EP1706516B1 - Method for the production of cast components - Google Patents

Method for the production of cast components Download PDF

Info

Publication number
EP1706516B1
EP1706516B1 EP04802982.1A EP04802982A EP1706516B1 EP 1706516 B1 EP1706516 B1 EP 1706516B1 EP 04802982 A EP04802982 A EP 04802982A EP 1706516 B1 EP1706516 B1 EP 1706516B1
Authority
EP
European Patent Office
Prior art keywords
additional
compound
molten mass
added
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP04802982.1A
Other languages
German (de)
French (fr)
Other versions
EP1706516A2 (en
Inventor
Manfred Renkel
Wilfried Smarsly
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
G4T GmbH
Original Assignee
G4T GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by G4T GmbH filed Critical G4T GmbH
Publication of EP1706516A2 publication Critical patent/EP1706516A2/en
Application granted granted Critical
Publication of EP1706516B1 publication Critical patent/EP1706516B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium

Definitions

  • the present invention relates to the manufacture of components, in particular the production of gas turbine components, by means of a casting process.
  • molds so-called molds are used, wherein the molds have an inner contour corresponding to the outer contour of the component to be produced.
  • permanent casting molds In principle, in casting processes, a distinction is made between those working with lost casting molds and permanent casting molds. In casting processes that use lost casting molds, only one component can ever be produced with one casting mold. In casting processes that use continuous casting molds, the casting molds can be used several times. Among the casting methods that work with lost molds, among other things, the so-called investment casting. In the casting processes that work with permanent casting molds, reference is made here by way of example to chill casting.
  • the procedure is such that a material from which the component to be produced is to be produced is melted in a crucible, and the molten material is introduced into the casting mold.
  • the state of the art is such that all elements or compounds involved in the formation of the material are melted simultaneously.
  • volatile elements such as manganese or aluminum
  • Compliance with the desired composition of the material for the produced by casting component can be achieved according to the prior art therefore only with high material losses.
  • US5429796 discloses a method of manufacturing the titanium-aluminum intermetallic material components, particularly gas turbine components.
  • the Ti-Al material is melted in a crucible.
  • the TiAl melt contains (in atom%) from 40% to about 52% Ti, from 44% to about 52% Al, and one or more of Cr, C, Ga, Mo, Mn, Nb, Ni, Si, Ta, V and W, each in an amount of about 0.05% to about 8%.
  • Boride dispersoid is added in the melt in an amount of at least about 0.5 volume% of the melt.
  • the melt is poured in a casting mold. Based on this, the present invention is based on the problem of providing a novel method for producing a cast component.
  • the method according to the invention comprises at least the following steps: a) provision of a crucible and at least one semifinished product of an intermetallic titanium-aluminum material; b) melting the or each semi-finished product of the titanium-aluminum intermetallic material in the crucible; c) introducing at least one additional element or an additional compound into the melt, wherein the or each element or the or each compound is introduced into the melt, depending on their melting temperature; d) providing a mold; e) filling the melt into the casting mold; f) solidification of the melt in the mold; g) removing the cast component from the mold.
  • a crucible and a semi-finished product made of an intermetallic titanium-aluminum material is provided.
  • the semifinished product of the intermetallic titanium-aluminum material may be, for example, a Ti45Al semifinished product or even a Ti55Al semifinished product, depending on which titanium content is desired in the material of the cast component to be produced.
  • the crucible may be a graphite crucible or a cold wall crucible.
  • the or each semi-finished product is melted in a second step of the process according to the invention in the crucible.
  • the crucible is heated inductively.
  • additional elements or additional compounds After heating the melt from the molten titanium-aluminum semi-finished additional elements or additional compounds are introduced into the melt.
  • additional elements or compounds may be tungsten, tantalum or niobium.
  • titanium can be admixed as a refractory additional element, which takes place in particular when the titanium content of the material is to be increased.
  • volatile elements such as manganese
  • fines such as titanium boride or titanium diboride, can be introduced into the melt.
  • the additional elements or compounds are introduced into the melt as a function of their melting temperatures, wherein first such elements or compounds are introduced which have a high melting point.
  • the elements or compounds with a low melting point are finally introduced into the melt.
  • the above elements can be introduced into the melt as pure metals or alloys.
  • the elements or compounds in defined dosages or amounts are introduced into the melt.
  • the procedure is such that the respective dosage or amount of the element to be introduced or the compound to be introduced is such that, starting from a temperature of the melt (for example 1600 ° C.) prevailing before the introduction, the temperature of the melt after introduction of the element or the compound is always greater than 1550 ° C and continue to prevail before the introduction of the temperature after a maximum of 15 minutes. This ensures that during the introduction of the additional elements or compounds in the melt is subject to the same only small temperature fluctuations.
  • the respective dosage or amount of the elements or compounds to be introduced is such that at an element density or compound density of greater than 6 ° g / cm 3 , the dosage or amount to be introduced a maximum weight of 250 g has. If, on the other hand, the element density or connection density is below 6 ° g / cm 3 , the weight of the dosage or amount of the element or compound to be introduced is a maximum of 50 g. This also ensures that the melt is exposed during the introduction of the additional elements or compounds only small variations.
  • the semifinished product of the intermetallic titanium-aluminum material, in which the additional elements or compounds are introduced is heated or heated inductively in the crucible.
  • the introduction of the additional elements or compounds takes place in-situ during the melting process, ie during inductive heating.
  • the inductive heating system generates a chaotic flow field within the melt so that partial alloying and homogenization can be achieved with the volatile and / or refractory elements or compounds.
  • the inductive system induces eddy currents in the melt and ensures a flow within the melt.
  • the or each element or the or each compound is introduced into the melt in a defined, flow-optimized geometry.
  • Flow-optimized geometry here means that the flow-optimized geometry enables a good transport of the or each element or the or each compound within the melt.
  • the additional elements or compounds are introduced as sheet-like elements or disc-shaped elements in the melt. This ensures that the additional elements or compounds to be introduced into the melt are finely distributed within the melt.
  • the method according to the invention enables cost-effective production of cast components for gas turbines. It can be realized a high chemical homogeneity of the cast components based on intermetallic phases.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

Die hier vorliegende Erfindung betrifft die Herstellung von Bauteilen, insbesondere die Herstellung von Gasturbinenbauteilen, mithilfe eines Gießverfahrens. Beim Gießen werden Formen, sogenannte Gussformen, verwendet, wobei die Gussformen eine Innenkontur aufweisen, die der Außenkontur des herzustellenden Bauteils entspricht. Prinzipiell unterscheidet man bei Gießverfahren solche, die mit verlorenen Gussformen oder Dauergussformen arbeiten. Bei Gießverfahren, die mit verlorenen Gussformen arbeiten, kann mit einer Gussform immer nur ein Bauteil hergestellt werden. Bei Gießverfahren, die mit Dauergussformen arbeiten, können die Gussformen mehrfach verwendet werden. Zu den Gießverfahren, die mit verlorenen Gussformen arbeiten, zählt unter anderem das sogenannte Feingießen. Bei den Gießverfahren, die mit Dauergussformen arbeiten, sei hier exemplarisch auf das Kokillengießen verwiesen.The present invention relates to the manufacture of components, in particular the production of gas turbine components, by means of a casting process. During casting molds, so-called molds are used, wherein the molds have an inner contour corresponding to the outer contour of the component to be produced. In principle, in casting processes, a distinction is made between those working with lost casting molds and permanent casting molds. In casting processes that use lost casting molds, only one component can ever be produced with one casting mold. In casting processes that use continuous casting molds, the casting molds can be used several times. Among the casting methods that work with lost molds, among other things, the so-called investment casting. In the casting processes that work with permanent casting molds, reference is made here by way of example to chill casting.

Zur Herstellung eines Bauteils mithilfe des Gießens wird so vorgegangen, dass ein Werkstoff, aus welchem das herzustellende Bauteil gefertigt werden soll, in einem Schmelztiegel geschmolzen wird, und der geschmolzene Werkstoff in die Gussform eingefüllt wird. Beim Schmelzen des Werkstoffs wird dabei nach dem Stand der Technik so vorgegangen, dass alle an der Bildung des Werkstoffs beteiligten Elemente bzw. Verbindungen gleichzeitig geschmolzen werden. Dabei tritt das Problem auf, dass volatile Elemente, wie zum Beispiel Mangan oder Aluminium, verdampfen können, was einen Verlust dieser Elemente darstellt. Die Einhaltung der gewünschten Zusammensetzung des Werkstoffs für das durch Gießen herzustellende Bauteil ist nach dem Stand der Technik demnach nur unter hohen Materialverlusten zu erreichen.To produce a component by means of casting, the procedure is such that a material from which the component to be produced is to be produced is melted in a crucible, and the molten material is introduced into the casting mold. When the material is melted, the state of the art is such that all elements or compounds involved in the formation of the material are melted simultaneously. The problem arises that volatile elements, such as manganese or aluminum, can evaporate, which represents a loss of these elements. Compliance with the desired composition of the material for the produced by casting component can be achieved according to the prior art therefore only with high material losses.

US5429796 offenbart ein Verfahren zur Herstellung der Bauteilen aus intermetallischen Titan-Aluminium -Werkstoff, insbesondere Gasturbinenbauteilen. Das Ti-Al Material ist geschmolzen in einem Schmelztiegel. Die TiAl Schmelze enthält (in Atom%) von 40% bis ungefähr 52% Ti, von 44% bis ungefähr 52% Al und eins oder mehr von Cr, C, Ga, Mo, Mn, Nb, Ni, Si, Ta, V und W, jedes in einer Menge von ungefähr 0.05% bis ungefähr 8%. Borid dispersoide wird in der Schmelze in einer Menge von mindestens ungefähr 0.5 Volumen % der Schmelze gegeben. Die Schmelze wird in einer Gussform vergiesst Hiervon ausgehend liegt der vorliegenden Erfindung das Problem zu Grunde, ein neuartiges Verfahren zum Herstellen eines Gussbauteils zu schaffen. US5429796 discloses a method of manufacturing the titanium-aluminum intermetallic material components, particularly gas turbine components. The Ti-Al material is melted in a crucible. The TiAl melt contains (in atom%) from 40% to about 52% Ti, from 44% to about 52% Al, and one or more of Cr, C, Ga, Mo, Mn, Nb, Ni, Si, Ta, V and W, each in an amount of about 0.05% to about 8%. Boride dispersoid is added in the melt in an amount of at least about 0.5 volume% of the melt. The melt is poured in a casting mold. Based on this, the present invention is based on the problem of providing a novel method for producing a cast component.

Dieses Problem wird dadurch gelöst, dass das eingangs genannte Verfahren durch die Merkmale des kennzeichnenden Teils des Patentanspruchs 1 weitergebildet ist. Das erfindungsgemäße Verfahren umfasst zumindest die folgenden Schritte: a) Bereitstellen eines Schmelztiegels und mindestens eines Halbzeugs aus einem intermetallischen Titan-Aluminium-Werkstoff; b) Schmelzen des oder jedes Halbzeugs aus dem intermetallischen Titan-Aluminium-Werkstoff in dem Schmelztiegel; c) Einbringen mindestens eines zusätzlichen Elements oder einer zusätzlichen Verbindung in die Schmelze, wobei das oder jedes Element bzw. die oder jede Verbindung abhängig von deren Schmelztemperatur in die Schmelze eingebracht wird; d) Bereitstellen einer Gussform; e) Einfüllen der Schmelze in die Gussform; f) Erstarren der Schmelze in der Gussform; g) Herauslösen des Gussbauteils aus der Gussform.This problem is solved in that the aforementioned method is further developed by the features of the characterizing part of patent claim 1. The method according to the invention comprises at least the following steps: a) provision of a crucible and at least one semifinished product of an intermetallic titanium-aluminum material; b) melting the or each semi-finished product of the titanium-aluminum intermetallic material in the crucible; c) introducing at least one additional element or an additional compound into the melt, wherein the or each element or the or each compound is introduced into the melt, depending on their melting temperature; d) providing a mold; e) filling the melt into the casting mold; f) solidification of the melt in the mold; g) removing the cast component from the mold.

Bevorzugte Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen und der nachfolgenden Beschreibung. Nachfolgend wird das hier vorliegende Verfahren zum Herstellen von Gussbauteilen, insbesondere von Gasturbinengussbauteilen, in größerem Detail beschrieben.Preferred embodiments of the invention will become apparent from the dependent claims and the description below. In the following, the present method for producing cast components, in particular gas turbine cast components, will be described in greater detail.

In einem ersten Schritt des erfindungsgemäßen Verfahrens wird ein Schmelztiegel sowie ein Halbzeug aus einem intermetallischen Titan-Aluminium-Werkstoff bereitgestellt. Bei dem Halbzeug aus dem intermetallischen Titan-Aluminium-Werkstoff kann es sich zum Beispiel um ein Ti45Al-Halbzeug oder auch um ein Ti55Al-Halbzeug handeln, je nachdem, welcher Titananteil im Werkstoff des herzustellenden Gussbauteils erwünscht ist. Der Schmelztiegel kann ein Graphittiegel oder auch ein Kaltwandtiegel sein.In a first step of the method according to the invention, a crucible and a semi-finished product made of an intermetallic titanium-aluminum material is provided. The semifinished product of the intermetallic titanium-aluminum material may be, for example, a Ti45Al semifinished product or even a Ti55Al semifinished product, depending on which titanium content is desired in the material of the cast component to be produced. The crucible may be a graphite crucible or a cold wall crucible.

Das oder jedes Halbzeug wird in einem zweiten Schritt des erfindungsgemäßen Verfahrens im Schmelztiegel geschmolzen. Zum Schmelzen des oder jeden Halbzeugs wird der Schmelztiegel induktiv erwärmt.The or each semi-finished product is melted in a second step of the process according to the invention in the crucible. To melt the or each semi-finished product, the crucible is heated inductively.

Nach dem Erwärmen der Schmelze aus dem aufgeschmolzenen Titan-Aluminium-Halbzeug werden zusätzliche Elemente bzw. zusätzliche Verbindungen in die Schmelze eingebracht. Dabei werden zuerst refraktäre Elemente oder Verbindung, anschließend volatile Elemente oder Verbindungen und gegebenenfalls anschließend Feinstoffe in die Schmelze eingebracht. Bei den refraktären, zusätzlichen Elementen oder Verbindungen kann es sich um Wolfram, Tantal oder Niob handeln. Weiterhin kann als refraktäres Zusatzelement Titan beigemischt werden, was insbesondere dann erfolgt, wenn der Titananteil des Werkstoffs noch erhöht werden soll. Nachdem die refraktären Elemente in die Schmelze eingebracht wurden, können volatile Elemente, wie zum Beispiel Mangan, in die Schmelze eingebracht werden. Abschließend können noch Feinstoffe, wie zum Beispiel Titanborid oder Titandiborid, in die Schmelze eingebracht werden. Die zusätzlichen Elemente bzw. Verbindungen werden demzufolge abhängig von deren Schmelztemperaturen in die Schmelze eingebracht, wobei zuerst solche Elemente bzw. Verbindungen eingebracht werden, die einen hohen Schmelzpunkt haben. Die Elemente bzw. Verbindungen mit einem niedrigen Schmelzpunkt werden zum Schluss in die Schmelze eingebracht. Die obigen Elemente können als Reinmetalle oder Legierungen in die Schmelze eingebracht werden.After heating the melt from the molten titanium-aluminum semi-finished additional elements or additional compounds are introduced into the melt. Here, first refractory elements or compound, then volatile elements or compounds and optionally then fines are introduced into the melt. The refractory, additional elements or compounds may be tungsten, tantalum or niobium. Furthermore, titanium can be admixed as a refractory additional element, which takes place in particular when the titanium content of the material is to be increased. After the refractory elements have been introduced into the melt, volatile elements, such as manganese, can be introduced into the melt. Finally, fines, such as titanium boride or titanium diboride, can be introduced into the melt. Accordingly, the additional elements or compounds are introduced into the melt as a function of their melting temperatures, wherein first such elements or compounds are introduced which have a high melting point. The elements or compounds with a low melting point are finally introduced into the melt. The above elements can be introduced into the melt as pure metals or alloys.

Im Sinne der hier vorliegenden Erfindung werden die Elemente bzw. Verbindungen in definierten Dosierungen bzw. Mengen in die Schmelze eingebracht. Dabei wird im Sinne der Erfindung so vorgegangen, dass die jeweilige Dosierung bzw. Menge des einzubringenden Elements bzw. der einzubringen Verbindung derart bemessen ist, dass ausgehend von einer vor dem Einbringen herrschenden Temperatur der Schmelze (zum Beispiel 1600°C) die Temperatur der Schmelze nach dem Einbringen des Elements bzw. der Verbindung stets größer als 1550°C ist und weiterhin die vor dem Einbringen herrschende Temperatur nach maximal 15 Minuten wieder erreicht wird. Hierdurch wird gewährleistet, dass während des Einbringens der zusätzlichen Elemente bzw. Verbindungen in die Schmelze dieselbe nur geringen Temperaturschwankungen unterliegt.For the purposes of the present invention, the elements or compounds in defined dosages or amounts are introduced into the melt. In the context of the invention, the procedure is such that the respective dosage or amount of the element to be introduced or the compound to be introduced is such that, starting from a temperature of the melt (for example 1600 ° C.) prevailing before the introduction, the temperature of the melt after introduction of the element or the compound is always greater than 1550 ° C and continue to prevail before the introduction of the temperature after a maximum of 15 minutes. This ensures that during the introduction of the additional elements or compounds in the melt is subject to the same only small temperature fluctuations.

Weiterhin sind im Sinne der hier vorliegenden Erfindung die jeweilige Dosierung bzw. Menge der einzubringenden Elemente bzw. Verbindungen derart bemessen, dass bei einer Elementdichte bzw. Verbindungsdichte von größer als 6°g/cm3 die einzubringende Dosierung bzw. Menge ein maximales Gewicht von 250 g aufweist. Liegt hingegen die Element-dichte bzw. Verbindungsdichte unterhalb von 6°g/cm3, so beträgt das Gewicht der einzubringenden Dosierung bzw. Menge des Elements bzw. der Verbindung maximal 50 g. Auch hierdurch wird erreicht, dass die Schmelze während dem Einbringen der zusätzlichen Elemente bzw. Verbindungen nur geringen Schwankungen ausgesetzt ist.Furthermore, for the purposes of the present invention, the respective dosage or amount of the elements or compounds to be introduced is such that at an element density or compound density of greater than 6 ° g / cm 3 , the dosage or amount to be introduced a maximum weight of 250 g has. If, on the other hand, the element density or connection density is below 6 ° g / cm 3 , the weight of the dosage or amount of the element or compound to be introduced is a maximum of 50 g. This also ensures that the melt is exposed during the introduction of the additional elements or compounds only small variations.

Wie bereits erwähnt, wird das Halbzeug aus dem intermetallischen Titan-Aluminium-Werkstoff, in welchen die zusätzlichen Elemente bzw. Verbindungen eingebracht werden, im Schmelztiegel auf induktivem Wege erwärmt bzw. erhitzt. Das Einbringen der zusätzlichen Elemente bzw. Verbindungen erfolgt in-situ während des Schmelzvorgangs, also während der induktiven Erwärmung. Das induktive Erwärmungssystem erzeugt innerhalb der Schmelze ein chaotisches Strömungsfeld, sodass ein partielles Legieren und Homogenisieren mit den volatilen und/oder refraktären Elementen oder Verbindungen realisiert werden kann.As already mentioned, the semifinished product of the intermetallic titanium-aluminum material, in which the additional elements or compounds are introduced, is heated or heated inductively in the crucible. The introduction of the additional elements or compounds takes place in-situ during the melting process, ie during inductive heating. The inductive heating system generates a chaotic flow field within the melt so that partial alloying and homogenization can be achieved with the volatile and / or refractory elements or compounds.

Das induktive System induziert in der Schmelze Wirbelströme und sorgt für eine Strömung innerhalb der Schmelze. Im Sinne der hier vorliegenden Erfindung wird das oder jedes Element bzw. die oder jede Verbindung in einer definierten, strömungsoptimierten Geometrie in die Schmelze eingebracht. Unter strömungsoptimierter Geometrie ist hierbei zu verstehen, dass die strömungsoptimierte Geometrie einen guten Transport des oder jeden Elements bzw. der oder jeder Verbindung innerhalb der Schmelze ermöglicht. Hierzu werden die zusätzlichen Elemente bzw. Verbindungen als flächige Elemente bzw. scheibenförmige Elemente in die Schmelze eingebracht. Hierdurch wird gewährleistet, dass sich die in die Schmelze einzubringenden, zusätzlichen Elemente bzw. Verbindungen innerhalb der Schmelze fein verteilen.The inductive system induces eddy currents in the melt and ensures a flow within the melt. For the purposes of the present invention, the or each element or the or each compound is introduced into the melt in a defined, flow-optimized geometry. Flow-optimized geometry here means that the flow-optimized geometry enables a good transport of the or each element or the or each compound within the melt. For this purpose, the additional elements or compounds are introduced as sheet-like elements or disc-shaped elements in the melt. This ensures that the additional elements or compounds to be introduced into the melt are finely distributed within the melt.

Das erfindungsgemäße Verfahren ermöglicht eine kostengünstige Herstellung von Gussbauteilen für Gasturbinen. Es kann eine hohe chemische Homogenität der Gussbauteile auf Basis intermetallischer Phasen realisiert werden.The method according to the invention enables cost-effective production of cast components for gas turbines. It can be realized a high chemical homogeneity of the cast components based on intermetallic phases.

Claims (11)

  1. Method for the production of a cast component, in particular a gas turbine component, with the following steps:
    a) Provision of a melting crucible and at least one semi-finished product made of an intermetallic titanium-aluminum material;
    b) Melting of the semi-finished product or each semi-finished product made of the intermetallic titanium-aluminum material in the melting crucible;
    c) Adding of a plurality of additional elements or additional compounds to the molten mass in successively in time depending on their melting temperature, wherein at least one element and/or one compound with a high melting point is added to the molten mass first, followed by at least one further element and/or one further compound with a lower melting point,
    d) Provision of a casting mold;
    e) Pouring the molten mass into the casting mold;
    f) Hardening of the molten mass in the casting mold; and
    g) Removal of the cast component from the casting mold.
  2. Method according to claim 1, characterized in that refractory additional elements or compounds are added first to the molten mass, followed by volatile additional elements or compounds and, and then, if necessary, fine materials.
  3. Method according to claim 2 characterized in that the elements tungsten, tantalum, niobium and, if necessary, titanium or alloys of these elements are added as refractory additional elements to the molten mass.
  4. Method according to claim 2 or 3 characterized in that manganese or an alloy of this element is added as volatile additional element to the molten mass.
  5. Method according to one or more of claims 2 to 4 characterized in that titanium boride is added as fine material to the molten mass.
  6. Method according to one or more of claims 1 to 5 characterized in that the element or each element and/or the compound or each component is added to the molten mass in an amount such that, assuming a molten mass temperature prior to the addition, the temperature is always greater than 1550° C after the addition, and the temperature before the addition will be reached again after a maximum of 15 minutes.
  7. Method according to one or more of claims 1 to 6 characterized in that the additional element or each additional element and/or the additional compound or each additional compound is added to the molten mass in an amount which has a maximum weight of 250 g at an element and/or compound density of greater than 6 g/cm3.
  8. Method according to one or more of claims 1 to 7 characterized in that the additional element or each additional element and/or the additional compound or each additional compound is added to the molten mass in an amount which has a maximum weight of 50 g at an element and/or compound density of less than 6 g/cm3.
  9. Method according to one or more of claims 1 to 8 characterized in that the additional element or each additional element and/or the additional compound or each additional compound is added to the molten mass in a flow-optimized geometry.
  10. Method according to claim 9 characterized in that the additional element or each additional element and/or the additional compound or each additional compound has a flat or a disk-shaped geometry.
  11. Method according to one or more of claims 1 to 10, characterized in that, during the melting process, the melting crucible is inductively warmed up and/or heated and with this also the semi-finished product or each semi-finished product and the element or each element, as well as the compound or each compound to be melted in the melting crucible.
EP04802982.1A 2004-01-21 2004-12-22 Method for the production of cast components Not-in-force EP1706516B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004002956A DE102004002956A1 (en) 2004-01-21 2004-01-21 Method for producing cast components
PCT/DE2004/002801 WO2005071128A2 (en) 2004-01-21 2004-12-22 Method for the production of cast components

Publications (2)

Publication Number Publication Date
EP1706516A2 EP1706516A2 (en) 2006-10-04
EP1706516B1 true EP1706516B1 (en) 2016-09-28

Family

ID=34744930

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04802982.1A Not-in-force EP1706516B1 (en) 2004-01-21 2004-12-22 Method for the production of cast components

Country Status (5)

Country Link
US (1) US7360579B2 (en)
EP (1) EP1706516B1 (en)
JP (2) JP4970051B2 (en)
DE (1) DE102004002956A1 (en)
WO (1) WO2005071128A2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005015862A1 (en) * 2005-04-07 2006-10-12 Ald Vacuum Technologies Gmbh Method for producing a plurality of components, in particular of titanium aluminide, and apparatus for carrying out this method
US8858697B2 (en) 2011-10-28 2014-10-14 General Electric Company Mold compositions
US9011205B2 (en) 2012-02-15 2015-04-21 General Electric Company Titanium aluminide article with improved surface finish
US8932518B2 (en) 2012-02-29 2015-01-13 General Electric Company Mold and facecoat compositions
US10597756B2 (en) 2012-03-24 2020-03-24 General Electric Company Titanium aluminide intermetallic compositions
US8906292B2 (en) 2012-07-27 2014-12-09 General Electric Company Crucible and facecoat compositions
US8708033B2 (en) 2012-08-29 2014-04-29 General Electric Company Calcium titanate containing mold compositions and methods for casting titanium and titanium aluminide alloys
US8992824B2 (en) 2012-12-04 2015-03-31 General Electric Company Crucible and extrinsic facecoat compositions
US9592548B2 (en) 2013-01-29 2017-03-14 General Electric Company Calcium hexaluminate-containing mold and facecoat compositions and methods for casting titanium and titanium aluminide alloys
US9511417B2 (en) 2013-11-26 2016-12-06 General Electric Company Silicon carbide-containing mold and facecoat compositions and methods for casting titanium and titanium aluminide alloys
US9192983B2 (en) 2013-11-26 2015-11-24 General Electric Company Silicon carbide-containing mold and facecoat compositions and methods for casting titanium and titanium aluminide alloys
US10391547B2 (en) 2014-06-04 2019-08-27 General Electric Company Casting mold of grading with silicon carbide

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5348595A (en) * 1988-05-13 1994-09-20 Nippon Steel Corporation Process for the preaparation of a Ti-Al intermetallic compound
JPH04120225A (en) * 1990-09-07 1992-04-21 Kobe Steel Ltd Manufacture of ti-al series alloy
US5284620A (en) * 1990-12-11 1994-02-08 Howmet Corporation Investment casting a titanium aluminide article having net or near-net shape
JPH04246137A (en) * 1991-01-29 1992-09-02 Kobe Steel Ltd Production of ti-al alloy
US5299619A (en) * 1992-12-30 1994-04-05 Hitchiner Manufacturing Co., Inc. Method and apparatus for making intermetallic castings
JP3626507B2 (en) * 1993-07-14 2005-03-09 本田技研工業株式会社 High strength and high ductility TiAl intermetallic compound
US5766329A (en) * 1996-05-13 1998-06-16 Alliedsignal Inc. Inert calcia facecoats for investment casting of titanium and titanium-aluminide alloys
US6926755B2 (en) * 2003-06-12 2005-08-09 General Electric Company Method for preparing aluminum-base metallic alloy articles without melting

Also Published As

Publication number Publication date
WO2005071128A3 (en) 2006-01-26
JP2011115860A (en) 2011-06-16
WO2005071128A2 (en) 2005-08-04
EP1706516A2 (en) 2006-10-04
US20070151696A1 (en) 2007-07-05
DE102004002956A1 (en) 2005-08-11
JP2007518569A (en) 2007-07-12
US7360579B2 (en) 2008-04-22
JP4970051B2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
DE102016103261B4 (en) Method of forming a cast automotive component
DE19681358B4 (en) Powder mixture made of aluminum alloy and sintered aluminum alloys
EP0464366B1 (en) Process for producing a work piece from an alloy based on titanium aluminide containing a doping material
DE112018001690T5 (en) HEAT TREATMENT METHOD FOR ADDITIVELY MANUFACTURED Ni-BASED ALLOY OBJECT, METHOD FOR PRODUCING ADDITIVELY MANUFACTURED Ni-BASED ALLOY OBJECT, Ni-BASED ALLOY POWDER FOR ADDITIVELY MANUFACTURED OBJECT OBJECT AND OBJECT OBJECT
DE112005000511B4 (en) Magnesium wrought alloy with improved extrudability and moldability
DE102009050603B3 (en) Process for producing a β-γ-TiAl base alloy
EP1706516B1 (en) Method for the production of cast components
EP2646587B1 (en) Process for producing an alscca alloy and also an aiscca alloy
DE3445767A1 (en) Method of forging nickel-base superalloys and a nickel-base superalloy article having improved forgeability
DE2133103A1 (en) Ligature recovering in the heat
EP1840235A1 (en) Magnesium alloy and corresponding production method
DE112007000673T5 (en) Magnesium alloy with high strength and high toughness and process for its preparation
EP1771589B1 (en) Method for producing a cast component
EP3269838B1 (en) High temperature resistant tial alloy, method for production of a composent from a corresponding tial alloy, component from a corresponding tial alloy
EP3249064A1 (en) Additive manufacture of high temperature components from tial
EP1851350B1 (en) Method for casting titanium alloy
EP2990141A1 (en) Method for producing TiAl components
WO2017174185A1 (en) Aluminum alloy, in particular for a casting method, and method for producing a component from such an aluminum alloy
DE112017007033T5 (en) ALUMINUM ALLOYS
EP1407056B1 (en) Process for producing a moulded piece made from an intermetallic gamma-ti-al material
DE112016006624T5 (en) HIGH-RESISTANCE ALUMINUM ALLOYS FOR LOW-PRESSURE DIE CASTING AND HEAVY CASTING
WO2005045081A1 (en) Aluminium alloy, component made therefrom and method for production of said component
DE60220835T2 (en) ALUMINUM ALLOY, CAST COPPER OF ALUMINUM ALLOYING AND METHOD FOR PRODUCING A CAST COPPER OF AN ALUMINUM ALLOY
EP1680246B1 (en) Method for producing metal matrix composite materials
EP2088216A1 (en) Aluminium alloy

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

17P Request for examination filed

Effective date: 20060707

RIN1 Information on inventor provided before grant (corrected)

Inventor name: RENKEL, MANFRED

Inventor name: SMARSLY, WILFRIED

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20070521

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502004015324

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C22F0001180000

Ipc: C22C0014000000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 1/03 20060101ALI20160524BHEP

Ipc: C22C 1/02 20060101ALI20160524BHEP

Ipc: C22F 1/18 20060101ALI20160524BHEP

Ipc: C22C 14/00 20060101AFI20160524BHEP

INTG Intention to grant announced

Effective date: 20160624

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: G4T GMBH

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SMARSLY, WILFRIED

Inventor name: RENKEL, MANFRED

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 832823

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004015324

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161229

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170130

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170128

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004015324

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161228

26N No opposition filed

Effective date: 20170629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161222

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161228

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20161231

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 832823

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20041222

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20191217

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20201019

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201222

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004015324

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220701