EP1706269B1 - Drop ejection assembly - Google Patents

Drop ejection assembly Download PDF

Info

Publication number
EP1706269B1
EP1706269B1 EP04815609A EP04815609A EP1706269B1 EP 1706269 B1 EP1706269 B1 EP 1706269B1 EP 04815609 A EP04815609 A EP 04815609A EP 04815609 A EP04815609 A EP 04815609A EP 1706269 B1 EP1706269 B1 EP 1706269B1
Authority
EP
European Patent Office
Prior art keywords
fluid
fluid collection
nozzle
collection channel
drop ejector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP04815609A
Other languages
German (de)
French (fr)
Other versions
EP1706269A2 (en
EP1706269A4 (en
Inventor
John C. Batterton
Andreas Bibl
Paul A. Hoisington
Steven H. Barss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Dimatix Inc
Original Assignee
Dimatix Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/749,622 external-priority patent/US7168788B2/en
Priority claimed from US10/749,829 external-priority patent/US7237875B2/en
Priority claimed from US10/749,816 external-priority patent/US7121646B2/en
Priority claimed from US10/749,833 external-priority patent/US7303259B2/en
Application filed by Dimatix Inc filed Critical Dimatix Inc
Publication of EP1706269A2 publication Critical patent/EP1706269A2/en
Publication of EP1706269A4 publication Critical patent/EP1706269A4/en
Application granted granted Critical
Publication of EP1706269B1 publication Critical patent/EP1706269B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14201Structure of print heads with piezoelectric elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/1433Structure of nozzle plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2002/14475Structure thereof only for on-demand ink jet heads characterised by nozzle shapes or number of orifices per chamber

Definitions

  • This invention relates to ejecting drops.
  • Inkjet printers are one type of apparatus for depositing drops on a substrate.
  • Inkjet printers typically include an ink path from an ink supply to a nozzle path.
  • the nozzle path terminates in a nozzle opening from which ink drops are ejected.
  • Ink drop ejection is typically controlled by pressurizing ink in the ink path with an actuator, which may be, for example, a piezoelectric deflector, a thermal bubble jet generator, or an electrostatically deflected element.
  • An actuator which may be, for example, a piezoelectric deflector, a thermal bubble jet generator, or an electrostatically deflected element.
  • a typical print assembly has an array of ink paths with corresponding nozzle openings and associated actuators. Drop ejection from each nozzle opening can be independently controlled.
  • each actuator is fired to selectively eject a drop at a specific pixel location of an image as the print assembly and a printing substrate are moved relative to one another.
  • the nozzle openings typically have a diameter of 50 microns or less, e.g. around 25 microns, are separated at a pitch of 100-300 nozzles/inch, have a resolution of 100 to 3000 dpi or more, and provide drops with a volume of about 1 to 120 picoliters (pL) or less.
  • Drop ejection frequency is typically 10 kHz or more.
  • Hoisington et al. U.S. Patent No. 5,265,315 describes a print assembly that has a semiconductor body and a piezoelectric actuator.
  • the body is made of silicon, which is etched to define ink chambers. Nozzle openings are defined by a separate nozzle plate, which is attached to the silicon body.
  • the piezoelectric actuator has a layer of piezoelectric material, which changes geometry, or bends, in response to an applied voltage. The bending of the piezoelectric layer pressurizes ink in a pumping chamber located along the ink path.
  • Piezoelectric ink jet print assemblies are also described in Fishbeck et al. U.S. Patent No. 4,825,227 , Hine U.S. Patent No. 4,937,598 , Moynihan et al. U.S. Patent No. 5,659,346 and Hoisington U.S. Patent No. 5,757,391 .
  • EP 0960733 (A2 ) discloses an ink jet head having a discharging outlet face with a plurality of discharging outlets being arranged therein.
  • the peripheral area of the discharging outlets comprises a water repellent zone and a belt-like shaped, recessed hydrophilic zone which is formed in an area of the discharging outlet face which is distant by a given distance from the arrangement of the discharging outlets and which is situated next to the water repellent zone.
  • EP 1293343 (A2 ) discloses a liquid discharge recording head comprising a substrate on which an energy generating element for generating liquid discharging energy is provided, and an orifice plate which is laminated with the substrate and in which a discharge port corresponding to the energy generating element is provided.
  • WO 2004067280 discloses a fluid ejection head including an orifice layer disposed on top of a substrate layer.
  • the fluid ejection head also includes a first and a second group of fluid ejection orifices formed in the fluid ejection head, wherein the first and the second group of fluid ejection orifices are configured to eject two different fluids.
  • US 4413268 discloses jet nozzle printers in which ink droplets are ejected individually from one or more jet nozzles for a matrix print, and comprising an orifice to produce a uniform, axially proceeding ejection of ink droplets in the nozzle direction.
  • the jet nozzles are shaped such that the orifice is provided with a sharp edge, both in its interior region and also closely around this region.
  • US 6132028 discloses an orifice plate for a thermal ink jet print head with a plurality of orifice apertures and with a major surface occupying a first plane.
  • the plate has a surrounding region surrounding each of the orifices, and the surrounding region has an offset portion with an offset surface offset from the first plane.
  • the invention features a drop ejector according to claim 1.
  • the invention features a method of fluid ejection according to claim 13.
  • Embodiments may include one or more of the following advantages.
  • Printhead operation is robust and reliable since waste ink about the face of the nozzle plate is controlled to reduce interference with drop formation and ejection.
  • Drop velocity and trajectory straightness is maintained in high performance printheads in which large arrays of small nozzles must accurately eject ink to precise locations on a substrate.
  • the channels control waste ink and permit desirable jetting characteristics with a variety of jetting fluids, such as inks with varying viscosity or surface tension characteristics, and heads with varying pressure characteristics at the nozzle openings.
  • the channels are robust, do not require moving components, and can be economically implemented by machining, e.g. laser machining, or etching, e.g., in a semiconductor material such as a silicon material.
  • an inkjet apparatus 10 includes a reservoir 11 containing a supply of ink 12 and a passage 13 leading from the reservoir 11 to a pressure chamber 14.
  • the actuator is operable to force ink from the pressure chamber 14 through a passage 16 leading to a nozzle opening 17 in an nozzle plate 18, causing a drop of ink 19 to be ejected from the nozzle 17 toward a substrate 20.
  • the ink jet apparatus 10 and the substrate 20 can be moved relative to one another.
  • the substrate can be a continuous web that is moved between rolls 22 and 23.
  • the inkjet apparatus also controls the operating pressure at the ink meniscus proximate the nozzle openings when the system is not ejecting drops. Variations in meniscus pressure can cause variation in drop volume or velocity which can lead to printing errors and weeping.
  • pressure control is provided by a vacuum source 30 such as a mechanical pump that applies a vacuum to the headspace 9 over the ink 12 in the reservoir 11. The vacuum is communicated through the ink to the nozzle opening 17 to prevent ink from weeping through the nozzle opening by force of gravity.
  • a controller 32 e.g. a computer controller, monitors the vacuum over the ink in the reservoir 11 and adjusts the source 30 to maintain a desired vacuum in the reservoir.
  • a vacuum source is provided by arranging the ink reservoir below the nozzle openings to create a vacuum proximate the nozzle openings.
  • An ink level monitor (not shown) detects the level of ink, which falls as ink is consumed during a printing operation and thus increases the vacuum at the nozzles.
  • a controller monitors the ink level and refills the reservoir from a bulk container when ink falls below a desired level to maintain vacuum within a desired operation range.
  • the ink in which the reservoir is located far enough below the nozzles that the vacuum of the meniscus overcomes the capillary force in the nozzle, the ink can be pressurized to maintain a meniscus proximate the nozzle openings.
  • the vacuum is maintained at about 0.5 to about 10 inches of water.
  • nozzle plate portion 40 includes a plurality of nozzle openings 42 formed in a substantially planar substrate 41. Also formed in substrate 41 proximate each nozzle opening 42 is a cleaning structure in the form of a channel 44. Channels 44 control stray ink on the nozzle plate that could affect nozzle performance. For example, during ink jetting, ink may end up collecting on the nozzle plate. Over time, ink can form puddles which cause printing errors. For example, puddles near the edge of a nozzle opening can effect the trajectory, velocity or volume of the ejected drops. Also, a puddle could become large enough so that it drips onto printing substrate 20 causing an extraneous mark.
  • channels 44 collect, localize and direct waste ink. Referring particularly to Fig. 2A , channels 44 completely surround each nozzle opening 42 that is centered on platform area 43. Channels 44 are connected by radial channels 46 and 48 that emanate from channels 44, forming a network of connected channels that direct and hold stray fluid on the nozzle plate.
  • a nozzle opening 42 with an adjacent channel 44 is illustrated before drop ejection.
  • waste ink 38 deposits on platform area 43 and is drawn into channel 44 by capillary forces.
  • waste ink 38 is contained and distributed about nozzle opening 42 by channel 44.
  • radial channels 46 or 48 ink moves into the space defined by the radial channel and then moves under capillary action radially away from nozzle opening 42 and into the network of connected channels that direct and hold stray fluid (see Fig. 2 ).
  • waste ink moves through the network of channels under the influence of both gravity and capillary action, macroscopically in a single direction.
  • a vacuum source or wicking material can be used to remove ink from the channels.
  • the spacing, size and orientation of the channels are selected to control waste ink.
  • the spacing, S, from an edge of the channel to an edge of the nozzle opening is between about 20 % of a nozzle width, W N , or more, e.g., 30 % or more, and about five times the nozzle width or less, e.g., three times the nozzle width or less.
  • the width, W C , and depth, D, of the channel is selected to prevent excessive pooling of ink on the nozzle surface and to allow fluid to be drawn into the space defined by the channel and retained by capillary forces.
  • the channel width is between about twice the nozzle width or less and about 10 % of the nozzle width or more.
  • the channel width, W C is, e.g., about 100 microns or less, e.g., 5-20 microns
  • the channel depth, D is, e.g., about 2-10 microns or more, e.g., 50 microns.
  • the nozzle width W N is, e.g., about 200 microns or less, e.g., 25-100 microns and the spacing S from the nozzle opening to the edge of the channel is, e.g., 40 microns or greater, e.g., 100 microns.
  • the nozzle pitch is about 25 nozzles/inch or more, e.g., about 300 nozzles/inch
  • the ink drop volume is about 1 to 70 pL
  • the fluid is pressurized by a piezoelectric actuator.
  • the jetting fluid has a viscosity of about 1 to 40 centipoise and a surface tension of about 20-50 dynes/cm.
  • the jetting fluid is ink.
  • the channels can include a wicking material and/or a nonwetting coating (e.g., TEFLON ® fluoropolymer) can be applied to the nozzle plate surface between the nozzle and the channel.
  • the channel network can also be in communication with a vacuum source (not shown). Waste ink can be returned to the main ink supply or to a separate suction system.
  • the orientation of the channel is circular. In other embodiments, the orientation of the channel is sinuous.
  • the channels and/or the nozzle opening in any of the above described embodiments can be formed by machining, electroforming, laser ablation, and chemical or plasma etching.
  • the channels can also be formed by molding, e.g., injection molded plastic channels.
  • the channel, nozzle opening, and pressure chamber are formed in a common body.
  • the body can be a metal, carbon or an etchable material such as silicon material, e.g., silicon or silicon dioxide.
  • Forming printhead components using etching techniques is further described in U.S.Serial No. 10/189,947, filed July 3, 2002 , and U.S. Serial No. 60/510,459, filed October 10, 2003 .
  • the channels can be used in combination with other waste fluid control features such as apertures described in U.S. Serial Number 10/749,829, filed December 30, 2003 , wells as described in U.S. Serial Number 10/749,622, filed December 30, 2003 and/or projections as described in U.S. Serial Number 10/749,816, filed December 30, 2003 .
  • a series of projections can be included on the nozzle face proximate the channels.
  • the drop ejection system can be utilized to eject fluids other than ink.
  • the deposited droplets may be a UV or other radiation curable material or other material, for example, chemical or biological fluids, capable of being delivered as drops.
  • the apparatus described could be part of a precision dispensing system.
  • the actuator can be an electromechanical or thermal actuator.
  • the cleaning structures can be combined with a manual or automatic washing and wiping system in which a cleaning fluid is applied to the nozzle plate and wiped clean. The cleaning structures can collect cleaning fluid and debris rather than jetted waste ink.

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • Ink Jet (AREA)
  • Nozzles (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Coating Apparatus (AREA)

Abstract

A fluid drop delivery device is disclosed. The device includes a plurality of nozzle openings from which fluid is ejected and a waste control aperture.

Description

    TECHNICAL FIELD
  • This invention relates to ejecting drops.
  • BACKGROUND
  • Inkjet printers are one type of apparatus for depositing drops on a substrate. Inkjet printers typically include an ink path from an ink supply to a nozzle path. The nozzle path terminates in a nozzle opening from which ink drops are ejected. Ink drop ejection is typically controlled by pressurizing ink in the ink path with an actuator, which may be, for example, a piezoelectric deflector, a thermal bubble jet generator, or an electrostatically deflected element. A typical print assembly has an array of ink paths with corresponding nozzle openings and associated actuators. Drop ejection from each nozzle opening can be independently controlled. In a drop-on-demand print assembly, each actuator is fired to selectively eject a drop at a specific pixel location of an image as the print assembly and a printing substrate are moved relative to one another. In high performance print assemblies, the nozzle openings typically have a diameter of 50 microns or less, e.g. around 25 microns, are separated at a pitch of 100-300 nozzles/inch, have a resolution of 100 to 3000 dpi or more, and provide drops with a volume of about 1 to 120 picoliters (pL) or less. Drop ejection frequency is typically 10 kHz or more.
  • Hoisington et al. U.S. Patent No. 5,265,315 , describes a print assembly that has a semiconductor body and a piezoelectric actuator. The body is made of silicon, which is etched to define ink chambers. Nozzle openings are defined by a separate nozzle plate, which is attached to the silicon body. The piezoelectric actuator has a layer of piezoelectric material, which changes geometry, or bends, in response to an applied voltage. The bending of the piezoelectric layer pressurizes ink in a pumping chamber located along the ink path. Piezoelectric ink jet print assemblies are also described in Fishbeck et al. U.S. Patent No. 4,825,227 , Hine U.S. Patent No. 4,937,598 , Moynihan et al. U.S. Patent No. 5,659,346 and Hoisington U.S. Patent No. 5,757,391 .
  • EP 0960733 (A2 ) discloses an ink jet head having a discharging outlet face with a plurality of discharging outlets being arranged therein. The peripheral area of the discharging outlets comprises a water repellent zone and a belt-like shaped, recessed hydrophilic zone which is formed in an area of the discharging outlet face which is distant by a given distance from the arrangement of the discharging outlets and which is situated next to the water repellent zone.
  • EP 1293343 (A2 ) discloses a liquid discharge recording head comprising a substrate on which an energy generating element for generating liquid discharging energy is provided, and an orifice plate which is laminated with the substrate and in which a discharge port corresponding to the energy generating element is provided.
  • WO 2004067280 (A2 ) discloses a fluid ejection head including an orifice layer disposed on top of a substrate layer. The fluid ejection head also includes a first and a second group of fluid ejection orifices formed in the fluid ejection head, wherein the first and the second group of fluid ejection orifices are configured to eject two different fluids.
  • US 4413268 (A ) discloses jet nozzle printers in which ink droplets are ejected individually from one or more jet nozzles for a matrix print, and comprising an orifice to produce a uniform, axially proceeding ejection of ink droplets in the nozzle direction. The jet nozzles are shaped such that the orifice is provided with a sharp edge, both in its interior region and also closely around this region.
  • US 6132028 (A ) discloses an orifice plate for a thermal ink jet print head with a plurality of orifice apertures and with a major surface occupying a first plane. The plate has a surrounding region surrounding each of the orifices, and the surrounding region has an offset portion with an offset surface offset from the first plane.
  • SUMMARY
  • In an aspect, the invention features a drop ejector according to claim 1.
  • In another aspect, the invention features a method of fluid ejection according to claim 13.
  • Other aspects or embodiments are defined in claims 2-12 and 14-21.
  • Embodiments may include one or more of the following advantages. Printhead operation is robust and reliable since waste ink about the face of the nozzle plate is controlled to reduce interference with drop formation and ejection. Drop velocity and trajectory straightness is maintained in high performance printheads in which large arrays of small nozzles must accurately eject ink to precise locations on a substrate. The channels control waste ink and permit desirable jetting characteristics with a variety of jetting fluids, such as inks with varying viscosity or surface tension characteristics, and heads with varying pressure characteristics at the nozzle openings. The channels are robust, do not require moving components, and can be economically implemented by machining, e.g. laser machining, or etching, e.g., in a semiconductor material such as a silicon material.
  • Still further aspects, features, and advantages follow. For example, particular aspects include channel dimensions, characteristics and operating conditions described below.
  • DESCRIPTION OF DRAWINGS
    • Fig. 1 is a schematic of a drop ejection assembly.
    • Fig. 2 is a perspective view of a nozzle plate, while Fig. 2A is an expanded view of region A in Fig. 2.
    • Figs. 3-3C are cross-sectional views of a nozzle, taken along 3-3 of Fig.2A, illustrating drop ejection.
    DETAILED DESCRIPTION
  • Referring to Fig. 1, an inkjet apparatus 10 includes a reservoir 11 containing a supply of ink 12 and a passage 13 leading from the reservoir 11 to a pressure chamber 14. An actuator 15, e.g., a piezoelectric transducer, covers the pressure chamber 14. The actuator is operable to force ink from the pressure chamber 14 through a passage 16 leading to a nozzle opening 17 in an nozzle plate 18, causing a drop of ink 19 to be ejected from the nozzle 17 toward a substrate 20. During operation, the ink jet apparatus 10 and the substrate 20 can be moved relative to one another. For example, the substrate can be a continuous web that is moved between rolls 22 and 23. By selective ejection of drops from an array of nozzles 17 in nozzle plate 18, a desired image is produced on substrate 20.
  • The inkjet apparatus also controls the operating pressure at the ink meniscus proximate the nozzle openings when the system is not ejecting drops. Variations in meniscus pressure can cause variation in drop volume or velocity which can lead to printing errors and weeping. In the embodiment illustrated, pressure control is provided by a vacuum source 30 such as a mechanical pump that applies a vacuum to the headspace 9 over the ink 12 in the reservoir 11. The vacuum is communicated through the ink to the nozzle opening 17 to prevent ink from weeping through the nozzle opening by force of gravity. A controller 32, e.g. a computer controller, monitors the vacuum over the ink in the reservoir 11 and adjusts the source 30 to maintain a desired vacuum in the reservoir. In other embodiments, a vacuum source is provided by arranging the ink reservoir below the nozzle openings to create a vacuum proximate the nozzle openings. An ink level monitor (not shown) detects the level of ink, which falls as ink is consumed during a printing operation and thus increases the vacuum at the nozzles. A controller monitors the ink level and refills the reservoir from a bulk container when ink falls below a desired level to maintain vacuum within a desired operation range. In other embodiments, in which the reservoir is located far enough below the nozzles that the vacuum of the meniscus overcomes the capillary force in the nozzle, the ink can be pressurized to maintain a meniscus proximate the nozzle openings. In embodiments, the vacuum is maintained at about 0.5 to about 10 inches of water.
  • Referring to Figs. 2-2A, nozzle plate portion 40 includes a plurality of nozzle openings 42 formed in a substantially planar substrate 41. Also formed in substrate 41 proximate each nozzle opening 42 is a cleaning structure in the form of a channel 44. Channels 44 control stray ink on the nozzle plate that could affect nozzle performance. For example, during ink jetting, ink may end up collecting on the nozzle plate. Over time, ink can form puddles which cause printing errors. For example, puddles near the edge of a nozzle opening can effect the trajectory, velocity or volume of the ejected drops. Also, a puddle could become large enough so that it drips onto printing substrate 20 causing an extraneous mark. The puddle could also protrude far enough off the nozzle plate 40 surface that the printing substrate 20 comes into contact with it, causing a smear on the printing substrate 20. The channels 44 collect, localize and direct waste ink. Referring particularly to Fig. 2A, channels 44 completely surround each nozzle opening 42 that is centered on platform area 43. Channels 44 are connected by radial channels 46 and 48 that emanate from channels 44, forming a network of connected channels that direct and hold stray fluid on the nozzle plate.
  • Referring particularly to Fig. 3, a nozzle opening 42 with an adjacent channel 44 is illustrated before drop ejection. Referring to Figs. 3A and 3B, waste ink 38 deposits on platform area 43 and is drawn into channel 44 by capillary forces. Referring to Fig. 3C, waste ink 38 is contained and distributed about nozzle opening 42 by channel 44. Upon encountering radial channels 46 or 48, ink moves into the space defined by the radial channel and then moves under capillary action radially away from nozzle opening 42 and into the network of connected channels that direct and hold stray fluid (see Fig. 2). When the nozzle plate is oriented vertically, waste ink moves through the network of channels under the influence of both gravity and capillary action, macroscopically in a single direction. When the nozzle plate is oriented horizontally, a vacuum source or wicking material can be used to remove ink from the channels.
  • The spacing, size and orientation of the channels are selected to control waste ink. In embodiments, the spacing, S, from an edge of the channel to an edge of the nozzle opening is between about 20 % of a nozzle width, WN, or more, e.g., 30 % or more, and about five times the nozzle width or less, e.g., three times the nozzle width or less. The width, WC, and depth, D, of the channel is selected to prevent excessive pooling of ink on the nozzle surface and to allow fluid to be drawn into the space defined by the channel and retained by capillary forces. In embodiments, the channel width is between about twice the nozzle width or less and about 10 % of the nozzle width or more. In particular embodiments, the channel width, WC, is, e.g., about 100 microns or less, e.g., 5-20 microns, and the channel depth, D, is, e.g., about 2-10 microns or more, e.g., 50 microns. In embodiments, the nozzle width WN is, e.g., about 200 microns or less, e.g., 25-100 microns and the spacing S from the nozzle opening to the edge of the channel is, e.g., 40 microns or greater, e.g., 100 microns. In embodiments, the nozzle pitch is about 25 nozzles/inch or more, e.g., about 300 nozzles/inch, the ink drop volume is about 1 to 70 pL and the fluid is pressurized by a piezoelectric actuator. In embodiments, the jetting fluid has a viscosity of about 1 to 40 centipoise and a surface tension of about 20-50 dynes/cm. In embodiments, the jetting fluid is ink. In embodiments, the channels can include a wicking material and/or a nonwetting coating (e.g., TEFLON® fluoropolymer) can be applied to the nozzle plate surface between the nozzle and the channel. The channel network can also be in communication with a vacuum source (not shown). Waste ink can be returned to the main ink supply or to a separate suction system. In embodiments, the orientation of the channel is circular. In other embodiments, the orientation of the channel is sinuous.
  • The channels and/or the nozzle opening in any of the above described embodiments can be formed by machining, electroforming, laser ablation, and chemical or plasma etching. The channels can also be formed by molding, e.g., injection molded plastic channels. In embodiments, the channel, nozzle opening, and pressure chamber are formed in a common body. The body can be a metal, carbon or an etchable material such as silicon material, e.g., silicon or silicon dioxide. Forming printhead components using etching techniques is further described in U.S.Serial No. 10/189,947, filed July 3, 2002 , and U.S. Serial No. 60/510,459, filed October 10, 2003 .
  • The channels can be used in combination with other waste fluid control features such as apertures described in U.S. Serial Number 10/749,829, filed December 30, 2003 , wells as described in U.S. Serial Number 10/749,622, filed December 30, 2003 and/or projections as described in U.S. Serial Number 10/749,816, filed December 30, 2003 . For example, a series of projections can be included on the nozzle face proximate the channels.
  • In embodiments, the drop ejection system can be utilized to eject fluids other than ink. For example, the deposited droplets may be a UV or other radiation curable material or other material, for example, chemical or biological fluids, capable of being delivered as drops. For example, the apparatus described could be part of a precision dispensing system. The actuator can be an electromechanical or thermal actuator. The cleaning structures can be combined with a manual or automatic washing and wiping system in which a cleaning fluid is applied to the nozzle plate and wiped clean. The cleaning structures can collect cleaning fluid and debris rather than jetted waste ink.
  • Still other embodiments are within the scope of the following claims.

Claims (21)

  1. A drop ejector, comprising:
    a plurality of nozzle openings (17, 42) formed in a substantially planar substrate (41) and lying in a plane defined by a surface of the substrate (41), and flow paths (14, 16) in which fluid is pressurized to eject drops (19) from each nozzle opening (17,42),
    characterized by a plurality of fluid collection channels (44) formed in the substrate so that each nozzle opening (17,42) is surrounded by a fluid collection channel (44) for drawing fluid (38) into a space defined by the fluid collection channel (44), and a plurality of radial channels (46, 48) connected to each fluid collection channel (44).
  2. The drop ejector of claim 1 wherein the fluid collection channel (44) is in the shape of a circle.
  3. The drop ejector of claim 1 wherein the fluid collection channel (44) has a width (W c) that is about twice the nozzle width (W N) or less.
  4. The drop ejector of claim 1 wherein the fluid collection channel (44) has a width (W c) of about 100 microns or less.
  5. The drop ejector of claim 1 wherein a depth (D) of the fluid collection channel (44) is from about 2 microns to about 50 microns.
  6. The drop ejector of claim 1 wherein the substrate (41) is a silicon material.
  7. The drop ejector of claim 1 wherein the nozzle width (WN) is about 200 microns or less.
  8. The drop ejector of claim 1 including a piezoelectric actuator (15).
  9. The drop ejector of claim 1 wherein the fluid collection channel (44) is spaced from the nozzle opening (17, 42) by a distance of about 20% of a nozzle width (W N) or more.
  10. The drop ejector of claim 1 further comprising a vacuum source in communication with the plurality of fluid collection channels (44) and the plurality of radial channels (46, 48).
  11. The drop ejector of claim 1 further comprising a wicking material in communication with the plurality of fluid collection channels (44) and the plurality of radial channels (46, 48).
  12. The drop ejector of claim 1 wherein fluid is drawn into the space defined by the fluid collection channel (44) during jetting.
  13. A method of fluid ejection, comprising:
    providing a drop ejector according to claim 1
    ejecting a drop (19) through a nozzle opening (17, 42) drawing stray fluid (38) into a space defined by the fluid collection channel (44) surrounding the nozzle opening (17,42) and into a radial channel (46, 48) connected to the fluid collection channel (44).
  14. The method of claim 13 wherein the fluid has a surface tension of about 20-50 dynes/cm.
  15. The method of claim 13 wherein the stray fluid (38) has a viscosity of about 1 to 40 centipoise.
  16. The method of claim 13 wherein the fluid collection channel (44) is spaced from the nozzle opening (17, 42) by a distance of about 20% of a nozzle width (WN) or more.
  17. The method of claim 13 further comprising providing a vacuum source in communication with the plurality of fluid collection channels (44) and the plurality of radial channels (46, 48).
  18. The method of claim 13 further comprising providing a wicking material in communication with the plurality of fluid collection channels (44) and the plurality of radial channels (46, 48).
  19. The method of claim 13 wherein the stray fluid (38) is drawn into the fluid collection channel (44) by capillary forces.
  20. The method of claim 13 wherein the stray fluid is drawn into the fluid collection channel (44) and radial channel (46, 48) by gravity.
  21. The method of claim 13 wherein stray fluid (38) is drawn into the space defined by the fluid collection channel (44) during jetting.
EP04815609A 2003-12-30 2004-12-29 Drop ejection assembly Active EP1706269B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US10/749,622 US7168788B2 (en) 2003-12-30 2003-12-30 Drop ejection assembly
US10/749,829 US7237875B2 (en) 2003-12-30 2003-12-30 Drop ejection assembly
US10/749,816 US7121646B2 (en) 2003-12-30 2003-12-30 Drop ejection assembly
US10/749,833 US7303259B2 (en) 2003-12-30 2003-12-30 Drop ejection assembly
PCT/US2004/043577 WO2005065294A2 (en) 2003-12-30 2004-12-29 Drop ejection assembly

Publications (3)

Publication Number Publication Date
EP1706269A2 EP1706269A2 (en) 2006-10-04
EP1706269A4 EP1706269A4 (en) 2009-08-19
EP1706269B1 true EP1706269B1 (en) 2012-06-13

Family

ID=34753903

Family Applications (4)

Application Number Title Priority Date Filing Date
EP04815609A Active EP1706269B1 (en) 2003-12-30 2004-12-29 Drop ejection assembly
EP04817071A Active EP1706270B1 (en) 2003-12-30 2004-12-29 Drop ejection assembly
EP11183973A Withdrawn EP2415606A3 (en) 2003-12-30 2004-12-29 Drop ejection assembly
EP04815778A Active EP1706266B1 (en) 2003-12-30 2004-12-29 Drop ejection assembly

Family Applications After (3)

Application Number Title Priority Date Filing Date
EP04817071A Active EP1706270B1 (en) 2003-12-30 2004-12-29 Drop ejection assembly
EP11183973A Withdrawn EP2415606A3 (en) 2003-12-30 2004-12-29 Drop ejection assembly
EP04815778A Active EP1706266B1 (en) 2003-12-30 2004-12-29 Drop ejection assembly

Country Status (5)

Country Link
EP (4) EP1706269B1 (en)
JP (4) JP2007516879A (en)
KR (3) KR101220272B1 (en)
AT (2) ATE538933T1 (en)
WO (3) WO2005065294A2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4665660B2 (en) * 2005-08-19 2011-04-06 セイコーエプソン株式会社 NOZZLE PLATE, MANUFACTURING METHOD THEREOF, AND LIQUID DISCHARGE HEAD
US8136934B2 (en) 2009-02-18 2012-03-20 Xerox Corporation Waste phase change ink recycling
JP5764312B2 (en) * 2010-11-05 2015-08-19 富士フイルム株式会社 Ink jet recording apparatus and nozzle plate cleaning method
US8517518B2 (en) 2010-11-09 2013-08-27 Canon Kabushiki Kaisha Recording apparatus and liquid ejection head
JP5863337B2 (en) * 2011-08-25 2016-02-16 キヤノン株式会社 Inkjet recording head
FR2968597A1 (en) * 2010-12-13 2012-06-15 Centre Nat Rech Scient INKJET DEVICE HAVING FLUID EXTRACTION MEANS AND INK JET METHOD THEREOF
JP5934161B2 (en) * 2013-09-09 2016-06-15 武蔵エンジニアリング株式会社 Nozzle and liquid material discharge apparatus including the nozzle
JP6193442B2 (en) * 2016-05-06 2017-09-06 武蔵エンジニアリング株式会社 Liquid material discharge device
JP7008270B2 (en) 2017-04-24 2022-01-25 ブラザー工業株式会社 Liquid discharger and inkjet printer
WO2023223196A1 (en) * 2022-05-16 2023-11-23 Merxin Ltd Nozzle arrangement

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1109303B (en) * 1978-10-30 1985-12-16 Ipm Ind Politecnica Meridional UNI-AXIS ANISOTROP MAGNETIZATION CREDIT CARD
GB2061831B (en) * 1979-11-07 1984-02-29 Matsushita Electric Ind Co Ltd Ink jet writing head with spacer in capillary chamber
JPS5763266A (en) * 1980-10-02 1982-04-16 Seiko Epson Corp Ink jet head
DE3048259A1 (en) * 1980-12-20 1982-07-29 Philips Patentverwaltung Gmbh, 2000 Hamburg "NOZZLE FOR INK JET PRINTER"
US4459601A (en) * 1981-01-30 1984-07-10 Exxon Research And Engineering Co. Ink jet method and apparatus
JPS57188372A (en) * 1981-01-30 1982-11-19 Exxon Research Engineering Co Ink jet device
JPS5995157A (en) * 1982-11-23 1984-06-01 Yokogawa Hewlett Packard Ltd Head for bubble driven ink jet printer
US4528996A (en) * 1983-12-22 1985-07-16 The Mead Corporation Orifice plate cleaning system
JPS61115644U (en) * 1984-12-28 1986-07-22
US4613875A (en) * 1985-04-08 1986-09-23 Tektronix, Inc. Air assisted ink jet head with projecting internal ink drop-forming orifice outlet
JPS6219247A (en) * 1985-07-16 1987-01-28 Toray Ind Inc Method for eliminating colloidal substance
JPS62150145U (en) * 1986-03-18 1987-09-22
US4825227A (en) 1988-02-29 1989-04-25 Spectra, Inc. Shear mode transducer for ink jet systems
US4992802A (en) * 1988-12-22 1991-02-12 Hewlett-Packard Company Method and apparatus for extending the environmental operating range of an ink jet print cartridge
US4937598A (en) 1989-03-06 1990-06-26 Spectra, Inc. Ink supply system for an ink jet head
US5265315A (en) 1990-11-20 1993-11-30 Spectra, Inc. Method of making a thin-film transducer ink jet head
JPH05155028A (en) * 1991-12-04 1993-06-22 Ricoh Co Ltd Ink jet head
DE69333056T2 (en) 1992-10-19 2004-01-29 Canon Kk Ink jet printhead and ink jet printing device with this ink jet printhead
US5659346A (en) 1994-03-21 1997-08-19 Spectra, Inc. Simplified ink jet head
US5604521A (en) * 1994-06-30 1997-02-18 Compaq Computer Corporation Self-aligning orifice plate for ink jet printheads
WO1996002392A1 (en) 1994-07-20 1996-02-01 Spectra, Inc. High frequency drop-on-demand ink jet system
JPH08230185A (en) * 1995-03-01 1996-09-10 Brother Ind Ltd Ink jet device
JP3315589B2 (en) * 1995-06-21 2002-08-19 キヤノン株式会社 Ink tank and recording apparatus provided with the same
JP3386099B2 (en) * 1995-07-03 2003-03-10 セイコーエプソン株式会社 Nozzle plate for ink jet recording head, method of manufacturing the same, and ink jet recording head
WO1998055317A1 (en) 1997-06-04 1998-12-10 Seiko Epson Corporation Ink jet recording head and ink jet recorder
US6264307B1 (en) * 1997-07-15 2001-07-24 Silverbrook Research Pty Ltd Buckle grill oscillating pressure ink jet printing mechanism
US6235212B1 (en) * 1997-07-15 2001-05-22 Silverbrook Research Pty Ltd Method of manufacture of an electrostatic ink jet printer
US5853861A (en) * 1997-09-30 1998-12-29 E. I. Du Pont De Nemours And Company Ink jet printing of textiles
US6132028A (en) * 1998-05-14 2000-10-17 Hewlett-Packard Company Contoured orifice plate of thermal ink jet print head
GB2339170A (en) * 1998-07-25 2000-01-19 Markem Tech Ltd Printhead with integral ink gutter
US6267464B1 (en) * 1998-12-28 2001-07-31 Eastman Kodak Company Self cleaning ink jet printhead cartridges
US6283575B1 (en) * 1999-05-10 2001-09-04 Eastman Kodak Company Ink printing head with gutter cleaning structure and method of assembling the printer
JP2001038917A (en) * 1999-07-29 2001-02-13 Casio Comput Co Ltd Ink jet printer
JP2001212966A (en) * 2000-02-04 2001-08-07 Seiko Epson Corp Hydrophilic structure and ink-jet recording head
JP3501083B2 (en) * 2000-03-21 2004-02-23 富士ゼロックス株式会社 Nozzle for inkjet recording head and method of manufacturing the same
JP2002187295A (en) * 2000-12-22 2002-07-02 Hitachi Koki Co Ltd Ink jet print head and method for sweeping waste ink
TW541248B (en) * 2001-03-16 2003-07-11 Benq Corp Ink cartridge
JP4731763B2 (en) * 2001-09-12 2011-07-27 キヤノン株式会社 Liquid jet recording head and manufacturing method thereof
US6820963B2 (en) * 2001-12-13 2004-11-23 Hewlett-Packard Development Company, L.P. Fluid ejection head
US6637862B2 (en) * 2002-02-08 2003-10-28 Illinois Tool Works, Inc. Maintenance module for fluid jet device

Also Published As

Publication number Publication date
EP1706270A2 (en) 2006-10-04
EP1706266A4 (en) 2009-08-12
ATE538934T1 (en) 2012-01-15
EP2415606A2 (en) 2012-02-08
EP1706269A2 (en) 2006-10-04
WO2005065294A2 (en) 2005-07-21
WO2005065294A3 (en) 2005-11-17
KR20060127954A (en) 2006-12-13
WO2005065331A2 (en) 2005-07-21
EP1706269A4 (en) 2009-08-19
JP2007516878A (en) 2007-06-28
EP1706266B1 (en) 2011-12-28
KR20060127955A (en) 2006-12-13
KR101222582B1 (en) 2013-01-16
KR101154554B1 (en) 2012-06-14
ATE538933T1 (en) 2012-01-15
EP2415606A3 (en) 2012-05-09
EP1706270B1 (en) 2011-12-28
EP1706266A2 (en) 2006-10-04
WO2005065378A3 (en) 2006-02-23
JP2007516879A (en) 2007-06-28
JP2011161926A (en) 2011-08-25
KR101220272B1 (en) 2013-01-09
JP2007516876A (en) 2007-06-28
WO2005065378A2 (en) 2005-07-21
JP4959013B2 (en) 2012-06-20
KR20060127957A (en) 2006-12-13
EP1706270A4 (en) 2009-08-19
WO2005065331A3 (en) 2006-12-28

Similar Documents

Publication Publication Date Title
JP4959013B2 (en) Droplet ejection assembly
US8287093B2 (en) Drop ejection assembly
EP1802467B1 (en) System and methods for fluid drop ejection
KR20130113919A (en) Fluid ejection device
US7121646B2 (en) Drop ejection assembly
KR20090025244A (en) System and methods for fluid drop ejection
JP2007516879A5 (en)
US7303259B2 (en) Drop ejection assembly
US7168788B2 (en) Drop ejection assembly
KR101211012B1 (en) Drop ejection assembly

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060727

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20090720

17Q First examination report despatched

Effective date: 20110408

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 561806

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602004038244

Country of ref document: DE

Effective date: 20120809

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120613

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120613

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120613

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120613

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 561806

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120613

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120914

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120613

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120613

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120613

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120613

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120613

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120613

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120613

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121015

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120613

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120924

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120613

26N No opposition filed

Effective date: 20130314

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602004038244

Country of ref document: DE

Effective date: 20130314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120913

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041229

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20221110

Year of fee payment: 19

Ref country code: FR

Payment date: 20221110

Year of fee payment: 19

Ref country code: DE

Payment date: 20221102

Year of fee payment: 19