EP1707892B1 - Dispositif de traitement d'air - Google Patents

Dispositif de traitement d'air Download PDF

Info

Publication number
EP1707892B1
EP1707892B1 EP04819447A EP04819447A EP1707892B1 EP 1707892 B1 EP1707892 B1 EP 1707892B1 EP 04819447 A EP04819447 A EP 04819447A EP 04819447 A EP04819447 A EP 04819447A EP 1707892 B1 EP1707892 B1 EP 1707892B1
Authority
EP
European Patent Office
Prior art keywords
air
air conditioner
wind
room
wind deflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP04819447A
Other languages
German (de)
English (en)
Japanese (ja)
Other versions
EP1707892A4 (fr
EP1707892A1 (fr
Inventor
Masaki Ohtsuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Publication of EP1707892A1 publication Critical patent/EP1707892A1/fr
Publication of EP1707892A4 publication Critical patent/EP1707892A4/fr
Application granted granted Critical
Publication of EP1707892B1 publication Critical patent/EP1707892B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0011Indoor units, e.g. fan coil units characterised by air outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/0057Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in or on a wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/30Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by ionisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/06Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser
    • F24F2013/0616Outlets that have intake openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/60Energy consumption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/54Heating and cooling, simultaneously or alternatively

Definitions

  • the present invention relates to an air conditioner that takes air into a cabinet thereof, then conditions the taken air, and then sends out the conditioned air into a room.
  • FIG. 28 shows the behavior of air streams in a room as observed when this air conditioner performs heating operation.
  • An indoor unit 1 of the air conditioner is installed on an upper part of a side wall W1.
  • an blowout port (unillustrated) is provided in a lower part of the indoor unit 1.
  • a start-up state that is, a state in which heating operation has just been started and thus the room temperature rises quickly
  • air is sent out via the blowout port (unillustrated) vigorously, for example at a "high" wind speed (about 5 to 6 m/sec), and substantially straight down, as indicated by arrow B.
  • the air flows inside the room R as indicated by arrows, and returns to a suction port 4 provided in an upper or front part of the indoor unit 1.
  • FIG. 29 shows the behavior of air streams inside the room as observed in a stable state, that is, a state in which the room temperature has stabilized within a predetermined range around the user-specified temperature.
  • Conditioned air is sent out via the blowout port at a "low" wind speed and substantially straight down as indicated by arrow B'.
  • the air flows inside the room R, and returns to the suction port 4.
  • the wind speed is increased again. In this way, the room temperature is kept around the user-specified temperature.
  • Patent Publication 1 discloses an air conditioner in which the orientation of a wind direction plate can be varied so that conditioned air can be sent out via an blowout port substantially straight down.
  • EP0811310 A2 discloses an air conditioner in which at least one up-down wind direction board rotates in on up-down direction around an almost horizontal rotation axis as the center within an air outlet, and a plurality of lateral wind direction boards rotating laterally are provided around rotation axes as the center which are almost orthogonal to the rotation axes of said up-down wind direction board.
  • FIGS. 30 and 31 show the temperature distribution inside the room as observed when heating operation is performed at a "high" wind speed in a start-up state ( FIG. 28 ) and at a "low” wind speed in a stable state ( FIG. 29 ), respectively.
  • the user-specified temperature that is, the desired room temperature
  • the room R is six- talami -mat large (2 400 mm high by 3 600 mm wide by 2 400 mm deep). Measurements are taken at a total of 48 spots, that is, six by eight spots at 600 mm intervals in the height and width directions, respectively, on a middle cross section of the room R indicated by dash-and-dot lines D in FIGS. 28 and 29 .
  • the warm air that the indoor unit 1 sends out straight down to frontward down has a low specific gravity and thus receives a strong buoyant force.
  • the direction of the warm air is bent sharply frontward.
  • the warm air pours directly into the living space. If the warm air continuously pours onto the head of the user, he feels discomfort.
  • the conditioned air that the indoor unit 1 sends out straight down not only has a low speed but also a low specific gravity and thus receives a strong buoyant force.
  • the conditioned air goes up as indicated by arrow B'.
  • FIG. 31 only an upper part of the room R is heated, while a part thereof close to the floor surface is not. The user feels cold in a lower part of his body, while warm air directly hits his head. The user thus feels great discomfort.
  • FIGS. 28 and 29 also show that part of the conditioned air sent out from the indoor unit 1 goes up as indicated by arrow B" and is immediately taken in by the indoor unit 1 without circulating inside the room R, causing a so-called short circuit.
  • the air around the indoor unit 1 is overheated, and the temperature close to the suction port 4 becomes 3 °C or more higher than the user-specified temperature of 28 °C, producing a so-called pool E of warm air. This diminishes air conditioning efficiency.
  • An object of the present invention is to provide an air conditioner and an air conditioning method that offer enhanced comfort and enhanced air conditioning efficiency.
  • an air conditioner according to claim 1.
  • Preferable features are set out in the depending claims.
  • the air taken in via the suction port is heated, and is then sent out via the blowout port, for example, in a frontward-upward direction.
  • the conditioned air comes to be sent out via the blowout port, for example, in a rearward-downward direction.
  • Examples of the operating status of the air conditioner based on which the wind direction can be varied include: the temperature of the air sent out from the air conditioner; the temperature of the indoor heat exchanger provided in the indoor unit; the wind volume of the air sent out from the air conditioner; the operating frequency of the compressor that operates a refrigeration cycle; the current consumption or power consumption by the air conditioner; and the wind volume of the air taken into the outdoor unit.
  • examples of the air conditioning status inside the room based on which the wind direction can be varied include: the temperature inside the room; the humidity inside the room; the purity of the air inside the room as evaluated based on the presence of odor-producing substances or the amount of dust present; and the ion concentration inside the room.
  • the conditioned air when the blowout temperature is low, the conditioned air is sent out in a substantially horizontal direction or a frontward-upward direction.
  • the blowout temperature reaches a predetermined temperature that does not make the user feels cold even if exposed directly thereto, and thus a start-up state is reached in which the room temperature rises quickly, the conditioned air comes to be sent out in a substantially straight downward direction or a rearward-downward direction.
  • the room temperature stabilizes within a predetermined range around the user-specified temperature, and thus a stable state is reached, the conditioned air is sent out in a slightly frontward downward direction.
  • the wind direction of the conditioned air can be varied. This prevents the user from being continuously hit by warm air, and thus helps alleviate discomfort and instead enhance comfort to the user.
  • high-temperature air is sent out via the blowout port in a rearward-downward direction so as to quickly perform air conditioning; in a stable state in which the room temperature has stabilized, the wind direction, wind speed, and wind volume are so varied as to achieve enhanced comfort.
  • the wind direction can be varied based on the operating status of the air conditioner, such as the temperature of the air sent out via the blowout port, the temperature of the indoor heat exchanger, the operating frequency of the compressor, the current consumption or power consumption by the air conditioner, or the wind volume of the air sucked in via the suction port of the outdoor unit.
  • the operating status of the air conditioner such as the temperature of the air sent out via the blowout port, the temperature of the indoor heat exchanger, the operating frequency of the compressor, the current consumption or power consumption by the air conditioner, or the wind volume of the air sucked in via the suction port of the outdoor unit.
  • the conditioned air is sent out at a high blowout temperature, it is sent out more rearward to reduce the high-temperature air that hits the user. This helps further alleviate discomfort to the user.
  • the wind direction can be varied based on the wind volume sent out via the blowout port. For example, when the wind volume is high, the conditioned air is sent out in a rearward-downward direction to achieve efficient heating while alleviating discomfort to the user. By contrast, when the wind volume is low, the conditioned air is sent out in a more frontward direction to make it reach so far as to achieve heating up to all corners of the room.
  • the wind direction, wind speed, and wind volume can be varied based on the air conditioning status inside the room, such as the temperature inside the room, the humidity inside the room, the ion concentration inside the room, or the purity of the air inside the room.
  • the air conditioning status inside the room such as the temperature inside the room, the humidity inside the room, the ion concentration inside the room, or the purity of the air inside the room.
  • the difference between the actual degree of air conditioning inside the room and the user-specified degree of air conditioning is large, the conditioned air is sent out in a more rearward direction to widely agitate the air all over the room in order to quickly achieve a higher degree of air conditioning up to all corners of the room.
  • the conditioned air is sent out in a straight downward direction to reduce the part thereof unnecessarily sent out rearward in order to achieve efficient air conditioning.
  • inhibiting means is provided that inhibits the conditioned air from being sent out in a rearward-downward direction or a substantially straight downward direction.
  • the wind direction of the conditioned air in a start-up state in which the room temperature quickly rises, is set in a substantially straight downward direction or a rearward-downward direction; in a stable state, the wind direction of the conditioned air is set in a direction more frontward than in the start-up state.
  • the conditioned air in a stable state, in which the wind volume is low, the conditioned air can be sent out to reach far.
  • the conditioned air is sent out in a substantially horizontal direction or a frontward-upward direction.
  • FIG. 1 is a side sectional view showing the air conditioner of a first embodiment of the present invention (taken along plane D shown in FIG. 8 , which will be described later).
  • the indoor unit 1 of the air conditioner has a main unit thereof held in a cabinet 2.
  • the cabinet 2 is removably fitted with a front panel 3 that has a suction port 4 provided in a top face and a front face thereof.
  • the cabinet 2 has claws (unillustrated) provided on a rear face thereof, and is supported by those claws being engaged with a mount plate (unillustrated) fitted on a side wall W 1 inside a room.
  • a blowout port 5 is provided in a gap between a bottom end part of the front panel 3 and a bottom end part of the cabinet 2.
  • the blowout port 5 is formed in a substantially rectangular shape extending in the width direction of the indoor unit 1, and is so provided as to face frontward and downward.
  • a blowing passage 6 is formed that leads from the suction port 4 to the blowout port 5.
  • a blowing fan 7 is arranged that sends air. Used as the blowing fan 7 is, for example, a cross-flow fan.
  • the blowing passage 6 has a front guide 6a that guides frontward-downward the air sent from the blowing fan 7.
  • the front guide 6a is provided with a vertical louver 12 that permits the blowout angle to be varied in the left/right direction.
  • the blowout port 5 is provided with wind deflectors 113a, 113b, and 113c that are rotatably supported.
  • the wind deflector 113c is formed as an extension of the lower wall of the front guide 6a, and is supported on the cabinet 2 by a rotary shaft 113f that rotates when driven by a drive motor (unillustrated).
  • the wind deflector 113a is arranged in an upper part of the blowout port 5, and is rotatably supported by a rotary shaft 113d that rotates when driven by a drive motor (unillustrated).
  • the wind deflector 113b is arranged in a lower part of the blowout port 5, and is rotatably supported by a rotary shaft 113e that rotates when driven by a drive motor (unillustrated).
  • the wind deflectors 113a and 113b rotate independently by being driven by their respective drive motors, and thereby change their orientations to vary the wind direction.
  • the wind deflectors 113b and 113c each have a curved cross-sectional shape so as to have a convex curved surface on one side and a concave curved surface on the other.
  • the wind deflector 113a has one side thereof (the left side in the figure) formed into a substantially flat surface, has the other side thereof (the right side in the figure) formed into a gently convex surface, and is pivoted in a middle part thereof by the rotary shaft 113d.
  • the arrangement shown in the figure is one in which the conditioned air is sent out via the blowout port 5 in a rearward-downward direction.
  • an air filter 8 In a position facing the front panel 3, an air filter 8 is provided that collects and removes dust contained in the air sucked in via the suction port 4.
  • an indoor heat exchanger 9 In the blowing passage 6, between the blowing fan 7 and the air filter 8, an indoor heat exchanger 9 is arranged.
  • the indoor heat exchanger 9 is connected to a compressor 62 (see FIG. 2 ) that is arranged outdoor, and, when the compressor 62 is driven, a refrigeration cycle is operated.
  • the indoor heat exchanger 9 When the refrigeration cycle is operated, during cooling operation, the indoor heat exchanger 9 is cooled to a temperature lower than the ambient temperature, and, during heating operation, the indoor heat exchanger 9 is heated to a temperature higher than the ambient temperature. Between the indoor heat exchanger 9 and the air filter 8, a temperature sensor 61 is provided that detects the temperature of the air sucked in. In a side part of the indoor unit 1, a controller 60 (see FIG. 3 ) is provided that controls the driving of the air conditioner. Below a front part and a rear part of the indoor heat exchanger 9, drain pans 10 are provided that collect condensed moisture that drips from the indoor heat exchanger 9 when cooling or drying operation is performed.
  • an ion generator 30 is arranged with a discharge surface 30a facing the blowing passage 6.
  • the ions generated from the surface 30a of the ion generator 30 are released into the blowing passage 6, and are then blown out via the blowout port 5 into the room.
  • the ion generator 30 has a discharge electrode, and generates, through corona discharge, positive ions consisting mainly of H + (H 2 O) n when the applied voltage is positive and negative ions consisting mainly of O2 - (H 2 O) m when the applied voltage is negative (where n and m are integers).
  • H + (H 2 O) n and O2 - (H 2 O) m flock on the surface of microorganisms, and surround airborne germs such as microorganisms present in air. They then collide to produce, on the surface of the airborne germs, active species, namely [•OH] (hydroxy radical) and H 2 O 2 (hydrogen peroxide) as expressed by formulae (1) to (3) below (where n' and m' are integers). This destroys the airborne germs and achieves sterilization.
  • H + (H 2 O) n + H + (H 2 O) n + O 2 (H 2 O) m + O 2 - (H 2 O) m ⁇ H 2 O 2 + O 2 + (n+n'+m+m')H 2 O
  • the ion generator 30 can be operated in one of the following modes: a mode in which it generates more negative ions than positive ions; a mode in which it generates more positive ions than negative ions; and a mode in which it generates positive and negative ions in approximately equal proportions.
  • FIG. 2 is a circuit diagram showing the refrigeration cycle of the air conditioner.
  • the outdoor unit (unillustrated), which is connected to the indoor unit 1 of the air conditioner, is provided with a compressor 62, a four-way valve 63, an outdoor heat exchanger 64, a blowing fan 65, and a stopping mechanism 66.
  • One end of the compressor 62 is connected, through refrigerant piping 67, via the four-way valve 63 to the outdoor heat exchanger 64.
  • the other end of the compressor 62 is connected, through the refrigerant piping 67, via the four-way valve 63 to the indoor heat exchanger 9.
  • the outdoor heat exchanger 64 and the indoor heat exchanger 9 are connected together, through the refrigerant piping 67, via the stopping mechanism 66.
  • a refrigeration cycle 68 is formed in which the refrigerant flows from the compressor 62 to the four-way valve 63, to the outdoor heat exchanger 64, to the stopping mechanism 66, to the indoor heat exchanger 9, to the four-way valve 63, and back to the compressor 62.
  • the indoor heat exchanger 9 is cooled to a temperature lower than the ambient temperature.
  • the four-way valve 63 is so switched as to rotate the blowing fan 65, so that the refrigerant flows in the direction reverse to the above-described direction.
  • a refrigeration cycle 68 is formed in which the refrigerant flows from the compressor 62 to the four-way valve 63, to the indoor heat exchanger 9, to the stopping mechanism 66, to the outdoor heat exchanger 64, to the four-way valve 63, and back to the compressor 62.
  • the indoor heat exchanger 9 is heated to a temperature higher than the ambient temperature.
  • FIG. 3 is a block diagram showing the configuration of the air conditioner.
  • the controller 60 comprises a microcomputer. Based on the operation by the user and the input from the temperature sensor 61, which detects the temperature of the air sucked in, the controller 60 controls the driving of the blowing fan 7, the compressor 62, the blowing fan 65, the vertical louver 12, the wind deflectors 113a, 113b, and 113c, and the ion generator 30.
  • FIG. 4 is a block diagram showing the detailed configuration of the controller 60.
  • the controller 60 includes a CPU 71 that performs various kinds of calculation, and the CPU 71 is connected to an input circuit 72 that receives input signals and an output circuit 73 that outputs the calculation results of the CPU 71.
  • a memory 74 is provided in which the programs executed by the CPU 71 are stored and in which the calculation results are temporarily stored.
  • the output of the temperature sensor 61 is fed to the input circuit 72.
  • the output circuit 73 is connected to the drive motors (unillustrated) that drive the rotary shafts 113d, 113e, and 113f(see FIG. 1 ) of the wind deflectors 113a, 113b, and 113c.
  • the output of a photodetector (unillustrated) that receives operation signals from a remote control (unillustrated) is fed to the controller 60.
  • the wind deflectors 113a, 113b, and 113c can be driven. That is, the control by the controller 60 based on the temperature sensor 61 can be disabled so that the wind deflectors 113a, 113b, and 113c can be arranged at the desired orientations.
  • the refrigeration cycle when heating operation is started, the refrigeration cycle is operated, and the blowing fan 65 of the outdoor unit (unillustrated) is driven to rotate. Now, outdoor air is sucked into the outdoor unit (unillustrated).
  • the refrigerant which has absorbed heat through the outdoor heat exchanger 64, flows to the indoor heat exchanger 9 and heats it.
  • the controller 60 drives the blowing fan 7 to rotate so that first air stream control is performed. Now, air is sucked into the indoor unit 1 via the suction port 4, and the dust contained in the air is removed by the air filter 8. The air sucked into the indoor unit 1 exchanges heat with the indoor heat exchanger 9 and is thereby heated, and is then sent out into the room while the right/left and up/down directions of the air is restricted by the vertical louver 12 and the wind deflectors 113a, 113b, and 113c.
  • the wind deflectors 113a, 113b, and 113c are arranged as shown in FIG. 5 or 6 , and the conditioned air is sent out in a frontward-upward direction or a substantially horizontal direction, for example, at a wind speed of about 3 to 4 m/sec.
  • the wind deflector 113a is so arranged that the flat-surface side thereof faces rearward-upward along the air stream flowing through the front guide 6a.
  • the wind deflector 113b is arranged with the convex-surface side thereof down so as to be parallel to the air stream flowing through the front guide 6a and to divide the air stream into two parts.
  • the wind deflector 113c is retracted from the air stream sent out via the blowout port 5, and is arranged under the cabinet 2.
  • the conditioned air that flows through the front guide 6a is bent so as to be sent out via the blowout port 5 in a frontward-upward direction as indicated by arrow E.
  • the wind deflector 113a is arranged at a horizontal orientation as shown in FIG. 6
  • the conditioned air is sent out via the blowout port 5 in a substantially horizontal direction as indicated by arrow D.
  • the conditioned air sent out via the blowout port 5 in a frontward-upward direction or a substantially horizontal direction reaches the ceiling of the room. Thereafter, by the Coanda effect, the air flows along the ceiling wall S, then along the wall surface W2 (see FIG. 8 ) opposite to the indoor unit 1, then along the floor surface F (see FIG. 8 ), and then along the side wall W 1 on which the indoor unit 1 is installed.
  • the first air stream control at the start-up of heating operation, the user is not hit by insufficiently heated conditioned air, and is thereby prevented from feeling cold.
  • the controller 60 When another predetermined period has elapsed after the start of heating operation, or when the indoor heat exchanger 9 has been sufficiently heated, the controller 60 performs second air stream control.
  • the wind deflectors 113a, 113b, and 113c are arranged as shown in FIG. 1 described previously.
  • the conditioned air is sent out via the blowout port 5 in a rearward-downward direction, for example, at a wind speed of about 6 to 7 m/sec.
  • the wind deflector 113a is driven by the drive motor so that the flat-surface side thereof faces frontward, and is so arranged that an end part thereof makes contact with the upper wall of the blowing passage 6 as if extending it. Another end part of the wind deflector 113a is arranged to point downward and makes contact with the rotary shaft 113e.
  • the wind deflector 113b is arranged with the tip end thereof pointing rearward-downward so as to be concave to the blowing passage 6.
  • the wind deflector 113c is arranged with the tip end thereof pointing rearward-downward so as to be convex to the blowing passage 6.
  • FIG. 7 shows the static pressure distribution in the blowing passage 6 at this time.
  • a high static pressure part 90 is formed where the static pressure is higher than at the front guide 6a.
  • the orientations of the wind deflectors 113a, 113b, and 113c are adjusted so that the isobaric line 90a of the high static pressure part 90 is formed along the air stream flowing along the wind deflectors 113a and 113b.
  • the isobaric line 90a of the high static pressure part 90 is formed substantially parallel to the line connecting the terminal end of the front guide 6a and the terminal end of the wind deflector 113b, so that, near the high static pressure part 90, the air stream is substantially parallel to the isobaric line 90a.
  • the high static pressure part 90 acts as a wall surface, and helps the wind deflectors 113a, 113b, and 113c to smoothly change the direction in which the conditioned air is sent out and thereby bend the air stream.
  • the isobaric line 90a of the high static pressure part 90 in contact with the wind deflectors 113a and 113b does not cross the flow line of the main stream of the air stream that flows, while being bent, through the blowing passage 6. This helps greatly reduce the pressure loss in the air stream.
  • the conditioned air can be sent out in a rearward-downward direction at a high wind volume.
  • a low-speed, low-energy air stream branched off from the main stream flows along the wind deflectors 113a and 113b. This has little influence on the pressure loss.
  • the static pressure sensor it is possible to vary, by the use of the static pressure sensor, the orientations of the wind deflectors 113a, 113b, and 113c so that the static pressure near the wind deflectors 113a and 113b is at a predetermined value and then store the orientations of the wind deflectors 113a, 113b, and 113c in a database.
  • This makes it possible to retrieve data suitable for particular operating conditions from the database to arrange the wind deflectors 113a, 113b, and 113c at predetermined orientations. This helps omit the static pressure sensor.
  • the high static pressure part 90 forms the wall surface of the stream passage, and the high static pressure part 90 narrows the stream passage of the conditioned air into a nozzle-like shape, making the stream passage area smaller than in the front guide 6a.
  • the nozzle acts to send out high-energy fluid via the blowout port 5.
  • the wind speed of the air stream adjacent to the high static pressure part 90 does not change greatly; in this way, the change in the static pressure of the air stream is reduced to ensure a smooth flow of the air stream and to further reduce the pressure loss. This helps further increase the wind volume of the conditioned air sent out from the air conditioner.
  • the stream passage area which has thus been once narrowed by the high static pressure part 90, is then widened back on the downstream side of the wind deflectors 113a, 113b, and 113c.
  • the cross-sectional area of the stream passage first decreases as one goes downstream to form a least-cross-sectional-area part (hereinafter referred to as the "throat part").
  • the stream passage which then widens back, forms a so-called diffuser. This helps the blowing fan 7 to increase the static pressure, and thus helps further increase the wind volume.
  • no high static pressure part 90 is formed, and thus no pressure loss occurs.
  • the wind deflector 113b is so arranged as to cross an imaginary surface 98 that extends the lower wall of the front guide 6a further outward from the blowout port 5.
  • the lower end of the wind deflector 113a is located below the imaginary surface 98, and ensures that the air stream is directed rearward-downward. This prevents the air stream from being sent out in an unintended direction, and thus helps realize a highly reliable air conditioner.
  • FIG. 8 shows the behavior of air streams inside the room R as observed in a rearward-downward blowout state.
  • the conditioned air goes down along the side wall W1, then flows along the floor surface F, then along the wall surface W2 opposite to the side wall W1, and then along the ceiling wall S as indicated by arrow C, and then returns to the suction port 4.
  • This prevents the warm air sent out from rebounding thus prevents a lowering of heating efficiency due to a short circuit, and thus helps sufficiently warm a lower part of the room R and thereby enhance comfort.
  • the room temperature inside the room R quickly rises.
  • the air sent out from the indoor unit 1 is set at a temperature so low that, when it directly hits the user, he feels cold.
  • the room temperature does rise, but it does so slowly.
  • the air sent out from the indoor unit 1 reaches a temperature that does not cause the user to feel cold even if directly hit thereby, and the room temperature quickly rises from a temperature lower than the user-specified temperature.
  • FIG. 9 shows the temperature distribution inside the room when the second air stream control is performed.
  • the user-specified temperature is 28 °C
  • the room R is six -tatami- mat large (2 400 mm high by 3 600 mm wide by 2 400 mm deep).
  • measurements are taken at a total of 48 spots, that is, six by eight spots at 600 mm intervals in the height and width directions, respectively, on a middle cross section of the room R indicated by dash-and-dot lines D.
  • the conditioned air sent out from the indoor unit 1 flows along the wall surface, thus does not rebound, and thus does not produce a short circuit.
  • no pool E of warm air (see FIG. 30 ) is produced as will be produced when the air around the indoor unit 1 is overheated.
  • the temperature near the suction port 4 is about the same as the user-specified temperature of 28 °C. In this way, it is possible to achieve enhanced air conditioning efficiency, and to make it easy to check whether or not the temperature inside the room has been sufficiently raised.
  • the controller 60 performs third air stream control.
  • the operating frequency of the compressor 62 is lowered, and the wind deflectors 113a, 113b, and 113c are arranged as shown in FIG. 10 so that the conditioned air is sent out in a rearward-downward direction as indicated by arrow C', for example, at a wind speed of about 6 to 7 m/sec.
  • the wind deflector 113c is rotated in the direction indicated by arrow K in FIG. 10 to narrow the area of the blowout port 5, and the rotation rate of the blowing fan 7 is so adjusted as to maintain the wind speed.
  • the wind volume is gradually lowered to about 70%.
  • the conditioned air warm air sent out from the indoor unit 1 in a rearward-downward direction does not rebound but continues to go down along the side wall W1.
  • the conditioned air does not directly pour into the living space, but flows along the floor surface F to reach a lower part of the user's body.
  • the user does not feel discomfort due to the wind directly hitting him. Moreover, even through the wind volume is lowered, the wind speed is maintained. Thus, the warm air reaches all corners of the room R such as the boundary region between the wall surface W2 and the floor surface F. Thus, the room temperature inside the room R stabilizes within a predetermined range around the user-specified temperature, establishing a stable state.
  • the wind speed is lowered when the wind volume is lowered, the warm air may not reach all corners of the room R such as the boundary region between the cabinet wall surface W2 and the floor surface F. It is therefore preferable that the wind speed be maintained.
  • the air conditioner shifts into a start-up state to perform the second air stream control. Thereafter, when a predetermined period has elapsed, or it is detected that the difference between the room temperature and the user-specified temperature has become small, the third air stream control is performed. This is reported to achieve heating operation.
  • the user can vary the orientations of the vertical louver 12 and the wind deflectors 113a, 113b, and 113c. This permits the user to freely select the wind direction of the conditioned air.
  • the arrangement shown in FIG. 11 may be adopted where the flat-surface side of the wind deflector 113a is arranged to face the blowing passage 6. This permits the wind deflectors 113a and 113b to be arranged along the front panel 3, and thus helps improve the appearance of the indoor unit 1.
  • the high static pressure part 90 is formed by being surrounded by the frontward-upward inclined upper wall of the blowing passage 6 and the wind deflectors 113a and 113b, and thus a large eddy 25 develops in the high static pressure part 90.
  • the blowing efficiency is slightly lower, but it is still possible to reduce the increase in the pressure loss compared with that conventionally experienced.
  • the wind deflector 113a may be arranged along the front panel 3.
  • the controller 60 performs different control. Control is switched by operation of a selector switch or the like provided on the indoor unit 1 or on the remote control.
  • the wind deflectors 113a, 113b, and 113c are arranged as shown in FIG. 12 .
  • the wind deflectors 113b and 113c are arranged more frontward than in the arrangement shown in FIG. 1 described previously.
  • the conditioned air is sent out via the blowout port 5 in a substantially straight downward direction as indicated by arrow B, for example, at a wind speed of about 7 to 8 m/sec.
  • the wind deflectors 113a, 113b, and 113c are arranged as shown in FIG. 13 .
  • the wind deflector 113c is rotated in the direction indicated by arrow K from the arrangement shown in FIG. 12 to narrow the area of the blowout port 5, and the rotation rate of the blowing fan 7 is adjusted accordingly.
  • This lowers the wind volume to, for example, about 70% of the wind volume in the second air stream control, and the conditioned air is sent out via the blowout port 5 in a substantially straight downward direction as indicated by arrow B' at a wind speed of 7 to 8 m/sec.
  • the wind deflectors 113a, 113b, and 113c may be arranged as shown in FIGS. 14 and 15 , respectively.
  • the lower ends of the wind deflectors 113a,113b, and 113c are arranged more frontward than in FIG. 12 .
  • the conditioned air is sent out via the blowout port 5 in a direction more frontward than straight downward, that is, in a frontward-downward direction as indicated by arrow A2, for example, at a wind speed of about 6 to 7 m/sec.
  • the wind deflector 113a is rotated in the direction indicated by arrow J and the wind deflector 113c is rotated in the direction indicated by arrow K to narrow the area of the blowout port 5, and the rotation rate of the blowing fan 7 is adjusted accordingly.
  • the wind speed may be increased by arranging the wind deflectors 113a, 113b, and 113c as shown in FIGS. 1 and 10 , respectively, described previously. Specifically, in a start-up state the wind deflectors 113a, 113b, and 113c are arranged as shown in FIG. 1 , and the conditioned air is sent out via the blowout port 5 in a rearward-downward direction as indicated by arrow C, for example, at a wind speed of about 9 to 10 m/sec.
  • the wind deflectors 113a, 113b, and 113c are arranged as shown in FIG. 10 , and the conditioned air is sent out via the blowout port 5 in a direction indicated by arrow C, for example, at a wind speed of about 9 to 10 m/sec.
  • FIG. 16 is a side sectional view showing the indoor unit 1 of the air conditioner of a second embodiment of the present invention.
  • Such parts as find their counterparts in the first embodiment shown in FIGS. 1 to 15 are identified with common reference numerals and symbols.
  • wind deflectors 114a and 114b are provided instead of the wind deflectors 113a, 113b, and 113c provided in the first embodiment.
  • the wind deflectors 114a and 114b are arranged in the blowout port 5, and are each formed as a flat plate having flat surfaces on both sides.
  • the wind deflectors 114a and 114b are rotatably supported by rotary shafts 114c and 114d, which rotate by being driven by drive motors (unillustrated).
  • the wind deflectors 114a and 114b are built as wind direction plates that, when driven by the drive motors, change their orientations to vary the wind direction.
  • the rotary shaft 114c is provided in a substantially middle part of the wind deflector 114a, and the rotary shaft 114d is provided in an end part of the wind deflector 114b.
  • the arrangement shown in the figure is one in which the conditioned air is sent out in a rearward-downward direction.
  • the refrigeration cycle when heating operation is started, the refrigeration cycle is operated, and the blowing fan 65 of the outdoor unit (unillustrated) is driven to rotate. Now, outdoor air is sucked into the outdoor unit (unillustrated).
  • the refrigerant which has absorbed heat through the outdoor heat exchanger 64, flows to the indoor heat exchanger 9 and heats it.
  • the controller 60 drives the blowing fan 7 to rotate so that first air stream control is performed. Now, air is sucked into the indoor unit 1 via the suction port 4, and the dust contained in the air is removed by the air filter 8. The air sucked into the indoor unit 1 exchanges heat with the indoor heat exchanger 9 and is thereby heated, and is then sent out into the room while the right/left and up/down directions of the air is restricted by the vertical louver 12 and the wind deflectors wind deflectors 114a and 114b.
  • the wind deflectors 114a and 114b are arranged as shown in FIG. 17 or 18 , and the conditioned air is sent out in a frontward-upward direction or a substantially horizontal direction at a wind speed of about 3 to 4 m/sec.
  • the wind deflector 114a is arranged with the front end thereof located above the rear end thereof so as to be substantially parallel to the upper wall of the blowing passage 6, which is inclined upward near the blowout port 5.
  • the wind deflector 114b is arrange with a shaft-side end part thereof is located more frontward-downward than a free-side end part thereof.
  • the conditioned air that flows through the front guide 6a is bent and sent out via the blowout port 5 in a frontward-upward direction as indicated by arrow E.
  • the wind deflector 114a is set at a horizontal orientation as shown in FIG. 18 , the conditioned air is sent out via the blowout port 5 in a substantially horizontal direction as indicated by arrow D.
  • the conditioned air sent out via the blowout port 5 in a frontward-upward direction or a substantially horizontal direction reaches the ceiling of the room. Thereafter, by the Coanda effect, the conditioned air flows along the ceiling surface, then along the wall surface W2 (see FIG. 8 ) opposite to the indoor unit 1, then along the floor surface F (see FIG. 8 ), and then along the side wall W 1 on which the indoor unit 1 is installed.
  • the first air stream control at the start-up of heating operation, the user is not hit by insufficiently heated conditioned air, and is thereby prevented from feeling cold.
  • the controller 60 When another predetermined period has elapsed after the start of heating operation, or when the indoor heat exchanger 9 has been sufficiently heated, the controller 60 performs second air stream control.
  • the wind deflectors 114a and 114b are arranged as shown in FIG. 16 described previously.
  • the conditioned air is sent out via the blowout port 5 in a rearward-downward direction, for example, at a wind speed of about 6 to 7 m/sec.
  • the wind deflector 114a is driven by the drive motor so as to be arranged with one end thereof located close to the upper wall of the blowing passage 6 so as to extend the upper wall downward. Another end part of the wind deflector 114a is arranged close to the rotary shaft 114d so as to point downward.
  • the wind deflector 114b is arranged with the tip end thereof pointing rearward-downward.
  • the air stream flowing along the front guide 6a is stopped by the wind deflectors 114a and 114b from flowing further frontward, and thus a high static pressure part 90 is formed adjacent to the wind deflectors 114a and 114b.
  • the isobaric line 90a (see fig 7 ) of the high static pressure part 90 is formed along the flow direction of the conditioned air facing the wind deflectors 114a and 114b.
  • the high static pressure part 90 acts as a wall surface, and helps smoothly change the direction in which the conditioned air is sent out so that it is sent out via the blowout port 5 in a rearward-downward direction.
  • the high static pressure part 90 narrows the stream passage, which then widens back on the downstream side.
  • the wind deflector 114b is so arranged as to cross the imaginary surface 98 that extends the lower wall of the front guide 6a further outward from the blowout port 5. This makes it possible to obtain the same effects as in the first embodiment.
  • the controller 60 performs third air stream control.
  • the wind deflectors 114a and 114b are arranged as shown in FIG. 19 so that, with the blowing volume of the blowing fan 7 lowered, the conditioned air is sent out in a substantially straight downward direction as indicated by arrow B, for example, at a wind speed of about 5 to 6 m/sec.
  • the tip end of the wind deflector 114b is arranged more frontward than in the arrangement shown in FIG. 16 so as to point substantially straight downward, and the blowing volume and the wind speed are increased.
  • the indoor unit 1 sends out the conditioned air slightly more frontward (in a substantially straight downward direction) than in a start-up state, and thus warm air reaches far from the indoor unit 1.
  • the stream passage can be narrowed to lower the blowing volume while maintaining the wind speed. This is more preferable because doing so permits warm air to reach farther.
  • the air conditioner shifts into a start-up state to perform the second air stream control. Thereafter, when a predetermined period has elapsed, or it is detected that the difference between the room temperature and the user-specified temperature has become small, the third air stream control is performed. This is reported to achieve heating operation.
  • the user can vary the orientations of the vertical louver 12 and the wind deflectors 114a and 114b. This permits the user to freely select the wind direction of the conditioned air.
  • the arrangement shown in FIG. 20 may be adopted where the wind deflector 114a is arranged along the front panel 3. This helps improve the appearance of the indoor unit 1.
  • the high static pressure part 90 is formed by being surrounded by the frontward-upward inclined upper wall of the blowing passage 6 and the wind deflectors 114a and 114b, and thus a large eddy 25 develops in the high static pressure part 90.
  • the blowing efficiency is slightly lower, but it is still possible to reduce the increase in the pressure loss compared with that conventionally experienced.
  • the wind deflector 114a may be arranged along the front panel 3.
  • the controller 60 performs different control. Control is switched by operation of a selector switch or the like provided on the indoor unit 1 or on the remote control.
  • the wind deflectors 114a and 114b are arranged as shown in FIG. 19 described previously.
  • the wind deflector 114b is arranged more frontward than in the arrangement shown in FIG. 16 described previously.
  • the conditioned air is sent out via the blowout port 5 in a substantially straight downward direction as indicated by arrow B, for example, at a wind speed of about 7 to 8 m/sec.
  • the wind deflectors 114a and 114b are arranged as shown in FIG. 21 .
  • the wind deflector 114b is arranged more frontward than in the arrangement shown in FIG. 19 described previously.
  • the conditioned air is sent out via the blowout port 5 in a direction more frontward than straight downward, that is, in a frontward-downward direction as indicated by arrow B, for example, at a wind speed of 6 to 7 m/sec.
  • FIG. 22 is a side sectional view showing the indoor unit 1 of an air conditioner described by way of background to the present invention. Such parts as find their counterparts in the second embodiment shown in FIGS. 16 to 21 are identified with common reference numerals and symbols.
  • wind deflectors 114a and 114b instead of the wind deflectors 114a and 114b provided in the second embodiment, wind deflectors 115a and 115b are provided.
  • a rotation rate detector (unillustrated) is provided that detects the rotation rate of the blowing fan 7 provided in the indoor unit 1 and thereby detects the wind volume of the conditioned air sent out via the blowout port 5.
  • the output of the rotation rate detector is fed to the controller 60, and, based on the result of detection by the rotation rate detector, the wind deflectors 115a and 115b are driven.
  • the configuration here is the same as that of the second embodiment.
  • the wind deflectors 115a and 115b are arranged in the blowout port 5, and are each formed as a flat plate having flat surfaces on both sides.
  • the wind deflectors 115a and 115b are rotatably supported by rotary shafts 115c and 115d, which rotate by being driven by drive motors (unillustrated).
  • the wind deflectors 115a and 115b are built as wind direction plates that, when driven by the drive motors, change their orientations to vary the wind direction.
  • the rotary shaft 115c is provided in a substantially middle part of the wind deflector 115a
  • the rotary shaft 115d is provided in a substantially middle part of the wind deflector 115b, at a predetermined distance therefrom.
  • the arrangement shown in the figure is one in which the conditioned air is sent out in a rearward-downward direction.
  • the refrigeration cycle when heating operation is started, the refrigeration cycle is operated, and the blowing fan 65 of the outdoor unit (unillustrated) is driven to rotate. Now, outdoor air is sucked into the outdoor unit (unillustrated).
  • the refrigerant which has absorbed heat through the outdoor heat exchanger 64, flows to the indoor heat exchanger 9 and heats it.
  • the controller 60 drives the blowing fan 7 to rotate so that first air stream control is performed. Now, air is sucked into the indoor unit 1 via the suction port 4, and the dust contained in the air is removed by the air filter 8. The air sucked into the indoor unit 1 exchanges heat with the indoor heat exchanger 9 and is thereby heated, and is then sent out into the room while the right/left and up/down directions of the air is restricted by the vertical louver 12 and the wind deflectors wind deflectors 115a and 115b.
  • the rotation rate of the blowing fan 7 is set, for example, at 600 rpm, and, through detection by the rotation rate detector, the wind deflectors 115a and 115b are arranged as shown in FIGS. 23 or 24 .
  • the conditioned air is sent out in a frontward-upward direction or a substantially horizontal direction at a wind speed of about 3 to 4m /sec.
  • the wind deflector 115a is arranged with the front end thereof located above the rear end thereof so as to be substantially parallel to the upper wall of the blowing passage 6 that is inclined upward near the blowout port 5.
  • the wind deflector 115b is arranged with an outer end part thereof located more frontward-downward than an inner end part thereof.
  • the conditioned air that flows through the front guide 6a is so bent as to be sent out via the blowout port 5 in a frontward-upward direction as indicated by arrow E.
  • the wind deflector 115a is arranged in a parallel orientation as shown in FIG. 24 , the conditioned air is sent out via the blowout port 5 in a substantially horizontal direction as indicated by arrow D.
  • the conditioned air sent out via the blowout port 5 in a frontward-upward direction or a substantially horizontal direction reaches the ceiling of the room. Thereafter, by the Coanda effect, the conditioned air flows along the ceiling surface, then along the wall surface W2 (see FIG. 8 ) opposite to the indoor unit 1, then along the floor surface F (see FIG. 8 ), and then along the side wall W1 on which the indoor unit 1 is installed.
  • the first air stream control at the start-up of heating operation, the user is not hit by insufficiently heated conditioned air, and is thereby prevented from feeling cold.
  • the controller 60 performs second air stream control.
  • the rotation rate of the blowing fan 7 is set, for example, at 1200 rpm, and, through detection by the rotation rate detector, the wind deflectors 115a and 115b are arranged as shown in FIG. 22 described previously.
  • the conditioned air is sent out in a rearward-downward direction at a wind speed of about 6 to 7 m/sec.
  • the wind deflector 115a is driven by the drive motor so as to be arranged with one end thereof in contact with the upper wall of the blowing passage 6 so as to extend the upper wall downward.
  • the wind deflector 115b is arranged with the tip end thereof pointing substantially straight downward or rearward-downward.
  • the air stream flowing through the front guide 6a is stopped by the wind deflectors 115a and 115b from flowing further frontward, and thus a high static pressure part 90 is formed adjacent to the wind deflectors 115a and 115b.
  • the isobaric line 90a (see fig 7 ) of the high static pressure part 90 is formed along the flow direction of the conditioned air facing the wind deflectors 115a and 115b.
  • the high static pressure part 90 acts as a wall surface, and helps smoothly change the direction in which the conditioned air is sent out so that it is sent out via the blowout port 5 in a rearward-downward direction.
  • the high static pressure part 90 narrows the stream passage, which then widens back on the downstream side. Furthermore, the wind deflector 115b is so arranged as to cross the imaginary surface 98 that extends the lower wall of the front guide 6a further outward from the blowout port 5. This makes it possible to obtain the same effects as in the first and second embodiments.
  • the controller 60 performs third air stream control.
  • the rotation rate of the blowing fan 7 is set, for example, at 900 rpm, and, through detection by the rotation rate detector, the wind deflectors 115a and 115b are arranged as shown in FIG. 25 .
  • the conditioned air is sent out in a substantially straight downward direction as indicated by arrow B at a wind speed of about 5 to 6 m/sec.
  • the rotation rate of the blowing fan 7 is lowered so that the tip end of the wind deflector 115b is arranged more frontward than in the arrangement shown in FIG. 22 so as to point substantially straight downward or slightly frontward.
  • the indoor unit 1 sends out the conditioned air slightly more frontward (in a substantially straight downward direction) than in a start-up state, and thus warm air reaches far from the indoor unit 1.
  • the air conditioner shifts into a start-up state to perform the second air stream control. Thereafter, when a predetermined period has elapsed, or it is detected that the difference between the room temperature and the user-specified temperature has become small, the third air stream control is performed. This is reported to achieve heating operation.
  • the user can vary the orientations of the vertical louver 12 and the wind deflectors 115a and 115b. This permits the user to freely select the wind direction of the conditioned air.
  • the controller 60 performs different control. Control is switched by operation of a selector switch or the like provided on the indoor unit 1 or on the remote control.
  • the wind deflectors 115a and 115b are arranged as shown in FIG. 25 described previously.
  • the wind deflector 115b is arranged more frontward than in the arrangement shown in FIG. 22d described previously.
  • the conditioned air is sent out via the blowout port 5 in a substantially straight downward direction as indicated by arrow B, for example, at a wind speed of about 7 to 8 m/sec.
  • the wind deflectors 115a and 115b are arranged as shown in FIG. 26 .
  • the rotation rate of the blowing fan 7 becomes equal to, for example, 900 rpm
  • the wind deflector 115b is arranged more frontward than in the arrangement shown in FIG. 25 described previously.
  • the conditioned air is sent out via the blowout port 5 in a direction more frontward than straight downward, that is, in a frontward-downward direction as indicated by arrow B, for example, at a wind speed of 6 to 7 m/sec.
  • a similar rotation rate detector may be provided in the first or second embodiment so that, based on the result of detection by the rotation rate detector, the wind direction, wind speed, and wind volume can be varied.
  • a frequency detector (unillustrated) is provided.
  • the frequency detector detects the operating frequency of the compressor 62 (see FIG. 2 ).
  • the output of the frequency detector is fed to the controller 60, and, based on the result of detection by the frequency detector, the wind deflectors 115a and 115b are driven.
  • the configuration here is the same as that of the air conditioner of fig.22
  • the arrangement of the wind deflectors 115a and 115b can be varied.
  • the operating frequency is raised and, when the operating frequency becomes, for example, 70 Hz or higher, through detection by the frequency detector, the wind deflectors 115a and 115b are arranged, for example, as shown in FIG. 22 described previously.
  • the third air stream control in a stable state the operating frequency is lowered and, when the operating frequency becomes, for example, 40 Hz to 70 Hz, through detection by the frequency detector, the wind deflectors 115a and 115b are arranged, for example, as shown in FIG. 25 .
  • a frequency detector may be provided in the first or second embodiment.
  • a air conditioner will be described by way of background to the present invention which differs from that of the air conditioner of fig.22 in that, instead of the rotation rate detector, a blowout temperature detector (unillustrated) comprising a temperature sensor for detecting the blowout temperature of the conditioned air is provided in the blowing passage 6. Moreover, in FIG. 4 described previously, instead of the output of the temperature sensor 61, the output of the blowout temperature detector is fed to the controller 60, and, based on the result of detection by the blowout temperature detector, the wind deflectors 115a and 115b are driven. In other respects, the configuration here is the same as that of the air conditioner fig. 22 .
  • the arrangement of the wind deflectors 115a and 115b can be varied.
  • the first air stream control is performed.
  • the operating frequency of the compressor is increased to raise the blowout temperature and, when the blowout temperature becomes 45 °C or higher, through detection by the blowout temperature detector, the wind deflectors 115a and 115b are arranged, for example, as shown in FIG. 22 described previously.
  • the operating frequency of the compressor 62 is lowered and, when the blowout temperature becomes 36 °C to 45 °C, through detection by the blowout temperature detector, the wind deflectors 115a and 115b are arranged, for example, as shown in FIG. 25 described previously.
  • a blowout temperature detector may be provided in the first or second embodiment.
  • a further air conditioner will be described by way of background to the present invention which differs from that of the air conditioner fig 22 .
  • a heat exchanger temperature detector (unillustrated) comprising a temperature sensor for detecting the temperature of the indoor heat exchanger 9 is provided.
  • the output of the heat exchanger temperature detector is fed to the controller 60, and, based on the result of detection by the heat exchanger temperature detector, the wind deflectors 115a and 115b are driven.
  • the configuration here is the same as that of the air conditioner of fig. 22 .
  • the arrangement of the wind deflectors 115a and 115b can be varied. For example, when the temperature of the indoor heat exchanger 9 is lower than 40 °C, the first air stream control is performed. In the second air stream control in a start-up state, the operating frequency of the compressor 62 is increased to raise the temperature of the indoor heat exchanger 9 and, when the temperature becomes 50 °C or higher, through detection by the heat exchanger temperature detector, the wind deflectors 115a and 115b are arranged, for example, as shown in FIG. 22 described previously.
  • the operating frequency of the compressor 62 is lowered and, when the temperature of the indoor heat exchanger 9 becomes 40 °C to 50 °C, through detection by the heat exchanger temperature detector, the wind deflectors 115a and 115b are arranged, for example, as shown in FIG. 25 described previously.
  • a heat exchanger temperature detector may be provided in the first or second embodiment.
  • a further air conditioner will be described by way of background to the present invention which differs from that of the air conditioner of fig 22 .
  • the current consumption detector is built with a current transformer or the like that generates a secondary voltage proportional to a current, and detects the current consumption or power consumption of the air conditioner when it is operating.
  • the output of the power consumption detector is fed to the controller 60, and, based on the result of detection by the power consumption detector, the wind deflectors 115a and 115b are driven.
  • the configuration here is the same as that of the air conditioner of fig 22 .
  • the arrangement of the wind deflectors 115a and 115b can be varied.
  • the operating frequency of the input circuit 72 is increased and, when the current consumption or power consumption by the air conditioner becomes 12 A or more or 1 200 W or more, through detection by the current consumption detector, the wind deflectors 115a and 115b are arranged, for example, as shown in FIG. 22 described previously.
  • the operating frequency of the compressor 62 is lowered and, when the current consumption or power consumption by the air conditioner becomes 7A to 12A or 700 W to 1 200 W, through detection by the current consumption detector, the wind deflectors 115a and 115b are arranged, for example, as shown in FIG. 25 .
  • a current consumption detector may be provided in the first or second embodiment.
  • an outdoor rotation rate detector detects the rotation rate of the blowing fan 65 (see FIG. 2 ) provided in the outdoor unit and thereby detects the wind volume of the air sucked in via the suction port (unillustrated) of the outdoor unit.
  • the output of the outdoor rotation rate detector is fed to the controller 60, and, based on the result of detection by the outdoor rotation rate detector, the wind deflectors 115a and 115b are driven.
  • the configuration here is the same as that of the air conditionner of fig. 22
  • the arrangement of the wind deflectors 115a and 115b can be varied.
  • the wind deflectors 115a and 115b are arranged as shown in FIG. 22 described previously.
  • the wind deflectors 115a and 115b are arranged as shown in FIG. 25 described previously.
  • An outdoor rotation rate detector may be provided in the first or second embodiment.
  • a further air conditioner will be described by way of background to the present invention which differs from that of the air conditioner of fig. 22 in that, instead of the rotation rate detector, a humidity sensor is provided.
  • the humidity sensor is provided between the indoor heat exchanger 9 and the air filter 8, and detects the humidity of the air sucked in.
  • the output of the humidity sensor is fed to the controller 60, and, based on the result of detection by the humidity sensor, the wind deflectors 115a and 115b are driven.
  • the configuration here is the same as that of the air conditioner of fig. 22
  • the arrangement of the wind deflectors 115a and 115b can be varied. For example, when the difference between the relative humidity of the sucked air and the user-specified humidity is 20% or more, the second air stream control is performed; when the difference between the relative humidity of the sucked air and the user-specified humidity is less than 20%, third air stream control is performed.
  • a humidity sensor may be provided in the first or second embodiment.
  • an ion sensor (unillustrated) is provided.
  • the ion sensor is provided between the indoor heat exchanger 9 and the air filter 8, and detects the ion concentration in the air sucked in.
  • the output of the ion sensor is fed to the controller 60, and, based on the result of detection by the ion sensor, the wind deflectors 115a and 115b are driven.
  • the configuration here is the same as that of the air conditioner of fig. 22
  • the arrangement of the wind deflectors 115a and 115b can be varied. For example, when the difference between the ion concentration in the sucked air and the user-specified ion concentration is 2 000 ions/cm 3 or more, the second air stream control is performed; when the difference between the ion concentration in the sucked air and the user-specified ion concentration is less than 2 000 ions/cm 3 , the third air stream control is performed
  • the conditioned air containing ions in large quantities is sent out in more rearward to widely agitate the air all over the room in order to quickly achieve a proper ion balance up to all corners of the room.
  • the conditioned air is sent out in a substantially straight downward direction to reduce the part thereof unnecessarily sent out rearward in order to achieve efficient air conditioning.
  • An ion sensor may be provided in the first or second embodiment.
  • an air conditioner will be described by way of background to the present invention which differs from that of the air conditioner of fig 22 .
  • a dust sensor (purity detecting means) is provided.
  • the dust sensor is provided between the indoor heat exchanger 9 and the air filter 8.
  • the dust sensor detects the amount of dust in the air sucked in, and thereby detects the purity of the air inside the room.
  • the output of the dust sensor is fed to the controller 60, and, based on the result of detection by the dust sensor, the wind deflectors 115a and 115b are driven.
  • the configuration here is the same as that of the air conditioner of fig 22 .
  • the arrangement of the wind deflectors 115a and 115b can be varied. For example, when the amount of dust in the sucked air is larger than a predetermined value, the second air stream control is performed; when the amount of dust in the sucked air is smaller than the predetermined value, the third air stream control is performed.
  • the conditioned air is sent out more rearward to widely agitate the air all over the room.
  • the air filter 8 instead of the air filter 8 (see FIG. 1 ), a HEPA filter or an electric dust collector may be used to obtain a higher air purifying effect.
  • a dust sensor may be provided in the first or second embodiment.
  • an odor sensor (purity detecting means) is provided.
  • the odor sensor is provided between the indoor heat exchanger 9 and the air filter 8.
  • the odor sensor detects the amount of odor-producing substances contained in the air sucked in, and thereby detects the purity of the air inside the room.
  • the output of the odor sensor is fed to the controller 60, and, based on the result of detection by the odor sensor, the wind deflectors 115a and 115b are driven.
  • the configuration here is the same as that of the air conditioner of Fig. 22 .
  • the arrangement of the wind deflectors 115a and 115b can be varied. For example, when the amount of dust in the sucked air is larger than a predetermined value, the second air stream control is performed; when the amount of dust in the sucked air is smaller than the predetermined value, the third air stream control is performed.
  • the conditioned air is sent out more rearward to widely agitate the air all over the room. This makes it possible to suck dust present inside the room into the indoor unit to quickly purify air with the air filter 8. Thus, it is possible to purify the air all over the room in a short period.
  • the conditioned air is sent out in a substantially straight downward direction to reduce the part thereof unnecessarily sent out rearward in order to achieve efficient air conditioning.
  • An order sensor may be provided in the first or second embodiment.
  • the indoor unit 1 of the first embodiment is so modified as to be built as a so-called corner air conditioner that is installed in the corner L formed between two adjacent walls W3 and W4 of a room R, in contact with the ceiling wall S. Even in this case, it is possible to obtain the same effects as described above.
  • the indoor unit of the second embodiment may be built as a corner air conditioner.
  • the present invention finds application in air conditioners that take air into the cabinet thereof, then condition the taken air, and then send out the conditioned air into a room.

Abstract

Une unité intérieure (1) de dispositif de traitement d'air est montée sur la partie supérieure d'une surface de paroi (W1), une ouverture d'aspiration (4) et une ouverture de sortie d'air (5) étant situées respectivement sur la face avant et la partie inférieure de ladite unité (1). Des parties de modification du sens du vent (113a, 113b, 113c) sont capables de modifier le sens de sortie du vent d'un sens horizontal vers l'avant à un sens vers le bas et vers l'arrière. Au début du réchauffement, l'air conditionné est envoyé obliquement vers le bas vers la surface de paroi (W1). L'air conditionné tombe le long de la surface de paroi (W1) sous l'effet de Coanda, passe au-dessus d'une surface de sol (F) et circule dans la pièce. En fonction de la stabilité du réchauffement, les parties (113b, 113c) limitent le trajet d'écoulement d'air afin d'envoyer un volume réduit d'air conditionné.

Claims (30)

  1. Climatiseur (1) qui est installé sur la surface d'une paroi à l'intérieur d'une pièce comprenant :
    un orifice d'aspiration (4) travers lequel l'air est introduit ;
    un orifice de purge (5) à travers lequel l'air est envoyé vers l'extérieur ;
    un passage de soufflage (6) qui mène de l'orifice d'aspiration (4) jusqu'à l'orifice de purge (5) ; et
    un ventilateur de refoulement (7) qui est prévu dans le passage de soufflage (6) de marnière envoyer l'air vers l'extérieur,
    dans lequel le climatiseur (1) effectue une opération de chauffage tout en modifiant la direction de l'air conditionné en fonction de l'état de fonctionnement du climatiseur (1) ou de l'état de climatisation à l'intérieur de la pièce,
    caractérisé en ce que
    sont prévus
    un premier déflecteur d'air (113a, 114a) qui est supporté de façon rotative sur une partie supérieure de l'orifice de purge (5), et
    un deuxième déflecteur d'air (113b, 114b) qui est supporté de façon rotative par un arbre rotatif (113e, 114d) situé en-dessous du premier déflecteur d'air (113a, 114a),
    le premier déflecteur d'air (113a, 114a) et le deuxième déflecteur d'air (113b, 114b) modifiant la direction de l'air conditionné entre une direction sensiblement horizontale ou une direction allant vers l'avant et vers le haut et une direction allant vers le bas sensiblement droite ou une direction allant vers l'arrière et vers le bas, et
    lorsque l'air est envoyé vers l'extérieur par l'intermédiaire de l'orifice de purge (5) dans une direction allant vers l'arrière et vers le bas :
    une extrémité du premier déflecteur d'air (113a, 114a) est mise en contact avec une paroi supérieure du passage de soufflage (6) ou est placée à proximité de cette dernière, et une autre extrémité du premier déflecteur d'air (113a, 114a) est disposée de manière à pointer vers le bas et à entrer en contact avec l'arbre rotatif (113e, 114d) ou est placée à proximité du deuxième déflecteur d'air (113b, 114b) ; et
    le deuxième déflecteur d'air (113b, 114b) est disposé de manière à ce qu'une de ses extrémités pointe vers l'arrière et vers le bas, et
    lorsque l'air est envoyé vers l'extérieur par l'intermédiaire de l'orifice de purge (5) dans une direction allant vers le bas sensiblement droite :
    une extrémité du premier déflecteur d'air (113a, 114a) est mise en contact avec une paroi supérieure du passage de soufflage (6) ou est placée à proximité de cette dernière, et une autre extrémité du premier déflecteur d'air (113a, 114a) est disposée de manière à pointer vers le bas et à entrer en contact avec l'arbre rotatif (113e, 114d) ou est placée à proximité du deuxième déflecteur d'air (113b, 114b) ; et
    le deuxième déflecteur d'air (113b, 114b) est disposé de manière à ce qu'une de ses extrémités pointe vers le bas de façon sensiblement droite.
  2. Climatiseur (1) selon la revendication 1,
    dans lequel
    une ligne isobarique de répartition hydrostatique des pressions à proximité du premier déflecteur d'air (113a. 114a) et du deuxième déflecteur d'air (113b, 114b) est formée le long d'une direction dans laquelle l'air qui fait face au premier déflecteur d'air (113a, 114a) et au deuxième déflecteur d'air (113b, 114b) circule.
  3. Climatiseur (1) selon la revendication 1,
    dans lequel
    un élément de guidage avant (6a), qui permet de guider dans une direction allant vers l'avant et vers le bas l'air envoyé vers l'extérieur par le ventilateur de refoulement (7), est prévu dans le passage de soufflage (6).
  4. Climatiseur (1) selon la revendication 1,
    dans lequel
    lorsqu'une surface imaginaire (98) est supposée s'étendre vers l'extérieur d'une paroi inférieure de l'orifice de purge (5), le deuxième déflecteur d'air (113b, 114b) croise la surface imaginaire.
  5. Climatiseur (1) selon la revendication 1,
    dans lequel
    un arbre rotatif (113d, 114d) du deuxième déflecteur d'air (113b, 114b) est placé en-dessous d'un arbre rotatif (113c, 114c) du premier déflecteur d'air (113a, 114a).
  6. Climatiseur (1) selon la revendication 1,
    dans lequel
    un panneau avant (3), dans lequel est disposé l'orifice d'aspiration (4), est prévu, et
    le premier déflecteur d'air (113a, 114a) et le deuxième déflecteur d'air (113b, 114b) sont disposés le long du panneau avant (3).
  7. Climatiseur (1) selon la revendication 1,
    dans lequel
    le premier déflecteur d'air (113a, 114a) est disposé de manière à s'étendre en bas de la paroi supérieure du passage de soufflage (6).
  8. Climatiseur (1) selon la revendication 1,
    dans lequel
    le deuxième déflecteur d'air (113b, 114b) est tourné de manière à modifier la direction de l'air envoyé vers l'extérieur par l'intermédiaire de l'orifice de purge (5).
  9. Climatiseur (1) selon la revendication 1,
    dans lequel
    une extrémité inférieure du premier déflecteur d'air (113a, 114a) et une extrémité inférieure du deuxième déflecteur d'air (113b, 114b) peuvent être tournées vers l'avant de manière à envoyer l'air vers l'extérieur par l'intermédiaire de l'orifice de purge (5) dans une direction allant plus vers l'avant que vers le bas de façon droite, à savoir, dans une direction allant vers l'avant et vers le bas.
  10. Climatiseur (1) selon la revendication 1,
    dans lequel
    est prévu
    un troisième déflecteur d'air (113c) qui est supporté de façon rotative sur une partie inférieure de l'orifice de purge (5), et
    le troisième déflecteur d'air (113c) est disposé de manière à étendre une paroi inférieure du passage de soufflage (6).
  11. Climatiseur (1) selon la revendication 10,
    dans lequel
    une extrémité inférieure du troisième déflecteur d'air (113c) est tournée vers l'avant de manière à envoyer l'air vers l'extérieur par l'intermédiaire de l'orifice de purge (5) dans une direction allant plus vers l'avant que vers le bas de façon droite, à savoir, dans une direction allant vers l'avant et vers le bas.
  12. Climatiseur (1) selon la revendication 1,
    dans lequel
    est prévu un générateur d'ions (30) qui permet de générer des ions, et
    avec l'air, les ions sont envoyés vers l'extérieur par l'intermédiaire de l'orifice de purge (5) dans la pièce.
  13. Climatiseur (1) selon la revendication 1,
    dans lequel
    en fonction de l'état de fonctionnement du climatiseur ou de l'état de climatisation à l'intérieur de la pièce, la direction de l'air peut être modifiée également entre une direction allant vers le bas sensiblement droite et une direction allant vers l'avant et vers le bas.
  14. Climatiseur (1) selon la revendication 1,
    dans lequel
    lorsque la taille de la pièce est inférieure à une taille prédéterminée, la direction de l'air peut être modifiée entre une direction sensiblement horizontale ou une direction allant vers l'avant et vers le haut et une direction allant vers le bas sensiblement droite ou une direction allant vers l'arrière et vers le bas, et
    lorsque la taille de la pièce est supérieure à la taille prédéterminée, la direction de l'air peut être modifiée entre une direction sensiblement horizontale ou une direction allant vers l'avant et vers le haut et la direction allant vers l'avant et vers le bas.
  15. Climatiseur (1) selon la revendication 1,
    dans lequel
    en fonction de l'état de fonctionnement du climatiseur ou de l'état de climatisation à l'intérieur de la pièce, la direction de l'air ou le débit d'air est modifié.
  16. Climatiseur (1) selon la revendication 1,
    dans lequel
    lorsque l'état de fonctionnement du climatiseur ou l'état de climatisation à l'intérieur de la pièce satisfait une première condition, la direction de l'air est réglée de manière à correspondre à une direction sensiblement horizontale ou à une direction allant vers l'avant et vers le haut,
    lorsque l'état de fonctionnement du climatiseur ou l'état de climatisation à l'intérieur de la pièce satisfait une deuxième condition, la direction de l'air est réglée de manière à correspondre à une direction allant vers le bas sensiblement droite ou une direction allant vers l'arrière et vers le bas, et
    lorsque l'état de fonctionnement du climatiseur ou l'état de climatisation à l'intérieur de la pièce satisfait une troisième condition, la direction de l'air est réglée de manière à correspondre à une direction allant plus vers l'avant que lorsque la deuxième condition est satisfaite.
  17. Climatiseur (1) selon la revendication 16,
    dans lequel
    la première condition requiert que la température de soufflage soit inférieure à une valeur prédéterminée,
    la deuxième condition requiert que la température de soufflage soit supérieure à la valeur prédéterminée et que le climatiseur soit dans un état de démarrage permettant d'augmenter la température de la pièce, et
    la troisième condition requiert que le climatiseur soit dans un état stable permettant de stabiliser la température de la pièce.
  18. Climatiseur (1) selon la revendication 12,
    dans lequel
    est prévu un détecteur d'ions qui permet de détecter une concentration ionique à l'intérieur de la pièce, et
    l'état de climatisation à l'intérieur de la pièce sur la base duquel la direction de l'air peut être modifiée est évalué en fonction de la concentration ionique détectée par le détecteur d'ions.
  19. Climatiseur (1) selon la revendication 1,
    dans lequel
    l'état de fonctionnement du climatiseur sur la base duquel la direction de l'air peut être modifiée est évalué en fonction du débit de l'air envoyé vers l'extérieur par l'intermédiaire de l'orifice de purge (5).
  20. Climatiseur (1) selon la revendication 19,
    dans lequel
    est prévu un détecteur de vitesse de rotation qui permet de détecter la vitesse de rotation du ventilateur de refoulement (7), et
    l'état de fonctionnement du climatiseur sur la base duquel la direction de l'air peut être modifiée est évalué en fonction du résultat de détection obtenu par le détecteur de vitesse de rotation.
  21. Climatiseur (1) selon la revendication 1,
    dans lequel
    au moins une sonde de température est prévue et permet de détecter la température d'un échangeur de chaleur intérieur (9) qui échange la chaleur avec l'air introduit et qui conditionne ainsi la température de l'air, la température de l'air envoyé vers l'extérieur par l'intermédiaire de l'orifice de purge (5), ou la température de l'air introduit par l'intermédiaire de l'orifice d'aspiration (4), et
    l'état de fonctionnement du climatiseur (1) sur la base duquel la direction de l'air peut être modifiée est évalué en fonction du résultat de détection obtenu par la sonde de température.
  22. Climatiseur (1) selon la revendication 1,
    dans lequel
    est prévu un détecteur de fréquence qui permet de détecter la fréquence de fonctionnement d'un compresseur qui fait fonctionner un cycle frigorifique, et
    l'état de fonctionnement du climatiseur (1) sur la base duquel la direction de l'air peut être modifiée est évalué en fonction du résultat de détection obtenu par le détecteur de fréquence.
  23. Climatiseur (1) selon la revendication 1,
    dans lequel
    est prévu un détecteur de consommation de courant qui permet de détecter la consommation d'énergie ou la consommation de courant du climatiseur (1), et
    l'état de fonctionnement du climatiseur (1), sur la base duquel la direction de l'air peut être modifiée, est évalué en fonction du résultat de détection obtenu par le détecteur de consommation de courant.
  24. Climatiseur (1) selon la revendication 1,
    dans lequel
    une unité extérieure est prévue et permet d'introduire l'air extérieur et d'échanger la chaleur avec celui-ci, et
    l'état de fonctionnement du climatiseur, sur la base duquel la direction de l'air peut être modifiée, est évalué en fonction du débit de l'air introduit dans l'unité extérieure.
  25. Climatiseur (1) selon la revendication 24,
    dans lequel
    sont prévus
    un ventilateur extérieur (64) qui permet d'introduire de l'air extérieur, et
    un détecteur de vitesse de rotation extérieur qui permet de détecter la vitesse de rotation du ventilateur extérieur (64), et
    l'état de fonctionnement du climatiseur (1), sur la base duquel la direction de l'air peut être modifiée, est évalué en fonction du résultat de détection obtenu par le détecteur de vitesse de rotation extérieur.
  26. Climatiseur (1) selon la revendication 21,
    dans lequel
    l'état de climatisation à l'intérieur de la pièce, sur la base duquel la direction de l'air peut être modifiée, est évalué en fonction de la différence entre le résultat de détection obtenu par la sonde de température permettant de détecter la température de l'air introduit par l'intermédiaire de l'orifice d'aspiration et la température spécifiée par un utilisateur.
  27. Climatiseur (1) selon la revendication 1,
    dans lequel
    est prévu un capteur d'humidité qui permet de détecter l'humidité à l'intérieur de la pièce, et
    l'état de climatisation à l'intérieur de la pièce, sur la base duquel la direction de l'air peut être modifiée, est évalué en fonction du résultat de détection obtenu par le capteur d'humidité.
  28. Climatiseur (1) selon la revendication 1,
    dans lequel
    est prévu un moyen de détection de pureté qui permet de détecter la pureté de l'air à l'intérieur de la pièce, et
    l'état de climatisation à l'intérieur de la pièce, sur la base duquel la direction de l'air peut être modifiée, est évalué en fonction du résultat de détection obtenu par le moyen de détection de pureté.
  29. Climatiseur (1) selon la revendication 28,
    dans lequel
    le moyen de détection de pureté est un détecteur d'odeur qui permet de détecter une substance produisant une odeur contenue dans l'air à l'intérieur de la pièce ou un capteur de poussières qui permet de détecter une quantité de poussières contenue dans l'air à l'intérieur de la pièce.
  30. Climatiseur (1) selon la revendication 1,
    dans lequel
    est prévu un moyen d'inhibition qui permet d'empêcher que l'air ne soit envoyé vers l'extérieur dans une direction allant vers l'arrière et vers le bas ou une direction allant vers le bas sensiblement droite.
EP04819447A 2003-11-28 2004-11-26 Dispositif de traitement d'air Expired - Fee Related EP1707892B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003400474A JP3686963B2 (ja) 2003-11-28 2003-11-28 空気調和機
PCT/JP2004/017594 WO2005052462A1 (fr) 2003-11-28 2004-11-26 Dispositif de traitement d'air

Publications (3)

Publication Number Publication Date
EP1707892A1 EP1707892A1 (fr) 2006-10-04
EP1707892A4 EP1707892A4 (fr) 2010-05-12
EP1707892B1 true EP1707892B1 (fr) 2012-01-25

Family

ID=34631647

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04819447A Expired - Fee Related EP1707892B1 (fr) 2003-11-28 2004-11-26 Dispositif de traitement d'air

Country Status (7)

Country Link
EP (1) EP1707892B1 (fr)
JP (1) JP3686963B2 (fr)
KR (1) KR100803112B1 (fr)
CN (1) CN100565027C (fr)
AU (1) AU2004292624B2 (fr)
HK (1) HK1103788A1 (fr)
WO (1) WO2005052462A1 (fr)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1975522B1 (fr) * 2006-01-20 2013-02-27 Sharp Kabushiki Kaisha Climatiseur
JP4014617B2 (ja) * 2006-01-20 2007-11-28 シャープ株式会社 空気調和機
EP1950503A1 (fr) 2007-01-26 2008-07-30 Lg Electronics Inc. Climatiseur avec entrée d'air par face volant et sortie d'air vers face arrière
KR100979820B1 (ko) * 2008-04-29 2010-09-02 신성델타테크 주식회사 센서네트워크를 이용한 공기청정 시스템
JP4813573B2 (ja) * 2009-01-19 2011-11-09 シャープ株式会社 画像形成装置
JP4613240B2 (ja) * 2009-05-15 2011-01-12 シャープ株式会社 イオン発生装置
JP5279622B2 (ja) * 2009-06-08 2013-09-04 三菱電機株式会社 空気調和機の室内機
JP5414466B2 (ja) * 2009-11-06 2014-02-12 清水建設株式会社 イオン送風システム及びそれに用いる天吊カセット形空気調和器
JP5365675B2 (ja) * 2011-09-30 2013-12-11 ダイキン工業株式会社 空調室内機
JP2013096639A (ja) * 2011-10-31 2013-05-20 Daikin Industries Ltd 空調室内機
JP5403125B2 (ja) * 2011-10-31 2014-01-29 ダイキン工業株式会社 空調室内機
JP5408227B2 (ja) * 2011-10-31 2014-02-05 ダイキン工業株式会社 空調室内機
JP5338895B2 (ja) 2011-12-28 2013-11-13 ダイキン工業株式会社 空調室内機
CN103196181B (zh) * 2012-01-06 2016-06-08 珠海格力电器股份有限公司 空调器及其控制方法
GB2500672B (en) 2012-03-29 2016-08-24 Howorth Air Tech Ltd Clean air apparatus
JP5408318B1 (ja) * 2012-09-13 2014-02-05 ダイキン工業株式会社 空調室内機
JP5980637B2 (ja) * 2012-09-26 2016-08-31 シャープ株式会社 空気調和機
WO2015063868A1 (fr) * 2013-10-29 2015-05-07 三菱電機株式会社 Purificateur d'air
CN104697056B (zh) * 2015-02-13 2017-06-27 广东美的制冷设备有限公司 空调室内机及其控制方法
JP6137254B2 (ja) * 2015-09-10 2017-05-31 ダイキン工業株式会社 空調室内機
JP6545292B2 (ja) * 2016-02-01 2019-07-17 三菱電機株式会社 空気調和機の室内機
EP3412983B1 (fr) * 2016-02-02 2020-11-11 Mitsubishi Electric Corporation Unité intérieure pour climatiseurs
JP6225225B2 (ja) * 2016-07-26 2017-11-01 シャープ株式会社 空気調和機
CN106287963B (zh) * 2016-08-23 2019-06-28 美的集团武汉制冷设备有限公司 空调器及其送风方法
CN106322520B (zh) * 2016-08-23 2019-06-28 美的集团武汉制冷设备有限公司 空调器及其送风方法
JP6361718B2 (ja) * 2016-10-28 2018-07-25 ダイキン工業株式会社 空調室内機
JP6782618B2 (ja) * 2016-11-30 2020-11-11 株式会社竹中工務店 コアンダ気流空調システム
JP6428804B2 (ja) * 2017-02-06 2018-11-28 ダイキン工業株式会社 空気調和機
JP6493486B1 (ja) * 2017-10-30 2019-04-03 ダイキン工業株式会社 空気調和機
CN108489026B (zh) * 2018-03-09 2020-06-19 广东美的制冷设备有限公司 空调器及其控制方法、控制装置、计算机可读存储介质
KR102549804B1 (ko) * 2018-08-21 2023-06-29 엘지전자 주식회사 공기조화기
JP2021085553A (ja) * 2019-11-25 2021-06-03 シャープ株式会社 空気調和機
JP6945100B1 (ja) * 2021-02-01 2021-10-06 日立ジョンソンコントロールズ空調株式会社 空気調和機
CN112944622B (zh) * 2021-02-26 2022-07-05 青岛海尔空调器有限总公司 一种下出风空调的控制方法和下出风空调
CN113405236B (zh) * 2021-06-25 2022-03-08 海信(山东)空调有限公司 空调器的自清洁杀菌控制方法及装置、空调器和存储介质
CN114235450A (zh) * 2021-11-12 2022-03-25 东风马勒热系统有限公司 车用空调风量分配测量系统及车用空调风量分配测量方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2993412B2 (ja) * 1995-11-20 1999-12-20 三菱電機株式会社 吹出口及び該吹出口を備えた空気調和装置
JP3356257B2 (ja) * 1996-06-06 2002-12-16 株式会社富士通ゼネラル 空気調和機
JP3392644B2 (ja) * 1996-06-26 2003-03-31 東芝キヤリア株式会社 空気調和装置の室内機
MY114632A (en) * 1998-06-30 2002-11-30 Matsushita Electric Ind Co Ltd Air conditioner.
JP2001038122A (ja) * 1999-07-30 2001-02-13 Sanyo Electric Co Ltd 空気清浄機
JP2002286243A (ja) * 2001-03-27 2002-10-03 Corona Corp 空気調和機
JP2003185225A (ja) * 2001-12-20 2003-07-03 Fujitsu General Ltd 空気調和機の制御方法
JP3960812B2 (ja) * 2002-02-06 2007-08-15 シャープ株式会社 空気調和機
JP3534739B2 (ja) * 2002-05-21 2004-06-07 東芝キヤリア株式会社 空気調和装置の室内機
WO2005052463A1 (fr) * 2003-11-28 2005-06-09 Sharp Kabushiki Kaisha Dispositif de traitement d'air

Also Published As

Publication number Publication date
HK1103788A1 (en) 2007-12-28
EP1707892A4 (fr) 2010-05-12
CN100565027C (zh) 2009-12-02
JP3686963B2 (ja) 2005-08-24
KR100803112B1 (ko) 2008-02-13
AU2004292624A1 (en) 2005-06-09
CN1906445A (zh) 2007-01-31
EP1707892A1 (fr) 2006-10-04
AU2004292624B2 (en) 2009-08-13
JP2005164068A (ja) 2005-06-23
KR20060097134A (ko) 2006-09-13
WO2005052462A1 (fr) 2005-06-09

Similar Documents

Publication Publication Date Title
EP1707892B1 (fr) Dispositif de traitement d'air
EP1553358B1 (fr) Climatiseur
JP3960812B2 (ja) 空気調和機
JP4439532B2 (ja) 空気調和機
JP4033885B2 (ja) 空気調和機
JP3995491B2 (ja) 空気調和機
JP4017483B2 (ja) 空気調和機
JP4007817B2 (ja) 空気調和機
EP1707893B1 (fr) Dispositif de traitement d'air
JP4285959B2 (ja) 空気調和機
JP2004308930A (ja) 空気調和機
JP4090489B2 (ja) 空気調和機
US20220178581A1 (en) Indoor unit for air conditioner
JP2012042182A (ja) 空気調和機の室内機
US20220186976A1 (en) Indoor unit of air conditioner
JP2004108652A (ja) 空気調和機
JP2004353921A (ja) 空気調和機
KR100257199B1 (ko) 공기조화기의 제습장치
KR19990010650U (ko) 공조기기
KR19990019617A (ko) 공조기기 및 그 제어방법

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060621

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): IT SE

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): IT SE

A4 Supplementary search report drawn up and despatched

Effective date: 20100414

17Q First examination report despatched

Effective date: 20100630

RIC1 Information provided on ipc code assigned before grant

Ipc: F24F 11/02 20060101AFI20110516BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): IT SE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20121026

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20181120

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20181126

Year of fee payment: 15

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191126