EP1706553B1 - Method for the production of double-bent shells - Google Patents

Method for the production of double-bent shells Download PDF

Info

Publication number
EP1706553B1
EP1706553B1 EP05700007A EP05700007A EP1706553B1 EP 1706553 B1 EP1706553 B1 EP 1706553B1 EP 05700007 A EP05700007 A EP 05700007A EP 05700007 A EP05700007 A EP 05700007A EP 1706553 B1 EP1706553 B1 EP 1706553B1
Authority
EP
European Patent Office
Prior art keywords
shell
area
process according
plate
basal area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05700007A
Other languages
German (de)
French (fr)
Other versions
EP1706553A1 (en
Inventor
Johann Kollegger
Clemens Preisinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Innovationsagentur GmbH
Kollegger GmbH
Original Assignee
Innovationsagentur GmbH
Kollegger GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Innovationsagentur GmbH, Kollegger GmbH filed Critical Innovationsagentur GmbH
Publication of EP1706553A1 publication Critical patent/EP1706553A1/en
Application granted granted Critical
Publication of EP1706553B1 publication Critical patent/EP1706553B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/32Arched structures; Vaulted structures; Folded structures
    • E04B1/3205Structures with a longitudinal horizontal axis, e.g. cylindrical or prismatic structures
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B7/00Roofs; Roof construction with regard to insulation
    • E04B7/08Vaulted roofs
    • E04B7/10Shell structures, e.g. of hyperbolic-parabolic shape; Grid-like formations acting as shell structures; Folded structures
    • E04B7/102Shell structures
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/32Arched structures; Vaulted structures; Folded structures
    • E04B2001/327Arched structures; Vaulted structures; Folded structures comprised of a number of panels or blocs connected together forming a self-supporting structure
    • E04B2001/3276Panel connection details

Definitions

  • the invention relates to a method for producing a doubly spatially curved shell and a shell produced thereafter.
  • Particularly suitable for the production of doubly spatially curved trays are materials which can be cast, such as e.g. Reinforced concrete, plastics and water or ice.
  • Shells made of the materials mentioned are spatially curved surface structures, which can be used, for example, as a roof for exhibition halls or event halls.
  • double-curved wooden shells can also be used as formwork for forming cavities in solid concrete structures, for example in dams.
  • Shell structures are characterized by the fact that, with suitable form and storage, they carry off loads predominantly by membrane forces. This leads to an extremely low material utilization and low material consumption. However, the savings in material consumption are offset by increased labor costs for the production of spatially curved formwork.
  • Executed shell structures such as in " Spatial Roof Structures - Construction and Design "by Hermann Rühle, Volume 1, VEB Verlag für Bausch, Berlin, 1969, p. 177, 248, 256 and " Heinz Isler - Schalen “by Ekkehard Ramm and Eberhard Schung (ed.), Karl Krämer Verlag, Stuttgart, 1986, p. 51, 68, 70, 77 are described, usually have complicated, spatially curved formwork made of wood and / or steel.
  • Spatially curved surface structures are referred to as shells, if the surface is a continuum and unlike the above-mentioned half-timbered domes is not formed by individual rods.
  • the surface of a doubly spatially curved shell can also consist of a non-pourable material, such as wood.
  • a composite material of rigid, flat wood panels is proposed, which have the cut form of a triangle or quadrilateral and are hinged along adjacent edges. This succeeds in the production of arcuate shell strips, which are joined together and connected to each other, so that a spatially curved wooden shell is created.
  • Producing a spatially curved shell according to this method requires the lifting and moving of arcuate elements and is therefore limited to small spans.
  • a production of the large number of individual wood panels and their joints is labor-intensive and costly.
  • the invention has for its object to provide a method for producing a doubly spatially curved shell without the construction of a spatially curved formwork and the associated scaffold or without the use of a pneumatic formwork and without lifting, moving and joining of arcuate elements that not is limited to small spans.
  • a shell produced by the method according to the invention is characterized in that it is alternately formed over the surface by at least one soft first material with a low modulus of elasticity and at least one second material whose modulus of elasticity is substantially above the elastic modulus of the first material and whose compressive strength is higher as the compressive strength of the first material.
  • the method is preferably used for the production of reinforced concrete shells 10, but also for the production of shells 10 made of plastics, ice or wood.
  • the first example illustrates the manufacture of an exhibition hall designed as a reinforced concrete shell 10.
  • a plate edge 16 is measured on a work surface 15 and its circumference marked.
  • a base 12 is set, the surface area exceeds the surface of the shell 10 to be formed.
  • a soft first material 20 is designed on the base.
  • a suitable material for the soft material 20 would, for example extruded polystyrene foam having a Young's modulus of 300 MP a.
  • the area fraction occupied by the first material 20 on the base surface 12 is greater than the difference between the base surface 12 and the finished shell 10.
  • the surface of the shell 10 if the shell 10 is very thin compared to its size, then whose surface meant. It could also be - for example, with larger wall thicknesses - an approximately centered thickness of the surface.
  • the remaining part of the base 12 is filled with a castable material using a suitable, along the plate edge 16 mounted Randabschalung, so that a plate of constant thickness is formed.
  • a pressure-resistant second material 22 which in this example consists of reinforced concrete with a modulus of elasticity of 30,000 MPa , a plate 14 having orthotropic material properties is produced.
  • the stiffnesses are not determined locally in the pressure-resistant material 22 or in the soft material 20, but smeared over a larger area comprising a plurality of strips of soft material 20 and regions of pressure-resistant material 22 therebetween.
  • the tangential stiffness of the plate 14 in the vicinity of the plate edge 16 is lower because of the high proportion of soft material 20 than in the closer to the middle plate regions.
  • the rigidity of the plate 14 in the radial direction is greater than the rigidity in the tangential direction.
  • An advantageous type of reinforcement is, for example, by approximately radially arranged steel rods 13, which in Fig. 1 However, only one point are shown, realized.
  • FIG. 2 A section through the plate 14 and the base 12 is in Fig. 2 shown.
  • a clamping member 30 is disposed in the plate 14, and cast in concrete.
  • the work surface 15 must be such that a sliding of the plate edge 16 on the surface 15 is possible.
  • plate 14 of soft material 20 and pressure-resistant material 22 is produced on a flat work surface 15.
  • the strips of soft material 20 can, as in Fig. 3 shown, have contact surfaces between soft material 20 and pressure-resistant material 22, which are normal to the central surface of the plate 14.
  • the contact surfaces between soft material 20 and pressure-resistant material 22 may also include an angle other than 90 ° with the central surface of the plate ( Fig. 4 ) to make the molding process easier.
  • a fourth step as in Fig. 5 represented by the shortening of the periphery 18 of the plate edge 16 and the consequent compression of the softer first material 20 in the tangential direction reduces the base 12 and thus deformed the plate 14 to a shell 10 with positive Gaussian curvature.
  • the diameter and the plan area of the shell 10 in the plan view according to Fig. 5 are therefore smaller than the diameter and the base 12 of the plate 14 in the plan view according to Fig.1 ,
  • the of The area occupied by the strips of the first material 20 is shaped in accordance with the expected tangential shortening of the plate 14 during the molding process, bearing in mind that the compressed first material 20 still forms a small portion of the surface of the shell 10.
  • Fig. 6 shows the shell 10 during the molding process, wherein the shortening of the periphery 18 by the tensioning of the clamping member 30 takes place.
  • the edge 16 of the shell 10 can be connected to the foundation.
  • An in-situ concrete layer 37 could then be applied to the surface of the shell 10 in order to achieve a greater rigidity of the shell 10 or to ensure a sealing of the surface against precipitation by the second concrete layer (cf. FIGS. 11 and 12 ).
  • the forming process could be assisted by lifting one or more locations of the plate 14 at the beginning of the forming process with a suitable hoist.
  • a suitable hoist Such support is in Fig. 9 illustrated.
  • the working surface 15 is in this case covered with two superimposed membranes or foils 38 which exceed the base area 12.
  • By creating a pneumatic pressure between the membranes or foils 38 buckling occurs as in FIG Fig. 9 shown.
  • the sealing of the space between the membranes or films 38 takes place by the weight of the shell 10. It may be advantageous to provide a soft material 46 between the membranes or foils 38 in the region of the plate edge 16 for better sealing, in particular a thin layer of a Material having the same strength properties as the first material 20.
  • FIG Fig. 8 Another way of supporting the bulge of plate 14 is in FIG Fig. 8 shown, according to the one type Pneu 39 is applied at the beginning of the reduction of the base 12 with compressed air.
  • Fig. 7 shows a slightly curved, ie provided in the center region of the base 12 with an elevation 40 working surface 15, which elevation, however, - in relation to the extension of the base 12 - has only a small amount.
  • the manufacture of the plate 14 with an elevation of the base area, a center area of, for example, one-hundredth of the plate diameter, has a favorable effect on the internal forces arising during the shaping process and reduces the risk of buckling of the shell 10 during the shaping process; this shows Fig. 7 , but distorted to scale.
  • Fig. 10 shows one of the Fig. 6 Corresponding section through a shell 10 with a modified arrangement of the tendons 32 and 36.
  • the shortening of the circumference 18 or reduction of the base 12 via tendons 36 which are connected only at two points with the edge 16 of the shell 10 and during be tense of the shaping process.
  • clamping members 36 are arranged outside the shell 10, which is formed of soft material 20 and pressure-resistant material 22, in a distance predetermined by means of spacers 34.
  • These external tendons 36 are each connected at the edge 16 with the shell 10 and increase the flexural rigidity of the shell 10 in the radial direction.
  • FIG. 14 20 for the production of a doubly curved shell 10, in which ice is used as pressure-resistant second material 22.
  • the base 12 When it is mounted along the plate edge 16 a composite of individual parts edge formwork 41.
  • These parts of the edge formwork 41 should be rigid and can be made of concrete ( Fig. 16 ) with a reinforcement 42, which projects into the second material 22, or of wood ( Fig. 17 ) be formed.
  • a part of the base area 12 is covered with a soft first material 20 having a lower elastic modulus compared to ice.
  • the dimensions and arrangement of the strips of soft material 20 largely determine the shape of the shell 10 that sets up after the molding process.
  • the first material 20 extends to between the edge formwork 41 forming items.
  • the arrangement of the tendons 43 is preferably carried out for an edge formwork 41 made of concrete in the concrete itself, for an edge formwork 41 made of wood outside the items.
  • the remaining part of the base 12 is filled with water, which is advantageously carried out in layers with solidification of the previously introduced layers.
  • a Glasmaschinegelege 44 is placed on the claimed on train side of the plate 14. It is assumed in this embodiment that the production of the shell takes place at outside temperatures below 0 ° Celsius. After freezing of the water to ice with a modulus of elasticity of 1000 MP a , the pressure-resistant second material 22 of the plate 14 is thus produced.
  • FIG. 19 shows a variant of a shell 10 with a base surface 12 shown in FIG. 18 in plan view and in FIG. 20 in an oblique view.
  • the shell 10 will have predominantly membrane stresses due to its own weight. In a span of 20 m, a stitch of 5 m and a shell thickness of 0.15 m, the stresses due to weight only about 0.15 MP a will be. Creep deformations will therefore remain small, and the ice tray 10 shown in Fig. 20 may be used as an event hall for a few months during the cold season.
  • FIGS. 21 to 23 the production of a shell 10 with a negative Gaussian curvature is explained with reference to FIGS. 21 to 23, in which wood is used as pressure-resistant material 22.
  • first the base area 12 is measured.
  • a portion of the base 12 is covered with plates, which consist of pressure-resistant second material 22, for example, wood material.
  • a further part of the base 12 is covered with a soft first material 20 so that some recesses 24 arise in the base 12, which are occupied neither with pressure-resistant second material 22 nor with soft first material 20.
  • the strips of the first material 20 have a smaller width in the vicinity of the plate edge 16 in this example than in the central regions of the plate 14, because from the plate 14, a shell 10 is to be formed with negative Gaussian curvature.
  • the base 12 of the plate 14 is reduced by means of bias, so that the strips of soft material 20 largely close and from the plate 14, a shell 10 with negative Gaussian curvature arises, which in Fig. 22 in Floor plan is shown.
  • the bowl 10 shown in perspective in FIG. 23 can be used as an exhibition hall.
  • the production of doubly spatially curved trays 10 of any shape over any plan is possible.
  • the ratio of the area occupied by the first material 20 on the base 12 to the area occupied by the second material 22 depends on the desired curvature of the shell.
  • the area occupied by the first material 20 on the base area occupies 2 to 30% of the total area of the base area, in particular 4 to 10%.
  • the preferred material for the first material 20 is polystyrene or polyurethane with flow limit voltages for polystyrene between 0.1 to 1.0 MP a and polyurethane between 0.3 to 1.2 MP a.
  • the second material 22 is concrete, wood or ice in question, for concrete, the yield stress is between 20 and 100 MP a under pressure. Wood has flow limit voltages between 10 and 40 MP a, to be precise under tensile and compressive stress, ice cream from 0.5 to 1.0 MP a compression load. This results in a yield point ratio of the yield point of the second material 22 to the yield point of the first material 20 between 2.5 and 200. Preferably, this is between 5 and 100.
  • the elastic moduli are for concrete 2000-80000 MP a for ice between 500 and 2,000 MP a and for wood 8000-16000 MP a.
  • Is modulus of elasticity between 50 and 300 give a MP for the preferably used second materials. It follows that the ratio of the moduli of elasticity of the second material 22 to the first material 20 is between 10 and 300, preferably between 50 and 200.

Abstract

The aim of the invention is to be able to produce a shell that is curved twice in a three-dimensional manner without using formwork and without joining together arc-shaped elements. Said aim is achieved by a method that is characterized by the following steps: - a basal area (12) exceeding the area of the double-bent shell (10) is initially measured on a working area (15), preferably a plane; - a subarea of said basal area (12), which corresponds approximately to the difference between the basal area (12) and the area of the shell (10), is coated with at least one soft first material (20) having a low elastic modulus while a remaining subarea of the basal area (12) is coated with at least one second material (22) whose elastic modulus substantially exceeds the elastic modulus of the first material (20) and whose resistance to pressure is greater than that of the first material, at least one subarea coated with the first material (20) being located between two subareas of the basal area (12) that are coated with the second material (21); - a plate (14) having orthotropic properties, such as stiffness, is formed; - the basal area (12) of the plate (14) is then reduced such that the double-bent shell (10) is formed.

Description

Die Erfindung betrifft ein Verfahren zum Herstellen einer zweifach räumlich gekrümmten Schale sowie eine danach hergestellte Schale.The invention relates to a method for producing a doubly spatially curved shell and a shell produced thereafter.

Besonders geeignet für die Herstellung von zweifach räumlich gekrümmten Schalen sind Werkstoffe, die sich gießen lassen, wie z.B. Stahlbeton, Kunststoffe und Wasser bzw. Eis.Particularly suitable for the production of doubly spatially curved trays are materials which can be cast, such as e.g. Reinforced concrete, plastics and water or ice.

Schalen aus den genannten Werkstoffen sind räumlich gekrümmte Flächentragwerke, die zum Beispiel als Überdachung für Ausstellungshallen oder Veranstaltungshallen verwendet werden können.Shells made of the materials mentioned are spatially curved surface structures, which can be used, for example, as a roof for exhibition halls or event halls.

Zusätzlich zu dem genannten Einsatzgebiet von Schalen zur Überdachung von großen Flächen können zweifach räumlich gekrümmte Schalen aus Holz auch als Schalung zur Formung von Hohlräumen in massiven Betonkonstruktionen, beispielsweise in Staudämmen, eingesetzt werden.In addition to the above-mentioned field of use of shells for covering large areas, double-curved wooden shells can also be used as formwork for forming cavities in solid concrete structures, for example in dams.

Schalentragwerke zeichnen sich dadurch aus, dass sie bei geeigneter Form und Lagerung Lasten überwiegend durch Membrankräfte abtragen. Dies führt zu einer äußerst günstigen Materialausnutzung und geringem Materialverbrauch. Den Ersparnissen beim Materialverbrauch stehen aber erhöhte Lohnkosten für die Herstellung räumlich gekrümmter Schalungen entgegen. Ausgeführte Schalentragwerke, wie sie beispielsweise in " Räumliche Dachtragwerke - Konstruktion und Ausführung" von Hermann Rühle, Band 1, VEB Verlag für Bauwesen, Berlin, 1969, S. 177, 248, 256 und " Heinz Isler - Schalen" von Ekkehard Ramm und Eberhard Schung (Hrsg.), Karl Krämer Verlag, Stuttgart, 1986, S. 51, 68, 70, 77 beschrieben sind, weisen in der Regel komplizierte, räumlich gekrümmte Schalungen aus Holz und/oder Stahl auf.Shell structures are characterized by the fact that, with suitable form and storage, they carry off loads predominantly by membrane forces. This leads to an extremely low material utilization and low material consumption. However, the savings in material consumption are offset by increased labor costs for the production of spatially curved formwork. Executed shell structures, such as in " Spatial Roof Structures - Construction and Design "by Hermann Rühle, Volume 1, VEB Verlag für Bauwesen, Berlin, 1969, p. 177, 248, 256 and " Heinz Isler - Schalen "by Ekkehard Ramm and Eberhard Schung (ed.), Karl Krämer Verlag, Stuttgart, 1986, p. 51, 68, 70, 77 are described, usually have complicated, spatially curved formwork made of wood and / or steel.

Um die Kosten für den Bau räumlich gekrümmter Schalungen zu sparen, sind auch pneumatische Schalungen bekannt geworden. Schalen in Kugelform oder in Zylinderform und Schalen mit mehr oder weniger geringfügigen Abwandlungen dieser Grundformen können auf diese Weise hergestellt werden, siehe z.B. " Kuppelbau mit pneumatischer Schalung" von Franz Derflinger, in "Beton- und Stahlbetonbau", Jahrgang 1983, Heft 11, Seiten 299 bis 302 .In order to save the costs for the construction of spatially curved formwork, pneumatic formwork has become known. Shells in spherical or cylindrical shape and shells with more or less slight modifications of these basic shapes can be made in this way, see eg " Dome construction with pneumatic formwork "by Franz Derflinger, in" Concrete and reinforced concrete construction ", born 1983, No. 11, pages 299 to 302 ,

Weil die Herstellung und der Einsatz von Gussformen und pneumatischen Schalungen sehr teuer ist, wurden zweifach räumlich gekrümmte Flächentragwerke aus Stäben gebaut. Bei Fachwerkkuppeln wird die kontinuierliche Fläche der Schale durch Stäbe aus Stahl oder Holz ersetzt, die polygonal die gekrümmte Schalenfläche annähern.Because the manufacture and use of molds and pneumatic formworks is very expensive, double-spaced sheet structures have been constructed from rods. at Half-timbered domes replace the continuous surface of the shell with rods of steel or wood which polygonal approach the curved shell surface.

Räumlich gekrümmte Flächentragwerke werden als Schalen bezeichnet, wenn die Fläche ein Kontinuum darstellt und im Unterschied zu den genannten Fachwerkkuppeln nicht durch einzelne Stäbe gebildet wird.Spatially curved surface structures are referred to as shells, if the surface is a continuum and unlike the above-mentioned half-timbered domes is not formed by individual rods.

Die Fläche einer zweifach räumlich gekrümmten Schale kann auch aus einem nicht gießfähigen Werkstoff, wie beispielsweise Holz, bestehen. In der AT 410 342 wird ein Werkstoffverbund aus biegesteifen, ebenen Holzplatten vorgeschlagen, die die Zuschnittform eines Dreiecks oder Vierecks aufweisen und entlang benachbarter Kanten gelenkig verbunden sind. Damit gelingt die Herstellung von bogenförmigen Schalenstreifen, die aneinandergefügt und miteinander verbunden werden, sodass eine räumlich gekrümmte Holzschale entsteht. Das Herstellen einer räumlich gekrümmten Schale nach diesem Verfahren erfordert das Anheben und Bewegen von bogenförmigen Elementen und ist deshalb auf kleine Spannweiten beschränkt. Zudem ist eine Fertigung der Vielzahl einzelner Holzplatten und deren Gelenkverbindungen arbeits- und kostenintensiv.The surface of a doubly spatially curved shell can also consist of a non-pourable material, such as wood. In the AT 410 342 a composite material of rigid, flat wood panels is proposed, which have the cut form of a triangle or quadrilateral and are hinged along adjacent edges. This succeeds in the production of arcuate shell strips, which are joined together and connected to each other, so that a spatially curved wooden shell is created. Producing a spatially curved shell according to this method requires the lifting and moving of arcuate elements and is therefore limited to small spans. In addition, a production of the large number of individual wood panels and their joints is labor-intensive and costly.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Herstellung einer zweifach räumlich gekrümmten Schale ohne den Aufbau einer räumlich gekrümmten Schalung und des dazugehörigen Lehrgerüsts bzw. ohne den Einsatz einer pneumatischen Schalung und ohne Anheben, Bewegen und Zusammenfügen von bogenförmigen Elementen zu ermöglichen, das nicht auf kleine Spannweiten beschränkt ist.The invention has for its object to provide a method for producing a doubly spatially curved shell without the construction of a spatially curved formwork and the associated scaffold or without the use of a pneumatic formwork and without lifting, moving and joining of arcuate elements that not is limited to small spans.

Diese Aufgabe wird dadurch gelöst, dass

  • zunächst auf einer Arbeitsfläche, vorzugsweise einer Ebene, eine flächenmäßig die Fläche der zweifach gekrümmten Schale überschreitende Grundfläche eingemessen wird, und
  • ein Flächenteil dieser Grundfläche, der etwa der Differenz zwischen der Grundfläche und der Fläche der Schale entspricht, mit mindestens einem weichen ersten Material mit einem niedrigen Elastizitätsmodul und ein übriger Flächenteil der Grundfläche mit mindestens einem zweiten Material belegt wird, dessen Elastizitätsmodul wesentlich über dem Elastizitätsmodul des ersten Materials liegt und dessen Druckfestigkeit höher ist als die Druckfestigkeit des ersten Materials,
  • wobei mindestens ein mit dem ersten Material belegter Flächenteil zwischen zwei mit dem zweiten Material belegten Flächenteilen der Grundfläche liegt, und eine Platte mit orthotropen Materialeigenschaften, wie Steifigkeit, gebildet wird, worauf
  • die Grundfläche der Platte unter Bildung der zweifach gekrümmten Schale verkleinert wird.
This object is achieved in that
  • first on a work surface, preferably a plane, a surface area of the surface of the double-curved shell bordering base area is measured, and
  • a surface part of this base area, which corresponds approximately to the difference between the base surface and the surface of the shell, is covered with at least one soft first material with a low modulus of elasticity and a remaining surface part of the base surface with at least one second material whose modulus of elasticity is significantly higher than the elastic modulus of the first material and whose compressive strength is higher than the compressive strength of the first material,
  • wherein at least one surface part occupied by the first material lies between two surface parts of the base surface occupied by the second material, and a plate with orthotropic material properties, such as rigidity, is formed, whereupon
  • The base of the plate is reduced to form the doubly curved shell.

Durch die Ausnutzung der orthotropen Materialeigenschaften der ebenen Platte gelingt es, eine zweifach räumlich gekrümmte Schale, die bei linear elastischem Materialverhalten nicht in einer Ebene abwickelbar wäre, aus der Platte zu formen. Das vorteilhafte Tragverhalten von zweifach gekrümmten Schalen im Vergleich zu Schalen mit einfacher Krümmung oder zu Bögen, stellt sich dabei bereits während des Formgebungsprozesses ein. In Abhängigkeit von der geometrischen Form sowie dem Verhältnis der Elastizitätsmodule und den Flächenanteilen der zumindest zwei unterschiedlichen Baustoffe entsteht ein zweiaxialer Membranspannungszustand in der Schale, der im Hinblick auf ein Stabilitätsversagen gegenüber Tragwerken mit einfacher Krümmung entscheidende Vorteile hat. Biegebeanspruchungen in der Schale während des Formgebungsprozesses müssen durch einen geeigneten Entwurf für die Schalenform und eine sorgfältige konstruktive Durchbildung auf Werte beschränkt bleiben, die von der Schale aufgenommen werden können.By exploiting the orthotropic material properties of the flat plate, it is possible to form a doubly spatially curved shell, which would not be unwound in a plane in the case of linear elastic material behavior, from the plate. The advantageous load-bearing behavior of doubly curved shells in comparison to shells with simple curvature or to bends, already arises during the shaping process. Depending on the geometric shape and the ratio of the moduli of elasticity and the surface portions of the at least two different building materials creates a biaxial membrane stress state in the shell, which has decisive advantages in terms of stability failure compared to structures with simple curvature. Bending stresses in the shell during the molding process must be limited to values that can be absorbed by the shell by proper design of the shell shape and careful design.

Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen definiert.Advantageous developments of the invention are defined in the subclaims.

Eine durch das erfindungsgemäße Verfahren hergestellte Schale ist dadurch gekennzeichnet, dass sie über die Fläche abwechselnd von mindestens einem weichen ersten Material mit einem niedrigen Elastizitätsmodul und mindestens einem zweiten Material gebildet ist, dessen Elastizitätsmodul wesentlich über dem Elastizitätsmodul des ersten Materials liegt und dessen Druckfestigkeit höher ist als die Druckfestigkeit des ersten Materials.A shell produced by the method according to the invention is characterized in that it is alternately formed over the surface by at least one soft first material with a low modulus of elasticity and at least one second material whose modulus of elasticity is substantially above the elastic modulus of the first material and whose compressive strength is higher as the compressive strength of the first material.

Weitere zweckmäßige Ausführungsformen der Schale sind in Unteransprüchen definiert.Further expedient embodiments of the shell are defined in subclaims.

Die Erfindung ist nachfolgend anhand in der Zeichnung dargestellter Ausführungsbeispiele näher erläutert. Es zeigen:

Fig. 1
eine Draufsicht auf eine Platte und die Arbeitsfläche;
Fig. 2
einen Schnitt längs der Linie II-II der Fig. 1;
Fig. 3
einen Schnitt längs der Linie III-III der Fig. 1;
Fig. 4
einen Schnitt längs der Linie IV-IV der Fig. 1;
Fig. 5
eine Fig. 1 entsprechende Draufsicht auf die Schale während des Formgebungsprozesses;
Fig. 6
einen Schnitt längs der Linie VI-VI der Fig. 5;
Fig. 7 bis 10
jeweils einen gemäß Fig. 6 geführten Schnitt weiterer Ausführungsformen;
Fig. 11
eine Draufsicht analog zu Fig. 5 auf eine geänderte Ausführungsform;
Fig. 12
einen Schnitt gemäß der Linie XII-XII der Fig. 11;
Fig. 13
ein Spannungs-Dehnungs-Diagramm für ein weiches Material;
Fig. 14
eine Draufsicht analog zu Fig. 1 einer weiteren Ausführungsform;
Fig. 15
einen Schnitt nach der Linie XV-XV der Fig. 14;
Fig. 16 und Fig. 17
jeweils einen Schnitt gemäß den Linien XVI-XVI und XVII-XVII der Fig. 14, jedoch im vergrößerten Maßstab;
Fig. 18
eine Draufsicht auf die Platte einer anderen Ausführungsform;
Fig. 19
eine Draufsicht auf die Schale der anderen Ausführungsform nach Abschluss des Formgebungsprozesses;
Fig. 20
eine perspektivische Ansicht von der Schale der anderen Ausführungsform nach Abschluss des Formgebungsprozesses;
Fig. 21
eine Draufsicht auf die Platte einer weiteren Ausführungsform;
Fig. 22
eine Draufsicht auf die Schale der weiteren Ausführungsform nach Abschluss des Formgebungsprozesses;
Fig. 23
eine perspektivische Ansicht von der Schale der weiteren Ausführungsform nach Abschluss des Formgebungsprozesses.
The invention is explained in more detail with reference to embodiments illustrated in the drawings. Show it:
Fig. 1
a plan view of a plate and the work surface;
Fig. 2
a section along the line II-II of Fig. 1 ;
Fig. 3
a section along the line III-III of Fig. 1 ;
Fig. 4
a section along the line IV-IV of Fig. 1 ;
Fig. 5
a Fig. 1 corresponding plan view of the shell during the molding process;
Fig. 6
a section along the line VI-VI of Fig. 5 ;
Fig. 7 to 10
one according to Fig. 6 guided section of further embodiments;
Fig. 11
a plan view analogous to Fig. 5 to a modified embodiment;
Fig. 12
a section according to the line XII-XII of Fig. 11 ;
Fig. 13
a stress-strain diagram for a soft material;
Fig. 14
a plan view analogous to Fig. 1 a further embodiment;
Fig. 15
a section along the line XV-XV of Fig. 14 ;
FIGS. 16 and 17
each a section according to the lines XVI-XVI and XVII-XVII of Fig. 14 but on an enlarged scale;
Fig. 18
a plan view of the plate of another embodiment;
Fig. 19
a plan view of the shell of the other embodiment after completion of the molding process;
Fig. 20
a perspective view of the shell of the other embodiment after completion of the molding process;
Fig. 21
a plan view of the plate of a further embodiment;
Fig. 22
a plan view of the shell of the further embodiment after completion of the molding process;
Fig. 23
a perspective view of the shell of the other embodiment after completion of the molding process.

Das Verfahren dient vorzugsweise zur Herstellung von Stahlbetonschalen 10, aber auch zur Herstellung von Schalen 10 aus Kunststoffen, Eis oder Holz. Das erste Beispiel erläutert die Herstellung einer Ausstellungshalle, die als Stahlbetonschale 10 ausgebildet ist.The method is preferably used for the production of reinforced concrete shells 10, but also for the production of shells 10 made of plastics, ice or wood. The first example illustrates the manufacture of an exhibition hall designed as a reinforced concrete shell 10.

Als erster Schritt wird auf einer Arbeitsfläche 15 ein Plattenrand 16 eingemessen und dessen Umfang markiert. Damit wird eine Grundfläche 12 festgelegt, deren Flächenausmaß die Fläche der zu bildenden Schale 10 überschreitet.As a first step, a plate edge 16 is measured on a work surface 15 and its circumference marked. Thus, a base 12 is set, the surface area exceeds the surface of the shell 10 to be formed.

Als zweiter Schritt werden auf der Grundfläche 12 Streifen aus einem weichen ersten Material 20 ausgelegt. Ein geeigneter Werkstoff für das weiche Material 20 wäre beispielsweise Schaumstoff aus extrudiertem Polystyrol mit einem Elastizitätsmodul von 300 MPa. Der Flächenanteil, den das erste Material 20 auf der Grundfläche 12 einnimmt, ist größer als die Differenz zwischen der Grundfläche 12 und der fertigen Schale 10. Als Fläche der Schale 10 ist - wenn die Schale 10 im Vergleich zu ihrer Größe sehr dünnwandig ausgebildet ist - deren Oberfläche gemeint. Es könnte auch - z.B. bei größeren Wanddicken - eine etwa mittig der Dicke liegende Fläche sein.As a second step, 12 strips of a soft first material 20 are designed on the base. A suitable material for the soft material 20 would, for example extruded polystyrene foam having a Young's modulus of 300 MP a. The area fraction occupied by the first material 20 on the base surface 12 is greater than the difference between the base surface 12 and the finished shell 10. As the surface of the shell 10, if the shell 10 is very thin compared to its size, then whose surface meant. It could also be - for example, with larger wall thicknesses - an approximately centered thickness of the surface.

In einem dritten Schritt wird der verbleibende Teil der Grundfläche 12 unter Einsatz einer geeigneten, entlang des Plattenrandes 16 angebrachten Randabschalung mit einem gießfähigen Werkstoff verfüllt, sodass eine Platte konstanter Dicke entsteht. Durch Erhärten des gießfähigen Werkstoffs zu einem druckfesten zweiten Material 22, das in diesem Beispiel aus Stahlbeton mit einem Elastizitätsmodul von 30.000 MPa besteht, entsteht eine Platte 14 mit orthotropen Materialeigenschaften. Die Steifigkeiten sind hierbei nicht örtlich im druckfesten Material 22 oder im weichen Material 20 zu ermitteln, sondern verschmiert über einen größeren Bereich, der mehrere Streifen aus weichem Material 20 und dazwischen liegende Bereiche aus druckfestem Material 22 umfasst. So ist beispielsweise die tangentiale Steifigkeit der Platte 14 in der Nähe des Plattenrandes 16 wegen des hohen Anteils an weichem Material 20 geringer als in den näher zur Mitte gelegenen Plattenbereichen. Die Steifigkeit der Platte 14 in radialer Richtung ist größer als die Steifigkeit in tangentialer Richtung.In a third step, the remaining part of the base 12 is filled with a castable material using a suitable, along the plate edge 16 mounted Randabschalung, so that a plate of constant thickness is formed. By hardening the castable material into a pressure-resistant second material 22, which in this example consists of reinforced concrete with a modulus of elasticity of 30,000 MPa , a plate 14 having orthotropic material properties is produced. The stiffnesses are not determined locally in the pressure-resistant material 22 or in the soft material 20, but smeared over a larger area comprising a plurality of strips of soft material 20 and regions of pressure-resistant material 22 therebetween. For example, the tangential stiffness of the plate 14 in the vicinity of the plate edge 16 is lower because of the high proportion of soft material 20 than in the closer to the middle plate regions. The rigidity of the plate 14 in the radial direction is greater than the rigidity in the tangential direction.

Eine vorteilhafte Art der Bewehrung ist z.B. durch etwa radial angeordnete Stahlstäbe 13, die in Fig. 1 jedoch nur an einer Stelle dargestellt sind, verwirklicht.An advantageous type of reinforcement is, for example, by approximately radially arranged steel rods 13, which in Fig. 1 However, only one point are shown, realized.

Ein Schnitt durch die Platte 14 und die Grundfläche 12 ist in Fig. 2 dargestellt. In der Nähe des Plattenrandes 16 ist ein Spannglied 30 in der Platte 14 angeordnet, und zwar in Beton eingegossen. Die Arbeitsfläche 15 muss derart beschaffen sein, dass ein Gleiten des Plattenrandes 16 auf der Fläche 15 möglich ist. Die in Fig. 2 dargestellte Platte 14 aus weichem Material 20 und druckfestem Material 22 wird auf einer ebenen Arbeitsfläche 15 hergestellt.A section through the plate 14 and the base 12 is in Fig. 2 shown. In the vicinity of the plate edge 16, a clamping member 30 is disposed in the plate 14, and cast in concrete. The work surface 15 must be such that a sliding of the plate edge 16 on the surface 15 is possible. In the Fig. 2 shown plate 14 of soft material 20 and pressure-resistant material 22 is produced on a flat work surface 15.

Die Streifen aus weichem Material 20 können, wie in Fig. 3 dargestellt, Berührungsflächen zwischen weichem Material 20 und druckfestem Material 22 aufweisen, die normal zur Mittelfläche der Platte 14 sind. Abweichend davon können die Berührungsflächen zwischen weichem Material 20 und druckfestem Material 22 auch einen anderen Winkel als 90° mit der Mittelfläche der Platte einschließen (Fig. 4), um den Formgebungsprozess einfacher zu ermöglichen.The strips of soft material 20 can, as in Fig. 3 shown, have contact surfaces between soft material 20 and pressure-resistant material 22, which are normal to the central surface of the plate 14. Alternatively, the contact surfaces between soft material 20 and pressure-resistant material 22 may also include an angle other than 90 ° with the central surface of the plate ( Fig. 4 ) to make the molding process easier.

In einem vierten Schritt wird, wie in Fig. 5 dargestellt, durch das Verkürzen des Umfangs 18 des Plattenrandes 16 und die damit einhergehende Stauchung des weicheren ersten Materials 20 in tangentialer Richtung die Grundfläche 12 verkleinert und damit die Platte 14 zu einer Schale 10 mit positiver Gauß'scher Krümmung verformt. Der Durchmesser und die Grundrissfläche der Schale 10 in der Draufsicht gemäß Fig. 5 sind deshalb kleiner als der Durchmesser und die Grundfläche 12 der Platte 14 in der Draufsicht gemäß Fig.1. Die von den Streifen aus dem ersten Material 20 eingenommene Fläche ist entsprechend der während des Formungsprozesses zu erwartenden tangentialen Verkürzung der Platte 14 geformt, wobei zu berücksichtigen ist, dass das zusammengepresste erste Material 20 noch einenwenn auch geringen - Teil der Fläche der Schale 10 bildet.In a fourth step, as in Fig. 5 represented by the shortening of the periphery 18 of the plate edge 16 and the consequent compression of the softer first material 20 in the tangential direction reduces the base 12 and thus deformed the plate 14 to a shell 10 with positive Gaussian curvature. The diameter and the plan area of the shell 10 in the plan view according to Fig. 5 are therefore smaller than the diameter and the base 12 of the plate 14 in the plan view according to Fig.1 , The of The area occupied by the strips of the first material 20 is shaped in accordance with the expected tangential shortening of the plate 14 during the molding process, bearing in mind that the compressed first material 20 still forms a small portion of the surface of the shell 10.

Fig. 6 zeigt die Schale 10 während des Formgebungsprozesses, wobei das Verkürzen des Umfangs 18 durch das Anspannen des Spannglieds 30 erfolgt. Wenn die Schale 10 in der Mitte die geplante Höhe erreicht hat, kann der Rand 16 der Schale 10 mit dem Fundament verbunden werden. Auf die Oberfläche der Schale 10 könnte dann eine Ortbetonschicht 37 aufgebracht werden, um eine größere Steifigkeit der Schale 10 zu erreichen oder um durch die zweite Betonschicht eine Abdichtung der Oberfläche gegen Niederschlag zu gewährleisten (vgl. Fig. 11 und 12). Fig. 6 shows the shell 10 during the molding process, wherein the shortening of the periphery 18 by the tensioning of the clamping member 30 takes place. When the shell 10 in the center has reached the planned height, the edge 16 of the shell 10 can be connected to the foundation. An in-situ concrete layer 37 could then be applied to the surface of the shell 10 in order to achieve a greater rigidity of the shell 10 or to ensure a sealing of the surface against precipitation by the second concrete layer (cf. FIGS. 11 and 12 ).

Abweichend vom gezeigten Beispiel könnte der Formgebungsprozess durch das Anheben von einer oder mehreren Stellen der Platte 14 zu Beginn des Formgebungsprozesses mit einem geeigneten Hebezeug unterstützt werden. Eine solche Unterstützung ist in Fig. 9 veranschaulicht. Die Arbeitsfläche 15 ist hierbei mit zwei übereinanderliegenden Membranen bzw. Folien 38, die die Grundfläche 12 überschreiten, bedeckt. Durch Erzeugen eines pneumatischen Druckes zwischen den Membranen oder Folien 38 kommt es zu einer Aufwölbung, wie in Fig. 9 dargestellt. Die Abdichtung des Raumes zwischen den Membranen bzw. Folien 38 erfolgt durch das Eigengewicht der Schale 10. Es kann vorteilhaft sein, zwischen die Membranen bzw. Folien 38 im Bereich des Plattenrandes 16 zur besseren Abdichtung ein weiches Material 46 vorzusehen, insbesondere eine dünne Schicht eines Materials mit gleichen Festigkeitseigenschaften wie das erste Material 20.Notwithstanding the example shown, the forming process could be assisted by lifting one or more locations of the plate 14 at the beginning of the forming process with a suitable hoist. Such support is in Fig. 9 illustrated. The working surface 15 is in this case covered with two superimposed membranes or foils 38 which exceed the base area 12. By creating a pneumatic pressure between the membranes or foils 38, buckling occurs as in FIG Fig. 9 shown. The sealing of the space between the membranes or films 38 takes place by the weight of the shell 10. It may be advantageous to provide a soft material 46 between the membranes or foils 38 in the region of the plate edge 16 for better sealing, in particular a thin layer of a Material having the same strength properties as the first material 20.

Eine weitere Möglichkeit einer Unterstützung der Aufwölbung der Platte 14 ist in Fig. 8 gezeigt, gemäß der eine Art Pneu 39 bei Beginn der Verkleinerung der Grundfläche 12 mit Druckluft beaufschlagt wird.Another way of supporting the bulge of plate 14 is in FIG Fig. 8 shown, according to the one type Pneu 39 is applied at the beginning of the reduction of the base 12 with compressed air.

Fig. 7 zeigt eine leicht gewölbte, d.h. im Zentrumsbereich der Grundfläche 12 mit einer Überhöhung 40 versehene Arbeitsfläche 15, welche Überhöhung jedoch - im Verhältnis zur Erstreckung der Grundfläche 12 - nur eine geringe Höhe aufweist. Die Herstellung der Platte 14 mit einer Überhöhung der Grundfläche, ein Zentrumsbereich von zum Beispiel einem Hundertstel des Plattendurchmessers, wirkt sich günstig auf die während des Formgebungsprozesses enstehenden Schnittgrößen aus und verringert die Beulgefahr der Schale 10 beim Formgebungsprozess; dies zeigt Fig. 7, allerdings maßstäblich verzerrt. Fig. 7 shows a slightly curved, ie provided in the center region of the base 12 with an elevation 40 working surface 15, which elevation, however, - in relation to the extension of the base 12 - has only a small amount. The manufacture of the plate 14 with an elevation of the base area, a center area of, for example, one-hundredth of the plate diameter, has a favorable effect on the internal forces arising during the shaping process and reduces the risk of buckling of the shell 10 during the shaping process; this shows Fig. 7 , but distorted to scale.

Fig. 10 zeigt einen der Fig. 6 entsprechenden Schnitt durch eine Schale 10 mit einer abgeänderten Anordnung der Spannglieder 32 und 36. Das Verkürzen des Umfangs 18 bzw. Verkleinern der Grundfläche 12 erfolgt über Spannglieder 36, die jeweils nur an zwei Punkten mit dem Rand 16 der Schale 10 verbunden sind und die während des Formgebungsprozesses angespannt werden. Zur Erhöhung der Biegesteifigkeit der Schale 10 während des Formgebungsprozesses sind in einem mittels Distanzstücke 34 vorgegebenen Abstand Spannglieder 36 außerhalb der aus weichem Material 20 und druckfestem Material 22 ausgebildeten Schale 10 angeordnet. Diese externen Spannglieder 36 sind jeweils am Rand 16 mit der Schale 10 verbunden und erhöhen die Biegesteifigkeit der Schale 10 in radialer Richtung. Fig. 10 shows one of the Fig. 6 Corresponding section through a shell 10 with a modified arrangement of the tendons 32 and 36. The shortening of the circumference 18 or reduction of the base 12 via tendons 36 which are connected only at two points with the edge 16 of the shell 10 and during be tense of the shaping process. To increase the flexural rigidity of the shell 10 during the shaping process, clamping members 36 are arranged outside the shell 10, which is formed of soft material 20 and pressure-resistant material 22, in a distance predetermined by means of spacers 34. These external tendons 36 are each connected at the edge 16 with the shell 10 and increase the flexural rigidity of the shell 10 in the radial direction.

Weitere Ausführungsbeispiele sind anhand der Fig. 14 bis Fig. 20 für die Herstellung einer zweifach gekrümmten Schale 10 erläutert, bei der Eis als druckfestes zweites Material 22 verwendet wird.Further embodiments are based on the Fig. 14 20 for the production of a doubly curved shell 10, in which ice is used as pressure-resistant second material 22.

Entsprechend dem in den Fig. 1 bis 6 erläuterten Beispiel wird zunächst gemäß Fig. 14 die Grundfläche 12 eingemesssen, und es wird entlang des Plattenrandes 16 eine aus Einzelteilen zusammengesetzte Randschalung 41 angebracht. Diese Teile der Randschalung 41 sollen starr sein und können von Beton (Fig. 16) mit einer Bewehrung 42, die in das zweite Material 22 ragt, oder von Holz (Fig. 17) gebildet sein.According to the in the Fig. 1 to 6 explained example is first according to Fig. 14 the base 12 eingemesssen, and it is mounted along the plate edge 16 a composite of individual parts edge formwork 41. These parts of the edge formwork 41 should be rigid and can be made of concrete ( Fig. 16 ) with a reinforcement 42, which projects into the second material 22, or of wood ( Fig. 17 ) be formed.

Im zweiten Verfahrensschritt wird ein Teil der Grundfläche 12 mit einem weichen ersten Material 20 mit einem im Vergleich zu Eis niedrigerem Elastizitätsmodul belegt. Die Abmessungen und die Anordnung der Streifen aus weichem Material 20 bestimmen weitgehend die Form der Schale 10, die sich nach dem Formgebungsprozess einstellt.In the second process step, a part of the base area 12 is covered with a soft first material 20 having a lower elastic modulus compared to ice. The dimensions and arrangement of the strips of soft material 20 largely determine the shape of the shell 10 that sets up after the molding process.

Wie aus Fig. 14 zu ersehen ist, erstreckt sich das erste Material 20 bis zwischen die die Randschalung 41 bildenden Einzelteile. Die Anordnung der Spannglieder 43 erfolgt vorzugsweise für eine Randschalung 41 aus Beton im Beton selbst, für eine Randschalung 41 aus Holz außerhalb der Einzelteile.How out Fig. 14 can be seen, the first material 20 extends to between the edge formwork 41 forming items. The arrangement of the tendons 43 is preferably carried out for an edge formwork 41 made of concrete in the concrete itself, for an edge formwork 41 made of wood outside the items.

Im dritten Verfahrensschritt wird der verbleibende Teil der Grundfläche 12 mit Wasser gefüllt, was zweckmäßig schichtweise unter Erstarrenlassen der vorher eingebrachten Schichten erfolgt. Vorzugsweise wird ein Glasfasergelege 44 auf der auf Zug beanspruchten Seite der Platte 14 eingelegt. Es wird bei diesem Ausführungsbeispiel angenommen, dass die Herstellung der Schale bei Außentemperaturen unter 0° Celsius erfolgt. Nach dem Gefrieren des Wassers zu Eis mit einem Elastizitätsmodul von 1.000 MPa wird damit das druckfeste zweite Material 22 der Platte 14 erzeugt.In the third process step, the remaining part of the base 12 is filled with water, which is advantageously carried out in layers with solidification of the previously introduced layers. Preferably, a Glasfasergelege 44 is placed on the claimed on train side of the plate 14. It is assumed in this embodiment that the production of the shell takes place at outside temperatures below 0 ° Celsius. After freezing of the water to ice with a modulus of elasticity of 1000 MP a , the pressure-resistant second material 22 of the plate 14 is thus produced.

Im vierten Verfahrensschritt wird die Grundfläche 12 der Platte 14 mittels Vorspannung verkleinert, sodass sich die Streifen aus weichem Material 20 weitgehend schließen und aus der Platte 14 eine zweifach gekrümmte Schale 10 entsteht. In Fig. 19 ist eine Variante einer Schale 10 mit einer in Fig. 18 dargestellten Grundfläche 12 im Grundriss und in Fig. 20 im Schrägriss dargestellt.In the fourth step, the base 12 of the plate 14 is reduced by means of bias, so that the strips of soft material 20 largely close and from the plate 14, a doubly curved shell 10 is formed. FIG. 19 shows a variant of a shell 10 with a base surface 12 shown in FIG. 18 in plan view and in FIG. 20 in an oblique view.

Nach dem Verbinden des Schalenrandes 16 mit einem Fundament kann ein Teil der in den Fig. 18 bis 20 nicht dargestellten Vorspannelemente entspannt werden. Die Schale 10 wird infolge Eigengewicht vorwiegend Membranspannungen aufweisen. Bei einer Spannweite von 20 m, einem Stich von 5 m und einer Schalendicke von 0,15 m werden die Spannungen infolge Eigengewicht nur ungefähr 0,15 MPa betragen. Kriechverformungen werden deshalb klein bleiben und die in Fig. 20 dargestellte Schale 10 aus Eis kann während der kalten Jahreszeit einige Monate als Veranstaltungshalle genützt werden.After connecting the shell edge 16 with a foundation, a part of the biasing elements not shown in FIGS. 18 to 20 can be relaxed. The shell 10 will have predominantly membrane stresses due to its own weight. In a span of 20 m, a stitch of 5 m and a shell thickness of 0.15 m, the stresses due to weight only about 0.15 MP a will be. Creep deformations will therefore remain small, and the ice tray 10 shown in Fig. 20 may be used as an event hall for a few months during the cold season.

In einem weiteren Ausführungsbeispiel ist anhand der Fig. 21 bis 23 die Herstellung einer Schale 10 mit negativer Gauß'scher Krümmung erläutert, bei der Holz als druckfestes Material 22 verwendet wird.In a further embodiment, the production of a shell 10 with a negative Gaussian curvature is explained with reference to FIGS. 21 to 23, in which wood is used as pressure-resistant material 22.

Im ersten Verfahrensschritt wird gemäß Fig. 21 zunächst die Grundfläche 12 eingemessen.In the first method step, according to FIG. 21, first the base area 12 is measured.

Im zweiten Verfahrensschritt wird ein Teil der Grundfläche 12 mit Platten, die aus druckfestem zweiten Material 22, beispielsweise Holzwerkstoff, bestehen, belegt.In the second step, a portion of the base 12 is covered with plates, which consist of pressure-resistant second material 22, for example, wood material.

Im dritten Verfahrensschritt wird ein weiterer Teil der Grundfläche 12 mit einem weichen ersten Material 20 so belegt, dass einige Aussparungen 24 in der Grundfläche 12 entstehen, die weder mit druckfestem zweiten Material 22 noch mit weichem ersten Material 20 belegt sind. Die Streifen aus dem ersten Material 20 weisen bei diesem Beispiel in der Nähe des Plattenrandes 16 eine kleinere Breite als in den mittleren Bereichen der Platte 14 auf, weil aus der Platte 14 eine Schale 10 mit negativer Gauß'scher Krümmung geformt werden soll.In the third step, a further part of the base 12 is covered with a soft first material 20 so that some recesses 24 arise in the base 12, which are occupied neither with pressure-resistant second material 22 nor with soft first material 20. The strips of the first material 20 have a smaller width in the vicinity of the plate edge 16 in this example than in the central regions of the plate 14, because from the plate 14, a shell 10 is to be formed with negative Gaussian curvature.

Im vierten Verfahrensschritt wird die Grundfläche 12 der Platte 14 mittels Vorspannung verkleinert, sodass sich die Streifen aus weichem Material 20 weitgehend schließen und aus der Platte 14 eine Schale 10 mit negativer Gauß'scher Krümmung entsteht, die in Fig. 22 im Grundriss dargestellt ist. Die in Fig. 23 perspektivisch dargestellte Schale 10 kann als Ausstellungshalle genützt werden.In the fourth step, the base 12 of the plate 14 is reduced by means of bias, so that the strips of soft material 20 largely close and from the plate 14, a shell 10 with negative Gaussian curvature arises, which in Fig. 22 in Floor plan is shown. The bowl 10 shown in perspective in FIG. 23 can be used as an exhibition hall.

Mit dem erfindungsgemäßen Verfahren ist die Herstellung zweifach räumlich gekrümmter Schalen 10 beliebiger Form über beliebigen Grundrissen möglich. Zur Herstellung von Schalen 10 nach dem erfindungsgemäßen Verfahren kann es sinnvoll sein, weiche erste Materialien 20 mit unterschiedlichem Festigkeitsverhalten und/oder druckfeste zweite Materialien 22 mit unterschiedlichem Festigkeitsverhalten in einer Platte 14 zu verwenden oder die Platte 14 mit veränderlicher Dicke herzustellen, wie dies Fig. 15 zeigt.With the method according to the invention, the production of doubly spatially curved trays 10 of any shape over any plan is possible. For the production of trays 10 by the method according to the invention, it may be useful to use soft first materials 20 with different strength behavior and / or pressure-resistant second materials 22 with different strength behavior in a plate 14 or to produce the plate 14 with variable thickness, as this Fig. 15 shows.

Das Verhältnis der vom ersten Material 20 eingenommenen Fläche auf der Grundfläche 12 zur vom zweiten Material 22 eingenommenen Fläche hängt von der gewünschten Aufwölbung der Schale ab. Vorzugsweise nimmt die vom ersten Material 20 eingenommene Fläche auf der Grundfläche 2 bis 30% der Gesamtfläche der Grundfläche ein, insbesondere 4 bis 10%.The ratio of the area occupied by the first material 20 on the base 12 to the area occupied by the second material 22 depends on the desired curvature of the shell. Preferably, the area occupied by the first material 20 on the base area occupies 2 to 30% of the total area of the base area, in particular 4 to 10%.

Der bevorzugte Werkstoff für das erste Material 20 ist Polystyrol oder Polyurethan mit Fließgrenzspannungen für Polystyrol zwischen 0,1 bis 1,0 MPa und Polyurethan zwischen 0,3 bis 1,2 MPa. Für das zweite Material 22 kommt Beton, Holz oder Eis in Frage, wobei für Beton die Fließgrenzspannungen zwischen 20 und 100 MPa bei Druckbelastung liegen. Holz weist Fließgrenzspannungen zwischen 10 und 40 MPa auf, und zwar bei Zug- und Druckbelastung, Eis 0,5 bis 1,0 MPa bei Druckbelastung. Hieraus ergibt sich ein Fließgrenzen-Verhältnis der Fließgrenze des zweiten Materials 22 zur Fließgrenze des ersten Materials 20 zwischen 2,5 und 200. Vorzugsweise liegt dies zwischen 5 und 100.The preferred material for the first material 20 is polystyrene or polyurethane with flow limit voltages for polystyrene between 0.1 to 1.0 MP a and polyurethane between 0.3 to 1.2 MP a. For the second material 22 is concrete, wood or ice in question, for concrete, the yield stress is between 20 and 100 MP a under pressure. Wood has flow limit voltages between 10 and 40 MP a, to be precise under tensile and compressive stress, ice cream from 0.5 to 1.0 MP a compression load. This results in a yield point ratio of the yield point of the second material 22 to the yield point of the first material 20 between 2.5 and 200. Preferably, this is between 5 and 100.

Die Elastizitätsmodule liegen für Beton zwischen 2.000 und 80.000 MPa, für Eis zwischen 500 und 2.000 MPa und für Holz zwischen 8.000 und 16.000 MPa. Für die vorzugsweise verwendeten zweiten Materialien ergeben sich Elastizitätsmodule zwischen 50 und 300 MPa. Hieraus ergibt sich, dass das Verhältnis der Elastizitätsmodule des zweiten Materials 22 zum ersten Material 20 zwischen 10 und 300 liegt, vorzugsweise soll es zwischen 50 und 200 liegen.The elastic moduli are for concrete 2000-80000 MP a for ice between 500 and 2,000 MP a and for wood 8000-16000 MP a. Is modulus of elasticity between 50 and 300 give a MP for the preferably used second materials. It follows that the ratio of the moduli of elasticity of the second material 22 to the first material 20 is between 10 and 300, preferably between 50 and 200.

Nachfolgend ist anhand eines Rechenbeispieles die Ermittlung der mit erstem und zweitem Material 20, 22 zu belegenden Flächenteile einer Grundfläche 12 für eine Schale 10 mit Halbkugelform erläutert, wobei die Halbkugel den Radius R, eine Oberfläche O = 2 R2π und einen halben Umfang von b = R π aufweist.The determination of the surface parts 12 to be occupied by the first and second material 20, 22 for a shell 10 with a hemispherical shape is explained below, wherein the hemisphere has the radius R, a surface O = 2 R 2 π and a half circumference of b = R π.

Der Durchmesser der Grundfläche 12 muss die Größe von b aufweisen, woraus sich eine Grundfläche von A = b 2 2 π = R 2 π 2 4 π

Figure imgb0001
ergibt.The diameter of the base 12 must be the size of b, resulting in a footprint of A = b 2 2 π = R 2 π 2 4 π
Figure imgb0001
results.

Daraus und aus der Oberfläche der Halbkugel ergibt sich eine Flächendifferenz: R 2 π 3 4 - 2 π R 2 = R 2 π π 2 4 - 2

Figure imgb0002
From this and from the surface of the hemisphere results a surface difference: R 2 π 3 4 - 2 π R 2 = R 2 π π 2 4 - 2
Figure imgb0002

Hieraus errechnet sich ein Verhältnis der Flächendifferenz zu Fläche der Grundfläche: R 2 π π 2 4 - 2 1 4 R 2 π 2 π = π 2 - 8 π 2 18 , 9 %

Figure imgb0003
From this, a ratio of the area difference to area of the base area is calculated: R 2 π π 2 4 - 2 1 4 R 2 π 2 π = π 2 - 8th π 2 18 . 9 %
Figure imgb0003

Nimmt man nun ein Verhältnis der Breite des ersten Materials 20 nach dem Stauchen zur Ausgangsbreite von 0,2 an, folgt, dass 18 , 9 0 , 8 = 23 , 7 %

Figure imgb0004
der Ausgangsplatte mit weichem ersten Material 20 zu belegen sind.Assuming now a ratio of the width of the first material 20 after upsetting to the initial width of 0.2, it follows that 18 . 9 0 . 8th = 23 . 7 %
Figure imgb0004
the starting plate are to be covered with soft first material 20.

Claims (27)

  1. A process for the production of a shell (10) that is curved twice in a three-dimensional manner, characterized in that
    - a basal area (12) exceeding the area of the double-bent shell (10) is initially measured on a working surface (15), preferably a plane, and
    - a subarea of said basal area (12), which corresponds approximately to the difference between the basal area (12) and the area of the shell (10), is coated with at least one soft first material (20) having a low elastic modulus while a remaining subarea of the basal area (12) is coated with at least one second material (22) whose elastic modulus substantially exceeds the elastic modulus of the first material (20) and whose resistance to pressure is greater than the resistance to pressure of the first material,
    - wherein at least one subarea coated with the first material (20) is located between two subareas of the basal area (12) that are coated with the second material (21), and a plate (14) having orthotropic material properties, such as stiffness, is formed, whereupon
    - the basal area (12) of the plate (14) is reduced such that the double-bent shell (10) is formed.
  2. A process according to claim 1, characterized in that the subarea of the basal area (12) that is coated with the first material (20) is dimensioned larger than the difference between the basal area (12) and the area of the shell (10).
  3. A process according to claim 1 or 2, characterized in that, simultaneously with the reduction of the basal area (12) of the plate (14), at least one point of the plate (14) is lifted.
  4. A process according to claim 2 or 3, characterized in that the reduction of the basal area (12) of the plate (14) is effected by shortening the circumference (18) of the plate rim (16).
  5. A process according to claims 1 to 4, characterized in that a material displaying a nonlinear material behaviour is used as the first material (20) and permanent upsetting deformations are formed in the first material (20) during the forming process.
  6. A process according to any of claims 1 to 5, characterized in that not the entire basal area (12) is coated with the first and the second materials (20, 22) so that the plate (14) exhibits one or several cavities (24) forming one or several predetermined recesses in the shell (10).
  7. A process according to any of claims 1 to 6, characterized in that at least one of the contact areas between the soft material (20) and the second material (22) is oriented with an angle, which deviates from 90°, toward the central area of the plate (14).
  8. A process according to any of claims 1 to 7, characterized in that spacers (34) are anchored in the second material (22) and that prestressing members (32) are placed on the spacers (34) and anchored on the plate rim (16), wherein said prestressing members (32) are tightened or slackened, if required, during the forming process.
  9. A process according to any of claims 1 to 8, characterized in that prestressing members (30) are arranged in the plate (14), preferably in the circumferential area, and are tightened or slackened, if required, during the forming process.
  10. A process according to any of claims 1 to 9, characterized in that the basal area (12) of the plate (14) is reduced by tightening prestressing members (36) each connected to the second material (22) on the plate rim (16) in two points.
  11. A process according to any of claims 1 to 10, characterized in that a working surface (15) is provided with a camber (40) of a small height in order to assist in bulging.
  12. A process according to any of claims 1 to 11, characterized in that a layer of the second material (22) or a layer having approximately the same elastic modulus is applied to the double-bent shell (10) upon completion of the forming process, which layer is connected to the double-bent shell (10) in a shear stable manner.
  13. A process according to any of claims 1 to 12, characterized in that a portion of the basal area (12) is first covered with the first material (20) and the second material (22) is cast onto the working surface (15).
  14. A process according to any of claims 1 to 13, characterized in that a portion of the basal area (12) is first covered with the second material (22) and the first material (20) is cast onto the working surface (15).
  15. A process according to any of claims 1 to 14, characterized in that a material having an elastic modulus of between 1.000 MPa and 80.000 MPa is used as the second material (22).
  16. A process according to any of claims 1 to 15, characterized in that the ratio of the elastic moduli of the second material (22) to the first material (20) is between 10 and 300, preferably between 50 and 200.
  17. A process according to any of claims 11 to 16, characterized in that the height of the camber of the working surface (15) is changed when the basal area (12) is reduced, preferably by inflating bellows, a tyre (39) or the like.
  18. A process according to any of claims 1 to 17, characterized in that the yield point ratio of the yield point of the second material (22) to the yield point of the first material (20) is between 2.5 and 200, preferably between 5 and 100.
  19. A process according to any of claims 1 to 18, characterized in that the area taken up by the first material (20) on the basal area (12) is between 2 and 30%, preferably from 4 to 10%, of the total area of the basal area (12).
  20. A process according to any of claims 1 to 19, characterized in that, when covering the basal area (12), the materials (20, 22) close to the centre of the basal area (12) are kept thinner than those in the rim area, with the ratio of the thickness in the rim area to the thickness close to the centre being adjusted to between 1.1 and 6, preferably to between 1.1 and 3.
  21. A shell curved twice in a three-dimensional manner and manufactured according to a process according to one or several of claims 1 to 20, characterized in that, across its surface, it is formed alternately from at least one soft first material (20) having a low elastic modulus and at least one second material (22) whose elastic modulus substantially exceeds the elastic modulus of the first material (20) and whose resistance to pressure is greater than the resistance to pressure of the first material (20).
  22. A shell according to claim 21, characterized in that it is designed as a shell (10) with a negative Gaussian curvature, i.e., as a saddle surface.
  23. A shell according to claim 21 or 22, characterized in that it exhibits an essentially plane circumferential edge (18).
  24. A shell according to any of claims 21 to 23, characterized in that it is provided with recesses (24), such as, for example, with recesses merging into the circumferential edge.
  25. A shell according to any of claims 21 to 24, characterized in that the second material (22) is provided with a reinforcement (13, 44) such as a steel or glass-fibre reinforcement.
  26. A shell according to any of claims 21 to 25, characterized in that it is covered, across its entire surface, by a layer (37) of the second material (22) or of a material corresponding to the former with regard to the mechanical-technological values and that said layer (37) is connected in a shear stable manner to the shell (10) formed alternately from the first material and the second material (20, 22).
  27. A shell according to any of claims 21 to 26, characterized in that a stiffening boundary element (41), preferably comprising a reinforcement (42), is provided on the circumferential, edge (18), with a circumferential prestressing member (30) being provided in or on said boundary element.
EP05700007A 2004-01-14 2005-01-14 Method for the production of double-bent shells Not-in-force EP1706553B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT402004 2004-01-14
PCT/AT2005/000006 WO2005068740A1 (en) 2004-01-14 2005-01-14 Method for the production of double-bent shells

Publications (2)

Publication Number Publication Date
EP1706553A1 EP1706553A1 (en) 2006-10-04
EP1706553B1 true EP1706553B1 (en) 2008-04-23

Family

ID=34754113

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05700007A Not-in-force EP1706553B1 (en) 2004-01-14 2005-01-14 Method for the production of double-bent shells

Country Status (4)

Country Link
EP (1) EP1706553B1 (en)
AT (1) ATE393272T1 (en)
DE (1) DE502005003834D1 (en)
WO (1) WO2005068740A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT506902B1 (en) 2008-05-19 2011-03-15 Univ Wien Tech METHOD FOR PRODUCING A BOWL
AT511948B1 (en) 2011-11-30 2013-04-15 Univ Wien Tech METHOD FOR PRODUCING DOUBLE ROOMLY CROPPED SHELLS
AT519013B1 (en) * 2016-09-30 2018-03-15 Univ Wien Tech Method of making single curved and double curved cups

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1052660B (en) * 1956-04-09 1959-03-12 Silberkuhl Wilhelm Johannes Roof construction made of curved shells, especially double-curved reinforced concrete shells
DE1409917A1 (en) * 1962-02-17 1969-09-25 Krupp Gmbh Support structure, preferably for roofs
DE3500153A1 (en) * 1985-01-04 1986-07-10 Rudolf Dipl.-Ing. 7000 Stuttgart Bergermann Pneumatic shuttering
AT410342B (en) * 2000-10-06 2003-03-25 Wieland Dipl Ing Becker SUPPORT CONSTRUCTION OR FORMWORK

Also Published As

Publication number Publication date
EP1706553A1 (en) 2006-10-04
WO2005068740A8 (en) 2006-02-09
ATE393272T1 (en) 2008-05-15
DE502005003834D1 (en) 2008-06-05
WO2005068740A1 (en) 2005-07-28

Similar Documents

Publication Publication Date Title
DE19823610B4 (en) Switching table and method for producing double-curved components
EP1706553B1 (en) Method for the production of double-bent shells
AT506902B1 (en) METHOD FOR PRODUCING A BOWL
EP1248889B1 (en) Slab reinforcement and its method of manufacturing
EP1795667A2 (en) Reinforcing member for structures made of reinforced or prestressed concrete or the same
EP2785933B1 (en) Method for the production of doubly spatially curved shells
EP2459812B1 (en) Reinforced concrete component reinforced with z-shaped sheet metal pieces
DE202007007286U1 (en) Ribbed prefabricated plate
DE3500153A1 (en) Pneumatic shuttering
WO2016110539A1 (en) Frame-panel formwork element
AT519013B1 (en) Method of making single curved and double curved cups
AT509290A1 (en) METHOD FOR PRODUCING A BOWL OF AT LEAST TWO THIN-WALL, SURFACE CARRIER ELEMENTS
DE2364297A1 (en) BAR-SHAPED COMPONENT
DE3807517C2 (en)
DE3023548C2 (en)
DE3723629C2 (en)
DE102005002331B3 (en) Shuttering panel for liquid concrete during casting and curing processes has skin with integral pressure nipples
CH444582A (en) Elastic support for structural parts
DE102019123880A1 (en) Textile formwork element
AT341170B (en) STRUCTURE MADE FROM SOLID BUILDING MATERIAL, DEFORMABLE BY CASTING
DE102019123256A1 (en) Reinforcement
DE1434612C (en) For a nuclear reactor specific, longitudinal and ring prestressed concrete pressure vessel
DE102005063173A1 (en) bridge construction
DD151979A1 (en) CONNECTING ELEMENT FOR ROBUST BARRIERS MADE FROM INDIVIDUAL GROUPS
DE7345633U (en) BAR-SHAPED COMPONENT

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060629

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KOLLEGGER GMBH

Owner name: AUSTRIA WIRTSCHAFTSSERVICE GESELLSCHAFT M.B.H.

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502005003834

Country of ref document: DE

Date of ref document: 20080605

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: HANS ULRICH SEIFERT SEIFERT & PARTNER

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080423

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080423

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080423

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080923

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080803

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080423

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080723

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080423

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080423

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080423

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080423

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080423

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080423

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080423

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080423

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090131

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080423

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20120123

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120123

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120131

Year of fee payment: 8

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 393272

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130801

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005003834

Country of ref document: DE

Effective date: 20130801