EP1678729B1 - Dispositif pour detecter l'usure de contacts dans des appareils de commutation - Google Patents

Dispositif pour detecter l'usure de contacts dans des appareils de commutation Download PDF

Info

Publication number
EP1678729B1
EP1678729B1 EP04786837A EP04786837A EP1678729B1 EP 1678729 B1 EP1678729 B1 EP 1678729B1 EP 04786837 A EP04786837 A EP 04786837A EP 04786837 A EP04786837 A EP 04786837A EP 1678729 B1 EP1678729 B1 EP 1678729B1
Authority
EP
European Patent Office
Prior art keywords
optical waveguide
light
switching
lwl
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04786837A
Other languages
German (de)
English (en)
Other versions
EP1678729A1 (fr
Inventor
Bernd Adam
Michael Hahn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1678729A1 publication Critical patent/EP1678729A1/fr
Application granted granted Critical
Publication of EP1678729B1 publication Critical patent/EP1678729B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/0015Means for testing or for inspecting contacts, e.g. wear indicator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/0015Means for testing or for inspecting contacts, e.g. wear indicator
    • H01H2001/0026Means for testing or for inspecting contacts, e.g. wear indicator wherein one or both contacts contain embedded contact wear signal material, e.g. radioactive material being released as soon as the contact wear reaches the embedded layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/26Means for detecting the presence of an arc or other discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/50Means for detecting the presence of an arc or discharge

Definitions

  • the present invention relates to a device for detecting contact erosion in switching devices.
  • the present invention relates to a device for detecting contact erosion on the switching contacts in an electrical switching device according to the preamble of claim 1.
  • the opening and closing switching contacts for switching currents cause switching arcs between the switching contacts. These switching arcs lead to an increasing contact erosion at the switching contacts and thus to a wear of the switching contacts. Since this wear affects the switching behavior of the switching device, the contact erosion of the switching contacts must be monitored.
  • Object of the present invention is to provide a further device for monitoring the wear of switching contacts in electrical switching devices.
  • the device having the features of claim 1, wherein the contact erosion is effected on at least one opening and closing switching contact pair in the switching device, and the device comprises at least one optical waveguide and at least one detector, wherein light emitted from at least one light source the at least one optical waveguide can be coupled in and can be guided by the optical waveguide to the at least one detector and the at least one optical waveguide is arranged with respect to the at least one switching contact pair so that an intensity of the light coupled into the optical waveguide of an ascending number measured by the at least one detector decreases from the contact erosion generated contact erosion particles in the electrical switching device.
  • this increasing degree of contamination is now used as a measure of the assessment of the contact erosion and thus for the monitoring of the wear of the switching contacts of the electrical switching device.
  • this degree of contamination is determined with the aid of the at least one optical waveguide and the at least one detector.
  • one or more optical waveguides are arranged with respect to the at least one switching contact to be monitored such that the light emanating from a light source and entering one of the optical waveguides with increasing number of contact erosion particles and thus with increasing Degree of pollution is increasingly dampened.
  • the light entering the one or more optical waveguides is guided by the optical waveguide to one or more detectors.
  • An optical waveguide can lead the incoming light exactly to one but also to several detectors.
  • the light entering into a plurality of optical waveguides, which are jointly assigned to the at least one switching contact can also be led to only one detector. In all these cases, the intensity of the light coupled in at least one optical waveguide is measured by the at least one detector.
  • the device according to the invention Based on the measured intensity of the light entering the optical waveguide in the desired state of the switching device, that is, for example, in a new switching device, then by repeatedly measuring and evaluating the intensity of the light entering the at least one optical waveguide, the contact erosion and thus the wear of at least one assigned switching contact to be monitored.
  • the device according to the invention thus permits contactless monitoring with opto-electronic means.
  • the device according to the invention allows the determination of the contact erosion without the need for the switching device itself to be removed from its actual operating location.
  • the necessary calibration of the measured intensity on the state of the switching contacts and thus on the degree of wear is determined depending on the particular design of the switching device and can be based for example on empirically determined values.
  • the, caused by the opening and closing switching contacts, arc itself is used as a light source for the device according to the invention.
  • a mathematical standardization is to be brought about in a suitable manner.
  • this standardization should also include possible changes in the light intensity of the arc, with increasing contact erosion can occur.
  • it can then be assumed during the evaluation that the intensity of the light emanating from the arc is almost constant.
  • a light-emitting diode is provided as a light source, which forms a light barrier together with the at least one optical waveguide.
  • the light barrier must be arranged in relation to the at least one switching contact pair such that the light emitted by the light emitting diode and coupled into the at least one optical waveguide is attenuated by the contact erosion particles located in the space between the light emitting diode and the optical waveguide. If commercial photocells, which comprise precisely one optical waveguide and one light-emitting diode, are preferably used, the wear can be monitored with the simplest means.
  • a further LichtweLlenleiter is provided as a light source.
  • a light source such as a light emitting diode
  • this end face can be regarded as a light source for the device according to the invention and form a light barrier together with the first optical waveguide.
  • the light is guided by the further optical waveguide acting as a light source so that it emerges radially over its length. Due to this constant light emission, the intensity remaining in the optical waveguide will continue to decrease with increasing length, that is, with increasing distance from the illuminant. As a result, as the distance from the light source increases, so does the intensity of the light that emerges.
  • a plate is provided between the light source and the at least one optical waveguide, which has a defined transmittance for the light emitted by the light source, and which is arranged with respect to the switch contacts so that contact erosion particles can attach to the plate.
  • the device according to the invention allows at least one switching contact pair to be monitored, that is to say one but also a plurality of switching contact pairs are monitored by a common arrangement of at least one optical waveguide and at least one detector. This common arrangement then allows a common statement on the contact wear on this at least one pair of switching contact.
  • at least one optical waveguide can be provided in particular for each switching contact pair of a multi-pole switching device. Thus, the degree of burnup and thus the wear of the individual switching contact pairs are monitored separately.
  • a signal corresponding to the light intensity measured by at least one detector is transmitted to a triggering unit for the electrical switching device, then the switching device can be controlled by this triggering unit. If the measured light intensity falls below a certain value as a result of an ever increasing number of contact erosion particles, the tripping unit will recognize that a critical degree of wear has been reached and prevent further switching of the electrical switching device.
  • the evaluation can also be evaluated at a location further away from the switching device and thus the switching device can be monitored.
  • the state of the switching contacts can then be remotely reported during operation of the circuit breaker. Wear of the switching contact can thus be detected early, which then preventive maintenance is possible.
  • the device according to the invention is used for detecting contact erosion in low-voltage circuit breakers or contactors.
  • the exemplary embodiments shown in FIGS. 1 to 4 always have just one light source Q, an optical waveguide LWL for coupling in the light emanating from the light source, and a detector D for a switching contact pair for simplifying the description of the present invention.
  • the one optical waveguide LWL shown at least one optical waveguide and instead of the one detector D at least one detector for the device according to the invention may be provided.
  • FIGS. 1-4 show various embodiments of an electrical switching device S.
  • the switching device S has a first K1 and a second K1 'switching contact.
  • One of the switching contacts is movable in a suitable manner, so that with appropriate control, the contacts can be moved towards or away from each other.
  • With the existing of the Druckkantakten K1 and K1 ⁇ switching contact pair can then switch corresponding switching currents.
  • K1 ' occurs when switching high currents, as they are usually switched in low-voltage circuit breakers or contactors, to an arc between the switch contacts K1 and K1'.
  • This arc causes an increasing burnup of the switching contacts K1 and K1 'with increasing number of switching operations and thus an increasing wear of the switching device S. If the burnup is too high, the switching device S can no longer safely switch the currents to be switched and must be replaced.
  • an optical fiber LWL and a light source Q are provided.
  • this light source Q is a light-emitting diode, which forms a commercially available light barrier LS together with the optical waveguide LWL.
  • the light emanating from the light source Q will have a certain intensity, depending on the type of light source and its activation.
  • a certain part of the light is coupled into the optical waveguide LWL and guided by this to a detector D.
  • the intensity, measured by the detector D, of the light coupled into the optical waveguide LWL has a defined amount, that is to say a nominal value.
  • the number of contact erosion particles in the housing G of the electrical switching device S will increase. If these contact erosion particles now reach the region between the light source Q and the optical waveguide LWL, the light emanating from the light source Q and entering the optical waveguide LWL is attenuated by this contact erosion particle. This means that the more contact erosion particles within the housing G and thus in the region between the light source Q and the optical waveguide LWL are present, the lower will be the intensity of the light coupled into the optical waveguide LWL as measured by the detector D.
  • Figure 2 shows in more detail, another embodiment of the electrical switching device S with the two switching contacts K1 and K1 '. Due to the shape of the switching contacts K1 and K1 'shown here, it will be in the marked area in particular to an increased contact erosion and thus to increased pollution. If this locally stronger contamination is to be taken into account when detecting the contact erosion, a development of the device according to the invention is advantageous.
  • the device according to the invention comprises an optical waveguide LWL for coupling in light and a further optical waveguide LWLQ, which is designed as a light source.
  • light from a luminous means Q at both ends of the further optical waveguide LWLQ is coupled into this further optical waveguide acting as a light source.
  • the further optical waveguide LWLQ is designed so that the light guided therein radially emerges over its length. As a result of this permanent light emission, the intensity of the light emerging radially from the further optical waveguide LWLQ will continue to decrease with increasing distance from the luminous means Q. This means that, in the arrangement shown in FIG. 2, light with the least intensity will emerge from the further optical waveguide LWLQ in the marked area. Since this region encompassed by a dashed line is also the region with the greatest contamination, the light emerging radially from the further optical waveguide LWLQ with reduced intensity is also attenuated even more than in other regions.
  • the light entering the optical waveguide LWL arranged, for example, parallel to the further optical waveguide LWLQ will always have a lower intensity in the marked region than the light which is coupled into the optical waveguide LWL in the other regions becomes.
  • the intensity is determined over all spatially coupled light components, the light entering from the marked area with a different weighting in the determination of the intensity and thus in the assessment of Maisabbrandes received as the light in other areas is coupled.
  • many other arrangements are conceivable and included in the invention.
  • optical waveguides LWL and LWLQ are not meandering, but are formed only as a simple loop. Furthermore, it is conceivable that both optical waveguides LWL and LWLQ are arranged so that the switching contact pair K1, K1 'is located between the optical waveguide LWL and the further optical waveguide LWLQ. Furthermore, it is also readily possible, as described above, to provide a plurality of optical waveguides or detectors for monitoring one switching contact pair instead of one optical waveguide LWL and one detector D in this embodiment as well.
  • the arc generated by the opening and closing switch contacts K1 and K1 'itself is the light source Q.
  • an optical fiber LWL and a detector D are necessary to use the inventive device to detect contact erosion, and thus to monitor the wear of the switching device S.
  • the wear of the switching device can be monitored indirectly on the basis of the intensity of the light coupled into the optical waveguide LWL and guided to the detector D light. A possibly during the operation, that is, with increasing number of switching operations of the switching device, changing intensity of the outgoing light from the arc must be determined empirically and taken into account in the monitoring in a corresponding normalization.
  • FIG. 4 schematically shows a fourth embodiment, in which again the arc is the light source Q.
  • a plate P is additionally provided between arc Q and optical fiber LWL, at which the contact erosion particles can accumulate. This means that with increasing erosion, more and more contact erosion particles will accumulate on the plate P, whereby the transmittance for the light transmitted from the arc to the optical waveguide becomes ever smaller, that is, increasingly attenuated.
  • the wear of the switching device can be monitored indirectly on the basis of the intensity of the light coupled into the optical waveguide LWL and guided to the detector D light.
  • the plate P shown in FIG. 4 may also be readily used in combination with one of the embodiments shown in FIG. 1 or 2.
  • the plate P itself could be a window in the housing, wherein the light emitted from the arc light is transmitted via the plate P to an arranged outside the housing optical fiber LWL and coupled into this.
  • the plate P itself could be a window in the housing, wherein the light emitted from the arc light is transmitted via the plate P to an arranged outside the housing optical fiber LWL and coupled into this.
  • FIG. 5 shows, by way of example, a possible arrangement of the optical waveguide LWL for a multi-pole switching device with three switching contact pairs.
  • the optical waveguide here has three loops, each of the loops being associated with a switching contact pair of the switching device.
  • the light sources are either the arc itself or an additional light source, in particular a light-emitting diode or another optical waveguide.
  • the intensity of the emanating from the respective light source Q and coupled into the optical waveguide LWL and forwarded by this light from the detector D is measured and then transmitted to a trip unit A.
  • This trip unit will control the electrical switching device depending on the measured intensity of the light. If the measured light intensity falls below a certain value only for one of the switching contact pairs as a result of an ever increasing number of contact erosion particles, the tripping unit A will recognize that a critical degree of wear has been achieved at least for this switching contact pair and a further switching of all switching contact pairs of the multi-pole electrical switching device S. prevention.
  • a separate optical waveguide LWL1, LWL2 and LWL 3 as well as an associated detector D1, D2 and D3 can be provided for each switching contact pair as shown in FIG. If the individual switching contact pairs are interconnected with a time offset and this time information is available to a detector, then the three detectors D1, D2 and D3 can be replaced by a single detector D, as indicated in FIG. 6 by a dashed line. The intensities measured by the detectors D1, D2 and D3 or the detector D can then be transmitted again to the tripping unit A, and this can then react accordingly, as already described above.

Landscapes

  • Keying Circuit Devices (AREA)
  • Switches Operated By Changes In Physical Conditions (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Breakers (AREA)
  • Relay Circuits (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

L'invention concerne un dispositif pour détecter l'usure de contacts de commutation (K1, K1') dans un appareil de commutation électrique (S), l'usure des contacts étant provoquée au niveau d'au moins une paire de contacts de commutation (K1, K1') qui s'ouvrent et se ferment dans l'appareil de commutation (S). Le dispositif selon l'invention comprend un guide d'ondes lumineuses (LWL) ainsi qu'un détecteur (D), une lumière sortant d'au moins une source lumineuse (Q) pouvant être injectée dans le guide d'ondes lumineuses (LWL) et guidée par ce guide d'ondes lumineuses (LWL) jusqu'au détecteur (D). Le guide d'ondes lumineuses (LWL) est disposé par rapport à la/aux paire(s) de contacts de commutation (K1, K1'), de façon qu'une intensité de la lumière injectée dans le guide d'ondes lumineuses (LWL), qui est mesurée par le détecteur, diminue dans l'appareil de commutation électrique (S) à mesure que le nombre de particules d'usure de contacts générée par l'usure des contacts augmente.

Claims (11)

  1. Dispositif de détection d'usure de contacts de commutation (K1, K1') dans un appareil de commutation électrique (S), l'usure de contacts concernant au moins une paire de contacts de commutation (K1, K1') s'ouvrant et se fermant dans l'appareil de commutation (S), ayant au moins une fibre optique (LWL) et ayant au moins un détecteur (D), une lumière partant d'au moins une source lumineuse (Q) pouvant être introduite dans la - au moins une - fibre optique (LWL) et pouvant être conduite par la fibre optique (LWL) au - au moins un - détecteur (D),
    caractérisé par le fait que la - au moins une - fibre optique (LWL) est disposée de telle sorte par rapport à la - au moins une - paire de contacts de commutation (K1, K1') qu'une intensité, mesurée par le - au moins un - détecteur (D), de la lumière introduite dans la - au moins une - fibre optique (LWL) diminue lorsque le nombre de particules d'usure de contacts, produites par l'usure de contacts, dans l'appareil de commutation électrique (S) augmente.
  2. Dispositif selon la revendication 1,
    caractérisé par le fait que la source lumineuse (Q) est l'arc électrique produit par la paire de contacts de commutation (K1, K1') s'ouvrant et se fermant.
  3. Dispositif selon la revendication 1 ou 2,
    caractérisé par le fait que la source lumineuse (Q) est au moins une diode électroluminescente qui forme conjointement avec la - au moins une - fibre optique (LWL) un barrage
  4. Dispositif selon la revendication 1 ou 2,
    caractérisé par le fait que la - au moins une - source lumineuse (Q) est une autre fibre optique (LWLQ).
  5. Dispositif selon la revendication 4,
    caractérisé par le fait que la lumière sort de l'autre fibre optique (LWLQ) par l'un de ses côté frontaux et que ce côté frontal forme conjointement avec la - au moins une - fibre optique (LWL) un barrage photoélectrique (LS).
  6. Dispositif selon la revendication 4,
    caractérisé par le fait que la lumière sort radialement de l'autre fibre optique (LWLQ) sur toute sa longueur.
  7. Dispositif selon l'une des revendications 1 à 6,
    caractérisé par le fait qu'il y a entre la source lumineuse (Q) et la - au moins une - fibre optique (LWL) une plaque (P) qui a un facteur de transmission pour la lumière partant de la source lumineuse (Q) et qui est disposée de telle sorte par rapport à la - au moins une - paire de contacts de commutation (K1, K1') que des particules d'usure de contacts se fixent sur la plaque (P), le facteur de transmission diminuant lorsque le nombre de particules d'usure de contacts augmente.
  8. Dispositif selon l'une des revendications précédentes 1 à 7,
    caractérisé par le fait qu'une fibre optique (LWL1, LWL2, LWL3) est associée à une paire de contacts de commutation d'un appareil de commutation électrique multipolaire (S), la fibre optique (LWL1, LWL2, LWL3) étant disposée de telle sorte par rapport à la paire de contacts de commutation associée que l'intensité, mesurée par un détecteur (D), de la lumière introduite via la fibre optique (LWL1, LWL2, LWL3) est une mesure de l'usure de contacts pour la paire de contacts de commutation associée.
  9. Dispositif selon l'une des revendications 1 à 8,
    caractérisé par le fait que le détecteur (D) transmet à une unité de déclenchement (A) un signal correspondant à l'intensité mesurée et que cette unité de déclenchement (A) commande l'appareil de commutation (S) en fonction du signal.
  10. Dispositif selon l'une des revendications 1 à 9,
    caractérisé par le fait que l'intensité mesurée par le détecteur (D) est transmise par l'intermédiaire de moyens de communication en vue d'une évaluation ultérieure.
  11. Appareil de commutation électrique avec un dispositif selon l'une des revendications 1 à 10,
    caractérisé par le fait que l'appareil de commutation électrique (S) est un disjoncteur de puissance à basse tension ou un contacteur.
EP04786837A 2003-09-29 2004-09-17 Dispositif pour detecter l'usure de contacts dans des appareils de commutation Expired - Lifetime EP1678729B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10345183A DE10345183B4 (de) 2003-09-29 2003-09-29 Vorrichtung zum Erfassen von Kontaktabbrand in Schaltgeräten
PCT/DE2004/002121 WO2005031774A1 (fr) 2003-09-29 2004-09-17 Dispositif pour detecter l'usure de contacts dans des appareils de commutation

Publications (2)

Publication Number Publication Date
EP1678729A1 EP1678729A1 (fr) 2006-07-12
EP1678729B1 true EP1678729B1 (fr) 2007-07-11

Family

ID=34384328

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04786837A Expired - Lifetime EP1678729B1 (fr) 2003-09-29 2004-09-17 Dispositif pour detecter l'usure de contacts dans des appareils de commutation

Country Status (7)

Country Link
US (1) US7408357B2 (fr)
EP (1) EP1678729B1 (fr)
CN (1) CN100477043C (fr)
DE (2) DE10345183B4 (fr)
HK (1) HK1095201A1 (fr)
RU (1) RU2339111C2 (fr)
WO (1) WO2005031774A1 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7596459B2 (en) * 2001-02-28 2009-09-29 Quadlogic Controls Corporation Apparatus and methods for multi-channel electric metering
EP1793235A1 (fr) * 2005-11-30 2007-06-06 ABB Technology AG Système de surveillance pour des commutateurs à haute tension
DE102006042508B4 (de) * 2006-09-07 2016-05-12 Abb Ag Sensoranordnung, Vorrichtung und Verfahren zur vorausschauenden Ermittlung verschmutzungsbedingter Störfälle einer Schaltanlage, sowie demgemäße Schaltanlage
DE102006053398A1 (de) 2006-11-10 2008-05-15 Endress + Hauser Gmbh + Co. Kg Elektronisches Gerät
FR2945661A1 (fr) * 2009-05-18 2010-11-19 Schneider Electric Ind Sas Evaluation de l'usure de contacts enfonces par la variation de la rotation de l'arbre des poles
US20110062960A1 (en) * 2009-09-15 2011-03-17 Lenin Prakash Device and method to monitor electrical contact status
ATE540415T1 (de) * 2009-11-25 2012-01-15 Abb Research Ltd Verfahren und vorrichtung zum bestimmen einer abnutzung eines kontaktelements
DE102013112439B4 (de) * 2013-11-13 2020-03-26 Eaton Intelligent Power Limited Schaltkammer zum Führen und Trennen von elektrischen Strömen mittels beweglicher Schaltkontakte
DE102013114171B4 (de) * 2013-12-17 2020-01-02 Eaton Intelligent Power Limited Schaltkammer zum Führen und Trennen von elektrischen Strömen mittels beweglicher Schaltkontakte
CN104320614B (zh) 2014-10-14 2018-10-02 中国西电电气股份有限公司 一种gis设备内部视频监测系统及方法
US9329238B1 (en) * 2014-11-14 2016-05-03 Schneider Electric USA, Inc. Contact wear detection by spectral analysis shift
DE102016217431A1 (de) * 2016-09-13 2018-03-15 Robert Bosch Gmbh Verfahren zum Betrieb einer Sicherheitsvorrichtung

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3925722A (en) * 1972-05-01 1975-12-09 Gen Electric Wear indicator for vacuum circuit interrupter
JPS6129029A (ja) 1984-07-19 1986-02-08 三菱電機株式会社 電磁継電器等における端子番号等の表示方法
SE463385B (sv) * 1989-03-08 1990-11-12 Stefan Karlsson Saett att utnyttja en optisk fiber som sensor
DE4309177A1 (de) * 1993-03-22 1994-09-29 Siemens Ag Schaltgerät, insbesondere Schütz- oder Leistungsschalter
CN1088197C (zh) * 1994-10-27 2002-07-24 西门子公司 开关器
DE19727986C2 (de) * 1997-07-01 2001-10-11 Moeller Gmbh Schaltungsanordnung zur Ermittlung des Kontaktabbrandes von einem elektrischen Schaltgerät
DE19903968A1 (de) * 1999-01-22 2000-07-27 Siemens Ag Anordnung zur Überwachung eines Schaltgerätes mittels einer elektronischen Kamera
DE10109952A1 (de) * 2001-03-01 2002-09-05 Moeller Gmbh Optischer Störlichtbogensensor
FR2834120B1 (fr) * 2001-12-21 2004-02-06 Schneider Electric Ind Sa Procede pour determiner l'usure des contacts d'un appareil interrupteur

Also Published As

Publication number Publication date
RU2339111C2 (ru) 2008-11-20
EP1678729A1 (fr) 2006-07-12
HK1095201A1 (en) 2007-04-27
CN1860570A (zh) 2006-11-08
DE10345183B4 (de) 2005-10-13
WO2005031774A1 (fr) 2005-04-07
DE502004004315D1 (de) 2007-08-23
CN100477043C (zh) 2009-04-08
RU2006114764A (ru) 2007-11-20
DE10345183A1 (de) 2005-04-28
US20070001677A1 (en) 2007-01-04
US7408357B2 (en) 2008-08-05

Similar Documents

Publication Publication Date Title
EP1232510B1 (fr) Unite coupe-circuit comportant un support de fusible et un indicateur d'etat de fusible
EP1678729B1 (fr) Dispositif pour detecter l'usure de contacts dans des appareils de commutation
EP0020349B1 (fr) Dispositif de surveillance avec un detecteur optique passif des arcs électriques dans un disjoncteur
CH676174A5 (en) Detection and quenching relay for switchgear arcs
CH669065A5 (de) Warneinrichtung zum feststellen eines in einer leitung auftretenden ueberlast- oder kurzschlusszustandes an mindestens einem schaltgeraet in einem schaltkasten.
EP0249815A1 (fr) Dispositif pour la détection d'arcs de défaut
EP1794768B1 (fr) Dispositif pour surveiller l'etat d'un appareil de commutation electrique
DE4326640C2 (de) Meßeinrichtung für den Weg eines beweglichen Teils an einem elektrischen Schaltgerät und Verfahren zum Betrieb eines Schaltgeräts mit einer Meßeinrichtung
DE3822342C2 (fr)
DE4242792A1 (de) Sicherheitsschalteranordnung zum Ein- und Ausschalten der Stromversorgung von Aktoren in Abhängigkeit von einem Sensorschaltsignal
DE3141374C2 (fr)
DE4131819A1 (de) Messeinrichtung zur bestimmung des weges an elektrischen schaltgeraeten
DE102004020045A1 (de) Verfahren zum Ermitteln eines eine Abnutzung von Schaltkontakten eines Leistungsschalters angebenden Restschaltspiel-Wertes
EP2143184B1 (fr) Procédé de déclenchement sélectif d'interrupteurs de puissance
WO1994022153A1 (fr) Appareil de commutation, en particulier disjoncteur de protection ou de coupure en charge
EP0575932B1 (fr) Dispositif de détection pour des arcs de défaut, en particulier pour leur détection dans les dispositifs de barres omnibus des installations de commutation à basse tension
EP0103921B1 (fr) Equipement de haute tension avec enregistrement de lumière perturbante
DE102013114171B4 (de) Schaltkammer zum Führen und Trennen von elektrischen Strömen mittels beweglicher Schaltkontakte
DE19514580A1 (de) Leitungsschutzschalter mit einer Einrichtung zur unterscheidenden Erkennung von Kurzschluß- und Überlastabschaltungen
DE9212672U1 (de) Einrichtung zur Erkennung von Störlichtbögen, insbesondere an Sammelschienenanordnungen in Niederspannungs-Schaltanlagen
DE19956295C1 (de) Schaltersicherungseinheit mit Sicherungshalter und Sicherungs-Zustandsmelder
EP3186864A1 (fr) Déclenchement d'un système de protection contre des arcs électriques parasites
DE29503914U1 (de) Störlichtbogen-Erfassungseinrichtung für Schaltanlagen zur Verteilung elektrischer Energie
EP3048630A1 (fr) Dispositif d'affichage et disjoncteur d'arc électrique
DD271397A1 (de) Einrichtung zur erkennung von stoerlichtboegen in gasisolierten elektrotechnischen anlagen, vorzugsweise im niederspannungsbereich

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060223

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502004004315

Country of ref document: DE

Date of ref document: 20070823

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070820

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080414

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080924

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080911

Year of fee payment: 5

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090917

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140917

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20211119

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004004315

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230401