EP1706516A2 - Method for the production of cast components - Google Patents

Method for the production of cast components

Info

Publication number
EP1706516A2
EP1706516A2 EP04802982A EP04802982A EP1706516A2 EP 1706516 A2 EP1706516 A2 EP 1706516A2 EP 04802982 A EP04802982 A EP 04802982A EP 04802982 A EP04802982 A EP 04802982A EP 1706516 A2 EP1706516 A2 EP 1706516A2
Authority
EP
European Patent Office
Prior art keywords
melt
additional
crucible
compound
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04802982A
Other languages
German (de)
French (fr)
Other versions
EP1706516B1 (en
Inventor
Manfred Renkel
Wilfried Smarsly
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
G4T GmbH
Original Assignee
G4T GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by G4T GmbH filed Critical G4T GmbH
Publication of EP1706516A2 publication Critical patent/EP1706516A2/en
Application granted granted Critical
Publication of EP1706516B1 publication Critical patent/EP1706516B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium

Definitions

  • the invention relates to a method for producing a cast component according to the preamble of patent claim 1.
  • the present invention relates to the production of components, in particular the production of gas turbine components, using a casting process.
  • molds so-called molds
  • the molds having an inner contour that corresponds to the outer contour of the component to be produced.
  • a distinction is made between casting processes that work with lost casting molds or permanent casting molds.
  • casting processes that work with lost molds only one component can be produced with one mold.
  • the casting molds can be used several times in casting processes that work with permanent casting molds.
  • the casting processes that work with lost molds include the so-called investment casting.
  • the procedure is such that a material from which the component to be manufactured is to be manufactured is melted in a crucible and the molten material is poured into the mold.
  • the state of the art is used in such a way that all elements or connections involved in the formation of the material are melted simultaneously.
  • volatile elements such as manganese or aluminum
  • compliance with the desired composition of the material for the component to be produced by casting can therefore only be achieved with high material losses.
  • the method according to the invention comprises at least the following steps: a) providing a crucible and at least one semi-finished product made of an intermetallic titanium-aluminum material; b) melting the or each semi-finished product made of the intermetallic titanium-aluminum material in the crucible; c) introducing at least one additional element or an additional connection into the melt, the or each element or the or each connection depending on their melting temperature being introduced into the melt; d) providing a mold; e) pouring the melt into the mold; f) solidification of the melt in the mold; g) removing the cast component from the mold.
  • a crucible and a semi-finished product made of an intermetallic titanium-aluminum material are provided.
  • the semifinished product made of the intermetallic titanium-aluminum material can, for example, be a Ti45AI semifinished product or also a Ti55AI semifinished product, depending on which titanium content is desired in the material of the cast component to be produced.
  • the crucible can be a graphite crucible or a cold wall crucible.
  • the or each semi-finished product is melted in the crucible in a second step of the method according to the invention.
  • the crucible is inductively heated to melt the or each semi-finished product.
  • additional elements or additional connections are introduced into the melt.
  • refractory elements or compounds then volatile elements or compounds and, if necessary, subsequently fines are introduced into the melt.
  • the refractory, additional elements or compounds can be tungsten, tantalum or niobium.
  • titanium can be added as a refractory additional element, which occurs in particular when the titanium content of the material is to be increased.
  • volatile elements such as manganese can be introduced into the melt.
  • fine substances such as titanium boride or titanium diboride can be introduced into the melt.
  • the additional elements or connections are consequently introduced into the melt depending on their melting temperatures, with those elements or connections which have a high melting point being introduced first.
  • the elements or compounds with a low melting point are finally introduced into the melt.
  • the above elements can be introduced into the melt as pure metals or alloys.
  • the elements or compounds are introduced into the melt in defined dosages or amounts.
  • the procedure is such that the respective dosage or amount of the element to be introduced or the connection to be introduced is dimensioned such that, based on a temperature of the melt (for example 1600 ° C.) prevailing before the introduction, the temperature of the melt after the introduction of the element or the connection is always greater than 1550 ° C. and the temperature prevailing before the introduction is again reached after a maximum of 15 minutes. This ensures that during the introduction of the additional elements or connections into the melt the same is only subject to slight temperature fluctuations.
  • the respective dosage or amount of the elements or connections to be introduced are dimensioned such that, with an element density or connection density of greater than 6 ° g / cm 3 , the dosage or amount to be introduced is a maximum weight of 250 g. If, on the other hand, the element density or connection density is below cm ° g / cm 3 , the weight of the dosage or quantity of the element or connection to be introduced is a maximum of 50 g. This also ensures that the melt is only exposed to slight fluctuations during the introduction of the additional elements or connections. As already mentioned, the semi-finished product made of the intermetallic titanium-aluminum material, in which the additional elements or connections are introduced, is heated or heated inductively in the crucible.
  • the additional elements or connections are introduced in-situ during the melting process, ie during inductive heating.
  • the inductive heating system creates a chaotic flow field within the melt, so that partial alloying and homogenization with the volatile and / or refractory elements or connections can be realized.
  • the inductive system induces eddy currents in the melt and ensures a flow within the melt.
  • the or each element or the or each connection is introduced into the melt in a defined, flow-optimized geometry.
  • Flow-optimized geometry is understood here to mean that the flow-optimized geometry enables good transportation of the or each element or the or each connection within the melt.
  • the additional elements or connections are introduced into the melt as flat elements or disk-shaped elements. This ensures that the additional elements or connections to be introduced into the melt are finely distributed within the melt.
  • the method according to the invention enables inexpensive production of cast components for gas turbines.
  • a high chemical homogeneity of the cast components based on intermetallic phases can be achieved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

The invention relates to a method for the production of a cast component, in particular a gas turbine component. The inventive method comprises at least the following steps: a) a crucible and at least one semi-finished product is prepared from an intermetallic titanium-aluminium material; b) the or each semi-finished product made of intermetallic titanium-aluminium material is melted in the crucible; c) at least one additional element or an additional compound is added to the melt, whereby the or each element and/or the or each compound is introduced into the melt according to the melting temperature thereof; d) a casting mould is prepared; e) the casting mould is filled with the melt; f) the melt is solidified in the casting mould; g) the casting component is extracted from the casting mould.

Description

Verfahren zum Herstellen von Gussbauteilen Process for manufacturing cast components
Die Erfindung betrifft ein Verfahren zum Herstellen eines Gussbauteils nach dem Oberbegriff des Patentanspruchs 1.The invention relates to a method for producing a cast component according to the preamble of patent claim 1.
Die hier vorliegende Erfindung betrifft die Herstellung von Bauteilen, insbesondere die Herstellung von Gasturbinenbauteilen, mithilfe eines Gießverfahrens. Beim Gießen werden Formen, sogenannte Gussformen, verwendet, wobei die Gussformen eine Innenkontur aufweisen, die der Außenkontur des herzustellenden Bauteils entspricht. Prinzipiell unterscheidet man bei Gießverfahren solche, die mit verlorenen Gussformen oder Dauergussformen arbeiten. Bei Gießverfahren, die mit verlorenen Gussformen arbeiten, kann mit einer Gussform immer nur ein Bauteil hergestellt werden. Bei Gießverfahren, die mit Dauergussformen arbeiten, können die Gussformen mehrfach verwendet werden. Zu den Gießverfahren, die mit verlorenen Gussformen arbeiten, zählt unter anderem das sogenannte Feingießen. Bei den Gießverfahren, die mit Dauergussformen arbeiten, sei hier exemplarisch auf das Kokillengießen verwiesen.The present invention relates to the production of components, in particular the production of gas turbine components, using a casting process. When casting, molds, so-called molds, are used, the molds having an inner contour that corresponds to the outer contour of the component to be produced. In principle, a distinction is made between casting processes that work with lost casting molds or permanent casting molds. In casting processes that work with lost molds, only one component can be produced with one mold. The casting molds can be used several times in casting processes that work with permanent casting molds. The casting processes that work with lost molds include the so-called investment casting. For the casting processes that work with permanent casting molds, reference is made here to mold casting as an example.
Zur Herstellung eines Bauteils mithilfe des Gießens wird so vorgegangen, dass ein Werkstoff, aus welchem das herzustellende Bauteil gefertigt werden soll, in einem Schmelztiegel geschmolzen wird, und der geschmolzene Werkstoff in die Gussform eingefüllt wird. Beim Schmelzen des Werkstoffs wird dabei nach dem Stand der Technik so vorgegangen, dass alle an der Bildung des Werkstoffs beteiligten Elemente bzw. Verbindungen gleichzeitig geschmolzen werden. Dabei tritt das Problem auf, dass volatile Elemente, wie zum Beispiel Mangan oder Aluminium, verdampfen können, was einen Verlust dieser Elemente darstellt. Die Einhaltung der gewünschten Zusammensetzung des Werkstoffs für das durch Gießen herzustellende Bauteil ist nach dem Stand der Technik demnach nur unter hohen Materialverlusten zu erreichen.To produce a component by means of casting, the procedure is such that a material from which the component to be manufactured is to be manufactured is melted in a crucible and the molten material is poured into the mold. When melting the material, the state of the art is used in such a way that all elements or connections involved in the formation of the material are melted simultaneously. The problem arises that volatile elements, such as manganese or aluminum, can evaporate, which represents a loss of these elements. According to the prior art, compliance with the desired composition of the material for the component to be produced by casting can therefore only be achieved with high material losses.
Hiervon ausgehend liegt der vorliegenden Erfindung das Problem zu Grunde, ein neuartiges Verfahren zum Herstellen eines Gussbauteils zu schaffen. Dieses Problem wird dadurch gelöst, dass das eingangs genannte Verfahren durch die Merkmale des kennzeichnenden Teils des Patentanspruchs 1 weitergebildet ist. Das erfindungsgemäße Verfahren umfasst zumindest die folgenden Schritte: a) Bereitstellen eines Schmelztiegels und mindestens eines Halbzeugs aus einem intermetallischen Titan- Aluminium-Werkstoff; b) Schmelzen des oder jedes Halbzeugs aus dem intermetallischen Titan-Aluminium-Werkstoff in dem Schmelztiegel; c) Einbringen mindestens eines zusätzlichen Elements oder einer zusätzlichen Verbindung in die Schmelze, wobei das oder jedes Element bzw. die oder jede Verbindung abhängig von deren Schmelztemperatur in die Schmelze eingebracht wird; d) Bereitstellen einer Gussform; e) Einfüllen der Schmelze in die Gussform; f) Erstarren der Schmelze in der Gussform; g) Herauslösen des Gussbauteils aus der Gussform.Proceeding from this, the present invention is based on the problem of creating a novel method for producing a cast component. This problem is solved in that the method mentioned at the outset is further developed by the features of the characterizing part of patent claim 1. The method according to the invention comprises at least the following steps: a) providing a crucible and at least one semi-finished product made of an intermetallic titanium-aluminum material; b) melting the or each semi-finished product made of the intermetallic titanium-aluminum material in the crucible; c) introducing at least one additional element or an additional connection into the melt, the or each element or the or each connection depending on their melting temperature being introduced into the melt; d) providing a mold; e) pouring the melt into the mold; f) solidification of the melt in the mold; g) removing the cast component from the mold.
Bevorzugte Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen und der nachfolgenden Beschreibung. Nachfolgend wird das hier vorliegende Verfahren zum Herstellen von Gussbauteilen, insbesondere von Gasturbinengussbauteilen, in größerem Detail beschrieben.Preferred developments of the invention result from the subclaims and the following description. The present method for producing cast components, in particular gas turbine cast components, is described in greater detail below.
In einem ersten Schritt des erfindungsgemäßen Verfahrens wird ein Schmelztiegel sowie ein Halbzeug aus einem intermetallischen Titan-Aluminium-Werkstoff bereitgestellt. Bei dem Halbzeug aus dem intermetallischen Titan-Aluminium-Werkstoff kann es sich zum Beispiel um ein Ti45AI-Halbzeug oder auch um ein Ti55AI-Halbzeug handeln, je nachdem, welcher Titananteil im Werkstoff des herzustellenden Gussbauteils erwünscht ist. Der Schmelztiegel kann ein Graphittiegel oder auch ein Kaltwandtiegel sein.In a first step of the method according to the invention, a crucible and a semi-finished product made of an intermetallic titanium-aluminum material are provided. The semifinished product made of the intermetallic titanium-aluminum material can, for example, be a Ti45AI semifinished product or also a Ti55AI semifinished product, depending on which titanium content is desired in the material of the cast component to be produced. The crucible can be a graphite crucible or a cold wall crucible.
Das oder jedes Halbzeug wird in einem zweiten Schritt des erfindungsgemäßen Verfahrens im Schmelztiegel geschmolzen. Zum Schmelzen des oder jeden Halbzeugs wird der Schmelztiegel induktiv erwärmt.The or each semi-finished product is melted in the crucible in a second step of the method according to the invention. The crucible is inductively heated to melt the or each semi-finished product.
Nach dem Erwärmen der Schmelze aus dem aufgeschmolzenen Titan-Aluminium-Halbzeug werden zusätzliche Elemente bzw. zusätzliche Verbindungen in die Schmelze eingebracht. Dabei werden zuerst refraktäre Elemente oder Verbindung, anschließend volatile Elemente oder Verbindungen und gegebenenfalls anschließend Feinstoffe in die Schmelze einge- bracht. Bei den refraktären, zusätzlichen Elementen oder Verbindungen kann es sich um Wolfram, Tantal oder Niob handeln. Weiterhin kann als refraktäres Zusatzelement Titan beigemischt werden, was insbesondere dann erfolgt, wenn der Titananteil des Werkstoffs noch erhöht werden soll. Nachdem die refraktären Elemente in die Schmelze eingebracht wurden, können volatile Elemente, wie zum Beispiel Mangan, in die Schmelze eingebracht werden. Abschließend können noch Feinstoffe, wie zum Beispiel Titanborid oder Titandibo- rid, in die Schmelze eingebracht werden. Die zusätzlichen Elemente bzw. Verbindungen werden demzufolge abhängig von deren Schmelztemperaturen in die Schmelze eingebracht, wobei zuerst solche Elemente bzw. Verbindungen eingebracht werden, die einen hohen Schmelzpunkt haben. Die Elemente bzw. Verbindungen mit einem niedrigen Schmelzpunkt werden zum Schluss in die Schmelze eingebracht. Die obigen Elemente können als Reinmetalle oder Legierungen in die Schmelze eingebracht werden.After the melt has been heated from the molten titanium-aluminum semi-finished product, additional elements or additional connections are introduced into the melt. First, refractory elements or compounds, then volatile elements or compounds and, if necessary, subsequently fines are introduced into the melt. introduced. The refractory, additional elements or compounds can be tungsten, tantalum or niobium. Furthermore, titanium can be added as a refractory additional element, which occurs in particular when the titanium content of the material is to be increased. After the refractory elements have been introduced into the melt, volatile elements such as manganese can be introduced into the melt. Finally, fine substances such as titanium boride or titanium diboride can be introduced into the melt. The additional elements or connections are consequently introduced into the melt depending on their melting temperatures, with those elements or connections which have a high melting point being introduced first. The elements or compounds with a low melting point are finally introduced into the melt. The above elements can be introduced into the melt as pure metals or alloys.
Im Sinne der hier vorliegenden Erfindung werden die Elemente bzw. Verbindungen in definierten Dosierungen bzw. Mengen in die Schmelze eingebracht. Dabei wird im Sinne der Erfindung so vorgegangen, dass die jeweilige Dosierung bzw. Menge des einzubringenden Elements bzw. der einzubringen Verbindung derart bemessen ist, dass ausgehend von einer vor dem Einbringen herrschenden Temperatur der Schmelze (zum Beispiel 1600°C) die Temperatur der Schmelze nach dem Einbringen des Elements bzw. der Verbindung stets größer als 1550°C ist und weiterhin die vor dem Einbringen herrschende Temperatur nach maximal 15 Minuten wieder erreicht wird. Hierdurch wird gewährleistet, dass während des Einbringens der zusätzlichen Elemente bzw. Verbindungen in die Schmelze dieselbe nur geringen Temperaturschwankungen unterliegt.For the purposes of the present invention, the elements or compounds are introduced into the melt in defined dosages or amounts. In the sense of the invention, the procedure is such that the respective dosage or amount of the element to be introduced or the connection to be introduced is dimensioned such that, based on a temperature of the melt (for example 1600 ° C.) prevailing before the introduction, the temperature of the melt after the introduction of the element or the connection is always greater than 1550 ° C. and the temperature prevailing before the introduction is again reached after a maximum of 15 minutes. This ensures that during the introduction of the additional elements or connections into the melt the same is only subject to slight temperature fluctuations.
Weiterhin sind im Sinne der hier vorliegenden Erfindung die jeweilige Dosierung bzw. Menge der einzubringenden Elemente bzw. Verbindungen derart bemessen, dass bei einer E- lementdichte bzw. Verbindungsdichte von größer als 6°g/cm3 die einzubringende Dosierung bzw. Menge ein maximales Gewicht von 250 g aufweist. Liegt hingegen die Elementdichte bzw. Verbindungsdichte unterhalb von ό°g/cm3, so beträgt das Gewicht der einzubringenden Dosierung bzw. Menge des Elements bzw. der Verbindung maximal 50 g. Auch hierdurch wird erreicht, dass die Schmelze während dem Einbringen der zusätzlichen Elemente bzw. Verbindungen nur geringen Schwankungen ausgesetzt ist. Wie bereits erwähnt, wird das Halbzeug aus dem intermetallischen Titan-Aluminium- Werkstoff, in welchen die zusätzlichen Elemente bzw. Verbindungen eingebracht werden, im Schmelztiegel auf induktivem Wege erwärmt bzw. erhitzt. Das Einbringen der zusätzlichen Elemente bzw. Verbindungen erfolgt in-situ während des Schmelzvorgangs, also wäh- rend der induktiven Erwärmung. Das induktive Erwärmungssystem erzeugt innerhalb der Schmelze ein chaotisches Strömungsfeld, sodass ein partielles Legieren und Homogenisieren mit den volatilen und/oder refraktären Elementen oder Verbindungen realisiert werden kann.Furthermore, in the sense of the present invention, the respective dosage or amount of the elements or connections to be introduced are dimensioned such that, with an element density or connection density of greater than 6 ° g / cm 3 , the dosage or amount to be introduced is a maximum weight of 250 g. If, on the other hand, the element density or connection density is below cm ° g / cm 3 , the weight of the dosage or quantity of the element or connection to be introduced is a maximum of 50 g. This also ensures that the melt is only exposed to slight fluctuations during the introduction of the additional elements or connections. As already mentioned, the semi-finished product made of the intermetallic titanium-aluminum material, in which the additional elements or connections are introduced, is heated or heated inductively in the crucible. The additional elements or connections are introduced in-situ during the melting process, ie during inductive heating. The inductive heating system creates a chaotic flow field within the melt, so that partial alloying and homogenization with the volatile and / or refractory elements or connections can be realized.
Das induktive System induziert in der Schmelze Wirbelströme und sorgt für eine Strömung innerhalb der Schmelze. Im Sinne der hier vorliegenden Erfindung wird das oder jedes E- lement bzw. die oder jede Verbindung in einer definierten, strömungsoptimierten Geometrie in die Schmelze eingebracht. Unter strömungsoptimierter Geometrie ist hierbei zu verstehen, dass die strömungsoptimierte Geometrie einen guten Transport des oder jeden E- lements bzw. der oder jeder Verbindung innerhalb der Schmelze ermöglicht. Hierzu werden die zusätzlichen Elemente bzw. Verbindungen als flächige Elemente bzw. scheibenförmige Elemente in die Schmelze eingebracht. Hierdurch wird gewährleistet, dass sich die in die Schmelze einzubringenden, zusätzlichen Elemente bzw. Verbindungen innerhalb der Schmelze fein verteilen.The inductive system induces eddy currents in the melt and ensures a flow within the melt. In the sense of the present invention, the or each element or the or each connection is introduced into the melt in a defined, flow-optimized geometry. Flow-optimized geometry is understood here to mean that the flow-optimized geometry enables good transportation of the or each element or the or each connection within the melt. For this purpose, the additional elements or connections are introduced into the melt as flat elements or disk-shaped elements. This ensures that the additional elements or connections to be introduced into the melt are finely distributed within the melt.
Das erfindungsgemäße Verfahren ermöglicht eine kostengünstige Herstellung von Gussbauteilen für Gasturbinen. Es kann eine hohe chemische Homogenität der Gussbauteile auf Basis intermetallischer Phasen realisiert werden. The method according to the invention enables inexpensive production of cast components for gas turbines. A high chemical homogeneity of the cast components based on intermetallic phases can be achieved.

Claims

Patentansprüche claims
1. Verfahren zum Herstellen eines Gussbauteils, insbesondere eines Gasturbinenbauteils, gekennzeichnet durch folgende Schritte: a) Bereitstellen eines Schmelztiegels und mindestens eines Halbzeugs aus einem intermetallischen Titan-Aluminium-Werkstoff; b) Schmelzen des oder jeden Halbzeugs aus dem intermetallischen Titan- Aluminium-Werkstoff in dem Schmelztiegel; c) Einbringen mindestens eines zusätzlichen Elements oder einer zusätzlichen Verbindung in die Schmelze, wobei das oder jedes Element bzw. die oder jede Verbindung abhängig von deren Schmelztemperatur in die Schmelze eingebracht wird; d) Bereitstellen einer Gussform; e) Einfüllen der Schmelze in die Gussform; f) Erstarren der Schmelze in der Gussform; g) Herauslösen des Gussbauteils aus der Gussform.1. A method for producing a cast component, in particular a gas turbine component, characterized by the following steps: a) providing a crucible and at least one semi-finished product made of an intermetallic titanium-aluminum material; b) melting the or each semi-finished product made of the intermetallic titanium-aluminum material in the crucible; c) introducing at least one additional element or an additional compound into the melt, the or each element or the or each compound depending on their melting temperature being introduced into the melt; d) providing a mold; e) pouring the melt into the mold; f) solidification of the melt in the mold; g) removing the cast component from the mold.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass mehrere zusätzliche Elemente oder zusätzliche Verbindungen abhängig von deren Schmelztemperatur zeitlich hintereinander in die Schmelze eingebracht werden.2. The method according to claim 1, characterized in that several additional elements or additional connections are introduced in succession into the melt depending on their melting temperature.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass zuerst refraktare zusätzliche Elemente oder Verbindungen, anschließend volatile zusätzliche Elemente oder Verbindungen und gegebenenfalls anschleißend Feinstoffe in die Schmelze eingebracht werden.3. The method according to claim 2, characterized in that first refractory additional elements or compounds, then volatile additional elements or compounds and optionally subsequently fine substances are introduced into the melt.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass als refraktare zusätzliche Elemente Wolfram, Tantal, Niob und gegebenenfalls Titan oder Legierungen dieser Elemente in die Schmelze eingebracht werden.4. The method according to claim 3, characterized in that tungsten, tantalum, niobium and optionally titanium or alloys of these elements are introduced into the melt as refractory additional elements.
5. Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass als volatiles zusätzliches Element Mangan oder eine Legierung dieses Elements in die Schmelze eingebracht wird.5. The method according to claim 3 or 4, characterized in that manganese or an alloy of this element is introduced into the melt as a volatile additional element.
6. Verfahren nach einem oder mehreren der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass als Feinstoff Titanborid in die Schmelze eingebracht wird.6. The method according to one or more of claims 3 to 5, characterized in that titanium boride is introduced into the melt as a fine substance.
7. Verfahren nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das oder jedes Element bzw. die oder jede Verbindung in definierten Dosierungen bzw. Mengen in die Schmelze eingebracht wird, wobei die jeweilige Dosierung bzw. Menge derart bemessen ist, dass ausgehend von einer vor dem Einbringen herrschenden Temperatur der Schmelze die Temperatur nach dem Einbringen stets größer als 1550°C ist und die vor dem Einbringen herrschende Temperatur nach maximal 15 Minuten wieder erreicht wird.7. The method according to one or more of claims 1 to 6, characterized in that the or each element or the or each compound is introduced into the melt in defined dosages or amounts, the respective dosage or amount being dimensioned in such a way, that, based on a temperature of the melt prevailing before the introduction, the temperature after the introduction is always greater than 1550 ° C. and the temperature prevailing before the introduction is reached again after a maximum of 15 minutes.
8. Verfahren nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das oder jedes zusätzliche Element bzw. die oder jede zusätzliche Verbindung in definierten Dosierungen bzw. Mengen in die Schmelze eingebracht wird, wobei die jeweilige Dosierung bzw. Menge bei einer Element- bzw. Verbindungsdichte von größer als 6 g/cm3 ein maximales Gewicht von 250 g aufweist.8. The method according to one or more of claims 1 to 7, characterized in that the or each additional element or the or each additional compound is introduced into the melt in defined dosages or amounts, the respective dosage or amount at one Element or connection density of greater than 6 g / cm 3 has a maximum weight of 250 g.
9. Verfahren nach einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das oder jedes zusätzliche Element bzw. die oder jede zusätzliche Verbindung in definierten Dosierungen bzw. Mengen in die Schmelze eingebracht wird, wobei die jeweilige Dosierung bzw. Menge bei einer Element- bzw. Verbindungsdichte von kleiner als 6 g/cm3 ein maximales Gewicht von 50 g aufweist.9. The method according to one or more of claims 1 to 8, characterized in that the or each additional element or the or each additional compound is introduced into the melt in defined dosages or amounts, the the respective dosage or amount with an element or connection density of less than 6 g / cm 3 has a maximum weight of 50 g.
10. Verfahren nach einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das oder jedes zusätzliche Element bzw. die oder jede zusätzliche Verbindung in einer definierten, strömungsoptimierten Geometrie in die Schmelze eingebracht wird.10. The method according to one or more of claims 1 to 9, characterized in that the or each additional element or the or each additional connection is introduced into the melt in a defined, flow-optimized geometry.
1 1. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die strömungsoptimierte Geometrie einen guten Transport des oder jeden Elements bzw. der oder jeder Verbindung in der Schmelze ermöglicht.1 1. The method according to claim 10, characterized in that the flow-optimized geometry enables good transport of the or each element or the or each connection in the melt.
12. Verfahren nach einem oder mehreren der Ansprüche 1 bis 1 1, dadurch gekennzeichnet, dass das oder jedes Element bzw. die oder jede Verbindung während des Schmelzvorgangs durchgeführt wird.12. The method according to one or more of claims 1 to 1 1, characterized in that the or each element or the or each compound is carried out during the melting process.
13. Verfahren nach einem oder mehreren der Ansprüche 1 bis 1 1, dadurch gekennzeichnet, dass während des Schmelzvorgangs eine induktive Erwärmung bzw. Erhitzung des Schmelztiegels und damit des oder jeden im Schmelztiegel zu schmelzenden Halbzeugs, Elements sowie der oder jeder Verbindung erfolgt. 13. The method according to one or more of claims 1 to 1 1, characterized in that during the melting process, an inductive heating or heating of the crucible and thus of the or each semi-finished product to be melted in the crucible, element and the or each connection takes place.
EP04802982.1A 2004-01-21 2004-12-22 Method for the production of cast components Not-in-force EP1706516B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004002956A DE102004002956A1 (en) 2004-01-21 2004-01-21 Method for producing cast components
PCT/DE2004/002801 WO2005071128A2 (en) 2004-01-21 2004-12-22 Method for the production of cast components

Publications (2)

Publication Number Publication Date
EP1706516A2 true EP1706516A2 (en) 2006-10-04
EP1706516B1 EP1706516B1 (en) 2016-09-28

Family

ID=34744930

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04802982.1A Not-in-force EP1706516B1 (en) 2004-01-21 2004-12-22 Method for the production of cast components

Country Status (5)

Country Link
US (1) US7360579B2 (en)
EP (1) EP1706516B1 (en)
JP (2) JP4970051B2 (en)
DE (1) DE102004002956A1 (en)
WO (1) WO2005071128A2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005015862A1 (en) * 2005-04-07 2006-10-12 Ald Vacuum Technologies Gmbh Method for producing a plurality of components, in particular of titanium aluminide, and apparatus for carrying out this method
US8858697B2 (en) 2011-10-28 2014-10-14 General Electric Company Mold compositions
US9011205B2 (en) 2012-02-15 2015-04-21 General Electric Company Titanium aluminide article with improved surface finish
US8932518B2 (en) 2012-02-29 2015-01-13 General Electric Company Mold and facecoat compositions
US10597756B2 (en) 2012-03-24 2020-03-24 General Electric Company Titanium aluminide intermetallic compositions
US8906292B2 (en) 2012-07-27 2014-12-09 General Electric Company Crucible and facecoat compositions
US8708033B2 (en) 2012-08-29 2014-04-29 General Electric Company Calcium titanate containing mold compositions and methods for casting titanium and titanium aluminide alloys
US8992824B2 (en) 2012-12-04 2015-03-31 General Electric Company Crucible and extrinsic facecoat compositions
US9592548B2 (en) 2013-01-29 2017-03-14 General Electric Company Calcium hexaluminate-containing mold and facecoat compositions and methods for casting titanium and titanium aluminide alloys
US9192983B2 (en) 2013-11-26 2015-11-24 General Electric Company Silicon carbide-containing mold and facecoat compositions and methods for casting titanium and titanium aluminide alloys
US9511417B2 (en) 2013-11-26 2016-12-06 General Electric Company Silicon carbide-containing mold and facecoat compositions and methods for casting titanium and titanium aluminide alloys
US10391547B2 (en) 2014-06-04 2019-08-27 General Electric Company Casting mold of grading with silicon carbide

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5348595A (en) * 1988-05-13 1994-09-20 Nippon Steel Corporation Process for the preaparation of a Ti-Al intermetallic compound
JPH04120225A (en) * 1990-09-07 1992-04-21 Kobe Steel Ltd Manufacture of ti-al series alloy
US5284620A (en) * 1990-12-11 1994-02-08 Howmet Corporation Investment casting a titanium aluminide article having net or near-net shape
JPH04246137A (en) * 1991-01-29 1992-09-02 Kobe Steel Ltd Production of ti-al alloy
US5299619A (en) * 1992-12-30 1994-04-05 Hitchiner Manufacturing Co., Inc. Method and apparatus for making intermetallic castings
JP3626507B2 (en) 1993-07-14 2005-03-09 本田技研工業株式会社 High strength and high ductility TiAl intermetallic compound
US5766329A (en) * 1996-05-13 1998-06-16 Alliedsignal Inc. Inert calcia facecoats for investment casting of titanium and titanium-aluminide alloys
US6926755B2 (en) * 2003-06-12 2005-08-09 General Electric Company Method for preparing aluminum-base metallic alloy articles without melting

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005071128A2 *

Also Published As

Publication number Publication date
WO2005071128A3 (en) 2006-01-26
DE102004002956A1 (en) 2005-08-11
JP2011115860A (en) 2011-06-16
EP1706516B1 (en) 2016-09-28
JP4970051B2 (en) 2012-07-04
WO2005071128A2 (en) 2005-08-04
US20070151696A1 (en) 2007-07-05
JP2007518569A (en) 2007-07-12
US7360579B2 (en) 2008-04-22

Similar Documents

Publication Publication Date Title
DE19681358B4 (en) Powder mixture made of aluminum alloy and sintered aluminum alloys
DE60002474T2 (en) METHOD FOR CASTING SEMI-SOLID METAL ALLOYS
DE102009034566B4 (en) Method for producing a tank for fuel
DE102009050603B3 (en) Process for producing a β-γ-TiAl base alloy
EP1771589B1 (en) Method for producing a cast component
EP1706516B1 (en) Method for the production of cast components
DE69100452T2 (en) Copper alloy casting mold for centrifugal casting of titanium or titanium alloys and centrifugal casting with the copper alloy casting mold.
DE60024666T2 (en) Manufacturing method for a porous metal body
EP2113318A2 (en) Tool for producing cast components, method for producing said tool, and method for producing cast components
EP3269838A1 (en) High temperature resistant tial alloy and method for production thereof, and component from a corresponding tial alloy
EP0554808B1 (en) Method to produce metal parts
DE102010018303A1 (en) Melting process for producing an inclusion-free Ta base alloy
DE69002218T2 (en) Process for the full mold casting of metallic objects under controlled pressure.
DE60016264T2 (en) DIRECT METAL MANUFACTURE OF PARTS
DE102012108079B3 (en) Producing a salt core salt core useful as a hollow space holder for die-casting process comprises introducing a liquid salt mixture into a metal mold, and solidifying a part of the salt mixture on walls of the metal mold
EP1680246B1 (en) Method for producing metal matrix composite materials
DE102009056504B4 (en) A method of making an inclusion-free Nb alloy of powder metallurgy material for an implantable medical device
EP1877209B1 (en) Method for the production of pigs, and pigs
DE102010032107B4 (en) Casting tool and method for die casting
DE19910365C1 (en) Process for the production of compacts as an intermediate for the production of near-net shape components, and compacts of this type
DE69120415T2 (en) MOLDED COMPOSITE MATERIAL
DE723621C (en) Process for the production of sintered alloys
EP2143809B1 (en) Aluminium alloy metal foams, its use and method for its manufacture
DE1508127B2 (en) Process for the production of fine carbide tool and high-speed steels
EP1602739B1 (en) Method for recycling of light metal parts

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

17P Request for examination filed

Effective date: 20060707

RIN1 Information on inventor provided before grant (corrected)

Inventor name: RENKEL, MANFRED

Inventor name: SMARSLY, WILFRIED

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20070521

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502004015324

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C22F0001180000

Ipc: C22C0014000000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 1/03 20060101ALI20160524BHEP

Ipc: C22C 1/02 20060101ALI20160524BHEP

Ipc: C22F 1/18 20060101ALI20160524BHEP

Ipc: C22C 14/00 20060101AFI20160524BHEP

INTG Intention to grant announced

Effective date: 20160624

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: G4T GMBH

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SMARSLY, WILFRIED

Inventor name: RENKEL, MANFRED

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 832823

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004015324

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161229

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170130

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170128

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004015324

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161228

26N No opposition filed

Effective date: 20170629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161222

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161228

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20161231

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 832823

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20041222

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20191217

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20201019

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201222

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004015324

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220701