EP1851350B1 - Method for casting titanium alloy - Google Patents

Method for casting titanium alloy Download PDF

Info

Publication number
EP1851350B1
EP1851350B1 EP06707301A EP06707301A EP1851350B1 EP 1851350 B1 EP1851350 B1 EP 1851350B1 EP 06707301 A EP06707301 A EP 06707301A EP 06707301 A EP06707301 A EP 06707301A EP 1851350 B1 EP1851350 B1 EP 1851350B1
Authority
EP
European Patent Office
Prior art keywords
temperature
casting
alloy
titanium
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06707301A
Other languages
German (de)
French (fr)
Other versions
EP1851350A1 (en
Inventor
Sevki Baliktay
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waldemar Link GmbH and Co KG
Original Assignee
Waldemar Link GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waldemar Link GmbH and Co KG filed Critical Waldemar Link GmbH and Co KG
Priority to PL06707301T priority Critical patent/PL1851350T3/en
Priority to EP06707301A priority patent/EP1851350B1/en
Publication of EP1851350A1 publication Critical patent/EP1851350A1/en
Application granted granted Critical
Publication of EP1851350B1 publication Critical patent/EP1851350B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/005Castings of light metals with high melting point, e.g. Be 1280 degrees C, Ti 1725 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon

Definitions

  • the invention relates to a method for casting objects from a ⁇ -titanium alloy, more particularly a titanium-molybdenum alloy.
  • Titanium alloys are becoming increasingly popular because of their many beneficial properties. In particular, because of their good chemical resistance, even at high temperature, and their low weight with excellent mechanical properties titanium alloys are used in all areas where high demands are placed on the material. Because of their excellent biocompatibility, titanium alloys are also preferably used in the medical field, in particular for implants and prostheses.
  • titanium alloys are forgings, so forging processes are mostly used. Because it has been shown that titanium alloys are difficult to pour. Usually this approach is taken in complicated shapes, but this approach leads to limitations in the selection of suitable alloys. In particular, it has been found that only unsatisfactory results are achieved when casting ⁇ -titanium alloys ( US-A-2004/0136859 ).
  • the invention has for its object to provide an improved casting method for ⁇ -titanium alloys, which allows a production of complex shapes with good material properties.
  • the alloy in a method for casting articles of a ⁇ -titanium alloy with a molybdenum content of 15%, the alloy is melted at a temperature above 1770 ° C., the molten alloy is finely poured into a casting mold corresponding to the article to be produced, and hot isostatic is pressed, is solution-annealed at a temperature of 760 ° C-800 ° C and then quenched.
  • the invention With the method according to the invention, a rational production of articles made of ⁇ -titanium alloys is achieved by precision casting.
  • the invention thus makes it possible to combine the advantageous properties of ⁇ -titanium alloys, in particular its excellent mechanical properties, with the advantages of producing articles by precision casting. Even objects with complex shapes, which could not be made or not made meaningful by conventional forging methods can be made thanks to the invention of a ⁇ -titanium alloy.
  • the invention also opens up the field of application of the complex shaped articles to the ⁇ -titanium alloys known for their excellent mechanical properties and biocompatibility.
  • the proportion of molybdenum in the alloy is 15%. This results in a sufficient stabilization of the ⁇ -phase up to the range of room temperature. This can be achieved by fast cooling after the investment casting a metastable ⁇ -phase.
  • the addition of other alloying agents is usually unnecessary. In particular, it is not necessary that vanadium or aluminum be added. The absence of this has the already mentioned advantage that the toxicity emanating from these alloy formers can be avoided.
  • bismuth which in terms of its biocompatibility likewise does not equal titanium.
  • a cold wall crucible vacuum induction plant is used to melt the ⁇ -titanium alloy.
  • the melting point of TiMo15 is 1770 ° C.
  • a surcharge of about 60 ° C is appropriate to achieve a safe investment casting.
  • a temperature of 1830 ° C for TiMo15 must be achieved.
  • the hot isostatic pressing is carried out at a temperature which is at most as high as a beta-transus temperature of the titanium-molybdenum alloy and at least 100 ° C below the beta-transus temperature.
  • Hot isostatic pressing counteracts unfavorable effects due to an accumulation of molybdenum in dendrites while depleting the residual melt by dissolving interdendritic precipitates.
  • Favorable is a temperature below the ⁇ -transus temperature, up to 100 ° C below.
  • temperatures in the range of 710 ° C. to 760 ° C., preferably of about 740 ° C., at an argon pressure of about 1100 to 1200 bar have proved successful.
  • temperatures of at least 700 ° C. to 880 ° C. (not according to the invention) have proven to be useful, preferably in the range of 800 ° C to 860 ° C (not inventive area).
  • Argon is preferably used to generate a protective gas atmosphere. This achieves an improvement in the ductility of the alloy.
  • quenching of the article by water occurs after solution heat treatment.
  • cold water is used.
  • cold is meant the temperature of unheated tap water. Quenching has been shown to exert a strong influence on the ultimate mechanical properties of the article. Alternatively, it can also be quenched in inert gas, for example by argon cooling. However, the results achieved remain behind those achieved with cold water.
  • the curing in a temperature range of about 600 ° C to about 700 ° C is done.
  • Starting material is a ⁇ -titanium alloy with a molybdenum content of 15% (TiMo15). This alloy can be purchased commercially in the form of small ingots.
  • an investment casting of the objects to be cast takes place.
  • a casting plant is planned.
  • it is a cold wall crucible vacuum induction melting and casting equipment.
  • the melting point of TiMo15 is 1770 ° C plus a surcharge of about 60 ° C for a safe investment casting. Overall, therefore, a temperature of 1830 ° C must be achieved.
  • the investment casting of the melt is then carried out by means of known methods, for example with wax cores and ceramic molds as a lost form. Such investment casting techniques are known for investment casting of TiA16V4.
  • the interdendritic zones have a molybdenum content of less than 15% in the cast structure, whereby the molybdenum content can drop to values of about 10%.
  • molybdenum depletion there is a lack of sufficient ⁇ -stabilizers in the interdendritic zones.
  • an increased a / ⁇ conversion temperature is established locally, causing the in Fig. 2 emerge to discernible excretions.
  • this layer has a thickness of about 0.03 mm.
  • the castings released from the casting molds after the investment casting are subjected to a heat treatment according to the invention.
  • a hot isostatic pressing is provided, namely at a temperature just below the ⁇ -transus temperature. It may range from 710 ° C to 760 ° C, preferably about 740 ° C.
  • the undesired precipitates in the interdendritic zones go into solution again.
  • An advance storage before or after the hipping is not required.
  • fine secondary phases separate again from, preferably in the original interdendritic zones (see Fig. 3 , 1000x magnification). This results in unwanted embrittlement of the material.
  • the articles have a low ductility after being tipped.
  • the castings are annealed in a chamber furnace under a protective gas atmosphere (eg argon).
  • a protective gas atmosphere eg argon
  • a temperature range of 760 ° C to 800 ° C is selected, with a duration of several, usually two hours. There is an opposite relationship between the temperature and the duration, at higher temperature is sufficient for a shorter time and vice versa.
  • the castings are quenched with cold water.
  • Fig. 4 1000x magnification
  • the structure is shown after the solution annealing.
  • the articles finely cast with the method according to the invention have, in their crystal structure, ⁇ grains with an average size of more than 0.3 mm. This size is typical of the crystal structure achieved by the process of the invention.
  • the modulus of elasticity decreases with increasing temperature during solution annealing, to values up to 60,000 N / mm 2 .
  • the toughness values improve with decreasing strength and hardness. So you reach after two hours solution annealing at 800 ° C, a modulus of elasticity of 60,000 N / mm 2 at an elongation at break of about 40% and a breaking strength Rm of about 730 N / mm 2 .

Description

Die Erfindung betrifft ein Verfahren zum Gießen von Gegenständen aus einer β-Titanlegierung, genauer gesagt einer Titan-Molybdänlegierung.The invention relates to a method for casting objects from a β-titanium alloy, more particularly a titanium-molybdenum alloy.

Titanlegierungen erfreuen sich wegen ihrer zahlreichen vorteilhaften Eigenschaften einer immer größeren Beliebtheit. Insbesondere wegen ihrer guten chemischen Beständigkeit, auch unter hoher Temperatur, und ihres geringen Gewichts bei hervorragenden mechanischen Eigenschaften werden Titanlegierungen in all den Bereichen verwendet, in denen hohe Anforderungen an das Material gestellt werden. Wegen ihrer hervorragenden Biokompatibilität werden Titanlegierungen auch bevorzugt im medizinischen Bereich eingesetzt, insbesondere für Implantate und Prothesen.Titanium alloys are becoming increasingly popular because of their many beneficial properties. In particular, because of their good chemical resistance, even at high temperature, and their low weight with excellent mechanical properties titanium alloys are used in all areas where high demands are placed on the material. Because of their excellent biocompatibility, titanium alloys are also preferably used in the medical field, in particular for implants and prostheses.

Es sind verschiedene Methoden zur Formgebung von Titanlegierungen bekannt. Neben spanabhebender Verarbeitung sind das vor allem Gieß- und Schmiedeverfahren. Im Grunde sind Titanlegierungen Schmiedelegierungen, daher werden meist Schmiedeverfahren verwendet. Denn es hat sich gezeigt, dass Titanlegierungen schwierig zu gießen sind. Meist wird dieser Weg bei komplizierten Formen beschritten, jedoch führt dieser Weg zu Einschränkungen bei der Auswahl geeigneter Legierungen. Insbesondere zeigte sich, dass beim Giessen von β-Titanlegierungen nur unbefriedigende Ergebnisse erzielt werden ( US-A-2004/0136859 ).Various methods for shaping titanium alloys are known. In addition to machining these are mainly casting and forging processes. Basically, titanium alloys are forgings, so forging processes are mostly used. Because it has been shown that titanium alloys are difficult to pour. Mostly this approach is taken in complicated shapes, but this approach leads to limitations in the selection of suitable alloys. In particular, it has been found that only unsatisfactory results are achieved when casting β-titanium alloys ( US-A-2004/0136859 ).

Aus Donachie et al., Titanium, A Technical Guide, 2000, Seiten 39, 41, 42 sind verschiedene Schnitte der Wärmebehandlung von Titanlegierungen bekannt.Out Donachie et al., Titanium, A Technical Guide, 2000, pp. 39, 41, 42 Various sections of the heat treatment of titanium alloys are known.

Der Erfindung liegt die Aufgabe zugrunde, ein verbessertes Gießverfahren für β-Titanlegierungen zu schaffen, das eine Herstellung auch komplexer Formen bei guten Materialeigenschaften erlaubt.The invention has for its object to provide an improved casting method for β-titanium alloys, which allows a production of complex shapes with good material properties.

Die erfindungsgemäße Lösung liegt in einem Verfahren mit den Merkmalen des Hauptanspruchs. Vorteilhafte Weiterbildungen sind Gegenstand der Unteransprüche.The solution according to the invention lies in a method having the features of the main claim. Advantageous developments are the subject of the dependent claims.

Erfindungsgemäß ist bei einem Verfahren zum Gießen von Gegenständen aus einer β-Titanlegierung mit einem Molybdängehalt von 15% vorgesehen, dass die Legierung bei einer Temperatur von über 1770 °C geschmolzen wird, die aufgeschmolzene Legierung in eine dem herzustellenden Gegenstand entsprechende Gussform feingegossen wird, heißisostatisch gepresst wird, bei einer Temperatur von 760 °C-800 °C lösungsgeglüht wird und anschließend abgeschreckt wird.According to the invention, in a method for casting articles of a β-titanium alloy with a molybdenum content of 15%, the alloy is melted at a temperature above 1770 ° C., the molten alloy is finely poured into a casting mold corresponding to the article to be produced, and hot isostatic is pressed, is solution-annealed at a temperature of 760 ° C-800 ° C and then quenched.

Unter Gegenstand wird vorliegend ein zur Endverwendung geformtes Produkt verstanden. Es kann sich beispielsweise im Gebiet der Luftfahrt um Teile für Triebwerke, Rotorlager, Flügelkästen oder andere Tragstrukturteile oder im Gebiet der Medizin um Endoprothesen, wie Hüftprothesen, oder Implantate, wie Platten und Stifte oder Dentalimplantate handeln. Der Begriff des Gegenstands im Sinne der vorliegenden Anmeldung umfasst nicht Barren, die zur Weiterverarbeitung durch Umformverfahren gedacht sind, also insbesondere nicht durch Kokillenguss hergestellte Ingots zur Weiterverarbeitung durch Schmieden.Under article is understood in the present case a molded product for end use. In the field of aviation, for example, parts for engines, rotor bearings, wing boxes or other support structure parts or in the field of medicine can be endoprostheses, such as hip prostheses, or implants, such as plates and pins or dental implants. The term article for the purposes of the present application does not include ingots which are intended for further processing by forming processes, ie in particular not by chill casting manufactured ingots for further processing by forging.

Mit dem erfindungsgemäßen Verfahren wird eine rationelle Herstellung von Gegenständen aus β-Titanlegierungen im Feingussverfahren erreicht. Die Erfindung schafft damit die Möglichkeit, die vorteilhaften Eigenschaften von β-Titanlegierungen, insbesondere seine hervorragenden mechanischen Eigenschaften, mit den Vorteilen einer Herstellung von Gegenständen im Feingussverfahren zu kombinieren. Auch Gegenstände mit komplexen Formen, die durch herkömmliche Schmiedeverfahren nicht oder nicht sinnvoll hergestellt werden konnten, können dank der Erfindung aus einer β-Titanlegierung hergestellt werden. Damit erschließt die Erfindung dem für seine vorzüglichen mechanischen Eigenschaften sowie Biokompatibilität bekannten β-Titanlegierungen auch das Anwendungsfeld der komplex geformten Gegenstände.With the method according to the invention, a rational production of articles made of β-titanium alloys is achieved by precision casting. The invention thus makes it possible to combine the advantageous properties of β-titanium alloys, in particular its excellent mechanical properties, with the advantages of producing articles by precision casting. Even objects with complex shapes, which could not be made or not made meaningful by conventional forging methods can be made thanks to the invention of a β-titanium alloy. Thus, the invention also opens up the field of application of the complex shaped articles to the β-titanium alloys known for their excellent mechanical properties and biocompatibility.

Der Anteil des Molybdäns in der Legierung liegt bei 15%. Damit ergibt sich, eine ausreichende Stabilisierung der β-Phase bis in den Bereich der Raumtemperatur. Damit kann durch schnelles Abkühlen nach dem Feinguss eine metastabile β-Phase erreicht werden. Die Zugabe weiterer Legierungsbildner ist in der Regel entbehrlich. Insbesondere ist es nicht erforderlich, dass Vanadium oder Aluminium hinzugefügt wird. Der Verzicht darauf hat den bereits angesprochenen Vorteil, dass die von diesen Legierungsbildnern ausgehende Toxizität vermieden werden kann. Entsprechendes gilt für Bismut, das in seiner Biokompatibilität ebenfalls nicht an Titan heranreicht.The proportion of molybdenum in the alloy is 15%. This results in a sufficient stabilization of the β-phase up to the range of room temperature. This can be achieved by fast cooling after the investment casting a metastable β-phase. The addition of other alloying agents is usually unnecessary. In particular, it is not necessary that vanadium or aluminum be added. The absence of this has the already mentioned advantage that the toxicity emanating from these alloy formers can be avoided. The same applies to bismuth, which in terms of its biocompatibility likewise does not equal titanium.

Es hat sich gezeigt, dass mit den bisher kaum für den Feinguss zu verwendenden β-Titanlegierungen dank der Erfindung sogar komplexere Formen hergestellt werden können als den bisher für den Feinguss verwendeten α/β-Titanlegierungen, wie zum Beispiel TiA16V4. Mit dem erfindungsgemäßen Verfahren wird ein verbessertes Formfüllungsvermögen erreicht. So können dank der Erfindung beim Feinguss insbesondere scharfe Kanten mit höherer Qualität erzeugt werden. Auch die Neigung zur Bildung von Lunkern beim Feinguss ist dank des besseren Formfüllungsvermögens vermindert.It has been shown that with the β-titanium alloys which have hitherto scarcely been used for investment casting, even more complex shapes can be produced thanks to the invention than the α / β titanium alloys hitherto used for precision casting, such as TiA16V4. With the method according to the invention an improved mold filling capacity is achieved. Thus, thanks to the invention, in particular, sharp edges with higher quality can be produced during precision casting. The tendency to form voids during precision casting is also reduced thanks to the better mold filling capacity.

Zweckmäßigerweise wird zum Schmelzen der β-Titanlegierung eine Kaltwandtiegel-Vakuuminduktionsanlage verwendet. Mit einer solchen Anlage können die hohen Temperaturen, die für ein sicheres Schmelzen von Titan-Molybdänlegierungen zum Feingießen erforderlich sind, erreicht werden. So liegt der Schmelzpunkt von TiMo15 bei 1770 °C. Dazu ist noch ein Zuschlag von ca. 60 °C zweckmäßig, um ein sicheres Feingießen zu erreichen. Insgesamt muss so eine Temperatur von 1830 °C für TiMo15 erreicht werden.Conveniently, a cold wall crucible vacuum induction plant is used to melt the β-titanium alloy. With such a plant, the high temperatures required for a safe melting of titanium-molybdenum alloys for investment casting can be achieved. The melting point of TiMo15 is 1770 ° C. For this purpose, a surcharge of about 60 ° C is appropriate to achieve a safe investment casting. Overall, a temperature of 1830 ° C for TiMo15 must be achieved.

Vorzugsweise erfolgt das heißisostatische Pressen bei einer Temperatur, die maximal so hoch wie eine Beta-Transustemperatur der Titan-Molybdänlegierung und minimal 100 °C unter der Beta-Transustemperatur liegt.Preferably, the hot isostatic pressing is carried out at a temperature which is at most as high as a beta-transus temperature of the titanium-molybdenum alloy and at least 100 ° C below the beta-transus temperature.

Durch das heißisostatische Pressen wird ungünstigen Effekten augrund einer Anreicherung des Molybdäns in Dendriten unter Verarmung der Restschmelze entgegengewirkt, indem interdendritische Ausscheidungen in Lösung gebracht werden. Günstig ist eine Temperatur unterhalb der β-Transustemperatur, und zwar bis zu 100 °C darunter. Für eine Titanmolybdänlegierung mit 15 % Molybdänanteil haben sich Temperaturen im Bereich von 710 °C bis 760 °C, vorzugsweise von etwa 740 °C, bei einem Argondruck von etwa 1100 bis 1200 bar bewährt.Hot isostatic pressing counteracts unfavorable effects due to an accumulation of molybdenum in dendrites while depleting the residual melt by dissolving interdendritic precipitates. Favorable is a temperature below the β-transus temperature, up to 100 ° C below. For a titanium molybdenum alloy with 15% molybdenum content, temperatures in the range of 710 ° C. to 760 ° C., preferably of about 740 ° C., at an argon pressure of about 1100 to 1200 bar, have proved successful.

Für das Lösungsglühen haben sich Temperaturen von mindestens 700 °C bis zu 880 °C (nicht erfindungsgemäßer Bereich) bewährt, vorzugsweise im Bereich von 800 °C bis 860 °C (nicht erfindungsgemäßer Bereich). Zur Erzeugung einer Schutzgasatmosphäre wird vorzugsweise Argon verwendet. Damit wird eine Verbesserung der Duktilität der Legierung erreicht.For the solution annealing, temperatures of at least 700 ° C. to 880 ° C. (not according to the invention) have proven to be useful, preferably in the range of 800 ° C to 860 ° C (not inventive area). Argon is preferably used to generate a protective gas atmosphere. This achieves an improvement in the ductility of the alloy.

Zweckmäßigerweise erfolgt nach dem Lösungsglühen ein Abschrecken des Gegenstands durch Wasser. Vorzugsweise wird kaltes Wasser verwendet. Unter "kalt" wird hierbei die Temperatur von ungewärmtem Leitungswasser verstanden. Es hat sich gezeigt, dass das Abschrecken einen starken Einfluss auf die schließlich erreichten mechanischen Eigenschaften des Gegenstands ausübt. Es kann alternativ auch ein Abschrecken in Schutzgas erfolgen, beispielsweise durch eine Argonkühlung. Die damit erreichten Ergebnisse bleiben aber hinter den mit kaltem Wasser erreichten zurück.Appropriately, quenching of the article by water occurs after solution heat treatment. Preferably, cold water is used. By "cold" is meant the temperature of unheated tap water. Quenching has been shown to exert a strong influence on the ultimate mechanical properties of the article. Alternatively, it can also be quenched in inert gas, for example by argon cooling. However, the results achieved remain behind those achieved with cold water.

Es kann zweckmäßig sein, den Gegenstand zum Abschluss noch zu härten. Hiermit kann bei Bedarf der Elastizitätsmodul etwas erhöht werden. Vorzugsweise geschieht dazu das Härten in einem Temperaturbereich von ca. 600 °C bis ca. 700 °C.It may be appropriate to harden the article at the conclusion. This can be slightly increased if necessary, the modulus of elasticity. Preferably, the curing in a temperature range of about 600 ° C to about 700 ° C is done.

Die Erfindung wird nachfolgend unter Bezugnahme auf die Zeichnung erläutert, in der ein vorteilhaftes Ausführungsbeispiel dargestellt ist. Es zeigen:

Fig. 1
eine Tabelle mit mechanischen Eigenschaften der erfindungsgemäßen feingegossenen Titanlegierung;
Fig. 2
eine Abbildung des Mikrogefüges in einem Gusszustand unmittelbar nach dem Giessen;
Fig. 3
eine Abbildung des Mikrogefüges nach dem Hippen;
Fig. 4
eine Abbildung des Mikrogefüges nach dem Lösungsglühen mit anschließender Abschreckung; und
Fig. 5
eine Darstellung von Liquidus- und Solidustemperaturen für eine Titan-Molybdänlegierung.
The invention will be explained below with reference to the drawing, in which an advantageous embodiment is shown. Show it:
Fig. 1
a table with mechanical properties of the finely cast titanium alloy according to the invention;
Fig. 2
an image of the microstructure in a cast state immediately after casting;
Fig. 3
an illustration of the microstructure after hipging;
Fig. 4
an illustration of the microstructure after solution annealing with subsequent quenching; and
Fig. 5
a representation of liquidus and solidus temperatures for a titanium-molybdenum alloy.

Nachfolgend wird ein Weg zur Durchführung des erfindungsgemäßen Verfahrens beschrieben.Hereinafter, a way to carry out the method according to the invention will be described.

Ausgangsmaterial ist eine β-Titanlegierung mit einem Molybdänanteil von 15 % (TiMo15). Diese Legierung kann handelsüblich in Form von kleinen Barren (Ingots) erworben werden.Starting material is a β-titanium alloy with a molybdenum content of 15% (TiMo15). This alloy can be purchased commercially in the form of small ingots.

In einem ersten Schritt erfolgt ein Feinguss der zu gießenden Gegenstände. Zum Schmelzen und Gießen des TiMo15 ist eine Gießanlage vorgesehen. Vorzugsweise handelt es sich um eine Kaltwandtiegel-Vakuuminduktions-Schmelz- und Gießanlage. Mit einer solchen Anlage können die hohen Temperaturen, die für ein sicheres Schmelzen von TiMo15 zum Feingießen erforderlich sind, erreicht werden. Der Schmelzpunkt von TiMo15 liegt bei 1770 °C zuzüglich eines Zuschlags von ca. 60 °C für ein sicheres Feingießen. Insgesamt muss also eine Temperatur von 1830 °C erreicht werden. Das Feingießen der Schmelze erfolgt anschließend mittels an sich bekannter Verfahren, beispielsweise mit Wachskernen und Keramikformen als verlorene Form. Derartige Feingusstechniken sind zum Feingießen von TiA16V4 bekannt.In a first step, an investment casting of the objects to be cast takes place. For melting and casting of the TiMo15 a casting plant is planned. Preferably, it is a cold wall crucible vacuum induction melting and casting equipment. With such a plant, the high temperatures required for a safe melting of TiMo15 for investment casting can be achieved. The melting point of TiMo15 is 1770 ° C plus a surcharge of about 60 ° C for a safe investment casting. Overall, therefore, a temperature of 1830 ° C must be achieved. The investment casting of the melt is then carried out by means of known methods, for example with wax cores and ceramic molds as a lost form. Such investment casting techniques are known for investment casting of TiA16V4.

Wie man an der Abbildung (1000fache Vergrößerung) in Fig. 2 erkennen kann, bilden sich Dendriten und in interdendritischen Zonen zeigen sich erhebliche Ausscheidungen. Dies ist eine Folge der so genannten negativen Seigerung von Titan-Molybdänlegierungen. Dieser Effekt beruht auf dem speziellen Verlauf der Liquidus- und Solidustemperatur bei Titan-Molybdänlegierungen, wie er in der Fig. 5 dargestellt ist. Wegen des dargestellten Verlaufs der Schmelztemperaturen der flüssigen Phase (TL) und der festen Phase (TS) erstarren in der Schmelze zuerst die Bereiche mit hohem Molybdänanteil, wobei sich die in der Abbildung zu erkennenden Dendriten bilden. Als Folge davon verarmt die Restschmelze, d. h. ihr Molybdängehalt sinkt. Die interdendritischen Zonen haben im Gussgefüge einen Molybdängehalt von unter 15 %, wobei der Molybdängehalt auf Werte von ca. 10 % absinken kann. Als Folge der Molybdänverarmung fehlt in den interdendritischen Zonen eine ausreichende Menge an β-Stabilisatoren. Das hat zur Folge, dass sich lokal eine erhöhte a/β-Umwandelungstemperatur einstellt, wodurch die in Fig. 2 zu erkennenden Ausscheidungen entstehen.How to look at the picture (1000x magnification) in Fig. 2 Dendrites form and interdendritic zones show significant precipitates. This is a consequence of the so-called negative segregation of titanium-molybdenum alloys. This effect is based on the special Course of the liquidus and solidus temperature in titanium-molybdenum alloys, as in the Fig. 5 is shown. Because of the illustrated course of the melting temperatures of the liquid phase (T L ) and the solid phase (T S ) solidify in the melt first, the areas with high molybdenum content, forming the recognizable in the figure dendrites. As a result, the residual melt is depleted, ie its molybdenum content decreases. The interdendritic zones have a molybdenum content of less than 15% in the cast structure, whereby the molybdenum content can drop to values of about 10%. As a result of molybdenum depletion, there is a lack of sufficient β-stabilizers in the interdendritic zones. As a result, an increased a / β conversion temperature is established locally, causing the in Fig. 2 emerge to discernible excretions.

Es ist zweckmäßig, eine beim Gießen eventuell entstandene Randzone in Gestalt einer harten, spröden Schicht (sog. αcase) durch Beizen zu entfernen. Üblicherweise weist diese Schicht eine Dicke von ca. 0,03 mm auf.It is expedient to remove a possibly formed during casting edge zone in the form of a hard, brittle layer (so-called αcase) by pickling. Usually, this layer has a thickness of about 0.03 mm.

Um dem ungünstigen Effekt der negativen Seigerung mit den Ausscheidungen in den interdendritischen Zonen entgegenzuwirken, werden die nach dem Feingießen von den Gießformen befreiten Gusskörper erfindungsgemäß einer Wärmebehandlung unterzogen. Dazu ist ein heißisostatisches Pressen (HIP) vorgesehen, und zwar bei einer Temperatur knapp unterhalb der β-Transustemperatur. Sie kann im Bereich 710 °C bis 760 °C liegen, vorzugsweise beträgt sie etwa 740 °C. Dabei gehen die unerwünschten Ausscheidungen in den interdendritischen Zonen wieder in Lösung. Eine Vorauslagerung vor oder nach dem Hippen ist nicht erforderlich. Allerdings scheiden sich bei der Abkühlung nach dem Hippen wiederum feine sekundäre Phasen aus, und zwar bevorzugt in den ursprünglichen interdendritischen Zonen (siehe Fig. 3, 1000fache Vergrößerung). Das hat eine unerwünschte Versprödung des Materials zur Folge.In order to counteract the unfavorable effect of the negative segregation with the precipitates in the interdendritic zones, the castings released from the casting molds after the investment casting are subjected to a heat treatment according to the invention. For this purpose, a hot isostatic pressing (HIP) is provided, namely at a temperature just below the β-transus temperature. It may range from 710 ° C to 760 ° C, preferably about 740 ° C. The undesired precipitates in the interdendritic zones go into solution again. An advance storage before or after the hipping is not required. However, during cooling after cooling, fine secondary phases separate again from, preferably in the original interdendritic zones (see Fig. 3 , 1000x magnification). This results in unwanted embrittlement of the material.

Aus diesem Grund weisen die Gegenstände nach dem Hippen eine nur geringe Duktilität auf.For this reason, the articles have a low ductility after being tipped.

Um die störenden Ausscheidungen zu beseitigen, werden die Gusskörper in einem Kammerofen unter Schutzgasatmosphäre (z. B. Argon) geglüht. Dazu wird ein Temperaturbereich von 760 °C bis 800 °C gewählt, bei einer Dauer von mehreren, meist zwei Stunden. Es besteht hierbei ein gegenläufiger Zusammenhang zwischen der Temperatur und der Dauer, bei höherer Temperatur genügt eine kürzere Zeit und umgekehrt. Nach dem Lösungsglühen werden die Gusskörper mit kaltem Wasser abgeschreckt. In Fig. 4 (1000fache Vergrößerung) ist das Gefüge nach dem Lösungsglühen dargestellt. Man erkennt primäre β-Körner und innerhalb der Körner sehr feine interdendritisch angeordnete Ausscheidungen (siehe wolkenartige Ansammlung links oben in der Abbildung). Die mit dem erfindungsgemäßen Verfahren feingegossenen Gegenstände weisen in ihrer Kristallstruktur β-Körner mit einer mittleren Größe von mehr als 0,3 mm auf. Diese Größe ist typisch für die mit dem erfindungsgemäßen Verfahren erreichte Kristallstruktur.In order to eliminate the interfering precipitations, the castings are annealed in a chamber furnace under a protective gas atmosphere (eg argon). For this purpose, a temperature range of 760 ° C to 800 ° C is selected, with a duration of several, usually two hours. There is an opposite relationship between the temperature and the duration, at higher temperature is sufficient for a shorter time and vice versa. After solution heat treatment, the castings are quenched with cold water. In Fig. 4 (1000x magnification), the structure is shown after the solution annealing. One recognizes primary β-grains and within the grains very fine interdendritically arranged precipitates (see cloud-like accumulation in the upper left corner of the figure). The articles finely cast with the method according to the invention have, in their crystal structure, β grains with an average size of more than 0.3 mm. This size is typical of the crystal structure achieved by the process of the invention.

Die nach dem Lösungsglühen erreichten mechanischen Eigenschaften sind in der Tabelle in Fig. 1 wiedergegeben.The mechanical properties achieved after solution annealing are shown in the table in Fig. 1 played.

Man erkennt, dass der Elastizitätsmodul mit steigender Temperatur beim Lösungsglühen zurückgeht, und zwar auf Werte bis zu 60.000 N/mm2. Die Zähigkeitswerte verbessern sich mit abnehmender Festigkeit und Härte. So erreicht man nach zweistündigem Lösungsglühen bei 800 °C einen Elastizitätsmodul von 60.000 N/mm2 bei einer Bruchdehnung von ca. 40 % und einer Bruchfestigkeit Rm von ca. 730 N/mm2.It can be seen that the modulus of elasticity decreases with increasing temperature during solution annealing, to values up to 60,000 N / mm 2 . The toughness values improve with decreasing strength and hardness. So you reach after two hours solution annealing at 800 ° C, a modulus of elasticity of 60,000 N / mm 2 at an elongation at break of about 40% and a breaking strength Rm of about 730 N / mm 2 .

Claims (6)

  1. Process for casting objects from a β-titanium alloy with a molybdenum content of 15%,
    characterized by
    melting the alloy at a temperature of over 1770°C, investment-casting the molten alloy into a casting mold corresponding to the object to be produced, hot isostatic pressing, solution annealing at a temperature between 760°C and 800°C and subsequent quenching.
  2. Process according to Claim 1,
    characterized by
    using a cold-wall crucible vacuum induction installation for melting the β-titanium alloy.
  3. Process according to Claim 1 or 2,
    characterized by
    carrying out the hot isostatic pressing at a temperature which is at most equal to a beta transus temperature of the titanium-molybdenum alloy and is no more than 100°C below the beta transus temperature.
  4. Process according to one of the preceding claims,
    characterized by
    quenching with preferably cold water following the solution annealing.
  5. Process according to one of the preceding claims,
    characterized by
    final hardening of the object.
  6. Process according to Claim 5,
    characterized by
    carrying out the hardening at a temperature of from 600°C to 700°C.
EP06707301A 2005-02-25 2006-02-27 Method for casting titanium alloy Active EP1851350B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL06707301T PL1851350T3 (en) 2005-02-25 2006-02-27 Method for casting titanium alloy
EP06707301A EP1851350B1 (en) 2005-02-25 2006-02-27 Method for casting titanium alloy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP05004173A EP1696043A1 (en) 2005-02-25 2005-02-25 Process for casting a Titanium-alloy
EP06707301A EP1851350B1 (en) 2005-02-25 2006-02-27 Method for casting titanium alloy
PCT/EP2006/001790 WO2006089790A1 (en) 2005-02-25 2006-02-27 Method for casting titanium alloy

Publications (2)

Publication Number Publication Date
EP1851350A1 EP1851350A1 (en) 2007-11-07
EP1851350B1 true EP1851350B1 (en) 2009-08-05

Family

ID=34933944

Family Applications (2)

Application Number Title Priority Date Filing Date
EP05004173A Withdrawn EP1696043A1 (en) 2005-02-25 2005-02-25 Process for casting a Titanium-alloy
EP06707301A Active EP1851350B1 (en) 2005-02-25 2006-02-27 Method for casting titanium alloy

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP05004173A Withdrawn EP1696043A1 (en) 2005-02-25 2005-02-25 Process for casting a Titanium-alloy

Country Status (18)

Country Link
EP (2) EP1696043A1 (en)
JP (1) JP5155668B2 (en)
KR (1) KR101341298B1 (en)
CN (1) CN100594248C (en)
AR (1) AR052391A1 (en)
AT (1) ATE438746T1 (en)
AU (1) AU2006218029B2 (en)
BR (1) BRPI0607832A2 (en)
CA (1) CA2597248C (en)
DE (1) DE502006004443D1 (en)
DK (1) DK1851350T3 (en)
ES (1) ES2328955T3 (en)
MX (1) MX2007010366A (en)
PL (1) PL1851350T3 (en)
RU (1) RU2402626C2 (en)
TW (1) TWI395821B (en)
WO (1) WO2006089790A1 (en)
ZA (1) ZA200707586B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102019401B (en) * 2010-12-30 2012-05-23 哈尔滨工业大学 Cast forming method of small titanium alloy or titanium-aluminum alloy complicated casting
US9827605B2 (en) * 2011-02-23 2017-11-28 National Institute For Materials Science Ti—Mo alloy and method for producing the same
CN102294436B (en) * 2011-09-19 2013-01-02 哈尔滨实钛新材料科技发展有限公司 Method for precisely casting titanium alloy and titanium aluminum alloy with low cost
RU2492275C1 (en) * 2012-01-11 2013-09-10 Открытое Акционерное Общество "Корпорация Всмпо-Ависма" Method of producing plates from two-phase titanium alloys
CN102978554A (en) * 2012-11-13 2013-03-20 安徽春辉仪表线缆集团有限公司 Titanium alloy valve rod preparation method of plug valve
CN104550949A (en) * 2013-10-24 2015-04-29 中国科学院金属研究所 Method for rapidly forming Ti-6Al-4V three-dimensional metal parts by electron beams
CN105817608B (en) * 2016-04-29 2019-01-18 南京宝泰特种材料股份有限公司 A kind of titanium alloy smelting casting method
CN111850346A (en) * 2020-08-06 2020-10-30 西部金属材料股份有限公司 High-strength titanium alloy without solid solution aging treatment and preparation method thereof
KR20220122374A (en) 2021-02-26 2022-09-02 창원대학교 산학협력단 Method for vacuum centrifugal casting of titanium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005106056A2 (en) * 2004-04-29 2005-11-10 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Cold-formable mouldings made of titanium-based alloys and their production processes

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4852614A (en) * 1971-11-04 1973-07-24
JPS5217307A (en) * 1975-07-31 1977-02-09 Kobe Steel Ltd Process for heat treatment of beta-type titanium alloy
JPH0686638B2 (en) * 1985-06-27 1994-11-02 三菱マテリアル株式会社 High-strength Ti alloy material with excellent workability and method for producing the same
US4612066A (en) * 1985-07-25 1986-09-16 Lev Levin Method for refining microstructures of titanium alloy castings
US4857269A (en) * 1988-09-09 1989-08-15 Pfizer Hospital Products Group Inc. High strength, low modulus, ductile, biopcompatible titanium alloy
JP2541341B2 (en) * 1990-05-15 1996-10-09 大同特殊鋼株式会社 Precision casting method and precision casting apparatus for Ti and Ti alloy
JP3041080B2 (en) * 1991-04-19 2000-05-15 電気興業株式会社 Precision casting equipment
US5226982A (en) * 1992-05-15 1993-07-13 The United States Of America As Represented By The Secretary Of The Air Force Method to produce hollow titanium alloy articles
US5947723A (en) * 1993-04-28 1999-09-07 Gac International, Inc. Titanium orthodontic appliances
JPH0841565A (en) * 1994-07-29 1996-02-13 Mitsubishi Materials Corp Titanium alloy casting having high strength and high toughness
JPH10130757A (en) * 1996-10-25 1998-05-19 Daido Steel Co Ltd Inplant made of ti alloy
US20040136859A1 (en) * 2000-04-12 2004-07-15 Cana Lab Corporation Titanium alloys having improved castability
CA2489431A1 (en) * 2002-06-27 2004-01-08 Memry Corporation .beta. titanium compositions and methods of manufacture thereof
US20040168751A1 (en) * 2002-06-27 2004-09-02 Wu Ming H. Beta titanium compositions and methods of manufacture thereof
EP1695676A1 (en) * 2005-02-25 2006-08-30 WALDEMAR LINK GmbH & Co. KG Method of producing a medical implant made of a beta-Titanium-Molybdenum-alloy and according implant

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005106056A2 (en) * 2004-04-29 2005-11-10 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Cold-formable mouldings made of titanium-based alloys and their production processes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHIA-WEI LIN ET AL.: "Comparison among mechanical properties of investment-cast c.p. Ti, Ti-6Al-7Nb and Ti-15Mo-1Bi alloys", MATERIALS TRANSACTIONS, vol. 45, no. 10, 2004, pages 3028 - 3032 *

Also Published As

Publication number Publication date
ZA200707586B (en) 2008-10-29
CN101128609A (en) 2008-02-20
DE502006004443D1 (en) 2009-09-17
KR101341298B1 (en) 2013-12-12
CN100594248C (en) 2010-03-17
AU2006218029A1 (en) 2006-08-31
TW200643182A (en) 2006-12-16
KR20070105379A (en) 2007-10-30
CA2597248C (en) 2016-04-19
TWI395821B (en) 2013-05-11
AR052391A1 (en) 2007-03-14
RU2402626C2 (en) 2010-10-27
EP1696043A1 (en) 2006-08-30
EP1851350A1 (en) 2007-11-07
AU2006218029B2 (en) 2011-07-21
PL1851350T3 (en) 2010-01-29
DK1851350T3 (en) 2009-10-19
BRPI0607832A2 (en) 2009-06-13
WO2006089790A1 (en) 2006-08-31
CA2597248A1 (en) 2006-08-31
MX2007010366A (en) 2007-10-17
JP2008531288A (en) 2008-08-14
RU2007135062A (en) 2009-03-27
ATE438746T1 (en) 2009-08-15
ES2328955T3 (en) 2009-11-19
JP5155668B2 (en) 2013-03-06

Similar Documents

Publication Publication Date Title
EP1851350B1 (en) Method for casting titanium alloy
AT393842B (en) METHOD FOR FORGING NICKEL-BASED SUPER ALLOYS AND AN OBJECT FROM A NICKEL-BASED SUPER ALLOY WITH IMPROVED LUBRICABILITY
DE602004004537T2 (en) GASABLE MAGNESIUM ALLOYS
US10570490B2 (en) Strain-induced age strengthening in dilute magnesium alloy sheets
AT510087B1 (en) MAGNESIUM ALLOY
DE102009050603B3 (en) Process for producing a β-γ-TiAl base alloy
DE102013002483B4 (en) Nickel-cobalt alloy
DE2423597A1 (en) IMPROVED ALUMINUM ALLOY PRODUCTS AND METHODS FOR MANUFACTURING THEREOF
DE112007000673T5 (en) Magnesium alloy with high strength and high toughness and process for its preparation
DE202017007472U1 (en) Systems for the manufacture of high-thickness aluminum alloy articles
DE3621671A1 (en) HIGH STRENGTH TI ALLOY MATERIAL WITH IMPROVED MACHINABILITY AND METHOD FOR THE PRODUCTION THEREOF
EP3481971A1 (en) Ribbons and powders from high strength corrosion resistant aluminum alloys
EP2646587B1 (en) Process for producing an alscca alloy and also an aiscca alloy
US20180087133A1 (en) Formable magnesium based wrought alloys
EP0479757A1 (en) Process and apparatus for the manufacture of titanium-(aluminum) base alloys
DE2606632A1 (en) VERY HIGH CARBON STEEL AND METHOD OF MANUFACTURING THE SAME
DE602005004584T2 (en) Fine grained, recrystallized, silicon-containing niobium or tantalum sheet produced by melting followed by a thermo-mechanical process
DE60114281T2 (en) Cast and forged product using a copper-based alloy
DE2116549C3 (en) Process for the production of copper alloys, which have a high content of iron, cobalt and phosphorus, with high electrical conductivity and at the same time high strength
DE4142941A1 (en) USE OF A CURABLE copper alloy
DE60320055T2 (en) Copper-based alloy and method of making high strength, high thermal conductivity forgings using this alloy
DE3740732C2 (en)
DE202008001976U9 (en) Fluid-tight sintered metal parts
EP0779372B1 (en) Overhead contact wire for high speed electrical railways and process for manufacturing the same
DE3727360A1 (en) METHOD FOR PRODUCING A WORKPIECE FROM A CORROSION AND OXYDATION RESISTANT NI / AL / SI / B ALLOY

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070806

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20071221

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502006004443

Country of ref document: DE

Date of ref document: 20090917

Kind code of ref document: P

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2328955

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20090402737

Country of ref document: GR

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20090805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090805

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091205

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090805

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090805

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090805

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E006705

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091205

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090805

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090805

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100227

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20200220

Year of fee payment: 15

Ref country code: SE

Payment date: 20200224

Year of fee payment: 15

Ref country code: GB

Payment date: 20200225

Year of fee payment: 15

Ref country code: ES

Payment date: 20200320

Year of fee payment: 15

Ref country code: AT

Payment date: 20200218

Year of fee payment: 15

Ref country code: IT

Payment date: 20200221

Year of fee payment: 15

Ref country code: DK

Payment date: 20200220

Year of fee payment: 15

Ref country code: PL

Payment date: 20200219

Year of fee payment: 15

Ref country code: GR

Payment date: 20200218

Year of fee payment: 15

Ref country code: DE

Payment date: 20200220

Year of fee payment: 15

Ref country code: IE

Payment date: 20200219

Year of fee payment: 15

Ref country code: HU

Payment date: 20200212

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20200220

Year of fee payment: 15

Ref country code: CZ

Payment date: 20200214

Year of fee payment: 15

Ref country code: CH

Payment date: 20200224

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200220

Year of fee payment: 15

Ref country code: TR

Payment date: 20200220

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006004443

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20210228

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 438746

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210227

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210227

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210227

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210227

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210906

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20210301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210901

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210227

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210227

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210227