, but also by baking at up to 250 ° C.
  • the PUR dispersions according to the invention can be stored and shipped and can be processed at any later point in time. Depending on the chosen chemical composition of the polyurethane, coatings with different properties are obtained. In this way, soft, sticky layers, thermoplastic and rubber-elastic products of various degrees of hardness up to glass-hard thermosets can be obtained.
  • the binder compositions listed below were applied to test sheets, which had been coated with a commercially available white basecoat from Spies & Hecker, DE, in a wet layer thickness of 120 ⁇ m.
  • the test panels were dried at room temperature for 30 minutes and then baked in the drying cabinet at 170 ° C. for 30 minutes.
  • the color was then measured using the ClELAB method (DLN 5033). The larger the positive b * value determined, the more yellow the coating of the binder composition changed color.
  • Baybond ® PU 401 anionically and non-ionically hydrophilized PUR dispersion with a solids content of 40% and an average particle size of 100 - 300 nm, Bayer AG, Leverkusen, DE)
  • polyester PE 170 HN polyester polyol, OH number 66 mg KOH / g, number average molecular weight 1700 g / mol, Bayer AG, Leverkusen, DE
  • polyether LB 25 monofunctional polyether based on ethylene oxide / propylene oxide Number average molecular weight 2250 g / mol, OH number 25 mg KOH / g, Bayer AG, Leverkusen, DE
  • Desmorapid ® Z dibutyltin dilaurate, Bayer AG, Leverkusen, DE
  • polyester PE 170 polyester polyol, OH number 66 mg KOH / g, number average molecular weight 1700 g / mol, Bayer AG, Leverkusen, DE
  • 67.5 g polyether LB 25 monofunctional ethylene oxide / propylene oxide based polyether number average Molecular weight 2250 g / mol, OH number 25 mg KOH / g, Bayer AG, Leverkusen, DE
  • Desmorapid ® Z dibutyltin dilaurate, Bayer AG, Leverkusen, DE
  • polyester PE 170 HN polyester polyol, OH number 66 mg KOH / g, number average molecular weight 1700 g / mol, Bayer AG, Leverkusen, DE
  • polyether LB 25 monofunctional polyether based on ethylene oxide-Z propylene oxide, number average Molecular weight 2250 g / mol, OH number 25 mg KOH / g, Bayer AG, Leverkusen, DE
  • Desmorapid ® Z dibutyltin dilaurate, Bayer AG, Leverkusen, DE
  • Example 5 1453.5 g polyester PE 170 HN (polyester polyol, OH number 66 mg KOH / g, number average molecular weight 1700 g / mol, Bayer AG, Leverkusen, DE), 64.1 g polyether LB 25 (monofunctional polyether on ethylene oxide - / propylene oxide based number average molecular weight 2250 g / mol, OH number 25 mg KOH / g, Bayer AG, Leverkusen, DE) and 0.1 g Desmorapid ® Z (dibutyltin dilaurate, Bayer AG, Leverkusen, DE) were heated to 65 ° C.
  • polyester PE 170 HN polyester polyol, OH number 66 mg KOH / g, number average molecular weight 1700 g / mol, Bayer AG, Leverkusen, DE
  • 64.1 g polyether LB 25 monofunctional polyether on ethylene oxide - / propylene oxide
  • polyester PE 170 HN polyester polyol, OH number 66 mg KOH / g, number average molecular weight 1700 g / mol, Bayer AG, Leverkusen, DE
  • 66.2 g polyether LB 25 monofunctional polyether based on ethylene oxide-Z propylene oxide, number average Molecular weight 2250 g / mol, OH number 25 mg KOH / g, Bayer AG, Leverkusen, DE
  • Desmorapid ® Z dibutyltin dilaurate, Bayer AG, Leverkusen, DE
  • PolyTHF 2000 polyether based on tetrahydrofuran, OH number 56 mg KOH / g, number average molecular weight 2000 g / mol, BASF AG, DE
  • 16.7 g polyether LB 25 monofunctional polyether based on ethylene oxide / propylene oxide Number average molecular weight 2250 g / mol, OH number 25 mg KOH / g, Bayer AG, Leverkusen, DE
  • Desmorapid ® Z dibutyltin dilaurate, Bayer AG, Leverkusen, DE
  • Aqueous polyurethane dispersion according to DE-A 32 38 169, example 2 prepared using a prepolymer mixing process. Chain extension was also done with hydrazine hydrate.
  • the b * values show that films from comparative dispersions 1, 8 and 9 have higher initial values in relation to yellowing than those from the dispersions according to the invention and, due to the high tendency to yellowing, have significantly greater yellowing after thermal stress.

Abstract

Die Erfindung betrifft neue gegenüber Thermovergilbung stabilisierte, wässrige Polyurethan-Polyharnstoff Dispersionen mit exzellenten mechanischen Eigenschaften sowie deren Herstellung und Verwendung.

Description

Ther overgilbungsstabile Polyurethan-Polyharnstoff Dispersionen
Die Erfindung betrifft neue gegenüber Thermovergilbung stabilisierte, wässrige Polyurethan-Polyharnstoff Dispersionen mit exzellenten mechanischen Eigenschaften sowie deren Herstellung und Verwendung.
Bei der Beschichtung von Substraten werden zunehmend wässrige Bindemittel, insbesondere Polyurethan-Polyharnstoff (PUR)-Dispersionen verwendet. Die Herstellung von wässrigen PUR- Dispersionen ist grundsätzlich bekannt. Die verschiedenen Möglichkeiten zur Herstellung solcher Dispersionen wurden z.B. von D. Dieterich in einem Übersichtsartikel zusammengefasst (D. Dieterich, Prog. Org. Coatings 9, 281 (1981)).
Zur Aushärtung und Vernetzung solcher Beschichtungen werden allerdings zum Teil hohe Temperaturen benötigt, die zu einer unerwünschten Vergilbung der Beschichtung führen. Dieses Problem der Thermovergilbung konnte bisher noch nicht in befriedigender Weise gelöst werden.
Auch im Bereich der Beschlichtung von Glasfasern kommen als wässrige Bindemittel PUR- Dispersionen zum Einsatz. Bedingt durch die vergleichsweise hohen Temperaturen bei den Be- schichtungs- und Trocknungsprozessen sowie bei der Eincompoundierung der beschlichteten Glasfaser in eine Kunststoffmatrix, die z. T. deutlich mehr als 200°C betragen können, kommt es oftmals zu unerwünschter Thermovergilbung der hergestellten Beschichtungen.
Aus dem Stand der Technik sind zahlreiche Stabilisatoren und Additive bekannt, die eine Thermovergilbung von Bindemitteln verringern können. Diese Systeme haben im Bereich wässriger PUR- Dispersion allerdings eine nur unzureichende vergilbungshemmende Wirkung oder führen zu schlechteren anwendungstechnischen Eigenschaften der Dispersionen und Beschichtungen wie schlechteres Zug-Dehnungsverhalten oder schlechte Verträglichkeiten gegenüber anderen Lackbzw. Schlichtekomponenten. Ferner neigen die bekannten Additive zu Migration aus den hergestellten Beschichtungen, so dass im Laufe der Zeit unerwünschtes Fogging und eine nachlassende Vergilbungsstabilisierung eintreten.
US-A 5,137,967 beschreibt die Herstellung thermovergilbungsstabiler, carboxylathaltiger PUR- Dispersionen, die nach dem sogenannten Prepolymer-Mischverfahren hergestellt werden. Zur Vergilbungsstabilisierung wird Hydrazin zur Kettenverlängerung des Prepolymers und Dimethyl- aminoefhanol (DMAE) als Neutralisationsamin für die Carbonsäuregruppen verwendet.
In der DE 32 38 169 wird ein Verfahren zur Herstellung von PUR-Dispersionen beschrieben, bei dem Hydrazin oder Hydrazide als Additive oder als Kettenverlängerer eingesetzt wird. Es werden ausschließlich anionische, carboxylatfunktionelle PUR-Dispersionen nach dem Prepolymer-Misch- verfahren beschrieben.
Die genannten Wege zur Vergilbungsstabilisierung stellen zwar eine Verbesserung jedoch keine befriedigende Lösung der Vergilbungsproblematik dar.
Grundsätzlich sind Hydrazine und Hydrazide als Kettenverlängerer in Polyurethanen beispielsweise aus US-A 4 147 679 oder DE-A 23 14 513 bekannt. Zum Teil werden sie auch in Mischungen mit anderen Kettenverlängerern wie Diaminen eingesetzt (US-A 3 415 768). Sie dienen zur Verbesserung von Flexibilität, Härte, Beständigkeit und Trocknung der Beschichtungen.
Die Aufgabe der vorliegenden Erfindung bestand nun in der Bereitstellung von PUR-Dispersionen, die gegenüber Thermovergilbung ausreichend stabilisiert sind, über exzellente mechanische Eigenschaften verfügen und darüber hinaus in/oder als 1K- bzw. 2K-Bindemittel in Lacken, Schlichten und Beschichtungen sehr gut verträglich sind.
Es wurde nun gefunden, dass PUR-Dispersionen, die die genannten Eigenschaften erfüllen durch ein spezielles nachfolgend beschriebenes Verfahren unter Verwendung von Hydrazinen als Kettenverlängerer hergestellt werden können.
Gegenstand der Erfindung ist ein Verfahren zur Herstellung wässriger Polyurethan-Polyharnstoff- dispersionen (PUR-Dispersionen), bei dem
A) zunächst ein NCO-gruppenhaltiges Polyurethanprepolymer durch Umsetzung von AI) Polyisocyanaten mit
A2) polymeren Polyolen und/oder Polyaminen mit zahlenmittleren Molekulargewichten von 400 bis 8 000 g mol,
A3) gegebenenfalls niedermolekularen Verbindungen mit zahlenmittleren Molekulargewichten von 17 - 400 g/mol ausgewählt aus der Gruppe bestehend aus Mono- und Polyalkoholen, Mono- und Polyaminen sowie Aminoalkoholen,
A4) isocyanatreaktiven, ionisch oder potentiell ionisch hydrophilierenden Verbindungen und/oder
A5) isocyanatreaktiven nichtionisch hydrophilierenden Verbindungen A6) gegebenenfalls in aliphatischen Ketonen als Lösemittel mit der Maßgabe hergestellt wird, dass in keiner der Komponenten AI) bis A5) primäre oder sekundäre Aminogruppen enthalten sind,
B) das aus Schritt A) erhaltene Prepolymer entweder in aliphatischen Ketonen gelöst oder, so- fern die Herstellung bereits in Anwesenheit von A6) durchgeführt wurde, die Prepolymer- lösung gegebenenfalls durch weitere Zugabe aliphatischer Ketone verdünnt wird und
C) die noch freien NCO-Gruppen des Prepolymers mit einer Kettenverlängerungskomponente enthaltend
Cl) Hydrazin und/oder Hydrazinhydrat und C2) gegebenenfalls Verbindungen entsprechend der Definition der Komponenten A2), A3), A4) und oder A5) mit der Maßgabe umgesetzt werden, dass
• die Verbindungen der Komponente C2) primäre und/oder sekundäre Aminogruppen aufweisen,
» die Gesamtmengen von Cl) und C2) so bemessen sind, dass ein rechnerischer Kettenverlängerungsgrad von 40 bis 200 % erreicht wird und
• das Mengenverhältnis von Cl) und C2) so bemessen ist, dass mindestens 40 % der freien Isocyanatgruppen mit Aminogruppen aus der Komponente Cl) kettenverlängert bzw. terminiert werden.
Ein weiterer Gegenstand der Erfindung sind die PUR-Dispersionen erhältlich nach diesem Verfahren.
Geeignete Polyisocyanate der Komponente AI) sind die dem Fachmann an sich bekannten aromatischen, araliphatischen, aliphatischen oder cycloaliphatischen Polyisocyanate, welche auch Iminooxadiazindion-, Isocyanurat-, Uretdion-, Urethan-, Allophanat-, Biuret-, Harnstoff-, Oxadiazintrion, Oxazolidinon-, Acylharnstoff- und/oder Carbodiimid-Strukturen aufweisen können. Diese können in AI) einzeln oder in beliebigen Mischungen untereinander eingesetzt werden. Beispiele für geeignete aromatische, araliphatische, aliphatische oder cycloaliphatische Polyisocyanate sind durch Phosgenierung oder nach phosgenfreien Verfahren, beispielsweise durch thermische Urethanspaltung, zugängliche Di- bzw. Triisocyanate des Molekulargewichtsbereichs 140 bis 400 g/mol mit aliphatisch, cycloaliphatisch, araliphatisch und/oder aromatisch gebundenen Isocyanatgruppen, wie 1,4-Diisocyanatobutan, 1,5-Diisocyanatopentan, 1,6-Diisocyanatohexan (HDI), 2-Methyl-l,5-diisocyanatopentan, l,5-Diisocyanato-2,2-dimethylpentan, 2,2,4- bzw. 2,4,4- Trimethyl-l,6-diisocyanatohexan, 1,10-Diisocyanatodecan, 1,3- und 1,4-Diisocyanatocyclohexan, 1,3- und l,4-Bis-(isocyanatomethyl)-cyclohexan, l-Isocyanato-3,3,5-trimethyl-5-isocyanatomethyl- cyclohexan (Isophorondiisocyanat, IPDI), 4,4'-Diisocyanatodicyclohexylmefhan (Desmodur® W, Bayer AG, Leverkusen), 4-Isocyanatomethyl-l,8-octandiisocyanat (Triisocyanatononan, TLN), ω,ω'-Diisocyanato-l,3-dimethylcyclohexan (HeXDI), l-Isocyanato-l-methyl-3-isocyanato-methyl- cyclohexan, 1 -Isocyanato- 1 -methyl-4-isocyanato-methylcyclohexan, Bis-(isocyanatomethyl)-nor- bornan, 1,5-Naphthalen-diisocyanat, 1,3- und l,4-Bis-(2-isocyanato-prop-2-yl)-benzol (TMXDT), 2,4- und 2,6-Diisocyanatotoluol (TDI) insbesondere das 2,4 und das 2,6-Isomere und technische Gemische der beiden Isomeren, 2,4'- und 4,4'-Diisocyanatodiphenylmethan (MDI), 1,5- Diisocyanatonaphthalin, l,3-Bis(isocyanato-methyl)benzol (XDI) sowie beliebige Mischungen genannter Verbindungen.
Bevorzugt werden in AI ) Polyisocyanate oder Polyisocyanatgemische der vorstehend genannten Art mit ausschließlich aliphatisch und/oder cycloaliphatisch gebundenen Isocyanatgruppen eingesetzt.
Besonders bevorzugt sind Hexamethylendiisocyanat, Isophorondiisocyanat und die isomeren Bis- (4,4'-isocyanatocyclohexyl)methane sowie deren Mischungen.
Wesentlich ist, dass zur Prepolymerherstellung nur solche Verbindungen in A2) - A5) eingesetzt werden, die keine primären und/oder sekundären Aminofunktionen aufweisen. Im Rahmen der Kettenverlängerung hingegen können in C2) Verbindungen eingesetzt werden, die den Definitionen der Komponenten A2) - A5) entsprechen, zusätzlich aber primäre und/oder sekundäre Aminogruppen aufweisen.
Polymere Polyole oder Polyamine entsprechend der Definition der Komponente A2) stammen typischerweise aus der Gruppe der Polyacrylate, Polyester, Polylactone, Polyether, Polycarbonate, Polyestercarbonate, Polyacetale, Polyolefine und Polysiloxane und verfügen bevorzugt über eine Funktionalität bezogen auf gegenüber NCO-Gruppen reaktiven Funktionalitäten von 1,5 bis 4.
Besonders bevorzugt sind polymere Polyole der vorstehend genannten Art mit einem zahlenmittleren Molekulargewicht von 600 bis 2 500 g/mol und mit einer OH-Funktionalität von 2 bis 3. Hydroxylgruppen aufweisende Polycarbonate entsprechend der Definition der Komponente A2) sind durch Reaktion von Kohlensäurederivaten, z.B. Diphenylcarbonat, Dimethylcarbonat oder Phosgen mit Diolen erhältlich.
Als derartige Diole kommen z.B. Ethylenglykol, 1,2- und 1,3-Propandiol, 1,3- und 1,4-Butandiol, 1,6-Hexandiol, 1,8-Octandiol, Neopentylglykol, 1 ,4-Bishydroxymethylcyclohexan, 2-Methyl-l,3- propandiol, 2,2,4-Trimethylpentandiol-l,3, Dipropylenglykol, Polypropylenglykole, Dibutylen- glykol, Polybutylenglykole, Bisphenol A, Tetrabrombisphenol A aber auch Lacton-modifizierte Diole in Frage. Bevorzugt enthält die Diolkomponente 40 bis 100 Gew.-% Hexandiol, bevorzugt 1,6-Hexandiol und/oder Hexandiol-Derivate, besonders bevorzugt solche Derivate, die neben end- ständigen OH-Gruppen Ether- oder Estergruppen aufweisen, wie Produkte, die durch Umsetzung von 1 Mol Hexandiol mit mindestens 1 Mol, bevorzugt 1 bis 2 Mol Caprolacton gemäß der DE-A 17 70 245 oder durch Veretherung von Hexandiol mit sich selbst zum Di- oder Trihexylenglykol erhalten wurden. Die Herstellung solcher Derivate ist z.B. aus der DE-A 15 70 540 bekannt. Auch die in der DE-A 37 17060 beschriebenen Polyether-Polycarbonatdiole können eingesetzt werden.
Die Hydroxylpolycarbonate sind bevorzugt linear, können jedoch gegebenenfalls durch den Einbau polyfunktioneller Komponenten, insbesondere niedermolekularer Polyole, verzweigt werden. Hierzu eignen sich beispielsweise Glycerin, Trimethylolpropan, Hexantriol- 1,2,6, Butantriol- 1,2,4, Trimethylolpropan, Pentaerythrit, Chinit, Mannit, und Sorbit, Methylglykosid, 1,3,4,6-Dianhydro- hexite.
Als Polyetherpolyole entsprechend der Definition der Komponente A2) geeignet sind die in der Polyurethanchemie an sich bekannten Polytetramethylenglykolpolyether, die z.B. über Polymerisation von Tetrahydrofuran durch kationische Ringöffnung hergestellt werden können.
Darüber hinaus geeignete Polyetherpolyole sind Polyether, wie die unter Verwendung von Startermolekülen hergestellten Polyole aus Styroloxid, Propylenoxid, Butylenoxide oder Epichlorhydrins, insbesondere des Propylenoxids.
Als Polyesterpolyole entsprechend der Definition der Komponente A2) geeignet sind z.B. Umsetzungsprodukte von mehrwertigen, bevorzugt zweiwertigen und gegebenenfalls zusätzlich dreiwertigen Alkoholen mit mehrwertigen, bevorzugt zweiwertigen Carbonsäuren. Anstelle der freien Polycarbonsäuren können auch die entsprechenden Polycarbonsäureanhydride oder entsprechende Polycarbonsäureester von niedrigen Alkoholen oder deren Gemische zur Herstellung der Polyester verwendet werden. Die Polycarbonsäuren können aliphatischer, cycloaliphatischer, aromatischer und/oder heterocyclischer Natur sein und gegebenenfalls, z.B. durch Halogenatome substituiert und/oder ungesättigt, sein. Im erfindungsgemäßen Verfahren können Verbindungen entsprechend der Definition der Komponente A3) zur Terminierung des Polyurethan-Prepolymers zugesetzt werden.
Hierzu geeignete Verbindungen sind beispielsweise aliphatische Monoalkohole oder Monoamine des genannten Molekulargewichtsbereichs mit 1 bis 18 C-Atomen, wie z.B. Ethanol, n-Butanol, Ethylenglykol-monobutylether, 2-Ethylhexanol, 1-Octanol, 1-Dodecanol, 1-Hexadecanol, Diethyl- amin, Dibutylamin, Ethanolamin, N-Methylethanolamin, N,N-Diethanolamin, Amine der Jeffamin® M-Reihe (Huntsman Corp. Europe, Belgien) oder aminofunktionelle Polyethylenoxide und Polypropylenoxide.
Darüber hinaus können Polyole, Aminopolyole oder Polyamine mit einem zahlenmittleren Molekulargewicht unter 400 g/mol im erfindungsgemäßen Verfahren eingesetzt werden. Beispielhaft zu nennen sind:
a) Alkandiole bzw. -triole, wie Ethandiol, 1,2- und 1,3-Propandiol, 1,4- und 2,3-Butandiol, 1,5-Pentandiol, 1,3 Dimethylpropandiol, 1,6-Hexandiol, Neopentylglykol, 1,4-Cyclohexan- dimethanol, 2-Methyl-l,3-propandiol, 2-Ethyl-2-butylpropandiol, Trimethylpentandiol, stellungsisomere Diethyloctandiole, 1,2- und 1,4-Cyclohexandiol, hydriertes Bisphenol A [2,2-Bis(4-hydroxycyclohexyl)propan], 2,2-Dimethyl-3-hydroxypropionsäure-(2,2-di- methyl-3-hydroxypropylester), Trimethylolethan, Trimethylol-propan oder Glycerin,
b) Etherdiole, wie Diethylendiglykol, Triethylenglykol, Tetraethylenglykol, Dipropylen- glykol, Tripropylenglykol, 1,3-Butylenglykol oderHydrochinon-dihydroxyethylether,
c) Esterdiole der allgemeinen Formeln (I) und (H),
HO-(CH2)x-CO-0-(CH2)y-OH (T), HO-(CH2)x-0-CO-R-CO-0(CH2)x-OH (IT), in welchen
R ein Alkylen- oder Arylenrest mit 1 bis 10 C-Atomen, bevorzugt 2 bis 6 C-Atomen, x 2 bis 6 und y 3 bis 5 ist, wie z.B. δ-Hydroxybutyl-ε-hydroxy-capronsäureester, ω-Hydroxyhexyl-γ- hydroxybutter- säureester, Adipinsäure-(ß-hydroxyethyl)ester und Terephthal-säure-bis(ß-hydroxy-ethyl)- ester und d) Di- und Polyamine wie z.B. 1,2-Diaminoethan, 1,3 Diaminopropan, 1,6-Diaminohexan, 1,3- und 1,4-Phenylendiamin, 4,4'-Diphenylmethandiamin, Isophorondiamin, Isomerengemisch von 2,2,4- und 2,4,4-Trimethylhexa-methylendiamin, 2-Methyl-pentamethylen- diamin, Diethylen-triamin, 1,3- und 1,4-Xylylendiamin, α,α,α',α'-Tetramethyl-l,3- und -1,4-xylylendiamin, 4,4-Diaminodicyclohexylmethan, aminofunktionelle Polyethylenoxide oder Polypropylenoxide, die unter dem Namen Jeffamin®, D-Reihe (Fa. Huntsman Corp. Europe, Belgien) erhältlich sind, Diethylentriamin und Triethylentetramin. Als Diamine im Sinne der Erfindung sind auch substituierte Hydrazine geeignet, wie z.B. N-Methyl- hydrazin, N,N'-Dimethylhydrazin und deren Homologe sowie Säuredihydrazide der Adipinsäure, ß-Methyladipinsäure, Sebacinsäure, Hydracrylsäure und Terephthalsäure, Semicarbazido-alkylenhydrazide, wie z.B. ß-Semicarbazidopropionsäurehydrazid (z.B. beschrieben in der DE-A 1770 591), Semicarbazidoalkylen-carbazinester, wie z.B. 2-Semi- carbazidoethylcarbazinester (z.B. beschrieben in der DE-A 19 18 504) oder auch Amino- semicarbazid- Verbindungen, wie z.B. ß-Aminoethylsemicarbazido-carbonat (z.B. be- schrieben in der DE-A 1902 931).
Unter ionisch bzw. potentiell ionisch hydrophilierenden Verbindungen werden sämtliche Verbindungen verstanden, die mindestens eine isocyanatreaktive Gruppe sowie mindestens eine Funktionalität, wie z.B. -COOY, -S03Y, -PO(OY)2 (Y beispielsweise = H, NH4 +, Metallkation), -NR2, -NR3 + (R = H, Alkyl, Aryl), aufweisen, die bei Wechselwirkung mit wässrigen Medien ein ggf. pH-Wert-abhängiges Dissoziationsgleichgewicht eingeht und auf diese Weise negativ, positiv oder neutral geladen sein kann.
Bevorzugte isocyanatreaktive Gruppen sind Hydroxyl- oder Aminogruppen.
Geeignete ionisch oder potentiell ionisch hydrophilierende Verbindungen entsprechend der Definition der Komponente A4 sind z.B. Mono- und Dihydroxycarbonsäuren, Mono- und Diaminocarbonsäuren, Mono- und Dihydroxysulfonsäuren, Mono- und Diaminosulfonsäuren sowie Mono- und Dihydroxyphosphonsäuren oder Mono- und Diaminophosphonsäuren und ihre Salze wie Dimethylolpropionsäure, Dimethylolbuttersäure, Hydroxypivalinsäure, N-(2-Amino- ethyl)-ß-alanin, 2-(2-Amino-ethylamino)-ethansulfonsäure, Ethylendiamin-propyl- oder -butyl- sulfonsäure, 1,2- oder 1,3-Propylendiamin-D-efhylsulfonsäure, Äpfelsäure, Zitronensäure, Glykol- säure, Milchsäure, Glycin, Alanin, Taurin, Lysin, 3,5-Diaminobenzoesäure, ein Additionsprodukt von IPDI und Acrylsäure (EP-A 0 916 647, Beispiel 1) und dessen Alkali- und/oder Ammoniumsalze; das Addukt von Natriumbisulfit an Buten-2-diol-l,4, Polyethersulfonat, das propoxylierte Addukt aus 2-Butendiol und NaHS03, z.B. beschrieben in der DE-A 2446 440 (Seite 5-9, Formel I-1TJ) sowie Verbindungen, die in kationische Gruppen überführbare, z.B. amin-basierende, Bausteine wie N-Methyl-diethanolamin als hydrophile Aufbaukomponenten enthalten. Weiterhin kann Cyclohexylaminopropansulfonsäure (CAPS) wie z.B. in der WO 01/88006 als Verbindung entsprechend der Definition der Komponente A4) verwendet werden.
Bevorzugte ionische oder potentiell ionische Verbindungen sind solche, die über Carboxy- oder Carboxylat- und/oder Sulfonatgruppen und/oder Ammoniumgruppen verfügen.
Besonders bevorzugte ionische Verbindungen sind solche, die Carboxyl- und/oder Sulfonatgruppen als ionische oder potentiell ionische Gruppen enthalten, wie die Salze von N-(2-Amino- ethyl)-ß-alanin, der 2-(2-Amino-ethylamino-)ethansulfonsäure oder des Additionsproduktes von IPDI und Acrylsäure (EP-A 0 916 647, Beispiel 1) sowie der Dimefhylolpropionsäure.
Geeignete nichtionisch hydrophilierende Verbindungen entsprechend der Definition der Komponente A5) sind z.B. Polyoxyalkylenefher, die mindestens eine Hydroxy- oder Aminogruppe enthalten. Diese Polyether enthalten einen Anteil von 30 Gew.-% bis 100 Gew.-% an Bausteinen, die vom Ethylenoxid abgeleitet sind. In Frage kommen linear aufgebaute Polyether einer Funktionalität zwischen 1 und 3, aber auch Verbindungen der allgemeinen Formel (ILT),
in welcher
R1 und R2 unabhängig voneinander jeweils einen zweiwertigen aliphatischen, cyclo- aliphatischen oder aromatischen Rest mit 1 bis 18 C-Atomen, die durch Sauerstoff und/oder Stickstoffatome unterbrochen sein können, bedeuten und
R3 für einen alkoxyterminierten Polyethylenoxidrest steht.
Nichtionisch hydrophilierende Verbindungen sind beispielsweise auch einwertige, im statistischen Mittel 5 bis 70, bevorzugt 7 bis 55 Ethylenoxideinheiten pro Molekül aufweisende Polyalkylen- oxidpolyetheralkohole, wie sie in an sich bekannter Weise durch Alkoxylierung geeigneter Startermoleküle zugänglich sind (z.B. in Ullmanns Encyclopädie der technischen Chemie, 4. Auflage, Band 19, Verlag Chemie, Weinheim S. 31-38).
Geeignete Startermoleküle sind beispielsweise gesättigte Monoalkohole wie Methanol, Ethanol, n- Propanol, Isopropanol, n-Butanol, Isobutanol, sec-Butanol, die isomeren Pentanole, Hexanole, Octanole und Nonanole, n-Decanol, n-Dodecanol, n-Tetradecanol, n-Hexadecanol, n-Octadecanol, Cyclohexanol, die isomeren Methylcyclohexanole oder Hydroxymethylcyclohexan, 3-Ethyl-3- hydroxymethyloxetan oder Tetrahydrofurfurylalkohol, Diethylenglykol-monoalkylether wie beispielsweise Diethylenglykolmonobutylefher, ungesättigte Alkohole wie Allylalkohol, 1,1-Di- methylallylalkohol oder Oleinalkohol, aromatische Alkohole wie Phenol, die isomeren Kresole oder Mefhoxyphenole, araliphatische Alkohole wie Benzylalkohol, Anisalkohol oder Zimtalkohol, sekundäre Monoamine wie Dimethylamin, Diethylamin, Dipropylamin, Diisopropylamin, Dibutyl- amin, Bis-(2-ethylhexyl)-amin, N-Methyl- und N-Ethylcyclohexylamin oder Dicyclohexylamin sowie heterocyclische sekundäre Amine wie Morpholin, Pyrrolidin, Piperidin oder lH-Pyrazol. Bevorzugte Startermoleküle sind gesättigte Monoalkohole. Besonders bevorzugt wird Diethylen- glykolmonobutylether als Startermolekül verwendet.
Für die Alkoxylierungsreaktion geeignete Alkylenoxide sind insbesondere Ethylenoxid und Propylenoxid, die in beliebiger Reihenfolge oder auch im Gemisch bei der Alkoxylierungsreaktion eingesetzt werden können.
Bei den Polyalkylenoxidpolyetheralkoholen handelt es sich entweder um reine Polyethylenoxid- polyether oder gemischte Polyalkylenoxidpolyether, deren Alkylenoxideinheiten zu mindestens 30 mol-%, bevorzugt zu mindestens 40 mol-% aus Ethylenoxideinheiten bestehen. Bevorzugte nichtionische Verbindungen sind monofunktionelle gemischte Polyalkylenoxidpolyether, die mindestens 40 mol-% Ethylenoxid- und maximal 60 mol-% Propylenoxideinheiten aufweisen.
Im erfindungsgemäßen Verfahren wird bevorzugt eine Kombination aus ionischen und nichtionischen Hydrophilierungsmitteln entsprechend den Definitionen der Komponenten A4) und A5) verwendet. Besonders bevorzugt sind Kombinationen aus nichtionischen und anionischen Hydrophilierungsmitteln.
Zur Kettenverlängerung in Schritt C) werden Hydrazin und/oder dessen Hydrate als Komponente Cl) eingesetzt. Bevorzugt ist die Verwendung von Hydrazin-Monohydrat.
Falls gewünscht können in Komponente C2) auch weitere Kettenverlängerer eingesetzt werden. Diese entsprechen den vorstehenden Definitionen der für A2) - A5) geeigneten Verbindungen mit der Maßgabe, dass die in C2) eingesetzten Verbindungen -NH2 und/oder NH-Gruppen aufweisen.
Bevorzugt werden im erfindungsgemäßen Verfahren 7 bis 45 Gew.-% Komponente AI), 50 bis 91 Gew.-% Komponente A2), 0 bis 30 Gew.-% Verbindungen A3), 0 bis 12 Gew.-% Komponente A4), 0 bis 15 Gew.-% Komponente A5), 0,1 bis 5,0 Gew.-% Cl) (bezogen auf reines Hydrazin N2H4) und 0 bis 15 Gew.-% C2) eingesetzt, wobei die Summe von A4) und A5) 0,1 bis 27 Gew.-% beträgt und sich die Summe aller Komponenten zu 100 Gew.-% addiert. Besonders werden im erfindungsgemäßen Verfahren 10 bis 30 Gew.-% Komponente AI), 65 bis 90 Gew.-% Komponente A2), 0 bis 10 Gew.-% Komponente A3), 0 bis 10 Gew.-% Komponente A4), 0 bis 15 Gew.-% Komponente A5), 0,1 bis 3,0 Gew.-% Cl) (bezogen auf reines Hydrazin N2H4) und 0 bis 10 Gew.-% C2) eingesetzt, wobei die Summe von A4) und A5) 0,1 bis 25 Gew.-% beträgt und sich die Summe aller Komponenten zu 100 Gew.-% addiert.
Ganz besonders bevorzugt werden im erfindungsgemäßen Verfahren 8 bis 27 Gew.-% Komponente AI), 65 bis 85 Gew.-% Komponente A2), 0 bis 8 Gew.-% Komponente A3), 0 bis 10 Gew.-% Komponente A4), 0 bis 15 Gew.-% Komponente A5), 1,0 bis 2,5 Gew.-% Cl) (bezogen auf reines Hydrazin N2H4), und 0 bis 8 Gew.-% C2) eingesetzt, wobei die Summe von A4) und A5) 0,1 bis 25 Gew.-% beträgt und sich die Summe der Komponenten zu 100 Gew.-% addiert.
Das erfindungsgemäße Verfahren zur Herstellung der wässrigen PUR-Dispersionen kann in einer oder mehreren Stufen in homogener, oder bei mehrstufiger Umsetzung, teilweise in disperser Phase durchgeführt werden. Nach vollständig oder teilweise durchgeführter Polyaddition aus AI) - A5) erfolgt ein Dispergier-, Emulgier- oder Lösungsschritt. Im Anschluss erfolgt gegebenenfalls eine weitere Polyaddition oder Modifikation in disperser Phase.
Zur Herstellung der wässrigen PUR-Dispersionen kann das aus dem Stand der Technik bekannte Aceton-Verfahren oder Abkömmlinge davon verwendet werden. Eine Zusammenfassung dieser Methoden findet sich in Methoden der organischen Chemie (Houben-Weyl, Erweiterungs- und Folgebände zur 4. Auflage, Band E20, H. Bartl und J. Falbe, Stuttgart, New York, Thieme 1987, S. 1671 - 1682). Bevorzugt ist das Aceton-Verfahren.
Üblicherweise werden im Verfahrensschritt A) die Bestandteile A2) bis A5), die keine primären oder sekundären Aminogruppen aufweisen dürfen und die Polyisocyanatkomponente AI) zur Herstellung eines Polyurethan-Prepolymers ganz oder teilweise vorgelegt und gegebenenfalls mit einem mit Wasser mischbaren aber gegenüber Isocyanatgruppen inerten Lösungsmittel A6) verdünnt und auf höhere Temperaturen, bevorzugt im Bereich von 50 bis 120°C, aufgeheizt.
Geeignete Lösungsmittel sind die üblichen aliphatischen ketofunktionellen Lösemittel wie z.B. Aceton, Butanon, die nicht nur zu Beginn der Herstellung, sondern gegebenenfalls in Teilen auch später zugegeben werden können. Bevorzugt sind Aceton und Butanon. Es ist möglich, die Reaktion unter Normaldruck oder erhöhtem Druck, z. B. oberhalb der Normaldruck-Siedetemperatur eines Lösungsmittels wie z.B. Aceton durchzuführen. Weiterhin können im erfϊndungsgemäßen Verfahren die zur Beschleunigung der Isocyanat- additionsreaktion bekannten Katalysatoren, wie z.B. Triethylamin, l,4-Diazabicyclo-[2,2,2]-octan, Dibutylzinnoxid, Zinndioktoat oder Dibutylzinndilaurat, Zinn-bis-(2-ethylhexanoat) oder andere metallorganischen Verbindungen mit vorgelegt oder später zudosiert werden. Bevorzugt ist Dibutylzinndilaurat.
Anschließend werden die gegebenenfalls zu Beginn der Reaktion noch nicht zugegebenen Bestandteile von AI) - A5) zudosiert.
Bei der Herstellung des Polyurethan-Prepolymeren in Schritt A) beträgt das Stoffmengenverhältnis von Isocyanatgruppen zu mit Isocyanat reaktiven Gruppen 1,0 bis 3,5, bevorzugt 1,1 bis 3,0, besonders bevorzugt 1 , 1 bis 2,5.
Die Umsetzung der Komponenten AI) - A5) zum Prepolymer erfolgt teilweise oder vollständig, bevorzugt aber vollständig. Der Umsetzungsgrad wird üblicherweise durch Verfolgung des NCO- Gehalts der Reaktionsmischung überwacht. Dazu können sowohl spektroskopische Messungen, z.B. Infrarot- oder Nahinfrarot-Spektren, Bestimmungen des Brechungsindex als auch chemische Analysen, wie Titrationen, von entnommenen Proben vorgenommen werden. Es werden so Poly- urethan-Prepolymere, die freie Isocyanatgruppen enthalten, in Substanz oder in Lösung erhalten.
Nach oder während der Herstellung der Polyurethan-Prepolymere aus AI) und A2) bis A5) erfolgt, falls dies noch nicht in den Ausgangsmolekülen durchgeführt wurde, die teilweise oder vollständige Salzbildung der anionisch und/oder kationisch dispergierend wirkenden Gruppen. Im Falle anionischer Gruppen werden dazu Basen wie Ammoniak, Ammoniumcarbonat oder -hydrogencarbonat, Trimethylamin, Triethylamin, Tributylamin, Diisopropylethylamin, Dimethyl- ethanolamin, Diethylethanolamin, Triethanolamin, Kaliumhydroxid oder Natriumcarbonat eingesetzt, bevorzugt Triethylamin, Triethanolamin, Dimethylethanolamin oder Diisopropylethylamin.
Die Stoffmenge der Basen liegt zwischen 50 und 100 %, bevorzugt zwischen 60 und 90 % der Stoffmenge der anionischen Gruppen. Im Falle kationischer Gruppen werden Schwefelsäuredi- methylester oder Bernsteinsäure eingesetzt. Werden nur nichtionisch hydrophilierte Verbindungen A5) mit Ethergruppen verwendet, entfällt der Neutralisationsschritt. Die Neutralisation kann auch gleichzeitig mit der Dispergierung erfolgen, in dem das Dispergierwasser bereits das Neutralisationsmittel enthält.
Im Anschluss wird in einem weiteren Verfahrensschritt B), falls noch nicht oder nur teilweise unter A) geschehen das erhaltene Prepolymer mit Hilfe von aliphatischen Ketonen wie Aceton oder Butanon gelöst. Im Verfahrensschritt C) werden die Komponente Cl) sowie mögliche NH2- und/oder NH- funktionelle Komponenten C2) mit den noch verbliebenen Isocyanatgruppen umgesetzt. Diese Kettenverlängerung/-terminierung kann dabei entweder in Lösungsmittel vor dem Dispergieren, während des Dispergierens oder in Wasser nach dem Dispergieren durchgeführt werden.
Werden zur Kettenverlängerung in C2) Verbindungen entsprechend der Definition von A4) mit NH2- oder NH-Gruppen eingesetzt, erfolgt die Kettenverlängerung der Prepolymere bevorzugt vor der Dispergierung.
Der Kettenverlängerungsgrad, also das Äquivalentverhältnis von NCO-reaktiven Gruppen der zur Kettenverlängerung in Cl) und ggf. C2) eingesetzten Verbindungen zu freien NCO-Gruppen des Prepolymers liegt üblicherweise zwischen 40 - 200 %, bevorzugt zwischen 70 - 180 %, besonders bevorzugt zwischen 80 - 160 % und ganz besonders bevorzugt zwischen 101 - 150 %, wobei Cl) in einer Menge zuzusetzen ist, dass mindestens 40 %, bevorzugt mindestens 50 % und besonders bevorzugt mindestens 70 % der NCO-Gruppen mit Verbindungen der Komponente Cl) umgesetzt sind.
Auch für die Terminierung des Prepolymers können in C2) auch Monoamine wie z.B. Diethylamin, Dibutylamin, Ethanolamin, N-Methylethanolamin oder N,N-Diethanolamin verwendet werden.
Die aminischen Komponenten Cl) und ggf. C2) können gegebenenfalls in wasser- oder lösemittelverdünnter Form im erfindungsgemäßen Verfahren einzeln oder in Mischungen eingesetzt werden, wobei grundsätzlich jede Reihenfolge der Zugabe möglich ist.
Wenn Wasser oder organische Lösemittel als Verdünnungsmittel mitverwendet werden so beträgt der Verdünnungsmittelgehalt bevorzugt 70 bis 95 Gew.-%.
Bevorzugt wird zur Kettenverlängerung erst die Komponente Cl) mit den Verbindungen aus C2) entsprechend der Definition von A4) zugebeben und anschließend erst mit den Verbindungen aus C2) entsprechend den Definitionen von A2) und/oder A3) versetzt.
Üblicherweise erfolgt die Herstellung der erfindungsgemäßen PUR-Dispersionen aus den Pre- polymeren im Anschluss an die Kettenverlängerung (Schritt C)). Dazu wird das gelöste und kettenverlängerte Polyurethanpolymer gegebenenfalls unter starker Scherung, wie z.B. starkem Rühren, entweder in das Dispergierwasser eingetragen oder man rührt umgekehrt das Dispergierwasser zu den Prepolymerlösungen. Bevorzugt wird das Wasser in das gelöste Prepolymer gegeben. Grundsätzlich kann nach dem Dispergierschritt eine weitere Kettenverlängerung durch Zugabe weiterer Mengen Cl) und C2) durchgeführt werden, bevorzugt wird die Kettenverlängerung aber ausschließlich vor der Dispergierung durchgeführt.
Das in den Dispersionen nach dem Dispergierschritt noch enthaltene Lösemittel wird üblicher- weise anschließend destillativ entfernt. Eine Entfernung bereits während der Dispergierung ist ebenfalls möglich.
Die so erhaltenen Dispersionen haben einen Festkörpergehalt von 10 bis 70 Gew.-%, bevorzugt 25 bis 65 Gew.-% und besonders bevorzugt 30 bis 65 Gew.-%.
Je nach Neutralisationsgrad und Gehalt ionischer Gruppen kann die Dispersion sehr feinteilig ein- gestellt werden, so dass sie praktisch das Aussehen einer Lösung hat, aber auch sehr grobteilige Einstellungen sind möglich, die ebenfalls ausreichend stabil sind.
Weiterhin ist es möglich, die erfindungsgemäß erhältlichen wässrigen PUR-Dispersionen durch Polyacrylate zu modifizieren. Hierzu wird in diesen Polyurethan-Dispersionen eine Emulsionspolymerisation von olefinisch ungesättigten Monomeren, z.B. Estern aus (Meth)acrylsäure und Alkoholen mit 1 bis 18 C-Atomen, Styrol, Vinylestern oder Butadien durchgeführt, wie es zum Beispiel in der DE-A 19 53 348, EP-A 0 167 188, EP-A 0 189 945 und EP-A 0 308 115 beschrieben ist.
Neben einer oder mehreren olefinische Doppelbindungen können diese Monomere auch funktioneile Gruppen wie Hydroxyl-, Epoxy-, Methylol- oder Acetoacetoxygruppen enthalten.
Die erfindungsgemäß erhältlichen PUR-Dispersionen können entweder allein oder in Kombination mit anderen wässrigen Bindemitteln und Vernetzern zur Herstellung von Beschichtungsmitteln eingesetzt werden. Hierbei könne auch die aus der Lacktechnologie an sich bekannten Hilfs- und Zusatzmitteln wie z.B. nichtionische und/oder anionische Verdicker, Füllstoffe, Pigmente, Wachse, Griffmittel, Farbstoffe, Lösungsmittel, Verlaufshilfsmittel sowie Vernetzer verwendet werden. Die Verwendung von Additiven zur Verringerung der Thermovergilbung in diesen wässrigen Beschichtungsmitteln ist zwar prinzipiell möglich aber nicht bevorzugt.
Die erfindungsgemäßen PUR-Dispersionen wie auch darauf basierende wässrige Beschichtungs- mittel werden bevorzugt in Beschichtungen, Schlichten und Klebstoffen eingesetzt.
Derartige Beschichtungen bzw. Schlichten können auf beliebige Substrate wie z.B. Metall, Holz, Glas, Glasfasern, Kohlefasern, Stein, keramische Mineralien, Beton, harte und flexible Kunststoffe der verschiedensten Arten, gewehten und nicht gewebten Textilien, Leder, Papier, Hartfasern, Stroh und Bitumen die vor der Beschichtung gegebenenfalls auch mit üblichen Grundierungen versehen werden, aufgebracht und ausgehärtet werden können.
Der Auftrag der Beschichtungsmaterialien kann auf bekannte Weisen, z.B. durch Streichen,
Gießen, Rakeln, Spritzen, Walzen oder Tauchen erfolgen. Die Trocknung des Lackfilms kann bei Raumtemperatur oder erhöhter Temperatur, aber auch durch Einbrennen bei bis zu 250°C erfolgen.
Die erfindungsgemäßen PUR-Dispersionen sind lager- und versandfähig und können zu einem beliebig späteren Zeitpunkt verarbeitet werden. Je nach der gewählten chemischen Zusammensetzung des Polyurethans erhält man Beschichtungen mit unterschiedlichen Eigenschaften. So können weiche klebrige Schichten, thermoplastische und gummielastische Produkte der ver- schiedensten Härtegrade bis zu glasharten Duroplasten erhalten werden.
Beispiele:
Soweit nicht abweichend angegeben sind alle Prozentangaben als Gewichtsprozent zu verstehen.
Diaminosulfonat:
NH2-CH2CH2-NH-CH2CH2-S03Na (45 % ig in Wasser)
Die Bestimmung der Festkörpergehalte erfolgte nach DLN-EN ISO 3251. NCO-Gehalte wurden, wenn nicht ausdrücklich anders erwähnt volumetrisch gemäß DIN-EN ISO 11909 bestimmt.
Bestimmung der Thermovergilbung:
Die unten aufgeführten Bindemittel-Zusammensetzungen wurden auf Prüfbleche, die mit einem handelsüblichen, weißen Basislack der Firma Spies & Hecker, DE, beschichtet worden sind, in einer Nassschichtdicke von 120 μm appliziert. Die Prüfbleche wurden 30 Minuten bei Raumtemperatur getrocknet und anschließend für 30 Minuten bei 170°C im Trockenschrank eingebrannt. Danach erfolgte die Farbmessung nach der ClELAB-Methode (DLN 5033). Je größer hierbei der ermittelte positive b*-Wert war, um so gelber hat sich die Beschichtung der Bindemittel- Zusammensetzung verfärbt.
Beispiel 1: Vergleichsbeispiel
Baybond® PU 401 (anionisch und nichtionisch hydrophilierte PUR-Dispersion mit einem Festkörpergehalt von 40 % und einer mittleren Teilchengröße von 100 - 300 nm, Bayer AG, Leverkusen, DE)
Beispiel 2:
306,0 g Polyester PE 170 HN (Polyesterpolyol, OH-Zahl 66 mg KOH/g, zahlenmittleres Molekulargewicht 1700 g/mol, Bayer AG, Leverkusen, DE), 13,5 g Polyether LB 25 (monofunktioneller Polyether auf Ethylenoxid-/Propylenoxidbasis zahlenmittleres Molekulargewicht 2250 g/mol, OH- Zahl 25 mg KOH/g, Bayer AG, Leverkusen, DE) und 0,1 g Desmorapid® Z (Dibutylzinndilaurat, Bayer AG, Leverkusen, DE) wurden auf 65°C aufgeheizt. Anschließend wurde bei 65°C innerhalb von 5 min ein Gemisch aus 91,0 g Isophorondiisocyanat und 71,0 g Aceton zugegeben und solange unter Rückfluss gerührt bis der theoretische NCO-Wert erreicht wurde. Das fertige Prepolymer wurde in 353,2 g Aceton bei 50°C gelöst und anschließend eine Lösung aus 12,4 g Hydrazinhydrat und 40,5 g Wasser innerhalb von 10 min zudosiert. Nach Zugabe von 17,7 g Diaminosulfonat innerhalb von 5 min ließ man 15 min nachrühren und dispergierte durch Zugabe von 584,9 g Wasser innerhalb von 10 min. Es folgte die Entfernung des Lösemittels durch Destillation im Vakuum und man erhielt eine lagerstabile Dispersion mit einem Festkörpergehalt von 40,0 %. Beispiel 3:
1530,0 g Polyester PE 170 (Polyesterpolyol, OH-Zahl 66 mg KOH/g, zahlenmittleres Molekulargewicht 1700 g/mol, Bayer AG, Leverkusen, DE), 67,5 g Polyether LB 25 (monofunktioneller Polyether auf Ethylenoxid-/Propylenoxidbasis zahlenmittleres Molekulargewicht 2250 g/mol, OH- Zahl 25 mg KOH/g, Bayer AG, Leverkusen, DE) und 0,1 g Desmorapid® Z (Dibutylzinndilaurat, Bayer AG, Leverkusen, DE) wurden auf 65 °C aufgeheizt. Anschließend wurde bei 65°C innerhalb von 5 min ein Gemisch aus 537,1 g Desmodur® W (Bis-(4,4'-isocyanatocyclohexyl)methan, Bayer AG, Leverkusen, DE) und 355,0 g Aceton zugegeben und solange unter Rückfluss gerührt bis der theoretische NCO-Wert erreicht wurde. Das fertige Prepolymer wurde mit 1766,0 g Aceton bei 50°C gelöst und anschließend eine Lösung aus 50,0 g Hydrazinhydrat, 51,0 g Isophorondiamin und 401,3 g Wasser innerhalb von 10 min zudosiert. Nach Zugabe von 63,3 g Diaminosulfonat innerhalb von 5 min ließ man 15 min nachrühren und dispergierte durch Zugabe von 2915,0 g Wasser innerhalb von 10 min. Es folgte die Entfernung des Lösemittels durch Destillation im Vakuum und man erhielt eine lagerstabile Dispersion mit einem Fesfkörpergehalt von 40,0 %.
Beispiel 4;
1468,8 g Polyester PE 170 HN (Polyesterpolyol, OH-Zahl 66 mg KOH/g, zahlenmittleres Molekulargewicht 1700 g/mol, Bayer AG, Leverkusen, DE), 64,8 g Polyether LB 25 (monofunktioneller Polyether auf Ethylenoxid-ZPropylenoxidbasis zahlenmittleres Molekulargewicht 2250 g/mol, OH- Zahl 25 mg KOH/g, Bayer AG, Leverkusen, DE) und 0,1 g Desmorapid® Z (Dibutylzinndilaurat, Bayer AG, Leverkusen, DE) wurden auf 65°C aufgeheizt. Anschließend wurde bei 65°C innerhalb von 5 min ein Gemisch aus 436,9 g Isophorondiisocyanat und 340,8 g Aceton zugegeben und solange unter Rückfluss gerührt bis der theoretische NCO-Wert erreicht wurde. Das fertige Prepolymer wurde mit 1695,4 g Aceton bei 50°C gelöst und anschließend eine Lösung aus 55,2 g Hydrazinhydrat, 24,5 g Isophorondiamin und 319,0 g Wasser innerhalb von 10 min zudosiert. Nach Zugabe von 60,8 g Diaminosulfonat innerhalb von 5 min ließ man 15 min nachrühren und dispergierte durch Zugabe von 2714,1 g Wasser innerhalb von 10 min. Es folgte die Entfernung des Lösemittels durch Destillation im Vakuum und man erhielt eine lagerstabile Dispersion mit einem Festkörpergehalt von 40,0 %.
Beispiel 5: 1453,5 g Polyester PE 170 HN (Polyesterpolyol, OH-Zahl 66 mg KOH/g, zahlenmittleres Molekulargewicht 1700 g/mol, Bayer AG, Leverkusen, DE), 64,1 g Polyether LB 25 (monofunktioneller Polyether auf Ethylenoxid-/Propylenoxidbasis zahlenmittleres Molekulargewicht 2250 g/mol, OH- Zahl 25 mg KOH/g, Bayer AG, Leverkusen, DE) und 0,1 g Desmorapid® Z (Dibutylzinndilaurat, Bayer AG, Leverkusen, DE) wurden auf 65°C aufgeheizt. Anschließend wurde bei 65°C innerhalb von 5 min ein Gemisch aus 432,3 g Isophorondiisocyanat und 343,9 g Aceton zugegeben und solange unter Rückfluss gerührt bis der theoretische NCO-Wert erreicht wurde. Das fertige Prepolymer wurde mit 2298,5 g Aceton bei 50°C gelöst und anschließend eine Lösung aus 40,6 g Hydrazinhydrat, 48,5 g Isophorondiamin und 421,1 g Wasser innerhalb von 10 min zudosiert. Nach Zugabe von 60,1 g Diaminosulfonat innerhalb von 5 min ließ man 15 min nachrühren und dispergierte durch Zugabe von 2608,4 g Wasser innerhalb von 10 min. Es folgte die Entfernung des Lösemittels durch Destillation im Vakuum und man erhielt eine lagerstabile Dispersion mit einem Festkörpergehalt von 40,0 %.
Beispiel 6:
1499,4 g Polyester PE 170 HN (Polyesterpolyol, OH-Zahl 66 mg KOH/g, zahlenmittleres Molekulargewicht 1700 g/mol, Bayer AG, Leverkusen, DE), 66,2 g Polyether LB 25 (monofunktioneller Polyether auf Ethylenoxid-ZPropylenoxidbasis zahlenmittleres Molekulargewicht 2250 g/mol, OH- Zahl 25 mg KOH/g, Bayer AG, Leverkusen, DE) und 0,1 g Desmorapid® Z (Dibutylzinndilaurat, Bayer AG, Leverkusen, DE) wurden auf 65°C aufgeheizt. Anschließend wurde bei 65°C innerhalb von 5 min ein Gemisch aus 446,0 g Isophorondiisocyanat und 355,0 g Aceton zugegeben und solange unter Rückfluss gerührt bis der theoretische NCO-Wert (über Nah-lnfrarot-Spektroskopie (NIR) inline ermittelt) erreicht wurde. Das fertige Prepolymer wurde mit 1766,0 g Aceton bei 50°C gelöst und anschließend eine Lösung aus 49,0 g Hydrazinhydrat, 50,0 g Isophorondiamin und 443,0 g Wasser innerhalb von 10 min zudosiert. Nach Zugäbe von 62,0 g Diaminosulfonat innerhalb von 5 min ließ man 15 min rühren und dispergierte durch Zugabe von 2686,1 g Wasser innerhalb von 90 min. Während des Dispergierschrittes erfolgte gleichzeitig die Entfernung des Lösemittels durch parallele Destillation im Vakuum und man erhielt eine lagerstabile Dispersion mit einem Festkörpergehalt von 40,0 %.
Beispiel 7:
342,0 g PolyTHF 2000 (Polyether auf Basis von Tetrahydrofuran, OH-Zahl 56 mg KOH/g, zahlenmittleres Molekulargewicht 2000 g/mol, BASF AG, DE), 16,7 g Polyether LB 25 (monofunktioneller Polyether auf Efhylenoxid-/Propylenoxidbasis zahlenmittleres Molekulargewicht 2250 g/mol, OH-Zahl 25 mg KOH/g, Bayer AG, Leverkusen, DE) und 0,1 g Desmorapid® Z (Dibutylzinndilaurat, Bayer AG, Leverkusen, DE) wurden auf 65°C aufgeheizt. Anschließend wurde bei 65°C innerhalb von 5 min ein Gemisch aus 86,5 g Isophorondiisocyanat und 67,5 g Aceton zugegeben und solange unter Rückfluss gerührt bis der theoretische NCO-Wert erreicht wurde. Das fertige Prepolymer wurde mit 335,5 g Aceton bei 50°C gelöst und anschließend eine Lösung aus 9,2 g Hydrazinhydrat, 9,4 g Isophorondiamin und 73,7 g Wasser innerhalb von 10 min zudosiert. Nach Zugabe von 15,0 g Diaminosulfonat innerhalb von 5 min ließ man 15 min nachrühren und dispergierte durch Zugabe von 615,4 g Wasser innerhalb von 10 min. Es folgte die Entfernung des Lösemittels durch Destillation im Vakuum und man erhielt eine lagerstabile Dispersion mit einem Festkörpergehalt von 40,0 %.
Beispiel 8: Vergleichsbeispiel
Wässrige Polyurethan-Dispersion nach DE-A 32 38 169, Beispiel 2 über Prepolymermisch- verfahren hergestellt. Kettenverlängerung erfolgte ebenfalls mit Hydrazinhydrat.
Beispiel 9: Vergleichsbeispiel
Wässrige Polyurethan-Dispersion hergestellt nach US-A 5,137,967, Beispiel 1, ebenfalls nach dem Prepolymermischverfahren und unter Kettenverlängerung mit Hydrazinhydrat.
Ergebnisse der Vergilbungsmessungen: Beispiel b*-Wert b*-Wert (0-Wert) (nach 30 min bei l70°C) 1 0,8 1,3 2 0,0 0,0 3 0,0 0,1 4 0,0 0,0 5 0,6 0,7 6 0,0 0,4 7 0,0 0,8 8 0,9 1,4 9 0,9 1,8
Die b*-Werte belegen, dass Filme aus den Vergleichsdispersionen 1, 8 und 9 gegenüber denen aus den erfindungsgemäßen Dispersionen höhere Anfangswerte bezogen auf die Vergilbung aufweisen und aufgrund der hohen Vergilbungsneigung signifikant stärkere Vergilbung nach thermischer Belastung aufweisen.

Claims

Patentansprüche
1. Verfahren zur Herstellung wässriger Polyurethan-Polyharnstoffdispersionen (PUR- Dispersionen), bei dem
A) zunächst ein NCO-gruppenhaltiges Polyurethanprepolymer durch Umsetzung von AI) Polyisocyanaten mit
A2) polymeren Polyolen und/oder Polyaminen mit zahlenmittleren Molekulargewichten von 400 bis 8 000 g/mol,
A3) gegebenenfalls niedermolekularen Verbindungen mit zahlenmittleren Molekulargewichten von 17 - 400 g/mol ausgewählt aus der Gruppe be- stehend aus Mono- und Polyalkoholen, Mono- und Polyaminen sowie Aminoalkoholen,
A4) isocyanatreaktiven, ionisch oder potentiell ionisch hydrophilierenden Verbindungen und/oder
A5) isocyanatreaktiven nichtionisch hydrophilierenden Verbindungen A6) gegebenenfalls in aliphatischen Ketonen als Lösemittel mit der Maßgabe hergestellt wird, dass in keiner der Komponenten AI) bis A5) primäre oder sekundäre Aminogruppen enthalten sind,
B) das aus Schritt A) erhaltene Prepolymer entweder in aliphatischen Ketonen gelöst oder, sofern die Herstellung bereits in Anwesenheit von A6) durchgeführt wurde, die Prepolymerlösung gegebenenfalls durch weitere Zugabe aliphatischer Ketone verdünnt wird und
C) die noch freien NCO-Gruppen des Prepolymers mit einer Kettenverlängerungskomponente enthaltend
C 1 ) Hydrazin und/oder Hydrazinhydrat und C2) gegebenenfalls Verbindungen entsprechend der Definition der Komponenten A2), A3), A4) und/oder A5) mit der Maßgabe umgesetzt werden, dass • die Verbindungen der Komponente C2) primäre und/oder sekundäre Aminogruppen aufweisen,
• die Gesamtmengen von Cl) und C2) so bemessen sind, dass ein rechnerischer Kettenverlängerungsgrad von 40 bis 200 % erreicht wird und • das Mengenverhältnis von Cl) und C2) so bemessen ist, dass mindestens 40 % der freien Isocyanatgruppen mit Aminogruppen aus der Komponente Cl) kettenverlängert bzw. terminiert werden.
2. Verfahren zur Herstellung wässriger Polyurethan-Polyharnstoffdispersionen (PUR- Dispersionen) gemäß Anspruch 1, dadurch gekennzeichnet, dass 8 bis 27 Gew.-% Kompo- nente AI), 65 bis 85 Gew.-% Komponente A2), 0 bis 8 Gew.-% Komponente A3), 0 bis 10 Gew.-% Komponente A4), 0 bis 15 Gew.-% Komponente A5), 1,0 bis 2,5 Gew.-% Cl) (bezogen auf reines Hydrazin N2H4), und 0 bis 8 Gew.-% C2) eingesetzt wurden, wobei die Summe von A4) und A5) 0,1 bis 25 Gew.-% beträgt und sich die Summe der Komponenten zu 100 Gew.-% aufaddiert.
3. Verfahren zur Herstellung wässriger Polyurethan-Polyharnstoffdispersionen (PUR- Dispersionen) gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Mengen von Cl) und C2) so zu bemessen sind, dass ein rechnerischer Kettenverlängerungsgrad von 101 - 150 % resultiert.
4. Wässrige Polyurethan-Polyharnstoffdispersionen (PUR-Dispersionen) erhältlich nach einem Verfahren gemäß einem der Ansprüche 1 - 3.
5. Verwendung wässriger Polyurethan-Polyharnstoffdispersionen (PUR-Dispersionen) gemäß Anspruch 4 zur Herstellung von Beschichtungen, Verklebungen, Dichtmassen und/oder Formkörpern.
6. Beschichtungen, Verklebungen, Dichtmassen und/oder Formkörper erhältlich aus wässrigen Polyurethan-Polyharnstoffdispersionen (PUR-Dispersionen) gemäß Anspruch 4.
7. Substrate beschichtet mit Beschichtungen nach Anspruch 7.
EP05700673A 2004-01-16 2005-01-04 Thermovergilbungsstabile polyurethan-polyharnstoff dispersionen Withdrawn EP1709096A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004002526A DE102004002526A1 (de) 2004-01-16 2004-01-16 Thermovergilbungsstabile Polyurethan-Polyharnstoff Dispersionen
PCT/EP2005/000008 WO2005068526A1 (de) 2004-01-16 2005-01-04 Thermovergilbungsstabile polyurethan-polyharnstoff dispersionen

Publications (1)

Publication Number Publication Date
EP1709096A1 true EP1709096A1 (de) 2006-10-11

Family

ID=34716635

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05700673A Withdrawn EP1709096A1 (de) 2004-01-16 2005-01-04 Thermovergilbungsstabile polyurethan-polyharnstoff dispersionen

Country Status (4)

Country Link
US (1) US20050159575A1 (de)
EP (1) EP1709096A1 (de)
DE (1) DE102004002526A1 (de)
WO (1) WO2005068526A1 (de)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004002525A1 (de) * 2004-01-16 2005-08-04 Bayer Materialscience Ag Beschichtungsmittelzusammensetzung
DE102004026118A1 (de) * 2004-05-28 2005-12-15 Bayer Materialscience Ag Klebstoffe
AU2006275682A1 (en) 2005-07-28 2007-02-08 High Voltage Graphics, Inc. Flocked articles incorporating a porous film
KR100836606B1 (ko) 2005-08-15 2008-06-10 롬 앤드 하아스 컴패니 구조 접착제용 폴리머 희석제
US20070037955A1 (en) * 2005-08-15 2007-02-15 Richards James L Polymeric diluents for structural adhesives
DE102006019742A1 (de) * 2006-04-26 2007-10-31 Bayer Materialscience Ag Kaumassen für kosmetische Produkte
KR101553412B1 (ko) 2006-09-21 2015-09-15 스탈 인터내셔날 비.브이. 수성 폴리우레탄/폴리우레아 분산액
DE102006058202A1 (de) * 2006-12-11 2008-06-12 Merck Patent Gmbh Verfahren zur Herstellung von Dispersionen
US8475905B2 (en) 2007-02-14 2013-07-02 High Voltage Graphics, Inc Sublimation dye printed textile
BRPI0912276B1 (pt) 2008-05-28 2021-06-01 Stahl International B.V. Dispersões de poliuretano-poliureia aquosas, seu processo de preparação e uso, revestimentos, substratos, couro ou imitação de couro, grão natural ou couro polido e couro partido
TWI461453B (zh) * 2008-05-30 2014-11-21 Bayer Materialscience Llc 基於聚碳酸酯-多元醇之聚胺基甲酸酯-聚脲分散液
MX2011003996A (es) * 2008-10-17 2011-05-10 Invista Tech Sarl Composiciones acuosas de poliuretanourea que incluyen dispersiones y peliculas.
EP2221330A1 (de) * 2009-02-19 2010-08-25 Bayer MaterialScience AG Funktionalisierte Polyurethanpolyharnstoff-Dispersionen
EP2298826A1 (de) * 2009-09-17 2011-03-23 Bayer MaterialScience AG Hydrophile Polyurethanharnstofflösungen
EP2298825A1 (de) * 2009-09-17 2011-03-23 Bayer MaterialScience AG Hydrophile Polyurethanharnstoffdispersionen
US9617453B2 (en) 2009-12-14 2017-04-11 Air Products And Chemicals, Inc. Solvent free aqueous polyurethane dispersions and methods of making and using the same
DE102010021465A1 (de) 2010-05-25 2011-12-01 Clariant International Ltd. Wässrige Polyurethan-Polyharnstoff-Dispersionen
DE102011107873B4 (de) 2011-07-19 2015-12-03 Stahl International Bv Verfahren zur Herstellung von Seitenketten enthaltenden Polyurethan-Polyharnstoffen und deren wässrigen Dispersionen
WO2014059424A2 (en) 2012-10-12 2014-04-17 High Voltage Graphics, Inc. Flexible heat sealable decorative articles and method for making the same
WO2015183654A1 (en) 2014-05-28 2015-12-03 3M Innovative Properties Company Polyurethane-polyurea dispersions comprising hydrazine or hydrazide chain extenders
EP3609941B1 (de) * 2017-04-13 2021-06-30 BYK-Chemie GmbH Polymer als verdickungsmittel geeignet
NL2022104B1 (en) * 2018-11-30 2020-06-26 Stahl Int B V Process to prepare aqueous polyurethane dispersions that are substantially free of volatile organic compounds and that have a high solids content
NL2022219B1 (en) * 2018-12-17 2020-07-03 Stahl Int B V Process to prepare aqueous polyurethane dispersions in which the polyurethane includes polysiloxane as side chain

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3415786A (en) * 1965-06-07 1968-12-10 Diamond Shamrock Corp Copolymerization of trioxane and norbornadiene in a two-stage process
BE757936A (fr) * 1969-10-23 1971-04-01 Bayer Ag Procede de preparation de polymeres anioniques modifies en emulsion
DE2314513C3 (de) * 1973-03-23 1980-08-28 Bayer Ag, 5090 Leverkusen Verfahren zur Herstellung von wäßrigen Polyurethandispersionen
US4147679A (en) * 1976-06-02 1979-04-03 Ppg Industries, Inc. Water-reduced urethane coating compositions
US4447571A (en) * 1980-04-09 1984-05-08 Witco Chemical Corporation Stabilization of polyurethanes
NL8401785A (nl) * 1984-06-04 1986-01-02 Polyvinyl Chemie Holland Werkwijze voor de bereiding van een waterige dispersie van urethan-acrylaat entcopolymeren, alsmede aldus verkregen stabiele waterige dispersie.
US4644030A (en) * 1985-02-01 1987-02-17 Witco Corporation Aqueous polyurethane - polyolefin compositions
GB8721538D0 (en) * 1987-09-14 1987-10-21 Polyvinyl Chemie Holland Bv Aqueous dispersions
GB2209758B (en) * 1987-09-14 1990-12-12 Ici America Inc Aqueous dispersions
US5562966A (en) * 1989-01-27 1996-10-08 Science Applications International Corporation Method of applying oxidation resistant coating on carbon fibers
US5137967A (en) * 1990-07-06 1992-08-11 Reichhold Chemicals, Inc. Hydrazine extended aqueous polyurethane
US5700867A (en) * 1993-10-01 1997-12-23 Toyo Ink Manufacturing Co., Ltd. Aqueous dispersion of an aqueous hydrazine-terminated polyurethane
JP2657203B2 (ja) * 1993-10-01 1997-09-24 中小企業事業団 水性印刷インキ組成物
JP3493796B2 (ja) * 1995-03-22 2004-02-03 三菱化学株式会社 水性ポリウレタン樹脂塗料
DE10122444A1 (de) * 2001-05-09 2002-11-14 Bayer Ag Polyurethan-Polyharnstoff Dispersionen als Beschichtungsmittel
DE10201546A1 (de) * 2002-01-17 2003-07-31 Bayer Ag Stabilisierte wässrige Polyurethan-Polyharnstoff Dispersionen
DE102004002525A1 (de) * 2004-01-16 2005-08-04 Bayer Materialscience Ag Beschichtungsmittelzusammensetzung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005068526A1 *

Also Published As

Publication number Publication date
DE102004002526A1 (de) 2005-08-04
US20050159575A1 (en) 2005-07-21
WO2005068526A1 (de) 2005-07-28

Similar Documents

Publication Publication Date Title
EP1711547B1 (de) Beschichtungsmittelzusammensetzung
EP1387859B1 (de) Polyurethan-polyharnstoff dispersionen als beschichtungsmittel
WO2005068526A1 (de) Thermovergilbungsstabile polyurethan-polyharnstoff dispersionen
EP2268691B1 (de) Wässrige polyurethanlösungen für polyurethan-systeme
EP2271686B1 (de) Wässrige Polyurethanlösungen
EP1555250B1 (de) Schlichtezusammensetzung
EP0792900B1 (de) Verwendung von ionischen und nichtionischen wässrigen Polyurethandispersionen als Bindemittel für Glasfaserschlichten sowie diese Dispersionen
EP1474487B1 (de) Stabilisierte wässrige polyurethan-polyharnstoff dispersionen
DE102005036654A1 (de) Selbstvernetzende PUR-Dispersionen mit Uretdionstruktur
DE102006046650A1 (de) Wässrige Beschichtungsmittel auf Basis von Polyurethan-Dispersionen
EP1794206A1 (de) Hydrolysestabile beschichtungsmittelzusammensetzung
EP1375549B1 (de) Nachvernetzbare Polyurethan-Polyharnstoff Dispersionen
EP3283540A1 (de) Wässrige polyurethan-polyacrylat-dispersionen
EP2118161B1 (de) Polyurethan-dispersionen auf basis von 2,2'-mdi
EP1597295A1 (de) Einkomponenten-beschichtungssysteme
EP1578837B1 (de) Hydrophile polyurethan-polyharnstoff-dispersionen
EP1065228B1 (de) Bindemittelkombination für wässrige Beschichtungen
MXPA06007903A (en) Coating agent composition

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060816

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB NL

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MEIXNER, JUERGEN

Inventor name: RISCHE, THORSTEN

Inventor name: POHL, TORSTEN

Inventor name: KLIPPERT, UWE

Inventor name: FELLER, THOMAS

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): BE DE FR GB NL

17Q First examination report despatched

Effective date: 20101019

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110430