EP1702498B1 - Verfahren zur erwärmung von bauteilen - Google Patents

Verfahren zur erwärmung von bauteilen Download PDF

Info

Publication number
EP1702498B1
EP1702498B1 EP04802922.7A EP04802922A EP1702498B1 EP 1702498 B1 EP1702498 B1 EP 1702498B1 EP 04802922 A EP04802922 A EP 04802922A EP 1702498 B1 EP1702498 B1 EP 1702498B1
Authority
EP
European Patent Office
Prior art keywords
energy
machining region
static
heating
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP04802922.7A
Other languages
English (en)
French (fr)
Other versions
EP1702498A1 (de
Inventor
Erwin Bayer
Wolfgang Becker
Bernd Stimper
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines AG filed Critical MTU Aero Engines AG
Publication of EP1702498A1 publication Critical patent/EP1702498A1/de
Application granted granted Critical
Publication of EP1702498B1 publication Critical patent/EP1702498B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0033Heating devices using lamps
    • H05B3/0038Heating devices using lamps for industrial applications
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2261/00Machining or cutting being involved

Definitions

  • the invention relates to a method for heating components before and / or during and / or after further processing thereof.
  • Components such as turbine blades of gas turbines, must be heated in the production or maintenance or repair of the same for performing a variety of machining processes. This warming is also known as preheating. It is also customary to heat gas turbine components following a machining process in the sense of a heat treatment.
  • build-up welding In the maintenance of turbine blades, for example, so-called build-up welding is used.
  • build-up welding the preheating of a machining area or welding area of the turbine blades to be welded to a desired process temperature is required. Only when the turbine blade to be welded has been heated to the process temperature at least at the processing area and is maintained at the desired process temperature during build-up welding, reliable build-up welding can be performed.
  • inductive systems are used for heating or for preheating of components.
  • Such inductive systems may be, for example, coils that heat the component based on inductive energy input.
  • the heating or preheating of components by means of inductive systems has the disadvantage that during the heating or preheating high temperature tolerances of up to 50 ° C can be set on the component to be heated. Such an inaccurate temperature distribution on the component to be heated is disadvantageous.
  • inductive systems consume a great deal of energy.
  • Another disadvantage of inductive systems is that higher temperatures can occur in the interior of the component during heating or preheating than at the surface of the component. This can lead to damage to the component.
  • EP-A-0 836 905 discloses a method for temperature-controlled surface treatment of workpiece surfaces by means of laser radiation, which is generated by a plurality of laser diodes and directed in the form of a plurality of energy beams on the treatment area. In this case, a directed relative movement takes place between the laser diodes bundled into a unit and the workpiece surface.
  • the present invention is based on the problem to provide a novel method for heating of components, which allows a particularly good and homogeneous heating.
  • the processing area for heating is irradiated by a plurality of laser sources, each laser source directing an energy beam onto the processing area such that each laser source generates an energy leak on the processing area which together heat the processing area.
  • each of the laser sources generates a static or quasistatic energy leak on the processing area, such that the position of the respective energy leak on the processing area is static or quasi-static. This can avoid problems that occur during inductive heating. Furthermore, difficulties that may arise with moving energy debris due to the movement of the laser source can be avoided.
  • each laser source is associated with a temperature measuring device which measures the heating of the processing area caused by the respective laser source or the energy leak of the respective laser source and compares it with a corresponding temperature setpoint, depending on the radiation power individually for each of the laser sources of the respective energy beam is determined.
  • each of the laser sources generates a quasi-static energy leak on the processing area such that the position of the respective energy leak on the processing area varies maximally between the respective adjacent energy spots so as to heat the transition area between two adjacent energy spots. This allows even more homogeneous heating of the processing area while avoiding the problems of moving systems.
  • FIG. 2 is a highly schematic representation of a turbine blade 10 of a high-pressure turbine of an aircraft engine in cross-section, namely by an airfoil 11 of the turbine blade 10.
  • Fig. 2 shows the turbine blade 10 in side view, wherein a subsequent to the blade 11 blade root is denoted by the reference numeral 12. It is within the meaning of the present invention to heat the turbine blade 10 of the high-pressure turbine before and / or during and / or after a further processing thereof, namely at an in Fig. 2 shown processing area 13 of the airfoil 11th
  • Fig. 1 7 shows a total of seven such energy beams 14.
  • the energy beams 14 each generate an energy leak 15 on the turbine blade 10, namely in the processing area 13 thereof.
  • the energy leaks 15 together heat the processing area 13 of the turbine blade 10.
  • the energy leaks 15 are punctiform or circular.
  • the non-illustrated laser sources in the processing area 13 of the turbine blade 10 generate static or quasi-static energy leaks 15.
  • a static energy leak means that the position of the respective energy leaks in the processing area 13 is static, ie does not change. In a quasistatic energy leak, however, a slight movement of the same is possible.
  • the laser source generates static energy leaks, i. the position of the respective energy spots 15 in the processing area 13 does not change. If the distance between such static energy spots chosen low enough, so can a homogeneous heating of the entire processing area 13 can be achieved.
  • the laser sources generate quasi-static energy leaks 15 in the processing area 13.
  • a quasistatic energy leak 15 a slight movement of the same within the processing area 13 is permissible, with a position of an energy leak 15 varying maximally between the immediately adjacent energy leaks 15. This makes it possible to achieve an even more homogeneous heating of the processing area 13, namely preferably in the transition area 18 between adjacent energy spots 15.
  • Each non-illustrated laser device is associated with a non-illustrated temperature measuring device.
  • Each of the temperature measuring devices measures or detects the heating of the processing area 13 of the turbine blades 10 caused by the respective energy source 15 or of the respective energy leak 15.
  • the temperature actual values determined by each of the temperature measuring devices are now associated with a corresponding one Temperature setpoints compared.
  • Each laser device or each energy leak generated by the respective laser device is therefore associated with a separate temperature setpoint.
  • the radiation power of the respective energy beam 14 and thus the power of the respective energy leak 15 are individually adapted for each laser device. In this case, a predefined temperature profile can be set exactly in the processing range 13.
  • the changing cross-section of the turbine blade 10 along the processing area 13 can be taken into account.
  • Fig. 1 shows Fig. 1 in that the cross-sectional profile of the turbine blade 10 changes significantly between two edges 16 and 17.
  • the radiation power can be easily and safely adapted to the changing over the processing area 13 cross-section of the turbine blade 10.
  • the processing area 13 of the turbine blade 10 is heated from one side via non- illustrated laser sources .
  • it is possible to erracer men the processing area 13 from two sides as in the embodiment of the Fig. 3 is shown.
  • energy beams 14 directed to the processing area 13 thereof. This makes it possible to improve the quality of heating again.
  • diode lasers are preferably used as laser sources.
  • the use of diode lasers having a linear output linear output is particularly preferred.
  • Diode lasers make it possible to direct radiant energy with a narrow, specific wavelength onto the turbine blades 10 or the processing area 13 to be heated.
  • the defined wavelength of the diode laser allows a good and defined limitation of the energy propagation and a precise heating of the turbine blade 10 and the processing area 13.
  • other laser sources can be used for heating, for example, here CO 2 laser, Nd laser or YAG Called laser.
  • each laser source is then associated with a pyrometer to detect the heating caused by the corresponding laser source.
  • the invention is preferably used in the heating of turbine blades 10 in connection with a repair or repair thereof. Machining in which heating of the turbine blade is required is, for example, so-called build-up welding.
  • the use of the method according to the invention is not limited to repair work on turbine blades. Rather, it can also be used in other components of a gas turbine, for example in the repair of a housing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laser Beam Processing (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Erwärmung von Bauteilen vor und/oder während und/oder nach einer weiteren Bearbeitung derselben.
  • Bauteile, wie zum Beispiel Turbinenschaufeln von Gasturbinen, müssen bei der Produktion bzw. Instandhaltung oder Reparatur derselben zur Durchführung verschiedenster Bearbeitungsverfahren erwärmt werden. Diese Erwärmung wird auch als Vorwärmung bezeichnet. Auch ist es üblich Gasturbinenbauteile im Anschluss an ein Bearbeitungsverfahren im Sinne einer Wärmebehandlung zu erwärmen.
  • Bei der Instandhaltung von Turbinenschaufeln kommt zum Beispiel das sogenannte Auftragschweißen zur Anwendung. Im Zusammenhang mit dem Auftragschweißen ist die Vorwärmung eines Bearbeitungsbereichs bzw. Schweißbereichs der zu schweißenden Turbinenschaufeln auf eine gewünschte Prozesstemperatur erforderlich. Nur dann, wenn die zu schweißende Turbinenschaufel zumindest am Bearbeitungsbereich auf die Prozesstemperatur erwärmt worden ist und während des Auftragschweißens auf der gewünschten Prozesstemperatur gehalten wird, kann ein zuverlässiges Auftragschweißen durchgeführt werden.
  • Nach dem Stand der Technik werden zur Erwärmung bzw. zur Vorwärmung von Bauteilen sogenannte induktive Systeme verwendet. Bei solchen induktiven Systemen kann es sich zum Beispiel um Spulen handeln, die auf Grundlage induktiver Energieeinbringung das Bauteil erwärmen. Die Erwärmung bzw. Vorwärmung von Bauteilen mittels induktiver Systeme verfügt über den Nachteil, dass sich bei der Erwärmung bzw. Vorwärmung hohe Temperaturtoleranzen von bis zu 50°C am zu erwärmenden Bauteil einstellen können. Eine solch ungenaue Temperaturverteilung am zu erwärmenden Bauteil ist nachteilig. Weiterhin verbrauchen derartige induktive Systeme sehr viel Energie. Ein weiterer Nachteil induktiver Systeme liegt darin, dass sich bei der Erwärmung bzw. Vorwärmung im Inneren des Bauteils höhere Temperaturen einstellen können als an der Oberfläche des Bauteils. Dies kann zu Beschädigungen am Bauteil führen.
  • Das Dokument EP-A-0 836 905 offenbart ein Verfahren zur temperaturgeregelten Oberflächenbehandlung von Werkstückoberflächen mittels Laserstrahlung, die von mehreren Laserdioden erzeugt und in Form mehrerer Energiestrahlen auf den Behandlungsbereich gerichtet wird. Dabei erfolgt eine gerichtete Relativbewegung zwischen den zu einer Einheit gebündelten Laserdioden und der Werkstückoberfläche.
  • Hiervon ausgehend liegt der vorliegenden Erfindung das Problem zu Grunde, ein neuartiges Verfahren zur Erwärmung von Bauteilen zu schaffen, welches eine besonderes gute und homogene Erwärmung ermöglicht.
  • Dieses Problem wird durch ein Verfahren mit den Merkmalen des Patentanspruchs 1 gelöst. Dabei wird der Bearbeitungsbereich zur Erwärmung von mehreren Laserquellen bestrahlt, wobei jede Laserquelle einen Energiestrahl derart auf den Bearbeitungsbereich richtet, dass jede Laserquelle jeweils einen Energiefleck auf dem Bearbeitungsbereich erzeugt, die zusammen den Bearbeitungsbereich erwärmen. Erfindungsgemäß erzeugt jede der Laserquellen einen statischen oder quasistatischen Energiefleck auf dem Bearbeitungsbereich, derart, dass die Position des jeweiligen Energieflecks auf dem Bearbeitungsbereich statisch oder quasistatisch ist. Hierdurch lassen sich Probleme, die bei der induktiven Erwärmung auftreten, vermeiden. Weiterhin können Schwierigkeiten, die sich bei bewegten Energieflecken infolge der Bewegung der Laserquelle einstellen können, vermieden werden.
  • Nach einer vorteilhaften Ausgestaltung der Erfindung wird jeder Laserquelle eine Temperaturmesseinrichtung zugeordnet, welche die von der jeweiligen Laserquelle bzw. dem Energiefleck der jeweiligen Laserquelle bewirkte Erwärmung des Bearbeitungsbereichs misst und mit einem entsprechenden Temperatur-Sollwert vergleicht, wobei abhängig hiervon für jede der Laserquellen individuell die Strahlungsleistung des jeweiligen Energiestrahls festgelegt wird. Hierdurch sind optimale Voraussetzungen gegen, um die Erwärmung des Bauteils bzw. Bearbeitungsbereichs an sich ändernde Bauteilquerschnitte anzupassen.
  • Vorzugsweise erzeugt jede der Laserquellen einen quasistatischen Energiefleck auf dem Bearbeitungsbereich, derart, dass die Position des jeweiligen Energieflecks auf dem Bearbeitungsbereich sich maximal zwischen den jeweils benachbarten Energieflecken verändert, um so den Übergangsbereich zwischen zwei benachbarten Energieflecken zu erwärmen. Hierdurch lässt sich eine noch homogenere Erwärmung des Bearbeitungsbereichs bei gleichzeitiger Vermeidung der Probleme bewegter Systeme erzielen.
  • Bevorzugte Weiterbildungen der Erfindung ergeben sich aus den abhängigen Unteransprüchen und der nachfolgenden Beschreibung. Ausführungsbeispiele der Erfindung werden, ohne hierauf beschränkt zu sein, an Hand der Zeichnung näher erläutert. Dabei zeigen:
  • Fig. 1
    eine stark schematisierte Anordnung mit einem zu erwärmenden Bauteil im Querschnitt zur Verdeutlichung einer ersten Ausführungsform des erfindungsgemäßen Verfahrens;
    Fig. 2
    eine stark schematisierte Anordnung mit dem zu erwärmenden Bauteil in Seitenansicht zur weiteren Verdeutlichung der ersten Ausführungsform des erfindungsgemäßen Verfahrens; und
    Fig. 3
    eine stark schematisierte Anordnung mit einem zu erwärmenden Bauteil im Querschnitt zur Verdeutlichung einer zweiten Ausführungsform des erfindungsgemäßen Verfahrens.
  • Nachfolgend wird das erfindungsgemäße Verfahren zur Erwärmung bzw. Vorwärmung von Bauteilen an der Vorwärmung einer Turbinenschaufel einer Gasturbine unter Bezugnahme auf Fig. 1 bis 3 im Detail beschrieben.
  • Fig. 1 zeigt stark schematisiert eine Turbinenschaufel 10 einer Hochdruckturbine eines Flugtriebwerks im Querschnitt, nämlich durch ein Schaufelblatt 11 der Turbinenschaufel 10. Fig. 2 zeigt die Turbinenschaufel 10 in Seitenansicht, wobei ein sich an das Schaufelblatt 11 anschließender Schaufelfuß mit der Bezugsziffer 12 gekennzeichnet ist. Es liegt im Sinne der hier vorliegenden Erfindung, die Turbinenschaufel 10 der Hochdruckturbine vor und/oder während und/oder nach einer weiteren Bearbeitung derselben zu erwärmen, nämlich an einem in Fig. 2 gezeigten Bearbeitungsbereich 13 des Schaufelblatts 11.
  • Im Sinne der hier vorliegenden Erfindung wird die Turbinenschaufel 10 zur Erwärmung des Bearbeitungsbereichs 13 im Sinne der Fig. 1 und 2 von einer Seite her von mehreren Laserquellen bestrahlt, wobei jede der nicht-dargestellten Laserquellen einen Energiestrahl 14 auf den Bearbeitungsbereich 13 der Turbinenschaufel 10 richtet. Fig. 1 zeigt insgesamt sieben derartige Energiestrahlen 14. Die Energiestrahlen 14 erzeugen auf der Turbinenschaufel 10, nämlich im Bearbeitungsbereich 13 derselben, jeweils einen Energiefleck 15. Die Energieflecke 15 erwärmen zusammen den Bearbeitungsbereich 13 der Turbinenschaufel 10. Die Energieflecke 15 sind punktförmig bzw. kreisförmig.
  • Im Sinne der hier vorliegenden Erfindung erzeugen die nicht-dargestellten Laserquellen im Bearbeitungsbereich 13 der Turbinenschaufel 10 statische oder quasistatische Energieflecke 15. Unter einem statischen Energiefleck ist zu verstehen, dass die Position des jeweiligen Energieflecks im Bearbeitungsbereich 13 statisch ist, sich also nicht verändert. Bei einem quasistatischen Energiefleck ist hingegen eine geringfügige Bewegung desselben möglich.
  • Nach einer ersten Alternative der hier vorliegenden Erfindung erzeugen die Laserquelle statische Energieflecke, d.h. dass sich die Position der jeweiligen Energieflecke 15 im Bearbeitungsbereich 13 nicht verändert. Wird der Abstand zwischen derart statischen Energieflecken gering genug gewählt, so lässt sich eine homogene Erwärmung des gesamten Bearbeitungsbereichs 13 erzielen.
  • Nach einer Alternative der hier vorliegenden Erfindung erzeugen die Laserquellen quasistatische Energieflecke 15 im Bearbeitungsbereich 13. Bei einem quasistatischen Energiefleck 15 ist eine geringfügige Bewegung desselben innerhalb des Bearbeitungsbereichs 13 zulässig, wobei sich eine Position eines Energieflecks 15 maximal zwischen den jeweils unmittelbar benachbarten Energieflecken 15 verändert. Hierdurch lässt sich eine noch homogenere Erwärmung des Bearbeitungsbereichs 13 erzielen, nämlich vorzugsweise im Übergangsbereich 18 zwischen benachbarten Energieflecken 15.
  • Jeder nicht-dargestellten Lasereinrichtung ist eine nicht-dargestellte Temperaturmesseinrichtung zugeordnet. Jede der Temperaturmesseinrichtungen misst bzw. erfasst die von der jeweiligen Laserquelle bzw. die von dem jeweiligen Energiefleck 15 bewirkte Erwärmung des Bearbeitungsbereichs 13 der Turbinenschaufeln 10. In einer ebenfalls nicht-dargestellten Steuerungseinrichtung werden nun die von jeder der Temperaturmesseinrichtungen ermittelten Temperatur-Istwerte mit einem entsprechenden Temperatur-Sollwerten verglichen. Jeder Lasereinrichtung bzw. jedem von der jeweiligen Lasereinrichtung erzeugten Energiefleck ist demnach ein separater Temperatur-Sollwert zugeordnet. Auf Basis dieses Temperatur-Sollwerts wird für jede Lasereinrichtung die Strahlungsleistung des jeweiligen Energiestrahls 14 und damit die Leistung des jeweiligen Energieflecks 15 individuell angepasst. Hierbei lässt sich im Beareitungsbereich 13 ein vordefiniertes Temperaturprofil exakt einstellen. Des weiteren kann auf diese Art und Weise dem sich ändernden Querschnitt der Turbinenschaufel 10 entlang des Bearbeitungsbereichs 13 Rechnung getragen werden. So zeigt nämlich Fig. 1, dass sich das Querschnittsprofil der Turbinenschaufel 10 zwischen zwei Kanten 16 und 17 deutlich verändert. Insofern kann mit der hier vorliegenden Erfindung die Strahlungsleistung auf den sich über den Bearbeitungsbereich 13 verändernden Querschnitt der Turbinenschaufel 10 leicht und sicher angepasst werden.
  • Im Ausführungsbeispiel der Fig. 1 und 2 wird der Bearbeitungsbereich 13 der Turbinenschaufel 10 von einer Seite her über nicht-dargestellte Laserquellen erwärmt. Im Unterschied hierzu ist es möglich, den Bearbeitungsbereich 13 von zwei Seiten her zu erwärmen, wie dies im Ausführungsbeispiel der Fig. 3 dargestellt ist. So werden im Ausführungsbeispiel der Fig. 3 von beiden Seiten der Turbinenschaufel 10 Energiestrahlen 14 auf den Bearbeitungsbereich 13 derselben gerichtet. Hierdurch lässt sich die Erwärmungsqualität nochmals verbessern.
  • Im Sinne der hier vorliegenden Erfindung werden als Laserquellen vorzugsweise Diodenlaser verwendet. Die Verwendung von Diodenlasern, die eine lineare Leistungsabgabe bei linearer Ansteuerung aufweisen, ist besonders bevorzugt. Diodenlaser ermöglichen Strahlungsenergie mit einer eng begrenzten, spezifischen Wellenlänge auf die zu erwärmende Turbinenschaufeln 10 bzw. den Bearbeitungsbereich 13 zu richten. Die definierte Wellenlänge der Diodenlaser ermöglicht eine gute sowie definierte Begrenzung der Energieausbreitung und eine präzise Erwärmung der Turbinenschaufel 10 bzw. des Bearbeitungsbereichs 13. Alternativ können jedoch auch andere Laserquellen zur Erwärmung verwendet werden, beispielhaft seien hier CO2-Laser, Nd-Laser oder YAG-Laser genannt.
  • Die Erwärmung sowie Messung der Erwärmung an der Turbinenschaufel 10 erfolgt berührungslos. Zur berührungslosen Temperaturmessung kommen insbesondere Pyrometer zum Einsatz. Wie bereits erwähnt, ist jeder Laserquelle dann ein Pyrometer zugeordnet, um die von der entsprechenden Laserquelle bewirkte Erwärmung zu erfassen.
  • Die Erfindung findet bevorzugt Verwendung bei der Erwärmung von Turbinenschaufeln 10 im Zusammenhang mit einer Reparatur bzw. Instandsetzung derselben. Eine Bearbeitung, bei der eine Erwärmung der Turbinenschaufel erforderlich ist, ist zum Beispiel das sogenannte Auftragsschweißen. Der Einsatz des erfindungsgemäßen Verfahrens ist jedoch nicht auf Reparaturarbeiten an Turbinenschaufeln begrenzt. Vielmehr kann es auch bei anderen Bauteilen einer Gasturbine, zum Beispiel bei der Reparatur eines Gehäuses, zum Einsatz kommen.

Claims (7)

  1. Verfahren zur Erwärmung eines Bearbeitungsbereichs (13) eines Bauteils (10), insbesondere eines Gasturbinenbauteils, vor und/oder während und/oder nach einer Bearbeitung des Bauteils an dem Bearbeitungsbereich, wobei der Bearbeitungsbereich (13) zur Erwärmung von mehreren Laserquellen bestrahlt wird, und wobei jede Laserquelle einen Energiestrahl (14) derart auf den Bearbeitungsbereich richtet, dass jede Laserquelle jeweils einen Energiefleck (15) auf dem Bearbeitungsbereich (13) erzeugt, die zusammen den Bearbeitungsbereich erwärmen,
    dadurch gekennzeichnet,
    dass jede der Laserquellen einen statischen oder quasistatischen Energiefleck (15) auf dem Bearbeitungsbereich erzeugt, derart, dass die Position des jeweiligen Energieflecks auf dem Bearbeitungsbereich (13) statisch oder quasistatisch ist.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    dass jeder Laserquelle eine Temperaturmesseinrichtung zugeordnet ist, welche die von der jeweiligen Laserquelle bzw. dem Energiefleck (15) der jeweiligen Laserquelle bewirkte Erwärmung des Bearbeitungsbereichs (13) misst.
  3. Verfahren nach Anspruch 2,
    dadurch gekennzeichnet,
    dass ein hierbei von jeder Temperaturmesseinrichtung ermittelter Temperatur-Istwert mit einem entsprechenden Temperatur-Sollwert der entsprechenden Laserquelle verglichen wird, und dass abhängig hiervon für jede der Laserquellen individuell die Strahlungsleistung des jeweiligen Energiestrahls (14) festgelegt wird.
  4. Verfahren nach einem oder mehreren der Ansprüche 1 bis 3,
    dadurch gekennzeichnet,
    dass die Erwärmung und die Temperaturmessung berührungslos erfolgen.
  5. Verfahren nach einem oder mehreren der Ansprüche 1 bis 4,
    dadurch gekennzeichnet,
    dass jede der Laserquellen einen statischen Energiefleck (15) auf dem Bearbeitungsbereich erzeugt, derart, dass die Position des jeweiligen Energieflecks (15) auf dem Bearbeitungsbereich (13) statisch bzw. unveränderlich ist.
  6. Verfahren nach einem oder mehreren der Ansprüche 1 bis 4,
    dadurch gekennzeichnet,
    dass jede der Laserquellen einen quasistatischen Energiefleck (15) auf dem Bearbeitungsbereich (13) erzeugt, derart, dass die Position des jeweiligen Energieflecks (15) auf dem Bearbeitungsbereich sich maximal zwischen den jeweils benachbarten Energieflecken verändert, um so den Übergangsbereich (18) zwischen zwei benachbarten Energieflecken (15) zu erwärmen.
  7. Verfahren nach einem oder mehreren der Ansprüche 1 bis 6,
    dadurch gekennzeichnet,
    dass als Laserquellen Diodenlaser verwendet werden.
EP04802922.7A 2004-01-08 2004-12-11 Verfahren zur erwärmung von bauteilen Not-in-force EP1702498B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004001276A DE102004001276A1 (de) 2004-01-08 2004-01-08 Verfahren zur Erwärmung von Bauteilen
PCT/DE2004/002717 WO2005067350A1 (de) 2004-01-08 2004-12-11 Verfahren zur erwärmung von bauteilen

Publications (2)

Publication Number Publication Date
EP1702498A1 EP1702498A1 (de) 2006-09-20
EP1702498B1 true EP1702498B1 (de) 2013-07-31

Family

ID=34716358

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04802922.7A Not-in-force EP1702498B1 (de) 2004-01-08 2004-12-11 Verfahren zur erwärmung von bauteilen

Country Status (5)

Country Link
US (1) US8124912B2 (de)
EP (1) EP1702498B1 (de)
JP (1) JP4542551B2 (de)
DE (1) DE102004001276A1 (de)
WO (1) WO2005067350A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9289854B2 (en) * 2012-09-12 2016-03-22 Siemens Energy, Inc. Automated superalloy laser cladding with 3D imaging weld path control
US11141815B2 (en) 2013-09-24 2021-10-12 Ipg Photonics Corporation Laser processing systems capable of dithering
FR3111577B1 (fr) * 2020-06-18 2022-10-07 Safran Chauffage laser pour la fabrication ou la reparation d’aube de turbine

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1106970B (it) * 1978-01-18 1985-11-18 Istituto Per Le Ricerche Di Te Procedimento per la lavorazione ad asportazione di truciolo con l'impiego del raggio laser ed apparecchio per l'esecuzione del procedimento
JPS57185918A (en) * 1981-05-06 1982-11-16 Hitachi Ltd Method and apparatus for heating metal by laser irradiation
JPS58221222A (ja) * 1982-06-16 1983-12-22 Sumitomo Metal Ind Ltd 耐食性鉄鋼の製造方法
JPS60258407A (ja) * 1984-05-22 1985-12-20 Honda Motor Co Ltd 焼入れ方法
SU1576237A1 (ru) * 1988-01-18 1990-07-07 Мгту Им.Н.Э.Баумана Способ лазерно-механической обработки
US4963714A (en) * 1988-10-24 1990-10-16 Raytheon Company Diode laser soldering system
US5073212A (en) * 1989-12-29 1991-12-17 Westinghouse Electric Corp. Method of surface hardening of turbine blades and the like with high energy thermal pulses, and resulting product
JPH058062A (ja) * 1991-07-03 1993-01-19 Toshiba Corp レーザ加工装置
DE4234342C2 (de) * 1992-10-12 1998-05-14 Fraunhofer Ges Forschung Verfahren zur Materialbearbeitung mit Laserstrahlung
US5766670A (en) * 1993-11-17 1998-06-16 Ibm Via fill compositions for direct attach of devices and methods for applying same
ATE156739T1 (de) * 1993-05-19 1997-08-15 Fraunhofer Ges Forschung Verfahren zur materialbearbeitung mit diodenstrahlung
JPH07311093A (ja) * 1994-05-17 1995-11-28 Hitachi Ltd 温度測定装置
JP3256090B2 (ja) * 1994-08-11 2002-02-12 松下電器産業株式会社 レーザ加熱ツール、レーザ加熱装置および方法
DE4429913C1 (de) * 1994-08-23 1996-03-21 Fraunhofer Ges Forschung Vorrichtung und Verfahren zum Plattieren
DE19514285C1 (de) * 1995-04-24 1996-06-20 Fraunhofer Ges Forschung Vorrichtung zum Umformen von Werkstücken mit Laserdiodenstrahlung
FR2737814B1 (fr) * 1995-08-11 1997-09-12 Soc D Production Et De Rech Ap Procede et dispositif de commande d'une source laser a plusieurs modules laser pour optimiser le traitement de surface par laser
DE19613183C1 (de) * 1996-04-02 1997-07-10 Daimler Benz Ag Verfahren und Vorrichtung zum Feindrehen eines Werkstückes aus einem härtbaren Stahl mittels Drehmeißel
JPH09302410A (ja) * 1996-05-13 1997-11-25 Toshiba Corp レーザ焼入れ装置
DE19720652A1 (de) * 1996-05-17 1997-11-20 Siemens Ag Beheizungsvorrichtung und Verfahren zur Erwärmung eines Bauteils
DE19642980C1 (de) * 1996-10-18 1998-08-13 Mtu Muenchen Gmbh Verfahren zur Instandsetzung verschlissener Schaufelspitzen von Verdichter- und Turbinenschaufel
EP0836905B1 (de) * 1996-10-20 2002-04-10 INPRO Innovationsgesellschaft für fortgeschrittene Produktionssysteme in der Fahrzeugindustrie mbH Verfahren und Anordnung zur temperaturgeregelten Oberflächenbehandlung, insbesondere zum Härten von Werkstückoberflächen mittels Laserstrahlung
US5886878A (en) * 1997-01-21 1999-03-23 Dell Usa, L.P. Printed circuit board manufacturing method for through hole components with a metal case
JP4068304B2 (ja) * 1998-08-25 2008-03-26 ピーエーシー ティーイーシーエイチ − パッケージング テクノロジーズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 半田材料製形状部品の配置、再溶融方法およびその装置
US6269540B1 (en) * 1998-10-05 2001-08-07 National Research Council Of Canada Process for manufacturing or repairing turbine engine or compressor components
DE10030776C2 (de) * 2000-06-23 2002-06-20 Mtu Aero Engines Gmbh Verfahren zur Instandsetzung von metallischen Bauteilen insbesondere für Gasturbinen
WO2002009904A1 (en) * 2000-07-31 2002-02-07 Toyota Jidosha Kabushiki Kaisha Laser beam machining method
DE10055505C2 (de) * 2000-11-10 2003-03-20 Mtu Aero Engines Gmbh Verfahren zur Instandsetzung von Schaufeln
DE10060176B4 (de) * 2000-12-04 2008-06-19 Precitec Kg Laserbearbeitungskopf
JP4150907B2 (ja) * 2001-02-19 2008-09-17 トヨタ自動車株式会社 レーザ加工装置およびその加工方法
US6538233B1 (en) * 2001-11-06 2003-03-25 Analog Devices, Inc. Laser release process for micromechanical devices
CN100335259C (zh) * 2002-03-12 2007-09-05 三星钻石工业股份有限公司 加工脆性材料的划线方法及装置
JP2003290945A (ja) * 2002-04-01 2003-10-14 Nippon Steel Corp レーザ表面加工装置

Also Published As

Publication number Publication date
WO2005067350A1 (de) 2005-07-21
EP1702498A1 (de) 2006-09-20
US20090107968A1 (en) 2009-04-30
DE102004001276A1 (de) 2005-08-04
JP2007523285A (ja) 2007-08-16
US8124912B2 (en) 2012-02-28
JP4542551B2 (ja) 2010-09-15

Similar Documents

Publication Publication Date Title
EP2836323B1 (de) Mehrfach-spulenanordnung für eine vorrichtung zur generativen herstellung von bauteilen und entsprechendes herstellungsverfahren
DE102012100721B3 (de) Verfahren zum Regeln eines Laserschneidprozesses und Laserschneidmaschine
EP2691206B1 (de) Verfahren zur laserstrahlbearbeitung eines werkstücks
EP2913124A2 (de) Erzeugung von Druckeigenspannungen bei generativer Fertigung
EP2789413A1 (de) Temperaturregelung für eine Vorrichtung zur generativen Herstellung von Bauteilen und entsprechendes Herstellungsverfahren
EP4017674B1 (de) Verfahren zum brennschneiden mittels eines laserstrahls
EP4035823A1 (de) Prozess zur strahlbearbeitung eines platten- oder rohrförmigen werkstücks
US20220152744A1 (en) Beam machining plate-like or tubular workpieces
DE102012017130B4 (de) Laser-Rohreinschweißen
EP1342510A2 (de) Verfahren zur Entschichtung von Triebwerksbauteilen und Vorrichtung zur Durchführung des Verfahrens
EP1640105A1 (de) Verfahren zum Laserschweissen
DE4308246A1 (de) Verfahren und Vorrichtung zur Steigerung der Wirtschaftlichkeit von Bearbeitungsmaschinen
EP1702498B1 (de) Verfahren zur erwärmung von bauteilen
WO2018087137A1 (de) Verfahren für die additive herstellung mit kennzeichnung einer bauplattform durch referenzpunkte
EP1608483B1 (de) Verfahren zur instandsetzung und fertigung von geometrisch komplexen bauteilen
DE3733147A1 (de) Verfahren zum laserwaermebehandeln, wie laserhaerten, laserweichgluehen, laserrekristallisieren von bauteilen in festem zustand
DE102021103206A1 (de) Verfahren zum Optimieren einer Bearbeitungszeit eines Laserbearbeitungsprozesses, Verfahren zum Durchführen eines Laserbearbeitungsprozesses an einem Werkstück und Laserbearbeitungssystem, welches eingerichtet ist, um diese durchzuführen
EP1625771B1 (de) Verfahren zur erwärmung von bauteilen
AT515183B1 (de) In-Line Verfahren und In-Line Fertigungsanlage
DE102015220525B4 (de) Vorrichtung und Verfahren zur Bearbeitung eines Bauteils
EP3736074A1 (de) Verfahren zum trennenden schneiden einer mehrzahl von werkstückteilen
DE102010022094A1 (de) Verfahren und Vorrichtung zum Herstellen einer Grundplatte für eine Bipolarplatte einer Brennstoffzelle
EP2226151B1 (de) Fertigungsverfahren für einen Turbinenläufer
DE10328596A1 (de) Verfahren und Vorrichtung zum Laserschweißen von Bauteilen
DE102016218875B4 (de) Verfahren zur Regelung einer Einschweißtiefe während des thermischen Fügens von Werkstücken in einem Lasermodul

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060609

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20100903

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130417

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 625275

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004014293

Country of ref document: DE

Effective date: 20130926

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130731

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131130

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131202

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131101

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: MTU AERO ENGINES A.G.

Effective date: 20131231

26N No opposition filed

Effective date: 20140502

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004014293

Country of ref document: DE

Effective date: 20140502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131211

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 625275

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20041211

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191217

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20191216

Year of fee payment: 16

Ref country code: FR

Payment date: 20191219

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20191220

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004014293

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201211

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201211

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210701