JPH10130757A - Inplant made of ti alloy - Google Patents

Inplant made of ti alloy

Info

Publication number
JPH10130757A
JPH10130757A JP8301225A JP30122596A JPH10130757A JP H10130757 A JPH10130757 A JP H10130757A JP 8301225 A JP8301225 A JP 8301225A JP 30122596 A JP30122596 A JP 30122596A JP H10130757 A JPH10130757 A JP H10130757A
Authority
JP
Japan
Prior art keywords
alloy
implant material
casting
present
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8301225A
Other languages
Japanese (ja)
Inventor
Akihiro Suzuki
昭弘 鈴木
Michio Okabe
道生 岡部
Yoshihisa Yamamoto
佳久 山本
Tokio Kato
時男 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP8301225A priority Critical patent/JPH10130757A/en
Publication of JPH10130757A publication Critical patent/JPH10130757A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/84Fasteners therefor or fasteners being internal fixation devices
    • A61B17/86Pins or screws or threaded wires; nuts therefor
    • A61B17/866Material or manufacture
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00023Titanium or titanium-based alloys, e.g. Ti-Ni alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00035Other metals or alloys
    • A61F2310/00047Aluminium or Al-based alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00035Other metals or alloys
    • A61F2310/00095Niobium or Nb-based alloys

Abstract

PROBLEM TO BE SOLVED: To provide a lightweight inplant excellent in suitable for an organism and having high strength at a low cost. SOLUTION: A stock having an alloy compsn. contg. by weight, 5.3 to 7.5% Al, 6.5 to 8.0% Nb, <=0.30% O, and the balance Ti with inevitable impurities is subjected to casting and molding to from into an inplant material. If required, the alloy compsn. of the stock is composed of the one contg. one or >= two kinds among C, N, Ta and Fe in the ranges of <=0.10% C, <=0.08% N, <=1.0% Ta and <=1.0% Fe and furthermore contg. B in the range of <=0.02%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は医療用の人工骨,
人工関節等生体内に埋め込まれるインプラント材に関
し、詳しくはTi合金製のインプラント材に関する。
TECHNICAL FIELD The present invention relates to an artificial bone for medical use,
The present invention relates to an implant material such as an artificial joint implanted in a living body, and more particularly to an implant material made of a Ti alloy.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】骨折或
いは各種の疾患により骨或いは関節としての機能回復が
望めない場合に生体内への人工骨,人工関節等の埋植が
行われる。
2. Description of the Related Art Artificial bones, artificial joints, and the like are implanted in a living body when a bone or a joint cannot recover its function due to a fracture or various diseases.

【0003】この人工骨(人工関節)等の埋植材(イン
プラント材)用の材料として先ずステンレス鋼が実用化
され、現在でも使用されている。初期においては18%
Cr−8%Niが使用されていたが耐食性が十分でな
く、そこでSUS316系が使用されるようになったが
未だ耐食性が不十分で、長期間生体内に埋植されている
間に腐食が起こったりする例が報告されている。
As a material for an implant (artificial bone) such as an artificial bone (artificial joint), stainless steel has been put to practical use, and is still used today. 18% initially
Although Cr-8% Ni was used, the corrosion resistance was not sufficient. Therefore, SUS316 system was used. However, the corrosion resistance was still insufficient, and corrosion occurred during long-term implantation in a living body. Some examples have been reported.

【0004】そこで耐食性に優れ、また生体との馴染み
の良いTi合金から成るインプラント材が注目され、実
際にTi−6Al−4Vの鍛造品から成るインプラント
材が使用されるようになって来ている。
Accordingly, attention has been paid to an implant material made of a Ti alloy which is excellent in corrosion resistance and is familiar with a living body, and an implant material made of a forged product of Ti-6Al-4V is actually used. .

【0005】ところがこのTi−6Al−4Vの鍛造品
から成るインプラント材の場合、Vがアレルギー性を有
し、人体に悪影響があるとの指摘がなされている。また
鍛造品から成るインプラント材の場合、加工工数が多く
なってコストが高くなってしまうといった問題も内包し
ている。
[0005] However, it has been pointed out that in the case of an implant made of a forged product of Ti-6Al-4V, V has allergic properties and has a bad effect on the human body. Further, in the case of an implant material made of a forged product, there is a problem that the number of processing steps is increased and the cost is increased.

【0006】[0006]

【課題を解決するための手段】本願の発明はこのような
課題を解決するためになされたものである。而して請求
項1のインプラント材は、重量%で、Al:5.5〜
7.5%,Nb:6.5〜8.0%,O:≦0.30
%,残部不可避的不純物及びTiから成る合金組成の素
材を鋳造成形して成ることを特徴とする。
The invention of the present application has been made to solve such a problem. Thus, the implant material according to claim 1 is, by weight%, Al: 5.5 to 5.5%.
7.5%, Nb: 6.5 to 8.0%, O: ≦ 0.30
%, A material having an alloy composition consisting of Ti, Ti and unavoidable impurities, and Ti.

【0007】請求項2のものは、請求項1において、前
記素材の合金組成を、更にC,N,Ta,Feの何れか
1種若しくは2種以上を重量%で、C:≦0.10%,
N:≦0.08%,Ta:≦1.0%,Fe:≦1.0
%の範囲で含有する組成と成したことを特徴とする。
According to a second aspect of the present invention, in the first aspect, the alloy composition of the raw material is further changed by adding at least one of C, N, Ta, and Fe in weight%, and C: ≦ 0.10. %,
N: ≦ 0.08%, Ta: ≦ 1.0%, Fe: ≦ 1.0
% Of the composition.

【0008】請求項3のものは、請求項1,2の何れか
において、前記素材の合金組成を、更に重量%で、B:
≦0.02%の範囲で含有する組成と成したことを特徴
とする。
According to a third aspect of the present invention, in any one of the first and second aspects, the alloy composition of the raw material is further represented by the following formula:
The composition is characterized by being contained in the range of ≦ 0.02%.

【0009】請求項4のものは、請求項1,2,3の何
れかにおいて、前記鋳造成形後に800℃以上且つβト
ランザス以下の温度でHIP処理してあることを特徴と
する。
A fourth aspect of the present invention is characterized in that, in any one of the first, second, and third aspects, after the casting, HIP processing is performed at a temperature of 800 ° C. or more and β transus or less.

【0010】請求項5のものは、請求項1,2,3の何
れかにおいて、前記鋳造成形後に800℃以上且つβト
ランザス以下の温度でHIP処理した後、更に600〜
850℃の温度で焼鈍処理してあることを特徴とする。
A fifth aspect of the present invention is the method according to any one of the first, second, and third aspects, wherein after performing the HIP treatment at a temperature of 800 ° C. or more and β transus or less after the casting, 600-
It is characterized by being annealed at a temperature of 850 ° C.

【0011】[0011]

【作用】本発明のインプラント材は、上記Ti−6Al
−4Vにおいてアレルギー性の問題が指摘されているV
をNbで置換した形態のもので、生体への適合性に優れ
ており、また軽量で高強度を有し、インプラント材とし
て適したものである。また鋳造品であることから加工の
手間が著しく少なくて済み、従って価格も安価に抑える
ことができる。
The implant material of the present invention comprises the above Ti-6Al.
-4V allergic problem is pointed out V
Is substituted with Nb, has excellent compatibility with living organisms, is lightweight and has high strength, and is suitable as an implant material. Further, since it is a cast product, the labor for processing is significantly reduced, and the cost can be reduced.

【0012】本発明では各種の鋳造法を用いることがで
きるが、特に減圧吸上精密鋳造法にて得たものが、きめ
細かい鋳肌が得られ、且つ薄肉複雑形状品(最小肉厚
0.3mm程度)も容易に得られる点で望ましい。
In the present invention, various casting methods can be used. In particular, those obtained by the reduced pressure suction precision casting method can obtain a fine cast surface, and have a thin-walled complicated shape product (minimum wall thickness: 0.3 mm). Is desirable because it can be easily obtained.

【0013】図1はこの減圧吸上精密鋳造の一形態例を
模式的に表している。同図において10は減圧室、12
は減圧吸引口、14は減圧室10内にセットされた多孔
質のセラミックシェル鋳型である。16は溶解炉で、こ
の溶解炉16は水冷銅るつぼ18の外周に高周波誘導加
熱コイル20を巻回状に配置したものである。
FIG. 1 schematically shows an embodiment of the vacuum suction precision casting. In the figure, 10 is a decompression chamber, 12
Is a vacuum suction port, and 14 is a porous ceramic shell mold set in the vacuum chamber 10. A melting furnace 16 has a high-frequency induction heating coil 20 wound around the outer periphery of a water-cooled copper crucible 18.

【0014】この減圧吸上精密鋳造にあっては、不活性
雰囲気の下で合金素材22を高周波誘導加熱コイル20
によって誘導加熱する。このとき合金溶湯は、その表層
部に惹起される電流による磁界と水冷銅るつぼ18壁部
に発生する電流による磁界とが互いに逆位相となること
から、それらの間に生ずる反発力、即ちローレンツ斥力
によってるつぼ18の壁部から離れた状態となる。即ち
合金溶湯がるつぼ18内壁面から離間し、浮遊状態とな
る。
In this vacuum vacuum suction precision casting, the alloy material 22 is heated in a high-frequency induction heating coil 20 under an inert atmosphere.
Induction heating. At this time, in the molten alloy, the magnetic field due to the current induced in the surface layer and the magnetic field due to the current generated in the wall of the water-cooled copper crucible 18 have phases opposite to each other. Thus, the crucible 18 is separated from the wall. That is, the molten alloy separates from the inner wall surface of the crucible 18 and becomes in a floating state.

【0015】そこで減圧吸引口12から減圧吸引を行っ
て減圧室10内部を減圧状態とし、多孔質のセラミック
シェル鋳型14内部に負圧を作用させると、その負圧に
より溶解炉16内部の合金溶湯がセラミックシェル鋳型
14側に吸い上げられ、鋳型14内部に充満される。
Then, vacuum suction is performed from the vacuum suction port 12 to make the interior of the vacuum chamber 10 under reduced pressure, and a negative pressure is applied to the inside of the porous ceramic shell mold 14. Is sucked up to the ceramic shell mold 14 side and filled inside the mold 14.

【0016】その後鋳型14及び合金溶湯を冷却するこ
とでセラミックシェル鋳型14に対応した形状の鋳造品
が得られる。
Thereafter, by cooling the mold 14 and the molten alloy, a casting having a shape corresponding to the ceramic shell mold 14 is obtained.

【0017】この減圧吸上精密鋳造法によれば、合金溶
湯を静かに且つ速やかに鋳型内部に注入することがで
き、鋳型の隅々まで満遍なく合金溶湯を注入・充填する
ことができ、従って鋳造欠陥の少ない且つ薄肉複雑形状
品も容易に鋳造することができ、その鋳肌もきめ細かい
良好な鋳肌となすことができる。従って鍛造品から成る
インプラント材と異なって、その後における機械加工を
大幅に省略することができ、コストを安価とすることが
できる。
[0017] According to the vacuum suction precision casting method, the molten alloy can be poured gently and quickly into the mold, and the molten alloy can be poured and filled all over the mold. A product with a small number of defects and a thin complex shape can be easily cast, and the casting surface can be made a fine and good casting surface. Therefore, unlike an implant material made of a forged product, subsequent machining can be largely omitted, and the cost can be reduced.

【0018】本発明においては、前記素材に対してC,
N,Ta,Feの何れか1種若しくは2種以上をC≦
0.10%,N≦0.08%,Ta≦1.0%,Fe≦
1.0%の範囲で含有させることができ(請求項2)、
これによってインプラント材の強度を効果的に高めるこ
とができる。また更にB≦0.02%の範囲で含有させ
ることができ(請求項3)、これによってインプラント
材における結晶粒を微細化することができる。
In the present invention, C,
Any one or more of N, Ta, and Fe may be C ≦
0.10%, N ≦ 0.08%, Ta ≦ 1.0%, Fe ≦
It can be contained in a range of 1.0% (claim 2),
Thereby, the strength of the implant material can be effectively increased. Further, it can be contained in the range of B ≦ 0.02% (claim 3), whereby the crystal grains in the implant material can be refined.

【0019】次に請求項4のインプラント材は、鋳造後
に800℃以上且つβトランザス以下の温度でHIP処
理をなしたもので、このインプラント材の場合、鋳造時
に発生したキャビティ等の鋳造欠陥が圧着されて、良好
な延性を有する。
Next, the implant material according to claim 4 is subjected to HIP treatment at a temperature of 800 ° C. or more and β transus or less after casting. In the case of this implant material, casting defects such as cavities generated during casting are compressed. And have good ductility.

【0020】ここでβトランザスとはβ相と(β+α)
相との境界、即ちβ相から(β+α)相への変態点を意
味する。この請求項4においてβトランザス以下の温度
でHIP処理してあるのは、βトランザスより高い温
度、即ちβ相領域でHIP処理すると結晶粒が粗大化し
てしまうことによる。
Here, β transus means β phase and (β + α)
A phase boundary, that is, a transformation point from the β phase to the (β + α) phase. The reason why the HIP treatment is performed at a temperature equal to or lower than β transus in the fourth aspect is that the crystal grains become coarser when the HIP treatment is performed at a temperature higher than β transus, that is, in the β phase region.

【0021】請求項5のインプラント材は、上記HIP
処理に加えて更に600〜850℃の温度で焼鈍処理し
たもので、この処理により延性を更に高めることができ
る。
The implant material according to the fifth aspect is characterized in that the HIP
In addition to the treatment, it is further subjected to an annealing treatment at a temperature of 600 to 850C, and the ductility can be further increased by this treatment.

【0022】次に本発明における各化学成分等の限定理
由を以下に詳述する。 Al:5.5〜7.5% Alは5.5%未満では強度が確保できず、また一方
7.5%を超えると金属間化合物Ti3Alの形成によ
って脆化が生じる。そこで本発明ではAlを5.5〜
7.5%に限定した。
Next, the reasons for limiting each chemical component in the present invention will be described in detail below. Al: 5.5 to 7.5% Al is embrittlement caused by formation of an intermetallic compound Ti 3 Al when the strength is less than 5.5% can not be ensured, On the other hand more than 7.5%. Therefore, in the present invention, Al is 5.5 to 5.5.
Limited to 7.5%.

【0023】Nb:6.5〜8.0% Nbは6.5%未満であると強度が確保できず、また逆
に8.0%を超えると比重が大きくなり、またNbは高
価な材料であることからコストアップを招く。そこで本
発明ではNbを6.5〜8.0%の範囲に限定した。
Nb: 6.5-8.0% If Nb is less than 6.5%, the strength cannot be secured, and if Nb exceeds 8.0%, the specific gravity increases, and Nb is an expensive material. This leads to an increase in cost. Therefore, in the present invention, Nb is limited to the range of 6.5 to 8.0%.

【0024】O:≦0.30%(好ましくは0.05〜
0.25%) Oは強度を高める上で有効な元素であるが、0.30%
を超えると靱性が低下するようになる。そこで本発明で
はOの含有量を0.30%以下に限定した。好ましい含
有量は0.05〜0.25%である。
O: ≦ 0.30% (preferably 0.05 to
0.25%) O is an effective element for increasing the strength, but 0.30%
If it exceeds, the toughness will decrease. Therefore, in the present invention, the content of O is limited to 0.30% or less. The preferred content is 0.05 to 0.25%.

【0025】C:≦0.10%(好ましくは≦0.07
%) N:≦0.08%(好ましくは≦0.05%) Ta:≦1.0% Fe:≦1.0% これらC,N,Ta,Feは何れもインプラント材の強
化元素として有効な元素である。このうちC,Nは強度
向上に有効であるが、それぞれ0.10%,0.08%
を超えると靱性を著しく低下させるため、これらC,N
については上限値を0.10%,0.08%とした。そ
れぞれの好ましい範囲はC≦0.07%,N≦0.05
%である。
C: ≤0.10% (preferably ≤0.07%)
%) N: ≤ 0.08% (preferably ≤ 0.05%) Ta: ≤ 1.0% Fe: ≤ 1.0% These C, N, Ta, and Fe are all effective as reinforcing elements for implant materials. Element. Of these, C and N are effective for improving strength, but 0.10% and 0.08%, respectively.
If N exceeds N, the toughness is significantly reduced.
, The upper limits were set to 0.10% and 0.08%. Each preferred range is C ≦ 0.07%, N ≦ 0.05.
%.

【0026】次にTaはNb原料中に含まれる元素であ
り、生体適合性も良好であることが知られている。但し
1.0%を超えると比重が重くなり、また高価になるた
め上限値を1.0%に規定した。
Next, Ta is an element contained in the Nb raw material and is known to have good biocompatibility. However, if the content exceeds 1.0%, the specific gravity becomes heavy and the cost becomes high, so the upper limit is set to 1.0%.

【0027】FeはNb,Taと同様の働きをする元素
であり、必要に応じて添加が可能である。但しFeは偏
析しやすい元素であって、1.0%を超えると偏析が問
題となるため、上限値を1.0%とした。
Fe is an element having the same function as Nb and Ta, and can be added as needed. However, Fe is an element that easily segregates, and if it exceeds 1.0%, segregation becomes a problem. Therefore, the upper limit is set to 1.0%.

【0028】B:≦0.02% Bは結晶粒を微細化する効果があるため、本発明では最
高0.02%までの範囲で添加することができる。但し
0.02%を超えると延性を低下させ脆くなるので上限
値を0.02%とした。
B: ≦ 0.02% Since B has an effect of refining crystal grains, it can be added up to 0.02% in the present invention. However, if it exceeds 0.02%, the ductility decreases and the material becomes brittle, so the upper limit was made 0.02%.

【0029】HIP処理:800℃〜βトランザス温度 HIP処理は上記のように鋳造時に発生するキャビティ
等の鋳造欠陥を圧着し、延性を改善するのに有効であ
る。但し800℃未満の温度であると有効に鋳造欠陥を
圧着できず、逆にβトランザス温度を超えて処理を行う
と結晶粒が粗くなり、延性が低下してしまう。そこで本
発明では800℃〜βトランザスまでの温度範囲でHI
P処理を行う。尚、圧力条件としては1000kg/c
2以上の条件を採用することができる。
HIP treatment: 800 ° C. to β-transus temperature HIP treatment is effective for compressing casting defects such as cavities generated at the time of casting as described above and improving ductility. However, if the temperature is lower than 800 ° C., the casting defect cannot be effectively pressed, and if the temperature exceeds the β transus temperature, the crystal grains become coarse and the ductility decreases. Therefore, in the present invention, the HI
P processing is performed. The pressure condition is 1000 kg / c
It can be employed m 2 or more.

【0030】焼鈍処理:600〜850℃ 600〜850℃での焼鈍処理はインプラント材におけ
る強度と延性のバランスを調整する上で有効である。但
し600℃未満の温度では事実上強度に変化がなく、ま
た850℃超の温度では強度低下が生じるようになるた
め、温度条件としては600〜850℃とする必要があ
る。
Annealing treatment: 600 to 850 ° C. Annealing at 600 to 850 ° C. is effective in adjusting the balance between strength and ductility of the implant material. However, the strength is practically unchanged at a temperature lower than 600 ° C., and the strength is reduced at a temperature higher than 850 ° C., so that the temperature condition needs to be 600 to 850 ° C.

【0031】[0031]

【実施例】次に本発明の実施例を以下に詳述する。表1
に示す各化学組成のTi合金素材を図1に示す方法に従
って減圧吸上精密鋳造し、図2に示す形態のインプラン
ト材25を製造した。ここでインプラント材25は人工
股関節用のものである。
Next, embodiments of the present invention will be described in detail. Table 1
1 was subjected to reduced pressure suction precision casting according to the method shown in FIG. 1 to produce an implant material 25 having the form shown in FIG. Here, the implant material 25 is for an artificial hip joint.

【0032】[0032]

【表1】 [Table 1]

【0033】尚、表中HIPの欄の例えば900℃×3
h×1220kg/cm2とあるのは、それぞれ温度
(900℃),時間(3h),圧力(1220kg/c
2)を表している。
Incidentally, in the column of HIP in the table, for example, 900 ° C. × 3
h × 1220 kg / cm 2 means temperature (900 ° C.), time (3 h) and pressure (1220 kg / c
m 2 ).

【0034】更にNo.3,No.5,No.9につい
てはHIP処理後に焼鈍処理を施した。得られたインプ
ラント材25から引張試験片(JIS 14号試験片)
を切り出して引張試験を行った。得られた結果を比較例
とともに同表に示してある。
Furthermore, 3, No. 5, No. For No. 9, an annealing treatment was performed after the HIP treatment. Tensile test piece (JIS No. 14 test piece) from the obtained implant material 25
Was cut out and subjected to a tensile test. The obtained results are shown in the table together with the comparative examples.

【0035】以上の結果から、鍛造インプラント材に比
べて延性が低くなりがちな鋳造インプラント材にあって
も、本例のインプラント材の場合には強度とともに良好
な延性を示していることが分る。
From the above results, it can be seen that even in the case of the cast implant material, which tends to have lower ductility than the forged implant material, the implant material of this example shows good ductility as well as strength. .

【0036】以上本発明の実施例を詳述したがこれはあ
くまで一例示であり、本発明は上例の人工股関節以外に
膝関節、肘,肩,指等の各関節やその他の人工骨を含む
生体への埋植材一般に適用可能であるなど、本発明はそ
の主旨を逸脱しない範囲において種々変更を加えた態様
で実施可能である。
Although the embodiment of the present invention has been described in detail above, this is merely an example, and the present invention is not limited to the above-described hip prosthesis, but includes various joints such as knee joints, elbows, shoulders, fingers, and other artificial bones. The present invention can be embodied in variously modified forms without departing from the gist thereof, such as being generally applicable to living materials including living organisms.

【0037】[0037]

【発明の効果】上記のように本発明のTi合金の鋳造イ
ンプラント材は、生体との適合性に優れており、また軽
量で高強度を有し、更に鋳造品であることから加工の手
間が著しく少なくて済み、価格も安価であるなど実用上
優れた効果を奏する。
As described above, the implanted Ti alloy implant material of the present invention is excellent in compatibility with living organisms, is lightweight and has high strength, and is a cast product, so that the processing time is reduced. The effect is excellent in practical use, such as being extremely small and inexpensive.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明において採用される鋳造法としての減圧
吸上精密鋳造法の一形態を模式的に表す図である。
FIG. 1 is a view schematically showing one embodiment of a vacuum suction precision casting method as a casting method employed in the present invention.

【図2】本発明の実施例において製造したインプラント
材としての股関節用の人工骨の形状を示す図である。
FIG. 2 is a view showing the shape of an artificial bone for a hip joint as an implant material manufactured in an example of the present invention.

【符号の説明】[Explanation of symbols]

10 減圧室 12 減圧吸引口 14 セラミックシェル鋳型 16 溶解炉 18 水冷銅るつぼ 20 高周波誘導加熱コイル 25 インプラント材 DESCRIPTION OF SYMBOLS 10 Decompression chamber 12 Decompression suction port 14 Ceramic shell mold 16 Melting furnace 18 Water-cooled copper crucible 20 High-frequency induction heating coil 25 Implant material

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 重量%で Al:5.5〜7.5% Nb:6.5〜8.0% O :≦0.30% 残部不可避的不純物及びTiから成る合金組成の素材を
鋳造成形して成るTi合金製インプラント材。
1. An alloy composition consisting of Al: 5.5 to 7.5% Nb: 6.5 to 8.0% O: ≤ 0.30% by weight% An implant material made of Ti alloy.
【請求項2】 請求項1において、前記素材の合金組成
を、更にC,N,Ta,Feの何れか1種若しくは2種
以上を重量%で C :≦0.10% N :≦0.08% Ta:≦1.0% Fe:≦1.0% の範囲で含有する組成と成したことを特徴とするTi合
金製インプラント材。
2. The alloy according to claim 1, wherein the alloy composition of the raw material further comprises C: ≦ 0.10% N: ≦ 0. 08% Ta: ≦ 1.0% Fe: ≦ 1.0% A Ti alloy implant material characterized in that it has a composition in the range of:
【請求項3】 請求項1,2の何れかにおいて、前記素
材の合金組成を、更に重量%で B :≦0.02% の範囲で含有する組成と成したことを特徴とするTi合
金製インプラント材。
3. The Ti alloy according to claim 1, wherein the alloy composition of the material further includes B: ≦ 0.02% by weight. Implant material.
【請求項4】 請求項1,2,3の何れかにおいて、前
記鋳造成形後に800℃以上且つβトランザス以下の温
度でHIP処理してあることを特徴とするTi合金製イ
ンプラント材。
4. The Ti alloy implant material according to claim 1, wherein the HIP treatment is performed at a temperature of 800 ° C. or more and β transus or less after the casting.
【請求項5】 請求項1,2,3の何れかにおいて、前
記鋳造成形後に800℃以上且つβトランザス以下の温
度でHIP処理した後、更に600〜850℃の温度で
焼鈍処理してあることを特徴とするTi合金製インプラ
ント材。
5. The method according to claim 1, wherein after the casting, a HIP treatment is performed at a temperature of 800 ° C. or more and β transus or less, and then an annealing treatment is performed at a temperature of 600 to 850 ° C. An implant material made of Ti alloy, characterized by the following.
JP8301225A 1996-10-25 1996-10-25 Inplant made of ti alloy Pending JPH10130757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8301225A JPH10130757A (en) 1996-10-25 1996-10-25 Inplant made of ti alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8301225A JPH10130757A (en) 1996-10-25 1996-10-25 Inplant made of ti alloy

Publications (1)

Publication Number Publication Date
JPH10130757A true JPH10130757A (en) 1998-05-19

Family

ID=17894295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8301225A Pending JPH10130757A (en) 1996-10-25 1996-10-25 Inplant made of ti alloy

Country Status (1)

Country Link
JP (1) JPH10130757A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008531288A (en) * 2005-02-25 2008-08-14 ヴァルデマール・リンク・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・ウント・コムパニー・コマンディットゲゼルシャフト Titanium alloy casting method
JP2008531843A (en) * 2005-02-25 2008-08-14 ヴァルデマール・リンク・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・ウント・コムパニー・コマンディットゲゼルシャフト Method for producing medical implants made of beta-titanium molybdenum alloy and related implants
JP2008536535A (en) * 2005-02-25 2008-09-11 ヴァルデマール・リンク・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・ウント・コムパニー・コマンディットゲゼルシャフト Manufacturing method of medical implant made of beta titanium alloy and implant corresponding thereto
US9675730B2 (en) 2005-03-08 2017-06-13 Waldemar Link Gmbh & Co. Kg Joint prosthesis made from a titanium alloy
US11370025B2 (en) 2015-11-20 2022-06-28 Titan Spine, Inc. Processes for additively manufacturing orthopedic implants followed by eroding
WO2022157074A1 (en) * 2021-01-19 2022-07-28 Mimeo Medical Gmbh Screw element and method for additive manufacture
US11510786B2 (en) 2014-06-17 2022-11-29 Titan Spine, Inc. Corpectomy implants with roughened bioactive lateral surfaces

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008531288A (en) * 2005-02-25 2008-08-14 ヴァルデマール・リンク・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・ウント・コムパニー・コマンディットゲゼルシャフト Titanium alloy casting method
JP2008531843A (en) * 2005-02-25 2008-08-14 ヴァルデマール・リンク・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・ウント・コムパニー・コマンディットゲゼルシャフト Method for producing medical implants made of beta-titanium molybdenum alloy and related implants
JP2008536535A (en) * 2005-02-25 2008-09-11 ヴァルデマール・リンク・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・ウント・コムパニー・コマンディットゲゼルシャフト Manufacturing method of medical implant made of beta titanium alloy and implant corresponding thereto
KR101224338B1 (en) 2005-02-25 2013-01-18 발데마르 링크 게엠베하 운트 코.카게 Medical implant made of a titanium alloy
KR101363724B1 (en) * 2005-02-25 2014-02-14 발데마르 링크 게엠베하 운트 코.카게 Method for producing a medical implant made of a beta-titanium molybdenum alloy, and a corresponding implant
US9675730B2 (en) 2005-03-08 2017-06-13 Waldemar Link Gmbh & Co. Kg Joint prosthesis made from a titanium alloy
US11510786B2 (en) 2014-06-17 2022-11-29 Titan Spine, Inc. Corpectomy implants with roughened bioactive lateral surfaces
US11370025B2 (en) 2015-11-20 2022-06-28 Titan Spine, Inc. Processes for additively manufacturing orthopedic implants followed by eroding
WO2022157074A1 (en) * 2021-01-19 2022-07-28 Mimeo Medical Gmbh Screw element and method for additive manufacture

Similar Documents

Publication Publication Date Title
US5462575A (en) Co-Cr-Mo powder metallurgy articles and process for their manufacture
JP3330380B2 (en) Hot implant, method of manufacturing the same, and alloy useful for hot implant
KR100971649B1 (en) Beta-based titanium alloy with low elastic modulus
EP2330227B1 (en) METHOD OF FORMING FINE CRYSTAL GRAINS IN NITROGEN-DOPED Co-Cr-Mo ALLOY AND NITROGEN-DOPED Co-Cr-Mo ALLOY
CN110408815B (en) Low-elasticity-modulus and high-strength spinodal decomposition type Zr-Nb-Ti alloy material and preparation method thereof
CN107419154A (en) One kind has hyperelastic TiZrHfNbAl high-entropy alloys and preparation method thereof
JPH02107734A (en) Titanium alloy having a high strength, a low elastic modulus, ductility and organism-compatibility
JP5155668B2 (en) Titanium alloy casting method
JP7263745B2 (en) Zr alloys, Zr alloy products and Zr alloy parts
JP2000345260A (en) Titanium aluminide alloy material and casting thereof
JPH10130757A (en) Inplant made of ti alloy
KR100653160B1 (en) Production method of Ti-base alloy with low elastic modulus and excellent bio-compatibility
CN112494725B (en) Biodegradable composite material and preparation method and application thereof
CN115786747B (en) Preparation method of medical high-performance antibacterial titanium alloy plate
EP3272890B1 (en) Titanium based ceramic reinforced alloy
JPH02129331A (en) Beta-type titanium alloy having excellent cold workability
CN112336923A (en) Degradable, tough and tough composite material and preparation method thereof
EP2927334B1 (en) Titanium based ceramic reinforcement alloy for use in medical implants
WO2024085348A1 (en) Titanium alloy and manufacturing method therefor
TWI663261B (en) Composition of titanium alloys with low young&#39;s modulus
CN109457130B (en) High-toughness biomedical magnesium alloy and preparation method thereof
JP2000087160A (en) Titanium alloy for living body
CN116334446A (en) Rare earth element Y doped Ti-Nb based titanium alloy and preparation and processing methods thereof
CZ2014929A3 (en) Titanium-based alloy and heat and mechanical treatment process thereof
KR20240056276A (en) Titanium alloy and manufacturing method for same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070417