EP1682751A2 - Verfahren zur regelung eines verdrehwinkels sowie phasenverstellvorrichtung zur durchf hrung eines derartigen verfahrens - Google Patents
Verfahren zur regelung eines verdrehwinkels sowie phasenverstellvorrichtung zur durchf hrung eines derartigen verfahrensInfo
- Publication number
- EP1682751A2 EP1682751A2 EP04802686A EP04802686A EP1682751A2 EP 1682751 A2 EP1682751 A2 EP 1682751A2 EP 04802686 A EP04802686 A EP 04802686A EP 04802686 A EP04802686 A EP 04802686A EP 1682751 A2 EP1682751 A2 EP 1682751A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- rotation
- angle
- speed
- current
- calculating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 31
- 238000006073 displacement reaction Methods 0.000 title claims abstract 11
- 230000001419 dependent effect Effects 0.000 claims description 10
- 230000001105 regulatory effect Effects 0.000 abstract description 23
- 238000002485 combustion reaction Methods 0.000 description 13
- 238000005259 measurement Methods 0.000 description 6
- 230000001276 controlling effect Effects 0.000 description 5
- 238000013461 design Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L9/00—Valve-gear or valve arrangements actuated non-mechanically
- F01L9/20—Valve-gear or valve arrangements actuated non-mechanically by electric means
Definitions
- the invention relates to a method for regulating a relative angle of rotation between a camshaft and a crankshaft in an internal combustion engine by means of an electromechanical phase adjustment device.
- the invention further relates to a phase adjustment device for performing such a method.
- Electromechanical phase adjustment devices of the generic type are known from DE 100 38 354 AI or DE 102 22 475 AI. Such phase adjustment devices are used to adjust the relative angle of rotation between a camshaft and the crankshaft of an internal combustion engine. By adjusting this angle of rotation, the opening times of the intake or exhaust valves can be influenced in a targeted manner, which has proven to be advantageous when operating internal combustion engines with regard to fuel consumption and pollutant emissions.
- a rotation angle cascade control for such electromechanical phase adjustment devices which uses the actuator speed as a control variable in a lower-level control circuit.
- a disadvantage of such a rotation angle cascade control is that the actuator speed differs from the changes over time of the rotation angle and the rotation angle cascade control thus exhibits poor control behavior.
- the object of the invention is to develop a method for quickly and precisely regulating the relative angle of rotation between see a camshaft and a crankshaft in an internal combustion engine by means of an electromechanical phase adjustment device.
- the essence of the invention is that first the at least one measurable variable, which is usually easy to measure, is used to calculate the change in the rotation angle over time, hereinafter referred to as the adjustment speed, and this is used as the controlled variable.
- the actual adjustment speed calculated from at least one measured variable is compared with a target adjustment speed and the resulting adjustment speed control deviation is fed to an adjustment speed controller, which is subordinate to an angle of rotation controller which specifies the target adjustment speed.
- an adjustment speed controller which is subordinate to an angle of rotation controller which specifies the target adjustment speed.
- an actual adjustment speed is calculated according to claim 2
- the speed of the internal combustion engine, which is superimposed on the phase adjustment device is included in the calculation of the actual adjustment speed, so that an operating point change of the internal combustion engine acting as a fault is corrected without delay and exactly, or simultaneously with an adjustment of the relative angle of rotation
- Operating point change of the internal combustion engine is used to adjust the relative angle of rotation.
- a calculation of the superimposition speed according to claim 3 is easy to carry out, since the superimposition speed results as half the speed of the crankshaft.
- a calculation in an observer model according to claim 4 allows a very precise determination of the actual adjustment speed, since inaccuracies in the calculation of the actual adjustment speed are corrected in the observer model.
- a target current according to claim 5 allows a current regulator to be superimposed.
- a current controller subordinate to the adjustment speed controller, according to claim 6, permits a delay-free and exact correction of disturbances to the current of the actuator and thus to the drive torque of the actuator. Malfunctions can arise, for example, from the temperature dependence of resistances of the actuator.
- a limitation of the target current according to claim 7 enables effective protection of the actuator against overload.
- Another object of the invention is to provide a phase adjustment device for carrying out a method for quickly and accurately regulating a relative angle of rotation between a camshaft and a crankshaft in an internal combustion engine.
- phase adjustment device with the features of claim 8.
- the advantages of invented phase adjustment device according to the invention correspond to those which were carried out above in connection with the method according to the invention for regulating a relative angle of rotation between a camshaft and a crankshaft.
- a DC motor according to claim 10 allows simple design and adjustment of the controller.
- 1 is a schematic diagram of an internal combustion engine with a phase adjustment device
- FIG. 2 is a schematic representation of a method for controlling a relative angle of rotation between a camshaft and a crankshaft by means of a phase adjustment device according to a first embodiment
- FIG. 3 shows a schematic representation of a method for regulating a relative angle of rotation according to a second exemplary embodiment
- Fig. 4 shows a schematic representation of a method for regulating a relative angle of rotation according to a third exemplary embodiment
- Fig. 5 is a schematic representation of a method for controlling a relative angle of rotation according to a fourth embodiment.
- Fig. 1 shows an internal combustion engine 1, which is constructed in a known manner.
- the internal combustion engine 1 comprises a plurality of cylinders 2 arranged in series, in each of which a piston 3 is guided.
- Each piston 3 is connected to a crankshaft 5 by means of a connecting rod 4, the crankshaft 5 being rotatably supported about a crankshaft axis of rotation 6.
- a crankshaft sensor 7 is arranged, which serves to measure an angle of rotation ⁇ ⁇ and a speed ⁇ ⁇ of the crankshaft 5.
- a crankshaft gear 8 is arranged at a second end of the crankshaft 5 and drives a camshaft gear 10 via a toothed belt 9.
- the camshaft gear 10 is coupled to an electromechanical phase adjustment device 11 and a camshaft 12.
- the phase adjustment device 11 comprises a swash plate mechanism 13 and an actuator 14 in the form of a DC motor, the swash plate mechanism 13 being connected to the DC motor 14, the camshaft gear 10 and the camshaft 12 in such a way that an angle of rotation ⁇ N of the camshaft 12 can be set.
- a swash plate mechanism 13 is connected to the DC motor 14, the camshaft gear 10 and the camshaft 12 in such a way that an angle of rotation ⁇ N of the camshaft 12 can be set.
- the detailed structure of the swash plate mechanism 13 reference is made to DE 100 38 354 AI and DE 102 22 475 AI.
- a plurality of spaced-apart cams 15 are fastened along the camshaft 12, each of which actuates a valve 16 for introducing or discharging gas into the cylinders 2.
- a camshaft sensor 17 is attached to an end of the camshaft 12 facing away from the camshaft gear 10. ordered, which serves to measure the angle of rotation ⁇ N and the speed ⁇ N of the camshaft 12.
- the phase adjustment device 11 further comprises a regulating and control unit 18 which is connected to the crankshaft sensor 7, the camshaft sensor 17, a first actuator sensor 19 and a second actuator sensor 20 for the transmission of measurement data.
- the first actuator sensor 19 is used to measure the rotational angle ⁇ s and the rotational speed ⁇ s of the DC motor 14, and the second actuator sensor 20 is used to measure the armature current I s of the DC motor 14.
- the control and control unit 18 is used to control the DC motor 14 connected to a power electronics circuit, not shown, by means of which the DC motor 14 is actuated.
- the camshaft 12 is rotated about a camshaft axis of rotation 21 via the swash plate gear 13.
- the adjustment speed ⁇ is defined as the change over time of the relative adjustment angle ⁇ with the dimension ° / sec.
- the adjustment speed ⁇ is related to the crankshaft 5 and thus has the unit ° crankshaft / sec.
- the speed of the camshaft gear 10 is referred to below as the superimposed speed ⁇ Ü .
- a method implemented in the regulating and control unit 18 of the phase adjustment device 11 for regulating the relative angle of rotation ⁇ according to a first exemplary embodiment is described in more detail below with reference to FIG. 2.
- a rotation angle control deviation ⁇ between a set rotation angle ⁇ TARGET to be set and a determined actual rotation angle ⁇ ACTUAL is calculated.
- the twist angle control deviation ⁇ is then fed to a twist angle controller 23, in which a target adjustment speed ⁇ TARGET which is dependent on the twist angle control deviation ⁇ is calculated.
- the target rotation angle ⁇ TARGET is specified by a superordinate motor control, not shown.
- the actual angle of rotation ⁇ 1S ⁇ can be determined either by direct measurement, as is known from DE 102 36 507 AI, or from existing measured variables, such as the angle of rotation ⁇ of the crankshaft 5, the angle of rotation ⁇ N of the camshaft 12 and the angle of rotation ⁇ s of the DC motor 14 can be calculated. Is the measurement or calculation of the actual twist angle ⁇ IS ⁇ ideal, this corresponds to the relative twist angle ⁇ .
- an adjustment speed control deviation ⁇ between the desired adjustment speed ⁇ TARGET and a calculated actual adjustment speed ⁇ 1S ⁇ is also calculated.
- the adjustment speed control deviation ⁇ is fed to an adjustment speed controller 26 subordinate to the angle of rotation controller 23, in which an output variable dependent on the adjustment speed control deviation ⁇ is calculated and output.
- the output variable of the adjustment speed controller 26 is a target value for the current-driving voltage of the DC motor 14, which is set on the DC motor 14 by a power electronic circuit (not shown).
- the direct current motor 14 adjusts the twist angle ⁇ via the swash plate gear 13 until the desired twist angle ⁇ SHOULD be reached and the twist angle control deviation ⁇ becomes zero.
- the angle of rotation controller 23 is part of a first control loop for controlling the angle of rotation ⁇ and the adjustment speed controller 26 is part of a second control loop for controlling the adjustment speed ⁇ , the second control loop being cascaded under the first control loop.
- the computing effort in the regulating and control unit 18 is kept low.
- Known linear methods for parameterizing the controllers 23, 26 can be used by using linear controller structures.
- the subordinate control of the adjustment speed ⁇ allows the control of the angle of rotation ⁇ to settle quickly with little overshoot and very good stationary control accuracy.
- the number of parameters of the controllers 23, 26 to be set is manageable, so that the parameterization of the controllers 23, 26 is clear for an applicator and is therefore easy to carry out.
- a method for regulating the angle of rotation ⁇ implemented in the regulating and control unit 18 according to a second exemplary embodiment is described below with reference to FIG. 3.
- the main difference compared to the first embodiment is that the output variable of the adjustment speed controller 26 and the rotational speed ⁇ s of the direct current motor 14 are fed to a disturbance variable compensation 27 in which a self-induction voltage of the direct current motor 14 dependent on the rotational speed ⁇ s of the direct current motor 14 is compensated.
- the output variable of the disturbance variable compensation 27 is a setpoint value for the current-driving voltage of the direct current motor 14 which is compensated as a function of the self-induction voltage and which is fed to a power electronic circuit and is set by the latter on the direct current motor 14.
- the dynamics of the regulation of the twist angle ⁇ can be improved by the disturbance variable compensation 27.
- a method implemented in the regulating and control unit 18 for regulating the angle of rotation ⁇ according to a third exemplary embodiment is described below with reference to FIG. 4.
- the main difference compared to the first and second exemplary embodiment is that the actual adjustment speed ⁇ ACT is calculated in an observer model 28.
- the phase adjustment device 11 is at least partially modeled in the observer model 28, the modeled state variables of the phase adjustment device 11, in particular the actual adjustment speed ⁇ j S ⁇ , being continuously corrected by comparing the observer model 28 by means of the actual angle of rotation ⁇ S ⁇ .
- the comparison of the observer model 28 prevents the calculated actual adjustment speed ⁇ ACT from drifting from the real adjustment speed ⁇ due to the integrating system behavior.
- the actual adjustment speed ⁇ ACTUAL can be calculated very precisely in the observer model 28.
- a method for regulating the angle of rotation ⁇ implemented in the regulating and control unit 18 is described below with reference to FIG. 5 described according to a fourth embodiment.
- the essential difference compared to the previous exemplary embodiments is that the output variable of the adjustment speed controller 26 is interpreted as a target current I DES of the DC motor 14 and in a third calculation module 29 a current control deviation ⁇ I between the target current I DES and a measured actual current I IS ⁇ of the DC motor 14 is calculated.
- a manipulated variable dependent on the current control deviation ⁇ I for adjusting the twist angle ⁇ is then calculated in a current controller 30 subordinate to the adjustment speed controller 26.
- the actual current I 1S ⁇ of the direct current motor 14 is measured by means of the second actuator sensor 20.
- the measurement of the actual current I IS ⁇ is ideal, then this corresponds to the armature current I s of the direct current motor 14.
- a third control loop is subordinate to the first and second control loops.
- a current limitation is also provided in the current controller 30, which serves to limit the target current I SOLL to a maximum current value I MAX , which also limits the armature current I s .
- the current limitation serves to protect the DC motor 14 against overload.
- the disturbance variable compensation 27 and the observer model 28 can be combined with the method for regulating the angle of rotation ⁇ according to the fourth exemplary embodiment.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Valve Device For Special Equipments (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10352851A DE10352851A1 (de) | 2003-11-10 | 2003-11-10 | Verdrehwinkelregelung |
PCT/DE2004/002467 WO2005047657A2 (de) | 2003-11-10 | 2004-11-05 | Verfahren zur regelung eines verdrehwinkels sowie phasenverstellvorrichtung zur durchführung eines derartigen verfahrens |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1682751A2 true EP1682751A2 (de) | 2006-07-26 |
EP1682751B1 EP1682751B1 (de) | 2017-05-17 |
Family
ID=34585014
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04802686.8A Active EP1682751B1 (de) | 2003-11-10 | 2004-11-05 | Verfahren zur regelung eines verdrehwinkels sowie phasenverstellvorrichtung zur durchf hrung eines derartigen verfahrens |
Country Status (5)
Country | Link |
---|---|
US (1) | US7380529B2 (de) |
EP (1) | EP1682751B1 (de) |
JP (1) | JP2007530846A (de) |
DE (2) | DE10352851A1 (de) |
WO (1) | WO2005047657A2 (de) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005015856A1 (de) * | 2004-12-24 | 2006-07-13 | Daimlerchrysler Ag | Verfahren und Einrichtung zum Einstellen einer elektrodynamischen Bremse eines elektrischen Nockenwellenverstellers für eine Nockenwelle einer Brennkraftmaschine |
DE102006003131B4 (de) * | 2006-01-23 | 2009-03-05 | Continental Automotive Gmbh | Verfahren und Vorrichtung zum Steuern einer Brennkraftmaschine |
US8567359B2 (en) | 2010-08-06 | 2013-10-29 | Ford Global Technologies, Llc | Feed forward control for electric variable valve operation |
DE102010053685B4 (de) * | 2010-12-08 | 2014-10-30 | Schwäbische Hüttenwerke Automotive GmbH | Vorrichtung zur Verstellung der Drehwinkelposition einer Nockenwelle |
US9341088B2 (en) | 2011-03-29 | 2016-05-17 | GM Global Technology Operations LLC | Camshaft phaser control systems and methods |
US9273738B2 (en) * | 2014-05-30 | 2016-03-01 | Goodrich Corporation | Belt park brake and methods |
DE102014213253B4 (de) | 2014-07-08 | 2017-12-28 | Schaeffler Technologies AG & Co. KG | Verfahren zum Betrieb eines Nockenwellenverstellers und Regelvorrichtung für einen Nockenwellenversteller |
DE102016222732A1 (de) * | 2016-11-18 | 2018-05-24 | Robert Bosch Gmbh | Verfahren und Vorrichtung zum Durchführen einer Positionsregelung für eine Stellgebereinheit |
CN111219223A (zh) * | 2018-11-26 | 2020-06-02 | 博格华纳公司 | 电致动可变凸轮轴正时设备控制器 |
DE102019219451A1 (de) | 2019-07-26 | 2021-01-28 | Robert Bosch Gmbh | Hydraulische Druckmittelversorgungsanordnung für eine mobile Arbeitsmaschine und Verfahren |
EP3770428B1 (de) * | 2019-07-26 | 2023-04-19 | Robert Bosch GmbH | Hydraulische druckmittelversorgungsanordnung für eine mobile arbeitsmaschine und verfahren |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2922501A1 (de) | 1979-05-31 | 1980-12-04 | Licentia Gmbh | Verfahren und einrichtung zur lageregelung von drehzahl- oder ankerspannungsgeregelten gleichstromantrieben |
GB2234314A (en) | 1989-07-18 | 1991-01-30 | Candy Mfg Co Inc | Zero back lash phase adjusting mechanism |
DE4122391A1 (de) | 1991-07-05 | 1993-01-07 | Bosch Gmbh Robert | Verfahren zum betrieb eines drehzahlregelbaren motors |
US5218935A (en) * | 1992-09-03 | 1993-06-15 | Borg-Warner Automotive Transmission & Engine Components Corporation | VCT system having closed loop control employing spool valve actuated by a stepper motor |
JP3036394B2 (ja) * | 1995-03-31 | 2000-04-24 | トヨタ自動車株式会社 | 内燃機関のバルブタイミング制御装置 |
DE19600853A1 (de) | 1996-01-12 | 1997-07-17 | Schaeffler Waelzlager Kg | Vorrichtung zum Verändern der Steuerzeiten einer Brennkraftmaschine |
AU5420299A (en) | 1999-08-05 | 2001-03-05 | Trochocentric (International) Ag | Adjusting device for adjusting the phase position of a shaft |
DE10038354C2 (de) | 2000-08-05 | 2003-03-20 | Atlas Fahrzeugtechnik Gmbh | Steuereinrichtung zum Verstellen des Drehwinkels einer Nockenwelle |
JP4027589B2 (ja) * | 2000-11-30 | 2007-12-26 | 株式会社日立製作所 | 電磁式可変バルブタイミング装置の制御装置 |
DE10220687A1 (de) | 2002-05-10 | 2003-11-20 | Ina Schaeffler Kg | Nockenwellenversteller mit elektrischem Antrieb |
DE10222475A1 (de) | 2002-05-22 | 2003-12-04 | Atlas Fahrzeugtechnik Gmbh | Getriebe mit zwei ineinander angeordneten Drehscheiben, die durch eine Taumelscheibe miteinander verbunden sind |
DE10248351A1 (de) * | 2002-10-17 | 2004-04-29 | Ina-Schaeffler Kg | Elektrisch angetriebener Nockenwellenversteller |
DE10259134A1 (de) | 2002-12-18 | 2004-07-15 | Aft Atlas Fahrzeugtechnik Gmbh | Vorrichtung zum Verstellen der Phasenlage zwischen Nockenwelle und Kurbelwelle |
DE10332264A1 (de) | 2003-07-16 | 2005-02-03 | Aft Atlas Fahrzeugtechnik Gmbh | Elektromechanischen Phasensteller und Verfahren zu dessen Betrieb |
JP4269169B2 (ja) * | 2004-08-31 | 2009-05-27 | 株式会社デンソー | 内燃機関の回転状態検出装置 |
-
2003
- 2003-11-10 DE DE10352851A patent/DE10352851A1/de not_active Withdrawn
-
2004
- 2004-11-05 WO PCT/DE2004/002467 patent/WO2005047657A2/de active Application Filing
- 2004-11-05 DE DE112004002672T patent/DE112004002672D2/de not_active Expired - Fee Related
- 2004-11-05 JP JP2006538648A patent/JP2007530846A/ja active Pending
- 2004-11-05 US US10/578,738 patent/US7380529B2/en active Active
- 2004-11-05 EP EP04802686.8A patent/EP1682751B1/de active Active
Non-Patent Citations (1)
Title |
---|
See references of WO2005047657A2 * |
Also Published As
Publication number | Publication date |
---|---|
US20070125331A1 (en) | 2007-06-07 |
EP1682751B1 (de) | 2017-05-17 |
JP2007530846A (ja) | 2007-11-01 |
WO2005047657A2 (de) | 2005-05-26 |
DE112004002672D2 (de) | 2006-11-16 |
DE10352851A1 (de) | 2005-06-23 |
WO2005047657A3 (de) | 2009-03-12 |
US7380529B2 (en) | 2008-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3416369C2 (de) | Vorrichtung zur Regelung der Geschwindigkeit eines Fahrzeugs | |
DE602005000270T2 (de) | Regelungssystem | |
DE2516900C3 (de) | Steuersystem für eine Triebwerksanlage | |
DE4100692C3 (de) | Drehzahlregelungsvorrichtung für einen internen Verbrennungsmotor | |
DE19756053B4 (de) | Drosselklappensteuervorrichtung | |
DE3937102C2 (de) | Vorrichtung zur elektronischen Steuerung der Drosselklappenöffnung | |
WO2005047657A2 (de) | Verfahren zur regelung eines verdrehwinkels sowie phasenverstellvorrichtung zur durchführung eines derartigen verfahrens | |
DE10065488B4 (de) | Luftansaugmengensteuereinrichtung für Brennkraftmaschinen | |
EP2057052A1 (de) | Ansteuervorrichtung und verfahren zum ansteuern eines hybridantriebs | |
WO2016180890A1 (de) | Positionierantrieb sowie verfahren zum positionieren eines abtriebselements | |
EP1605140B1 (de) | Verstellvorrichtung für eine Nockenwelle | |
DE3400711A1 (de) | Einrichtung zum steuern des einspritzzeitpunktes von einem verbrennungsmotor zugefuehrten kraftstoff | |
DE4029537A1 (de) | Verfahren und vorrichtung zur steuerung und/oder regelung einer betriebsgroesse einer brennkraftmaschine | |
EP3543514A1 (de) | Verfahren und regelkreis zum bestimmen einer stellgrösse zum einstellen eines saugrohrdrucks | |
DE102006008051B3 (de) | Adaptives Positionierverfahren eines Stellglieds | |
EP0937331A1 (de) | Verfahren und vorrichtung zur bestimmung einer drehzahl einer geberlosen, feldorientiert betriebenen drehfeldmaschine | |
DE102016222732A1 (de) | Verfahren und Vorrichtung zum Durchführen einer Positionsregelung für eine Stellgebereinheit | |
DE102018100905B3 (de) | Verfahren zur Überwachung eines Hubkolbenmotors mit variablem Verdichtungsverhältnis | |
WO2006072358A1 (de) | Verfahren und einrichtung zum einstellen einer elektrodynamischen bremse eines elektrischen nockenwellenverstellers für eine nockenwelle einer brennkraftmaschine | |
EP1573177B1 (de) | Vorrichtung zum verstellen der phasenlage zwischen nockenwelle und kurbelwelle | |
DE102022203051B3 (de) | Verfahren zum Betreiben einer drehzahlvariablen Pumpe | |
WO2015062721A2 (de) | Verfahren zum betreiben einer hybridantriebseinrichtung sowie entsprechende hybridantriebseinrichtung | |
DE102021206422B4 (de) | Regeleinrichtung zur Regelung einer eine Brennkraftmaschine und einen mit der Brennkraftmaschine antriebswirkverbundenen Generator umfassenden Leistungsanordnung, Regelanordnung mit einer solchen Regeleinrichtung, Leistungsanordnung und Verfahren zur Regelung einer Leistungsanordnung | |
DE102018119273A1 (de) | Verfahren zum Wiederstart eines Antriebselements in einem Antriebsstrang | |
DE19611497B4 (de) | Verfahren und Vorrichtung zur Steuerung der Leistung einer Brennkraftmaschine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20060428 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL HR LT LV MK YU |
|
DAX | Request for extension of the european patent (deleted) | ||
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB IT |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: ROHE, MARCO Inventor name: FINIS, UWE Inventor name: WILKE, MARKUS Inventor name: KIANER, KAVE |
|
PUAK | Availability of information related to the publication of the international search report |
Free format text: ORIGINAL CODE: 0009015 |
|
17Q | First examination report despatched |
Effective date: 20120419 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20170125 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502004015534 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502004015534 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170517 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20180220 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20171105 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20180731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171105 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230522 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240119 Year of fee payment: 20 |