EP1678729B1 - Device for detecting contact wear in switching appliances - Google Patents
Device for detecting contact wear in switching appliances Download PDFInfo
- Publication number
- EP1678729B1 EP1678729B1 EP04786837A EP04786837A EP1678729B1 EP 1678729 B1 EP1678729 B1 EP 1678729B1 EP 04786837 A EP04786837 A EP 04786837A EP 04786837 A EP04786837 A EP 04786837A EP 1678729 B1 EP1678729 B1 EP 1678729B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- optical waveguide
- light
- switching
- lwl
- detector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002245 particle Substances 0.000 claims abstract description 18
- 230000007423 decrease Effects 0.000 claims abstract description 8
- 230000003287 optical effect Effects 0.000 claims description 87
- 230000003628 erosive effect Effects 0.000 claims description 47
- 230000004888 barrier function Effects 0.000 claims description 6
- 230000005405 multipole Effects 0.000 claims description 5
- 238000002834 transmittance Methods 0.000 claims description 5
- 238000011156 evaluation Methods 0.000 claims description 4
- 238000001514 detection method Methods 0.000 claims description 3
- 230000003247 decreasing effect Effects 0.000 claims 1
- 238000012544 monitoring process Methods 0.000 description 10
- 239000013307 optical fiber Substances 0.000 description 8
- 238000011109 contamination Methods 0.000 description 5
- 230000002238 attenuated effect Effects 0.000 description 4
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H1/00—Contacts
- H01H1/0015—Means for testing or for inspecting contacts, e.g. wear indicator
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H1/00—Contacts
- H01H1/0015—Means for testing or for inspecting contacts, e.g. wear indicator
- H01H2001/0026—Means for testing or for inspecting contacts, e.g. wear indicator wherein one or both contacts contain embedded contact wear signal material, e.g. radioactive material being released as soon as the contact wear reaches the embedded layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H33/00—High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
- H01H33/02—Details
- H01H33/26—Means for detecting the presence of an arc or other discharge
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H9/00—Details of switching devices, not covered by groups H01H1/00 - H01H7/00
- H01H9/50—Means for detecting the presence of an arc or discharge
Definitions
- the present invention relates to a device for detecting contact erosion in switching devices.
- the present invention relates to a device for detecting contact erosion on the switching contacts in an electrical switching device according to the preamble of claim 1.
- the opening and closing switching contacts for switching currents cause switching arcs between the switching contacts. These switching arcs lead to an increasing contact erosion at the switching contacts and thus to a wear of the switching contacts. Since this wear affects the switching behavior of the switching device, the contact erosion of the switching contacts must be monitored.
- Object of the present invention is to provide a further device for monitoring the wear of switching contacts in electrical switching devices.
- the device having the features of claim 1, wherein the contact erosion is effected on at least one opening and closing switching contact pair in the switching device, and the device comprises at least one optical waveguide and at least one detector, wherein light emitted from at least one light source the at least one optical waveguide can be coupled in and can be guided by the optical waveguide to the at least one detector and the at least one optical waveguide is arranged with respect to the at least one switching contact pair so that an intensity of the light coupled into the optical waveguide of an ascending number measured by the at least one detector decreases from the contact erosion generated contact erosion particles in the electrical switching device.
- this increasing degree of contamination is now used as a measure of the assessment of the contact erosion and thus for the monitoring of the wear of the switching contacts of the electrical switching device.
- this degree of contamination is determined with the aid of the at least one optical waveguide and the at least one detector.
- one or more optical waveguides are arranged with respect to the at least one switching contact to be monitored such that the light emanating from a light source and entering one of the optical waveguides with increasing number of contact erosion particles and thus with increasing Degree of pollution is increasingly dampened.
- the light entering the one or more optical waveguides is guided by the optical waveguide to one or more detectors.
- An optical waveguide can lead the incoming light exactly to one but also to several detectors.
- the light entering into a plurality of optical waveguides, which are jointly assigned to the at least one switching contact can also be led to only one detector. In all these cases, the intensity of the light coupled in at least one optical waveguide is measured by the at least one detector.
- the device according to the invention Based on the measured intensity of the light entering the optical waveguide in the desired state of the switching device, that is, for example, in a new switching device, then by repeatedly measuring and evaluating the intensity of the light entering the at least one optical waveguide, the contact erosion and thus the wear of at least one assigned switching contact to be monitored.
- the device according to the invention thus permits contactless monitoring with opto-electronic means.
- the device according to the invention allows the determination of the contact erosion without the need for the switching device itself to be removed from its actual operating location.
- the necessary calibration of the measured intensity on the state of the switching contacts and thus on the degree of wear is determined depending on the particular design of the switching device and can be based for example on empirically determined values.
- the, caused by the opening and closing switching contacts, arc itself is used as a light source for the device according to the invention.
- a mathematical standardization is to be brought about in a suitable manner.
- this standardization should also include possible changes in the light intensity of the arc, with increasing contact erosion can occur.
- it can then be assumed during the evaluation that the intensity of the light emanating from the arc is almost constant.
- a light-emitting diode is provided as a light source, which forms a light barrier together with the at least one optical waveguide.
- the light barrier must be arranged in relation to the at least one switching contact pair such that the light emitted by the light emitting diode and coupled into the at least one optical waveguide is attenuated by the contact erosion particles located in the space between the light emitting diode and the optical waveguide. If commercial photocells, which comprise precisely one optical waveguide and one light-emitting diode, are preferably used, the wear can be monitored with the simplest means.
- a further LichtweLlenleiter is provided as a light source.
- a light source such as a light emitting diode
- this end face can be regarded as a light source for the device according to the invention and form a light barrier together with the first optical waveguide.
- the light is guided by the further optical waveguide acting as a light source so that it emerges radially over its length. Due to this constant light emission, the intensity remaining in the optical waveguide will continue to decrease with increasing length, that is, with increasing distance from the illuminant. As a result, as the distance from the light source increases, so does the intensity of the light that emerges.
- a plate is provided between the light source and the at least one optical waveguide, which has a defined transmittance for the light emitted by the light source, and which is arranged with respect to the switch contacts so that contact erosion particles can attach to the plate.
- the device according to the invention allows at least one switching contact pair to be monitored, that is to say one but also a plurality of switching contact pairs are monitored by a common arrangement of at least one optical waveguide and at least one detector. This common arrangement then allows a common statement on the contact wear on this at least one pair of switching contact.
- at least one optical waveguide can be provided in particular for each switching contact pair of a multi-pole switching device. Thus, the degree of burnup and thus the wear of the individual switching contact pairs are monitored separately.
- a signal corresponding to the light intensity measured by at least one detector is transmitted to a triggering unit for the electrical switching device, then the switching device can be controlled by this triggering unit. If the measured light intensity falls below a certain value as a result of an ever increasing number of contact erosion particles, the tripping unit will recognize that a critical degree of wear has been reached and prevent further switching of the electrical switching device.
- the evaluation can also be evaluated at a location further away from the switching device and thus the switching device can be monitored.
- the state of the switching contacts can then be remotely reported during operation of the circuit breaker. Wear of the switching contact can thus be detected early, which then preventive maintenance is possible.
- the device according to the invention is used for detecting contact erosion in low-voltage circuit breakers or contactors.
- the exemplary embodiments shown in FIGS. 1 to 4 always have just one light source Q, an optical waveguide LWL for coupling in the light emanating from the light source, and a detector D for a switching contact pair for simplifying the description of the present invention.
- the one optical waveguide LWL shown at least one optical waveguide and instead of the one detector D at least one detector for the device according to the invention may be provided.
- FIGS. 1-4 show various embodiments of an electrical switching device S.
- the switching device S has a first K1 and a second K1 'switching contact.
- One of the switching contacts is movable in a suitable manner, so that with appropriate control, the contacts can be moved towards or away from each other.
- With the existing of the Druckkantakten K1 and K1 ⁇ switching contact pair can then switch corresponding switching currents.
- K1 ' occurs when switching high currents, as they are usually switched in low-voltage circuit breakers or contactors, to an arc between the switch contacts K1 and K1'.
- This arc causes an increasing burnup of the switching contacts K1 and K1 'with increasing number of switching operations and thus an increasing wear of the switching device S. If the burnup is too high, the switching device S can no longer safely switch the currents to be switched and must be replaced.
- an optical fiber LWL and a light source Q are provided.
- this light source Q is a light-emitting diode, which forms a commercially available light barrier LS together with the optical waveguide LWL.
- the light emanating from the light source Q will have a certain intensity, depending on the type of light source and its activation.
- a certain part of the light is coupled into the optical waveguide LWL and guided by this to a detector D.
- the intensity, measured by the detector D, of the light coupled into the optical waveguide LWL has a defined amount, that is to say a nominal value.
- the number of contact erosion particles in the housing G of the electrical switching device S will increase. If these contact erosion particles now reach the region between the light source Q and the optical waveguide LWL, the light emanating from the light source Q and entering the optical waveguide LWL is attenuated by this contact erosion particle. This means that the more contact erosion particles within the housing G and thus in the region between the light source Q and the optical waveguide LWL are present, the lower will be the intensity of the light coupled into the optical waveguide LWL as measured by the detector D.
- Figure 2 shows in more detail, another embodiment of the electrical switching device S with the two switching contacts K1 and K1 '. Due to the shape of the switching contacts K1 and K1 'shown here, it will be in the marked area in particular to an increased contact erosion and thus to increased pollution. If this locally stronger contamination is to be taken into account when detecting the contact erosion, a development of the device according to the invention is advantageous.
- the device according to the invention comprises an optical waveguide LWL for coupling in light and a further optical waveguide LWLQ, which is designed as a light source.
- light from a luminous means Q at both ends of the further optical waveguide LWLQ is coupled into this further optical waveguide acting as a light source.
- the further optical waveguide LWLQ is designed so that the light guided therein radially emerges over its length. As a result of this permanent light emission, the intensity of the light emerging radially from the further optical waveguide LWLQ will continue to decrease with increasing distance from the luminous means Q. This means that, in the arrangement shown in FIG. 2, light with the least intensity will emerge from the further optical waveguide LWLQ in the marked area. Since this region encompassed by a dashed line is also the region with the greatest contamination, the light emerging radially from the further optical waveguide LWLQ with reduced intensity is also attenuated even more than in other regions.
- the light entering the optical waveguide LWL arranged, for example, parallel to the further optical waveguide LWLQ will always have a lower intensity in the marked region than the light which is coupled into the optical waveguide LWL in the other regions becomes.
- the intensity is determined over all spatially coupled light components, the light entering from the marked area with a different weighting in the determination of the intensity and thus in the assessment of Maisabbrandes received as the light in other areas is coupled.
- many other arrangements are conceivable and included in the invention.
- optical waveguides LWL and LWLQ are not meandering, but are formed only as a simple loop. Furthermore, it is conceivable that both optical waveguides LWL and LWLQ are arranged so that the switching contact pair K1, K1 'is located between the optical waveguide LWL and the further optical waveguide LWLQ. Furthermore, it is also readily possible, as described above, to provide a plurality of optical waveguides or detectors for monitoring one switching contact pair instead of one optical waveguide LWL and one detector D in this embodiment as well.
- the arc generated by the opening and closing switch contacts K1 and K1 'itself is the light source Q.
- an optical fiber LWL and a detector D are necessary to use the inventive device to detect contact erosion, and thus to monitor the wear of the switching device S.
- the wear of the switching device can be monitored indirectly on the basis of the intensity of the light coupled into the optical waveguide LWL and guided to the detector D light. A possibly during the operation, that is, with increasing number of switching operations of the switching device, changing intensity of the outgoing light from the arc must be determined empirically and taken into account in the monitoring in a corresponding normalization.
- FIG. 4 schematically shows a fourth embodiment, in which again the arc is the light source Q.
- a plate P is additionally provided between arc Q and optical fiber LWL, at which the contact erosion particles can accumulate. This means that with increasing erosion, more and more contact erosion particles will accumulate on the plate P, whereby the transmittance for the light transmitted from the arc to the optical waveguide becomes ever smaller, that is, increasingly attenuated.
- the wear of the switching device can be monitored indirectly on the basis of the intensity of the light coupled into the optical waveguide LWL and guided to the detector D light.
- the plate P shown in FIG. 4 may also be readily used in combination with one of the embodiments shown in FIG. 1 or 2.
- the plate P itself could be a window in the housing, wherein the light emitted from the arc light is transmitted via the plate P to an arranged outside the housing optical fiber LWL and coupled into this.
- the plate P itself could be a window in the housing, wherein the light emitted from the arc light is transmitted via the plate P to an arranged outside the housing optical fiber LWL and coupled into this.
- FIG. 5 shows, by way of example, a possible arrangement of the optical waveguide LWL for a multi-pole switching device with three switching contact pairs.
- the optical waveguide here has three loops, each of the loops being associated with a switching contact pair of the switching device.
- the light sources are either the arc itself or an additional light source, in particular a light-emitting diode or another optical waveguide.
- the intensity of the emanating from the respective light source Q and coupled into the optical waveguide LWL and forwarded by this light from the detector D is measured and then transmitted to a trip unit A.
- This trip unit will control the electrical switching device depending on the measured intensity of the light. If the measured light intensity falls below a certain value only for one of the switching contact pairs as a result of an ever increasing number of contact erosion particles, the tripping unit A will recognize that a critical degree of wear has been achieved at least for this switching contact pair and a further switching of all switching contact pairs of the multi-pole electrical switching device S. prevention.
- a separate optical waveguide LWL1, LWL2 and LWL 3 as well as an associated detector D1, D2 and D3 can be provided for each switching contact pair as shown in FIG. If the individual switching contact pairs are interconnected with a time offset and this time information is available to a detector, then the three detectors D1, D2 and D3 can be replaced by a single detector D, as indicated in FIG. 6 by a dashed line. The intensities measured by the detectors D1, D2 and D3 or the detector D can then be transmitted again to the tripping unit A, and this can then react accordingly, as already described above.
Landscapes
- Keying Circuit Devices (AREA)
- Switches Operated By Changes In Physical Conditions (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Breakers (AREA)
- Relay Circuits (AREA)
Abstract
Description
Die vorliegende Erfindung betrifft eine Vorrichtung zum Erfassen von Kontaktabbrand in Schaltgeräten. Insbesondere betrifft die vorliegende Erfindung eine Vorrichtung zum Erfassen von Kontaktabbrand an den Schaltkontakten in einem elektrischen Schaltgerät gemäß dem Oberbegriff des Anspruchs 1.The present invention relates to a device for detecting contact erosion in switching devices. In particular, the present invention relates to a device for detecting contact erosion on the switching contacts in an electrical switching device according to the preamble of claim 1.
Im elektrischen Schaltgerät bewirken die sich öffnenden und schließenden Schaltkontakte zum Schalten von Strömen Schaltlichtbögen zwischen den Schaltkontakten. Diese Schaltlichtbögen führen zu einem zunehmenden Kontaktabbrand an den Schaltkontakten und damit zu einem Verschleiß der Schaltkontakte. Da dieser Verschleiß das Schaltverhalten des Schaltgerätes beeinflusst, muss der Kontaktabbrand der Schaltkontakte überwacht werden.In the electrical switching device, the opening and closing switching contacts for switching currents cause switching arcs between the switching contacts. These switching arcs lead to an increasing contact erosion at the switching contacts and thus to a wear of the switching contacts. Since this wear affects the switching behavior of the switching device, the contact erosion of the switching contacts must be monitored.
Aus der
Aus der
Im Dokument
Aufgabe der vorliegenden Erfindung ist es, eine weitere Vorrichtung zur Überwachung des Verschleißes von Schaltkontakten in elektrischen Schaltgeräten anzugeben.Object of the present invention is to provide a further device for monitoring the wear of switching contacts in electrical switching devices.
Diese Aufgabe wird gelöst durch die Vorrichtung mit den Merkmalen des Anspruchs 1, wobei der Kontaktabbrand an zumindest einem sich öffnenden und schließenden Schaltkontaktpaar im Schaltgerät bewirkt wird, und die Vorrichtung wenigstens einen Lichtwellenleiter und wenigstens einen Detektor aufweist, wobei von zumindest einer Lichtquelle ausgehendes Licht in den wenigstens einen Lichtwellenleiter einkoppelbar und vom Lichtwellenleiter zu dem wenigstens einen Detektor führbar ist und der wenigstens eine Lichtwellenleiter in Bezug auf das zumindest eine Schaltkontaktpaar so angeordnet ist, dass eine von dem wenigstens einen Detektor gemessene Intensität des in den Lichtwellenleiter eingekoppelten Lichtes mit einer ansteigenden Anzahl von durch den Kontaktabbrand erzeugten Kontaktabbrandpartikeln im elektrischen Schaltgerät abnimmt.This object is achieved by the device having the features of claim 1, wherein the contact erosion is effected on at least one opening and closing switching contact pair in the switching device, and the device comprises at least one optical waveguide and at least one detector, wherein light emitted from at least one light source the at least one optical waveguide can be coupled in and can be guided by the optical waveguide to the at least one detector and the at least one optical waveguide is arranged with respect to the at least one switching contact pair so that an intensity of the light coupled into the optical waveguide of an ascending number measured by the at least one detector decreases from the contact erosion generated contact erosion particles in the electrical switching device.
Mit zunehmender Zahl von Schaltvorgängen und damit mit zunehmender Zahl von wiederkehrenden Schaltlichtbögen kommt es infolge des dadurch bewirkten Kontaktabbrandes an den Schaltkontakten zu einer vermehrten Ansammlung von Kontaktabbrandpartikeln, und damit zu einem ansteigenden Grad an Verschmutzung im elektrischen Schaltgerät. Gemäß dem Grundprinzip der vorliegenden Erfindung wird nun dieser ansteigende Grad an Verschmutzung als Maß für die Beurteilung des Kontaktabbrandes und damit für die Überwachung des Verschleißes der Schaltkontakte des elektrischen Schaltgerätes herangezogen. Gemäß der vorliegenden Erfindung wird dieser Grad an Verschmutzung unter Zuhilfenahme des wenigstens einen Lichtwellenleiters und des wenigstens einen Detektors ermittelt. Das heißt, ein oder mehrere Lichtwellenleiter sind in Bezug auf den zumindest einen zu überwachenden Schaltkontakt so angeordnet, dass das von einer Lichtquelle ausgehende und in einen der Lichtwellenleiter eintretende Licht mit zunehmender Anzahl von Kontaktabbrandpartikeln und damit mit zunehmendem Grad an Verschmutzung immer stärker gedämpft wird. Das in den einen oder in die mehreren Lichtwellenleiter eintretende Licht wird vom Lichtwellenleiter zu einem oder auch zu mehreren Detektoren geführt. Dabei kann ein Lichtwellenleiter das eintretende Licht genau zu einem aber auch zu mehreren Detektoren führen. Andererseits kann das in mehrere Lichtwellenleiter, die gemeinsam dem zumindest einen Schaltkontakt zugeordnet sind, eintretende Licht auch nur zu genau einem Detektor geführt werden. In all diesen Fällen wird von dem wenigstens einen Detektor die Intensität des in den wenigsten einen Lichtwellenleiter eingekoppelten Lichtes gemessen. Ausgehend von der gemessenen Intensität des in den Lichtwellenleiter eintretenden Lichtes im Sollzustand des Schaltgerätes, das heißt beispielsweise bei einem neuen Schaltgerät, kann dann durch wiederholtes Messen und Auswerten der Intensität des in den wenigstens einen Lichtwellenleiter eintretenden Lichtes der Kontaktabbrand und damit der Verschleiß des zumindest einen zugeordneten Schaltkontaktes überwacht werden. Die erfindungsgemäße Vorrichtung erlaubt somit eine kontaktlose Überwachung mit optoelektronischen Mitteln. Zudem erlaubt die erfindungsgemäße Vorrichtung die Ermittlung des Kontaktabbrandes, ohne dass dazu das Schaltgerät selbst von seinem eigentlichen Betriebsort entfernt werden muss. Die notwendige Kalibrierung der gemessenen Intensität auf den Zustand der Schaltkontakte und damit auf den Grad des Verschleißes wird in Abhängigkeit von der jeweiligen Ausführung des Schaltgerätes festgelegt und kann beispielsweise auf empirisch ermittelten Werten beruhen.With increasing number of switching operations and thus with increasing number of recurring switching arcs occurs as a result of the contact burnup caused thereby at the switch contacts to an increased accumulation of Kontaktabbrandpartikeln, and thus to an increasing degree of contamination in the electrical switching device. According to the basic principle of the present invention, this increasing degree of contamination is now used as a measure of the assessment of the contact erosion and thus for the monitoring of the wear of the switching contacts of the electrical switching device. According to the present invention, this degree of contamination is determined with the aid of the at least one optical waveguide and the at least one detector. That is, one or more optical waveguides are arranged with respect to the at least one switching contact to be monitored such that the light emanating from a light source and entering one of the optical waveguides with increasing number of contact erosion particles and thus with increasing Degree of pollution is increasingly dampened. The light entering the one or more optical waveguides is guided by the optical waveguide to one or more detectors. An optical waveguide can lead the incoming light exactly to one but also to several detectors. On the other hand, the light entering into a plurality of optical waveguides, which are jointly assigned to the at least one switching contact, can also be led to only one detector. In all these cases, the intensity of the light coupled in at least one optical waveguide is measured by the at least one detector. Based on the measured intensity of the light entering the optical waveguide in the desired state of the switching device, that is, for example, in a new switching device, then by repeatedly measuring and evaluating the intensity of the light entering the at least one optical waveguide, the contact erosion and thus the wear of at least one assigned switching contact to be monitored. The device according to the invention thus permits contactless monitoring with opto-electronic means. In addition, the device according to the invention allows the determination of the contact erosion without the need for the switching device itself to be removed from its actual operating location. The necessary calibration of the measured intensity on the state of the switching contacts and thus on the degree of wear is determined depending on the particular design of the switching device and can be based for example on empirically determined values.
Vorzugsweise wird der, durch die sich öffnenden und schließenden Schaltkontakte bewirkte, Lichtbogen selbst als Lichtquelle für die erfindungsgemäße Vorrichtung herangezogen. Um auch unterschiedliche Lichtintensitäten verschiedener Schaltlichtbögen zu nutzen, ist dazu in geeigneter Weise eine rechnerische Normierung herbeizuführen. In diese Normierung sollten insbesondere auch mögliche Veränderungen der Lichtintensität des Lichtbogens, die mit zunehmendem Kontaktabbrand auftreten können, einfließen. Durch eine solche Normierung kann dann bei der Auswertung davon ausgegangen werden, dass die Intensität des vom Lichtbogen ausgehenden Lichtes nahezu konstant ist. Somit kann dann anhand der Messung der Intensität des vom Lichtbogen ausgehenden, durch die Kontaktabbrandpartikel zunehmend gedämpften und in den wenigstens einen Lichtwellenleiter eingekoppelten Lichtes auf den Kontaktabbrand geschlossen und damit der Verschleiß der Schaltkontakte überwacht werden.Preferably, the, caused by the opening and closing switching contacts, arc itself is used as a light source for the device according to the invention. In order to use different light intensities of different switching arcs, a mathematical standardization is to be brought about in a suitable manner. In particular, this standardization should also include possible changes in the light intensity of the arc, with increasing contact erosion can occur. By means of such normalization, it can then be assumed during the evaluation that the intensity of the light emanating from the arc is almost constant. Thus, based on the measurement of the intensity of the outgoing from the arc, increasingly damped by the Kontaktabbrandpartikeln and coupled into the at least one optical waveguide light on the contact erosion closed and thus the wear of the switch contacts are monitored.
In einer weiteren Ausführung ist insbesondere eine Leuchtdiode als Lichtquelle vorgesehen, die zusammen mit dem wenigstens einen Lichtwellenleiter eine Lichtschranke ausbildet. Dabei muss die Lichtschranke in Bezug auf das zumindest eine Schaltkontaktpaar so angeordnet sein, dass das von der Leuchtdiode ausgehende und in den wenigstens einen Lichtwellenleiter eingekoppelte Licht durch die sich im Raum zwischen Leuchtdiode und Lichtwellenleiter befindlichen Kontaktabbrandpartikel gedämpft wird. Werden vorzugsweise handelsübliche Lichtschranken, die genau einen Lichtwellenleiter und eine Leuchtdiode umfassen, eingesetzt, kann der Verschleiß mit einfachsten Mitteln überwacht werden.In a further embodiment, in particular a light-emitting diode is provided as a light source, which forms a light barrier together with the at least one optical waveguide. In this case, the light barrier must be arranged in relation to the at least one switching contact pair such that the light emitted by the light emitting diode and coupled into the at least one optical waveguide is attenuated by the contact erosion particles located in the space between the light emitting diode and the optical waveguide. If commercial photocells, which comprise precisely one optical waveguide and one light-emitting diode, are preferably used, the wear can be monitored with the simplest means.
In einer weiteren Ausführung ist ein weiterer LichtweLlenleiter als Lichtquelle vorgesehen. Da ein Lichtwellenleiter an sich ein passives Element ist, ist natürlich zuerst in geeigneter Weise Licht von einem Leuchtmittel, wie zum Beispiel von einer Leuchtdiode, in diesen weiteren LichtwellenLeiter einzukoppeln. Wird das Licht von diesem weiteren Lichtwellenleiter so geführt, dass das Licht an einer seiner Stirnseiten austritt, kann diese Stirnseite für die erfindungsgemäße Vorrichtung als Lichtquelle angesehen werden, und zusammen mit dem ersten Lichtwellenleiter eine Lichtschranke bilden. Dadurch ist es möglich, alle für die vorliegende Erfindung notwendigen elektrischen Bauteile, wie Leuchtmittel oder auch Detektoren, außerhalb des eigentlichen Schaltgerätes anzuordnen.In a further embodiment, a further LichtweLlenleiter is provided as a light source. Of course, since an optical waveguide itself is a passive element, light from a light source, such as a light emitting diode, is first to be coupled into this further light waveguide. If the light is guided by this further optical waveguide so that the light exits at one of its end faces, this end face can be regarded as a light source for the device according to the invention and form a light barrier together with the first optical waveguide. This makes it possible to arrange all necessary for the present invention electrical components, such as bulbs or detectors outside the actual switching device.
In einer alternativen Ausführung wird das Licht von dem als Lichtquelle wirkenden weiteren Lichtwellenleiter so geführt, dass es über dessen Länge radial austritt. Aufgrund dieses ständigen Lichtaustritts wird die im Lichtwellenleiter verbleibende Intensität mit zunehmender Länge, das heißt mit zunehmender Entfernung vom Leuchtmittel, immer weiter abnehmen. Dadurch nimmt mit zunehmender Entfernung vom Leuchtmittel auch die Intensität des austretenden Lichtes immer weiter ab. Durch eine geeignete Anordnung des weiteren Lichtwellenleiters in Bezug auf das zu überwachende Schaltkontaktpaar besteht damit nun die Möglichkeit, eine örtliche Gewichtung bei der Erfassung des Kontaktabbrandes einzuführen.In an alternative embodiment, the light is guided by the further optical waveguide acting as a light source so that it emerges radially over its length. Due to this constant light emission, the intensity remaining in the optical waveguide will continue to decrease with increasing length, that is, with increasing distance from the illuminant. As a result, as the distance from the light source increases, so does the intensity of the light that emerges. By a suitable arrangement of the further optical waveguide with respect to the switching contact pair to be monitored, it is now possible to introduce a local weighting in the detection of the contact erosion.
In einer weiteren Ausführung ist zwischen Lichtquelle und dem wenigstens einen Lichtwellenleiter eine Platte vorgesehen, die für das von der Lichtquelle ausgehende Licht einen definierten Transmissionsgrad aufweist, und die in Bezug auf die Schaltkontakte so angeordnet ist, dass sich an der Platte Kontaktabbrandpartikel anlagern können. Mit zunehmendem Kontaktabbrand werden sich dann immer mehr Kontaktabbrandpartikel an der Platte anlagern und damit der Transmissionsgrad für das durch die Platte durchtretende Licht immer weiter abnehmen. Anhand der dadurch bewirkten Abnahme der Intensität des in den Lichtwellenleiter eingekoppelten Lichtes kann dann wiederum auf den Grad des Kontaktabbrandes und damit auf den Verschleiß der Schaltkontakte geschlossen werden.In a further embodiment, a plate is provided between the light source and the at least one optical waveguide, which has a defined transmittance for the light emitted by the light source, and which is arranged with respect to the switch contacts so that contact erosion particles can attach to the plate. With increasing contact erosion, more and more contact erosion particles will then accumulate on the plate and thus the degree of transmittance for the light passing through the plate will continue to decrease. On the basis of the decrease in the intensity of the light coupled into the optical waveguide, it is then possible in turn to deduce the degree of contact erosion and thus the wear of the switching contacts.
Die erfindungsgemäße Vorrichtung erlaubt zumindest ein Schaltkontaktpaar zu überwachen, das heißt ein aber auch mehrere Schaltkontaktpaare werden von einer gemeinsamen Anordnung aus wenigstens einem Lichtwellenleiter und wenigstens einem Detektor überwacht. Diese gemeinsame Anordnung erlaubt dann eine gemeinsame Aussage zu dem Kontaktabbrand an diesem zumindest einen Schaltkontaktpaar. In einer weiteren Ausführung kann insbesondere für jedes Schaltkontaktpaar eines mehrpoligen Schaltgerätes wenigstens ein Lichtwellenleiter vorgesehen sein. Somit kann der Grad des Abbrandes und damit der Verschleiß der einzelnen Schaltkontaktpaare separat überwacht werden.The device according to the invention allows at least one switching contact pair to be monitored, that is to say one but also a plurality of switching contact pairs are monitored by a common arrangement of at least one optical waveguide and at least one detector. This common arrangement then allows a common statement on the contact wear on this at least one pair of switching contact. In a further embodiment, at least one optical waveguide can be provided in particular for each switching contact pair of a multi-pole switching device. Thus, the degree of burnup and thus the wear of the individual switching contact pairs are monitored separately.
Wird ein, der vom wenigstens einem Detektor gemessenen Lichtintensität entsprechendes, Signal an eine Auslöseeinheit für das elektrische Schaltgerät übermittelt, so kann das Schaltgerät von dieser Auslöseeinheit gesteuert werden. Unterschreitet die gemessene Lichtintensität infolge einer immer größer werdenden Anzahl von Kontaktabbrandpartikeln einen bestimmten Wert, wird die Auslöseeinheit erkennen, dass ein kritischer Grad an Verschleiß erreicht ist und ein weiteres Schalten des elektrischen Schaltgerätes unterbinden.If a signal corresponding to the light intensity measured by at least one detector is transmitted to a triggering unit for the electrical switching device, then the switching device can be controlled by this triggering unit. If the measured light intensity falls below a certain value as a result of an ever increasing number of contact erosion particles, the tripping unit will recognize that a critical degree of wear has been reached and prevent further switching of the electrical switching device.
Wird die vom wenigstens einen Detektor gemessene Intensität über geeignete Mittel, beispielsweise drahtlos, zur weiteren Auswertung übertragen, so kann die Auswertung auch an einem von Schaltgerät weiter entfernten Ort ausgewertet und damit das Schaltgerät überwacht werden. Insbesondere kann damit dann der Zustand der Schaltkontakte auch während des Betriebes des Leistungsschalters ferngemeldet werden. Ein Verschleiß des Schaltkontaktes kann damit frühzeitig erkannt werden, womit dann eine vorbeugende Wartung ermöglicht wird.If the intensity measured by the at least one detector is transmitted by suitable means, for example wirelessly, for further evaluation, then the evaluation can also be evaluated at a location further away from the switching device and thus the switching device can be monitored. In particular, the state of the switching contacts can then be remotely reported during operation of the circuit breaker. Wear of the switching contact can thus be detected early, which then preventive maintenance is possible.
Vorzugsweise wird die erfindungsgemäße Vorrichtung zum Erfassen von Kontaktabbrand bei Niederspannungsleistungsschalter oder bei Schützen eingesetzt.Preferably, the device according to the invention is used for detecting contact erosion in low-voltage circuit breakers or contactors.
Die Erfindung sowie vorteilhafte Ausführungsformen derselben werden im Weiteren anhand der nachfolgenden Figuren näher beschrieben. Es zeigen:
- Fig.1
- schematisch eine erste Ausführungsform mit einer Leuchtdiode als Lichtquelle,
- Fig.2
- eine zweite Ausführungsform mit einem weiteren Lichtwellenleiter als Lichtquelle,
- Fig.3
- schematisch eine dritte Ausführungsform mit dem Lichtbogen als Lichtquelle,
- Fig.4
- schematisch eine vierte Ausführungsform mit einer Platte zwischen Lichtquelle und Lichtwellenleiter,
- Fig.5
- eine Lichtwellenleiteranordnung für mehrere Schaltkontaktpaare,
- Fig.6
- eine Anordnung von drei Lichtwellenleitern für drei Schaltkontaktpaare.
- Fig.1
- schematically a first embodiment with a light emitting diode as a light source,
- Fig.2
- a second embodiment with a further optical waveguide as the light source,
- Figure 3
- schematically a third embodiment with the arc as a light source,
- Figure 4
- schematically a fourth embodiment with a plate between the light source and optical fiber,
- Figure 5
- an optical waveguide arrangement for a plurality of switching contact pairs,
- Figure 6
- an arrangement of three optical fibers for three switching contact pairs.
Die in den Figuren 1 bis 4 gezeigten Ausführungsbeispiele weisen zur einfacheren Beschreibung der vorliegenden Erfindung immer nur genau eine Lichtquelle Q, einen Lichtwellenleiter LWL zum Einkoppeln des von der Lichtquelle ausgehenden Lichtes und einen Detektor D für ein Schaltkontaktpaar auf. In komplexeren Anordnungen werden anstelle des gezeigten einen Lichtwellenleiters LWL wenigstens ein Lichtwellen leiter und anstelle des einen Detektors D wenigstens ein Detektor für die erfindungsgemäße Vorrichtung vorgesehen sein.The exemplary embodiments shown in FIGS. 1 to 4 always have just one light source Q, an optical waveguide LWL for coupling in the light emanating from the light source, and a detector D for a switching contact pair for simplifying the description of the present invention. In more complex arrangements, instead of the one optical waveguide LWL shown at least one optical waveguide and instead of the one detector D at least one detector for the device according to the invention may be provided.
Figur 1-4 zeigen verschiedene Ausführungsformen eines elektrischen Schaltgerätes S. Das Schaltgerät S weist einen ersten K1 und einen zweiten K1' Schaltkontakt auf. Einer der Schaltkontakte ist dabei in geeigneter Weise bewegbar, so dass bei entsprechender Ansteuerung die Kontakte aufeinander zu oder voneinander weg bewegt werden können. Mit dem aus den Schaltkantakten K1 und K1` bestehenden Schaltkontaktpaar lassen sich dann entsprechende Schaltströme schalten. Beim Öffnen und Schließen des Schaltkontaktpaares K1,K1' kommt es beim Schalten von hohen Strömen, so wie sie üblicherweise bei Niederspannungsleistungsschalter oder bei Schützen geschaltet werden, zu einem Lichtbogen zwischen den Schaltkontakten K1 und K1'. Dieser Lichtbogen bewirkt mit steigender Anzahl an Schaltvorgängen einen zunehmenden Abbrand der Schaltkontakte K1 und K1' und damit einen zunehmenden Verschleiß des Schaltgerätes S. Ist der Abbrand zu groß kann das Schaltgerät S die zu schaltenden Ströme nicht mehr sicher schalten und muss ausgetauscht werden.FIGS. 1-4 show various embodiments of an electrical switching device S. The switching device S has a first K1 and a second K1 'switching contact. One of the switching contacts is movable in a suitable manner, so that with appropriate control, the contacts can be moved towards or away from each other. With the existing of the Schaltkantakten K1 and K1 `switching contact pair can then switch corresponding switching currents. When opening and closing the switching contact pair K1, K1 'occurs when switching high currents, as they are usually switched in low-voltage circuit breakers or contactors, to an arc between the switch contacts K1 and K1'. This arc causes an increasing burnup of the switching contacts K1 and K1 'with increasing number of switching operations and thus an increasing wear of the switching device S. If the burnup is too high, the switching device S can no longer safely switch the currents to be switched and must be replaced.
Verschiedene Methoden und Vorrichtungen zum Erkennen des Verschleißes sind bereits bekannt. Anhand von einigen Ausführungsbeispielen soll nun die erfindungsgemäße Vorrichtung zur Überwachung, das heißt zum Erfassen von Kontaktabbrand beschrieben werden. Dazu sind, wie in Figur 1 gezeigt, ein Lichtwellenleiter LWL und eine Lichtquelle Q vorgesehen. Vorzugsweise ist diese Lichtquelle Q eine Leuchtdiode, die zusammen mit dem Lichtwellenleiter LWL eine handelsübliche Lichtschranke LS ausbildet. Das von der Lichtquelle Q ausgehende Licht wird je nach Art der Lichtquelle und deren Ansteuerung eine bestimmte Intensität aufweisen. Entsprechend der Anordnung von Lichtquelle Q und Lichtwellenleiter LWL wird ein bestimmter Teil des Lichtes in den Lichtwellenleiter LWL eingekoppelt und von diesem zu einem Detektor D geführt. Bei einem neuen Schaltgerät S wird dabei die vom Detektor D gemessene Intensität des in den Lichtwellenleiter LWL eingekoppelten Lichtes einen definierten Betrag, das heißt einen Sollwert, aufweisen. Mit zunehmendem Kontaktabbrand an den Schaltkontakten K1 und K1' wird die Anzahl der Kontaktabbrandpartikel im Gehäuse G des elektrischen Schaltgerätes S zunehmen. Gelangen diese Kontaktabbrandpartikel nun in den Bereich zwischen Lichtquelle Q und Lichtwellenleiter LWL, so wird das von der Lichtquelle Q ausgehende und in den Lichtwellenleiter LWL eintretende Licht durch diese Kontaktabbrandpartikel gedämpft. Das bedeutet, je mehr Kontaktabbrandpartikel innerhalb des Gehäuses G und damit im Bereich zwischen Lichtquelle Q und Lichtwellenleiter LWL vorhanden sind, desto geringer wird die vom Detektor D gemessene Intensität des in den Lichtwellenleiter LWL eingekoppelten Lichtes sein. Ist ein Zusammenhang zwischen Kontaktabbrand und der Anzahl der im Schaltgerät S befindlichen Kontaktabbrandpartikel einmal festgestellt, kann anhand der durch die Anzahl der Kontaktabbrandpartikel bewirkte Abnahme der Intensität des in den Lichtwellenleiter eingekoppelten Lichtes der Verschleiß der Schaltkontakte K1 und K1' und damit der Verschleiß des Schaltgerätes S überwacht werden.Various methods and devices for detecting wear are already known. Based on some embodiments, the device according to the invention for monitoring, that is, for detecting contact erosion will now be described. For this purpose, as shown in Figure 1, an optical fiber LWL and a light source Q are provided. Preferably, this light source Q is a light-emitting diode, which forms a commercially available light barrier LS together with the optical waveguide LWL. The light emanating from the light source Q will have a certain intensity, depending on the type of light source and its activation. According to the arrangement of light source Q and optical fiber LWL a certain part of the light is coupled into the optical waveguide LWL and guided by this to a detector D. In the case of a new switching device S, the intensity, measured by the detector D, of the light coupled into the optical waveguide LWL has a defined amount, that is to say a nominal value. With increasing contact erosion at the switching contacts K1 and K1 ', the number of contact erosion particles in the housing G of the electrical switching device S will increase. If these contact erosion particles now reach the region between the light source Q and the optical waveguide LWL, the light emanating from the light source Q and entering the optical waveguide LWL is attenuated by this contact erosion particle. This means that the more contact erosion particles within the housing G and thus in the region between the light source Q and the optical waveguide LWL are present, the lower will be the intensity of the light coupled into the optical waveguide LWL as measured by the detector D. Once a relationship between contact erosion and the number of located in the switching device S Kontaktabbrandpartikel once found, can be determined by the number of contact erosion caused by the decrease in the intensity of in the light waveguide coupled light the wear of the switching contacts K1 and K1 'and thus the wear of the switching device S are monitored.
Figur 2 zeigt mehr detailliert, eine weitere Ausführungsform des elektrischen Schaltgerätes S mit den zwei Schaltkontakten K1 und K1'. Aufgrund der hier gezeigten Form der Schaltkontakte K1 und K1' wird es gerade in dem markierten Bereich zu einem vermehrten Kontaktabbrand und damit zu einer vermehrten Verschmutzung kommen. Soll diese lokal stärkere Verschmutzung bei der Erfassung des Kontaktabbrandes berücksichtigt werden, ist eine Weiterbildung der erfindungsgemäßen Vorrichtung vorteilhaft. In der in Figur 2 gezeigten Ausführung umfasst daher die erfindungsgemäße Vorrichtung einen Lichtwellenleiter LWL zum Einkoppeln von Licht und einen weiteren Lichtwellenleiter LWLQ, der als Lichtquelle ausgebildet ist. In der hier gezeigten Ausbildung wird Licht von einem Leuchtmittel Q an beiden Enden des weiteren Lichtwellenleiters LWLQ in diesen als Lichtquelle wirkenden weiteren Lichtwellenleiter eingekoppelt. Der weitere Lichtwellenleiter LWLQ ist dabei so ausgelegt, dass das darin geführte Licht über seine Länge radial austritt. Durch diesen permanenten Lichtaustritt wird die Intensität des radial aus dem weiteren Lichtwellenleiter LWLQ austretenden Lichtes mit zunehmender Entfernung von dem Leuchtmittel Q immer weiter abnehmen. Das bedeutet, dass bei der in Figur 2 gezeigten Anordnung im markierten Bereich aus dem weiteren Lichtwellenleiter LWLQ Licht mit der geringsten Intensität austreten wird. Da dieser, mit einer gestrichelten Linie umfasste Bereich aber auch der Bereich mit der größten Verschmutzung ist, wird das bereits mit verringerter Intensität radial aus dem weiteren Lichtwellenleiter LWLQ austretende Licht zudem noch stärker gedämpft als in anderen Bereichen. Somit wird dann auch das in den, beispielsweise parallel zu dem weiteren Lichtwellenleiter LWLQ angeordneten, Lichtwellenleiter LWL eintretende Licht im markierten Bereich immer eine geringere Intensität aufweisen als das Licht, das in den anderen Bereichen in den Lichtwellenleiter LWL eingekoppelt wird. Da für das in den. Lichtwellenleiter LWL eingekoppelte und zum Detektor D geführte Licht die Intensität über alle räumlich eingekoppelten Lichtanteile ermittelt wird, wird das aus dem markierten Bereich eintretende Licht mit einer anderen Gewichtung in die Ermittlung der Intensität und damit in die Beurteilung des Kontaktabbrandes eingehen als das Licht, das in anderen Bereichen eingekoppelt wird. Neben der in Figur 2 gezeigten Anordnung von Lichtwellenleiter LWL und weiterem Lichtwellenleiter LWLQ sind auch viele weitere Anordnungen vorstellbar und von der Erfindung mit umfasst. So ist auch eine Anordnung denkbar, bei der die Lichtwellenleiter LWL und LWLQ nicht mäanderförmig, sondern nur als einfache Schleife ausgebildet sind. Weiterhin ist denkbar, dass beide Lichtwellenleiter LWL und LWLQ so angeordnet sind, dass sich zwischen dem Lichtwellenleiter LWL und dem weiteren Lichtwellenleiter LWLQ das Schaltkontaktpaar K1, K1' befindet. Weiterhin können auch ohne weiteres, wie schon zuvor beschrieben, anstelle des einen Lichtwellenleiters LWL und des einen Detektors D auch in dieser Ausführung mehrere Lichtwellenleiter oder Detektoren zur Überwachung des einen Schaltkontaktpaares vorgesehen sein.Figure 2 shows in more detail, another embodiment of the electrical switching device S with the two switching contacts K1 and K1 '. Due to the shape of the switching contacts K1 and K1 'shown here, it will be in the marked area in particular to an increased contact erosion and thus to increased pollution. If this locally stronger contamination is to be taken into account when detecting the contact erosion, a development of the device according to the invention is advantageous. In the embodiment shown in FIG. 2, therefore, the device according to the invention comprises an optical waveguide LWL for coupling in light and a further optical waveguide LWLQ, which is designed as a light source. In the embodiment shown here, light from a luminous means Q at both ends of the further optical waveguide LWLQ is coupled into this further optical waveguide acting as a light source. The further optical waveguide LWLQ is designed so that the light guided therein radially emerges over its length. As a result of this permanent light emission, the intensity of the light emerging radially from the further optical waveguide LWLQ will continue to decrease with increasing distance from the luminous means Q. This means that, in the arrangement shown in FIG. 2, light with the least intensity will emerge from the further optical waveguide LWLQ in the marked area. Since this region encompassed by a dashed line is also the region with the greatest contamination, the light emerging radially from the further optical waveguide LWLQ with reduced intensity is also attenuated even more than in other regions. Thus, the light entering the optical waveguide LWL arranged, for example, parallel to the further optical waveguide LWLQ, will always have a lower intensity in the marked region than the light which is coupled into the optical waveguide LWL in the other regions becomes. As for that in the. Optical fiber LWL coupled and guided to the detector D light the intensity is determined over all spatially coupled light components, the light entering from the marked area with a different weighting in the determination of the intensity and thus in the assessment of Kontaktabbrandes received as the light in other areas is coupled. In addition to the arrangement of optical waveguide LWL and further optical waveguide LWLQ shown in Figure 2, many other arrangements are conceivable and included in the invention. Thus, an arrangement is conceivable in which the optical waveguides LWL and LWLQ are not meandering, but are formed only as a simple loop. Furthermore, it is conceivable that both optical waveguides LWL and LWLQ are arranged so that the switching contact pair K1, K1 'is located between the optical waveguide LWL and the further optical waveguide LWLQ. Furthermore, it is also readily possible, as described above, to provide a plurality of optical waveguides or detectors for monitoring one switching contact pair instead of one optical waveguide LWL and one detector D in this embodiment as well.
In der, in Figur 3, schematisch dargestellten dritten Ausführungsform ist der durch die sich öffnenden und schließenden Schaltkontakte K1 und K1' erzeugte Lichtbogen selbst die Lichtquelle Q. Dann sind zusätzlich nur ein Lichtwellenleiter LWL und ein Detektor D notwendig, um mit der erfindungsgemäßen Vorrichtung den Kontaktabbrand zu erfassen, und damit den Verschleiß des Schaltgerätes S zu überwachen. Mit zunehmendem Abbrand wird zwischen Lichtbogen Q und Lichtwellenleiter LWL die Anzahl der durch den Abbrand erzeugten Kontaktabbrandpartikel zunehmen und damit das vom Lichtbogen Q ausgehende Licht bis zum Eintritt in den Lichtwellenleiter immer stärker gedämpft. Damit kann wiederum anhand der Intensität des in den Lichtwellenleiter LWL eingekoppelten und zum Detektor D geführten Lichtes indirekt der Verschleiß des Schaltgerätes überwacht werden. Eine sich möglicherweise im Laufe des Betriebes, das heißt mit zunehmender Anzahl an erfolgten Schaltvorgängen des Schaltgerätes, verändernde Intensität des vom Lichtbogen ausgehenden Lichtes muss empirisch ermittelt und bei der Überwachung in einer entsprechenden Normierung berücksichtigt werden.In the third embodiment, shown schematically in Figure 3, the arc generated by the opening and closing switch contacts K1 and K1 'itself is the light source Q. Then additionally only an optical fiber LWL and a detector D are necessary to use the inventive device To detect contact erosion, and thus to monitor the wear of the switching device S. With increasing erosion, the number of contact erosion particles generated by the burnup will increase between the arc Q and the optical waveguide LWL and thus the light emanating from the arc Q will be increasingly dampened until it enters the optical waveguide. Thus, in turn, the wear of the switching device can be monitored indirectly on the basis of the intensity of the light coupled into the optical waveguide LWL and guided to the detector D light. A possibly during the operation, that is, with increasing number of switching operations of the switching device, changing intensity of the outgoing light from the arc must be determined empirically and taken into account in the monitoring in a corresponding normalization.
Figur 4 zeigt schematisch eine vierte Ausführungsform, bei der wiederum der Lichtbogen die Lichtquelle Q ist. Hier ist zusätzlich zwischen Lichtbogen Q und Lichtwellenleiter LWL eine Platte P vorgesehen, an der sich die Kontaktabbrandpartikel ansammeln können. Das bedeutet, mit zunehmendem Abbrand werden sich immer mehr Kontaktabbrandpartikel an der Platte P anlagern, wodurch der Transmissionsgrad für das vom Lichtbogen zum Lichtwellenleiter transmittierte Licht immer geringer, das heißt immer stärker gedämpft wird. Damit kann wiederum anhand der Intensität des in den Lichtwellenleiter LWL eingekoppelten und zum Detektor D geführten Lichtes indirekt der Verschleiß des Schaltgerätes überwacht werden. Die in Figur 4 gezeigte Platte P kann auch ohne weiteres in Kombination mit einer der in Figur 1 oder 2 gezeigten Ausführungsformen verwendet werden. Auch könnte die Platte P selbst ein Fenster im Gehäuse sein, wobei das vom Lichtbogen ausgehende Licht über die Platte P zu einem außerhalb des Gehäuses angeordneten Lichtwellenleiters LWL transmittiert und in diesen eingekoppelt wird. Neben den bisher beschriebenen Ausführungsformen sind noch eine Vielzahl von weiteren Ausführungsformen oder Kombinationen an erfindungsgemäßen Vorrichtungen denkbar, solange das Grundprinzip der vorliegenden Erfindung erfüllt ist, nämlich dass mit Hilfe der Kontaktabbrandpartikel indirekt der Kontaktabbrand der Schaltkontakte K1 und K1' und somit der Verschleiß der elektrischen Schaltgerätes S überwacht wird.FIG. 4 schematically shows a fourth embodiment, in which again the arc is the light source Q. Here, a plate P is additionally provided between arc Q and optical fiber LWL, at which the contact erosion particles can accumulate. This means that with increasing erosion, more and more contact erosion particles will accumulate on the plate P, whereby the transmittance for the light transmitted from the arc to the optical waveguide becomes ever smaller, that is, increasingly attenuated. Thus, in turn, the wear of the switching device can be monitored indirectly on the basis of the intensity of the light coupled into the optical waveguide LWL and guided to the detector D light. The plate P shown in FIG. 4 may also be readily used in combination with one of the embodiments shown in FIG. 1 or 2. Also, the plate P itself could be a window in the housing, wherein the light emitted from the arc light is transmitted via the plate P to an arranged outside the housing optical fiber LWL and coupled into this. In addition to the previously described embodiments are still a variety of other embodiments or combinations of devices according to the invention conceivable as long as the basic principle of the present invention is satisfied, namely that with the help of Kontaktabbrandpartikel indirectly the contact erosion of the switching contacts K1 and K1 'and thus the wear of the electrical switching device S is monitored.
Bisher wurde die vorliegende Erfindung nur in Bezug auf ein elektrisches Schaltgerät S mit einem Schaltkontaktpaar K1,K1' beschrieben. Figur 5 zeigt beispielhaft eine mögliche Anordnung des Lichtwellenleiters LWL für ein mehrpoliges Schaltgerät mit drei Schaltkontaktpaaren. Der Lichtwellenleiter weist hier drei Schleifen auf, wobei jede der Schleifen einem Schaltkontaktpaar des Schaltgerätes zugeordnet ist. Nicht gezeigt sind hier die Lichtquellen. Diese können aber, wie in den zuvor beschriebenen Ausführungsbeispielen ausgeführt, entweder der Lichtbogen selbst oder eine zusätzliche Lichtquelle, insbesondere eine Leuchtdiode oder ein weiterer Lichtwellenleiter, sein. Somit kann für jedes der Schaltkontaktpaare die Intensität des von der jeweiligen Lichtquelle Q ausgehende und in den Lichtwellenleiter LWL eingekoppelte und von diesem weitergeleitete Licht vom Detektor D gemessen und anschließend an eine Auslöseeinheit A übermittelt werden. Diese Auslöseeinheit wird in Abhängigkeit von der gemessenen Intensität des Lichtes das elektrische Schaltgerät steuern. Unterschreitet die gemessene Lichtintensität infolge einer immer größer werdenden Anzahl von Kontaktabbrandpartikeln nur für eines der Schaltkontaktpaare einen bestimmten Wert, wird die Auslöseeinheit A erkennen, dass zumindest für dieses Schaltkontaktpaar ein kritischer Grad an Verschleiß erreicht ist und ein weiteres Schalten aller Schaltkontaktpaare des mehrpoligen elektrischen Schaltgerätes S unterbinden. Sollen die Schaltkontaktpaare eines mehrpoligen Schaltgerätes getrennt überwacht werden, kann so wie in Figur 6 gezeigt für jedes Schaltkontaktpaar ein eigener Lichtwellenleiter LWL1, LWL2 und LWL 3 sowie ein dazugehöriger Detektor D1,D2 und D3 vorgesehen sein. Werden die einzelnen Schaltkontaktpaare zeitlich versetzt verschaltet und steht diese zeitliche Information einem Detektor zur Verfügung, so können die drei Detektoren D1,D2 und D3, so wie in Figur 6 mit einer gestrichelten Linie angedeutet, durch einen einzigen Detektor D ersetzt werden. Die von den Detektoren D1, D2 und D3 oder dem Detektor D gemessenen Intensitäten können dann wieder an die Auslöseeinheit A übermittelt werden, und diese kann dann, wie bereits zuvor beschrieben, entsprechend reagieren.So far, the present invention has only been described in relation to an electrical switching device S with a switching contact pair K1, K1 '. FIG. 5 shows, by way of example, a possible arrangement of the optical waveguide LWL for a multi-pole switching device with three switching contact pairs. The optical waveguide here has three loops, each of the loops being associated with a switching contact pair of the switching device. Not shown here are the light sources. However, as explained in the previously described embodiments, these can be either the arc itself or an additional light source, in particular a light-emitting diode or another optical waveguide. Thus, for each of the switching contact pairs, the intensity of the emanating from the respective light source Q and coupled into the optical waveguide LWL and forwarded by this light from the detector D is measured and then transmitted to a trip unit A. This trip unit will control the electrical switching device depending on the measured intensity of the light. If the measured light intensity falls below a certain value only for one of the switching contact pairs as a result of an ever increasing number of contact erosion particles, the tripping unit A will recognize that a critical degree of wear has been achieved at least for this switching contact pair and a further switching of all switching contact pairs of the multi-pole electrical switching device S. prevention. If the switching contact pairs of a multi-pole switching device are to be monitored separately, a separate optical waveguide LWL1, LWL2 and LWL 3 as well as an associated detector D1, D2 and D3 can be provided for each switching contact pair as shown in FIG. If the individual switching contact pairs are interconnected with a time offset and this time information is available to a detector, then the three detectors D1, D2 and D3 can be replaced by a single detector D, as indicated in FIG. 6 by a dashed line. The intensities measured by the detectors D1, D2 and D3 or the detector D can then be transmitted again to the tripping unit A, and this can then react accordingly, as already described above.
Claims (11)
- Apparatus for detection of contact erosion on switching contacts (K1, K1') in an electrical switching device (S), with the contact erosion occurring on at least one opening and closing switching contact pair (K1, K1') in the switching device (S), having a least one optical waveguide (LWL) and at least one detector (D), in which case light which emerges from at least one light source (Q) can be injected into the at least one optical waveguide (LWL), and can be passed from the optical waveguide (LWL) to the at least one detector (D),
characterized in that
the at least one optical waveguide (LWL) is arranged with respect to the at least one switching contact pair (K1, K1') such that the intensity, as measured by the at least one detector (D), of the light which is injected into the at least one optical waveguide (LWL) decreases with an increasing number of contact erosion particles, produced by contact erosion, in the electrical switching device (S). - Apparatus according to Claim 1,
characterized in that
the light source (Q) is the arc produced by the opening and closing switching contact pair (K1, K1'). - Apparatus according to Claim 1 or 2,
characterized in that
the light source (Q) is at least one light-emitting diode, which, together with the at least one optical waveguide (LWL), forms a light barrier (LS). - Apparatus according to Claim 1 or 2,
characterized in that
the at least one light source (Q) is a further optical waveguide (LWLQ). - Apparatus according to Claim 4,
characterized in that
the light from the further optical waveguide (LWLQ) emerges at one of its end faces and, together with the at least one optical waveguide (LWL), this end face forms a light barrier (LS) . - Apparatus according to Claim 4,
characterized in that
the light from the further optical waveguide (LWLQ) emerges radially over its length. - Apparatus according to one of Claims 1 to 6,
characterized in that
a plate (P) is arranged between the light source (Q) and the at least one optical waveguide (LWL), which plate (P) has a radiant transmittance for the light emerging from the light source (Q) and is arranged with respect to the at least one switching contact pair (K1, K1') such that contact erosion particles accumulate on the plate (P), with the radiant transmittance decreasing as the number of contact erosion particles increases. - Apparatus according to one of the preceding Claims 1 to 7,
characterized in that
one switching contact pair in a multipole switching device (S) has an associated optical waveguide (LWL1, LWL2, LWL3), with the optical waveguide (LWL1, LWL2, LWL3) being arranged with respect to the associated switching contact pair such that the intensity, as measured by the detector (D), of the light injected via the optical waveguide (LWL1, LWL2, LWL3) is a measure of the contact erosion of the associated switching contact pair. - Apparatus according to one of Claims 1 to 8,
characterized in that
the detector (D) transmits a signal, which corresponds to the measured intensity, to a tripping unit (A), and this tripping unit (A) controls the switching device (S) as a function of the signal. - Apparatus according to one of Claims 1 to 9,
characterized in that
the intensity, as measured by the detector (D), is transmitted via means for communication for further evaluation. - Electrical switching device having an apparatus according to one of Claims 1 to 10,
characterized in that
the electrical switching device (S) is a low-voltage circuit breaker or a contactor.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10345183A DE10345183B4 (en) | 2003-09-29 | 2003-09-29 | Device for detecting contact erosion in switching devices |
PCT/DE2004/002121 WO2005031774A1 (en) | 2003-09-29 | 2004-09-17 | Device for detecting contact wear in switching appliances |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1678729A1 EP1678729A1 (en) | 2006-07-12 |
EP1678729B1 true EP1678729B1 (en) | 2007-07-11 |
Family
ID=34384328
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04786837A Expired - Lifetime EP1678729B1 (en) | 2003-09-29 | 2004-09-17 | Device for detecting contact wear in switching appliances |
Country Status (7)
Country | Link |
---|---|
US (1) | US7408357B2 (en) |
EP (1) | EP1678729B1 (en) |
CN (1) | CN100477043C (en) |
DE (2) | DE10345183B4 (en) |
HK (1) | HK1095201A1 (en) |
RU (1) | RU2339111C2 (en) |
WO (1) | WO2005031774A1 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7596459B2 (en) * | 2001-02-28 | 2009-09-29 | Quadlogic Controls Corporation | Apparatus and methods for multi-channel electric metering |
EP1793235A1 (en) * | 2005-11-30 | 2007-06-06 | ABB Technology AG | Monitoring System for High-Voltage Switch Gears |
DE102006042508B4 (en) * | 2006-09-07 | 2016-05-12 | Abb Ag | Sensor arrangement, apparatus and method for the predictive determination of contamination-related incidents of a switchgear, and the corresponding switchgear |
DE102006053398A1 (en) | 2006-11-10 | 2008-05-15 | Endress + Hauser Gmbh + Co. Kg | Electronic device |
FR2945661A1 (en) * | 2009-05-18 | 2010-11-19 | Schneider Electric Ind Sas | EVALUATION OF THE WEAR OF CONTACTS ENFONCES BY THE VARIATION OF THE ROTATION OF THE TREE OF POLES |
US20110062960A1 (en) * | 2009-09-15 | 2011-03-17 | Lenin Prakash | Device and method to monitor electrical contact status |
EP2328159B1 (en) * | 2009-11-25 | 2012-01-04 | ABB Research Ltd. | Method and device for determining the wear on a contact element |
DE102013112439B4 (en) * | 2013-11-13 | 2020-03-26 | Eaton Intelligent Power Limited | Switching chamber for guiding and separating electrical currents by means of movable switch contacts |
DE102013114171B4 (en) * | 2013-12-17 | 2020-01-02 | Eaton Intelligent Power Limited | Switching chamber for guiding and separating electrical currents by means of movable switch contacts |
CN104320614B (en) * | 2014-10-14 | 2018-10-02 | 中国西电电气股份有限公司 | A kind of GIS device interior video monitoring system and method |
US9329238B1 (en) | 2014-11-14 | 2016-05-03 | Schneider Electric USA, Inc. | Contact wear detection by spectral analysis shift |
DE102016217431A1 (en) * | 2016-09-13 | 2018-03-15 | Robert Bosch Gmbh | Method for operating a safety device |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3925722A (en) * | 1972-05-01 | 1975-12-09 | Gen Electric | Wear indicator for vacuum circuit interrupter |
JPS6129029A (en) * | 1984-07-19 | 1986-02-08 | 三菱電機株式会社 | Method of indicating terminal number or like in solenoid relay or like |
SE463385B (en) | 1989-03-08 | 1990-11-12 | Stefan Karlsson | SET TO USE AN OPTICAL FIBER AS SENSOR |
DE4309177A1 (en) | 1993-03-22 | 1994-09-29 | Siemens Ag | Switchgear, especially contactor or circuit breakers |
DE59502186D1 (en) * | 1994-10-27 | 1998-06-18 | Siemens Ag | SWITCHGEAR WITH MONITORING OF AT LEAST ONE CONTACT PIECE |
DE19727986C2 (en) * | 1997-07-01 | 2001-10-11 | Moeller Gmbh | Circuit arrangement for determining the contact erosion of an electrical switching device |
DE19903968A1 (en) * | 1999-01-22 | 2000-07-27 | Siemens Ag | Arrangement for monitoring a switching device by means of an electronic camera |
DE10109952A1 (en) * | 2001-03-01 | 2002-09-05 | Moeller Gmbh | Stray light spark sensor, especially for switching systems, has optical element(s) with absorbable radiation fluorescence centers that amplifies stray light yield associated with base body |
FR2834120B1 (en) * | 2001-12-21 | 2004-02-06 | Schneider Electric Ind Sa | METHOD FOR DETERMINING THE WEAR OF CONTACTS OF A SWITCHING APPARATUS |
-
2003
- 2003-09-29 DE DE10345183A patent/DE10345183B4/en not_active Expired - Fee Related
-
2004
- 2004-09-17 WO PCT/DE2004/002121 patent/WO2005031774A1/en active IP Right Grant
- 2004-09-17 DE DE502004004315T patent/DE502004004315D1/en not_active Expired - Lifetime
- 2004-09-17 RU RU2006114764/09A patent/RU2339111C2/en not_active IP Right Cessation
- 2004-09-17 US US10/573,818 patent/US7408357B2/en not_active Expired - Fee Related
- 2004-09-17 EP EP04786837A patent/EP1678729B1/en not_active Expired - Lifetime
- 2004-09-17 CN CNB2004800282159A patent/CN100477043C/en not_active Expired - Fee Related
-
2007
- 2007-02-01 HK HK07101142.8A patent/HK1095201A1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
CN1860570A (en) | 2006-11-08 |
DE10345183A1 (en) | 2005-04-28 |
RU2339111C2 (en) | 2008-11-20 |
DE502004004315D1 (en) | 2007-08-23 |
CN100477043C (en) | 2009-04-08 |
RU2006114764A (en) | 2007-11-20 |
HK1095201A1 (en) | 2007-04-27 |
EP1678729A1 (en) | 2006-07-12 |
DE10345183B4 (en) | 2005-10-13 |
US20070001677A1 (en) | 2007-01-04 |
WO2005031774A1 (en) | 2005-04-07 |
US7408357B2 (en) | 2008-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1232510B1 (en) | Circuit protection unit with fuse carrier and fuse status indicator | |
EP1678729B1 (en) | Device for detecting contact wear in switching appliances | |
EP0020349B1 (en) | Supervision device with a passive optical detector for electrical arcs in a circuit-breaker | |
CH676174A5 (en) | Detection and quenching relay for switchgear arcs | |
CH669065A5 (en) | WARNING DEVICE FOR DETECTING AN OVERLOAD OR SHORT-CIRCUIT CONDITION APPLYING IN A CABLE TO AT LEAST ONE SWITCHGEAR IN A SWITCHBOX. | |
EP0249815A1 (en) | Fault arc detector device | |
EP1794768B1 (en) | Apparatus for monitoring a state of an electrical switching device | |
DE4326640C2 (en) | Measuring device for the path of a moving part on an electrical switching device and method for operating a switching device with a measuring device | |
DE3822342C2 (en) | ||
DE4242792A1 (en) | Safety switch arrangement for switching the power supply of actuators on and off depending on a sensor switching signal | |
DE3141374C2 (en) | ||
DE69832654T2 (en) | Selective electronic release, load switch with such a trigger and a selective tripping method | |
DE4131819A1 (en) | Measurement arrangement for determining path of movable part of electrical switching device - contains measurement sensor with light source and receiver, with modulatable pattern on moving part passing light from source to receiver | |
EP0691028B1 (en) | Switching component, especially safety or power switch | |
DE102004020045A1 (en) | Method for determining a residual shift play value indicating wear of switch contacts of a circuit breaker | |
EP2143184B1 (en) | Method for the selective triggering of power breakers | |
EP0575932B1 (en) | Detecting device for fault arcs, in particular for their detection on bus bar arrangements in low-voltage switch gears | |
EP0103921B1 (en) | High voltage equipment with registration of unwanted light | |
DE102013114171B4 (en) | Switching chamber for guiding and separating electrical currents by means of movable switch contacts | |
DE19514580A1 (en) | Line circuit-breaker for domestic installations | |
DE9212672U1 (en) | Device for detecting arcing faults, especially on busbar arrangements in low-voltage switchgear | |
DE19956295C1 (en) | Breaker protection unit has fuse carrier, fuse status indicator with contacts connected via conducting connections to bridge element and second unit connection | |
DE29503914U1 (en) | Arc fault detection device for switchgear for the distribution of electrical energy | |
EP1116251B1 (en) | Circuit breaker with a rated current plug connector | |
EP3048630A1 (en) | Display device and arc fault detection device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20060223 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT |
|
DAX | Request for extension of the european patent (deleted) | ||
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB IT |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 502004004315 Country of ref document: DE Date of ref document: 20070823 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20070820 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20080414 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20080924 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20080911 Year of fee payment: 5 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20090917 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090917 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090917 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20140917 Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20160531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150930 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20211119 Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502004004315 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230401 |