EP1675971B1 - Method for coating a substrate surface using a plasma beam - Google Patents

Method for coating a substrate surface using a plasma beam Download PDF

Info

Publication number
EP1675971B1
EP1675971B1 EP04786991A EP04786991A EP1675971B1 EP 1675971 B1 EP1675971 B1 EP 1675971B1 EP 04786991 A EP04786991 A EP 04786991A EP 04786991 A EP04786991 A EP 04786991A EP 1675971 B1 EP1675971 B1 EP 1675971B1
Authority
EP
European Patent Office
Prior art keywords
plasma
powder
fine granular
nozzle
substrate surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP04786991A
Other languages
German (de)
French (fr)
Other versions
EP1675971A1 (en
Inventor
Michael Dvorak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34383946&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1675971(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Priority to PL04786991T priority Critical patent/PL1675971T3/en
Publication of EP1675971A1 publication Critical patent/EP1675971A1/en
Application granted granted Critical
Publication of EP1675971B1 publication Critical patent/EP1675971B1/en
Revoked legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying

Definitions

  • the invention relates to a method for coating a substrate surface using a plasma jet according to the preamble of claim 1 and to an application of the method according to claim 12.
  • refractory layers to a substrate surface by means of a plasma jet
  • suitable substances e.g. Tungsten or oxide ceramics are supplied in powder form in a plasma free jet.
  • thermal plasmas in which temperatures of up to 20,000 ° C. prevail in the core of the exiting free plasma jet.
  • the plasma stabilization takes place here by high currents (> 200 A) and easy to ionizing gases.
  • Such a plasma causes a high temperature load of the component to be coated. If the coating process takes place under atmosphere, metallic coating materials also partly oxidize. Therefore, the range of use is very narrow.
  • the coating and / or processing of low-melting materials is possible, if at all, only by extremely complex process control and the use of strong cooling.
  • WO 01/32949 describes a method for coating surfaces, in which a precursor material is reacted by means of a plasma and the reaction product is then deposited on the surface to be coated.
  • This precursor material be it liquid and / or solid, is fed separately from the working gas into the plasma jet. As soon as a reaction of the introduced material is to take place, sufficient heating of the recurser material must be achieved.
  • the present invention has for its object to provide a method of the type mentioned, by means of which well adhering layers can be applied to metal, glass, plastic or other substrate surfaces.
  • the powder applied to the substrate surface by the free plasma jet is applied with good adhesion without the substrate temperature rising inadmissibly. Nevertheless, an excellent adhesion of the applied layer is achieved even under air atmosphere by this microscopic plasma process.
  • Metallic layers are also characterized by their extremely low oxygen content.
  • Fig.1 shows a known per se plasma nozzle 1 for generating a free plasma jet 2, which emerges from a lower nozzle opening 3 of the Plasmatrons 1 and is directed to a substrate surface 4.
  • the plasmatron 1 usually has an elongated, tubular housing 5, which tapers conically in the lower region 6 to the already mentioned nozzle opening 3.
  • the metal housing 5 is grounded and forms with the nozzle tip, for example, an outer electrode.
  • a primary imbalance plasma with low electrical power ( ⁇ 5 kW) is indicated within the plasmatron 5 - with box 11 - by high frequency alternating current (> 10 kHz), for example via a magnetron, an RF plasma, a direct high voltage discharge, a Coronabarriereentladung or similar generated.
  • a plasma or working gas is introduced from above through a supply line 7 so fluidly that thereby stabilizes the primary plasma (gas-stabilized plasmatron and, for example, vortex-stabilized plasmatron).
  • plasma or working gas preferably air or steam is used (cost).
  • the air can still be added as needed.
  • Nitrogen, carbon dioxide, methane or noble gases are added.
  • these other gases can also be used in pure form or in mixtures.
  • vapors of other liquids in pure form or in mixtures are to be used as plasma gases.
  • the emerging atmospheric plasma jet 2 is characterized in particular by a low temperature (in the core region ⁇ 500 ° C.) and low geometric expansion (diameter typically ⁇ 5 mm).
  • the free plasma jet 2 is then added as a fluidized, fine-grained powder in exactly metered amount, which is intended to form the intended coating on the substrate surface. There it is due to the interaction with the plasma up or even melted and accelerated in the direction of the surface to be coated, where it ultimately settles.
  • the powder material is delivered from a container 15 by means of a powder conveyor 16 and optionally introduced into the secondary plasma or primary plasma.
  • the low-temperature plasma is characterized in that after formation of an electrically or electromagnetically generated primary imbalance plasma (non-thermal plasma) in a partially closed plasma generator, the directed by suitable measures primary plasma jet by means of an annular nozzle at the transition to the environment (outlet 3) strong is accelerated and consequently after the nozzle forms a secondary plasma at ambient pressure. If the substrate surface is electrically conductive, a further voltage (so-called transferred arc or also direct plasmatron) can also be applied between the nozzle and the substrate.
  • the temperature of the plasma measured with a thermocouple type NiCr / Ni, tip diameter 4 mm, at 10 mm distance from the nozzle outlet is less than 900 ° C in the core of the secondary plasma jet (2) at ambient pressure.
  • a powder conveyor 16 is preferably one of the PCT patent application no. PCT / EP02 / 10709 known device for supplying metered quantities of fine-grained bulk material used, which has at least two alternately fillable and emptying metering chambers, wherein the metering chambers each by connection to a suction or. Vacuum line filled with the powder and emptied by connection to a compressed gas line while the powder is fluidized by the pressurized gas and pneumatically conveyed on.
  • Such a device as a powder conveyor 16 allows a highly precise metering and both a pulsed and a continuous, agglomeration-free supply of the finest powder whose grain size in the nanometer range to micrometer range (1 nm to 100 microns).
  • the possible embodiments of such a powder conveyor for electronically controllable promotion can be found in the aforementioned patent application and are therefore not described here in detail in detail.
  • the fluidized, fine-grained powder is introduced via a line 20 into the plasmatron 1 and there into the secondary plasma and / or introduced via a line 21 directly into the emerging from the nozzle opening 3 plasma jet 2.
  • a further possibility is to supply the powder via a likewise indicated by dashed lines 23 directly through the primary plasma in the flow direction of the plasma jet to the nozzle opening 3.
  • the amount of compressed gas required for the pneumatic delivery of the powder material is preferably 2 to 20% of the plasma gas amount.
  • the plasma gas consumption is about 100 to 5000 nl / h).
  • the powder applied to the substrate surface 4 by the plasma jet 2 is applied with good adhesion without the substrate temperature rising inadmissibly.
  • the temperature of the plasma measured with a thermocouple type NiCr / Ni, tip diameter 3 mm, at a distance of 10 mm from the nozzle outlet is less than 900 ° C in the core of the secondary plasma free jet at ambient pressure.
  • the substrate temperature increase during and after the coating process is well below 100 ° C., preferably below 50 ° C. Nevertheless, excellent adhesion of the coated layer is achieved by this microscopic atmospheric plasma process.
  • An advantage of the method according to the invention is that the substrate surface 4 to be coated requires no special preparation.
  • a surface cleaning can be carried out by the plasma process itself.
  • initially one or more times the plasma jet is directed without powder additive on the surface to be coated before the actual coating takes place.
  • This process is used primarily for tempering the surface and for its micro- or nanostructuring.
  • the inventive method is excellent for example for applying a zinc layer on welding or soldering of galvanized metal parts or sheets, which are used in particular in the auto industry. It is known that the zinc layer of the conventionally galvanized metal parts or sheets is removed during welding or soldering, whereby there is a risk of corrosion at such locations.
  • a plasma jet having a precisely defined width can be directed onto the site to be treated, for example a weld, and a zinc layer having a corresponding width (eg 2 to 3 ⁇ m / s) can be directed through a relative feed substrate / plasma nozzle (eg 0.3 m / s) 8 mm) can be applied exactly.
  • the powder feed is in the range of about 0.5 to 10 g / min.
  • the achievable layer thicknesses are typically 0.1 to 100 microns per overflow.
  • the device can be applied directly after the welding process (in-line process).
  • the method can also be used for medical purposes and serve, for example, for applying biologically active layers to skin substitutes or bone implants, with the aim of faster and improved integration of the implant into the human tissue.
  • the method can also be used for the metered or selective pretreating or metallization of plastics, paper, semiconductors or nonconductors, for example for the production of electrically conductive layers of Zn, Cu or Ag on Si wafers.
  • the method can be used for the decomposition-free application of well-adhering layers of plastics, such as polyamide, or high-performance plastics, such as PEEK with or without addition of inorganic nanometer to some micrometer-sized particles on plastics, wood, paper or metals.
  • plastics such as polyamide
  • high-performance plastics such as PEEK
  • powders with a specifically chemically and / or physically modified surface result. These powders can then serve as an improved or new precursor for other processes (eg, changing the hydrophobic behavior of soot into a hydrophilic behavior).

Abstract

The invention relates to a method for coating a substrate surface (4) using a plasma beam (2), by directing a beam (2) of a low temperature plasma at the substrate surface (4). A fine granular powder, forming the coating is added to the beam (2) in precisely metered amounts. The particle size of the fine powder or the powder mixture is preferably in the nanometre range, in particular, 1 to 10,000 nanometres. The powder can thus be applied with good bonding and with high service life.

Description

Die Erfindung betrifft ein Verfahren zur Beschichtung einer Substratoberfläche unter Verwendung eines Plasmastrahles gemäss dem Oberbegriff des Anspruches 1 sowie eine Anwendung des Verfahrens nach Anspruch 12.The invention relates to a method for coating a substrate surface using a plasma jet according to the preamble of claim 1 and to an application of the method according to claim 12.

Es ist bekannt, mittels eines Plasmastrahles hochschmelzende Schichten auf eine Substratoberfläche aufzutragen, indem geeignete Stoffe wie z.B. Wolfram oder Oxidkeramik in Pulverform in einen Plasmafreistrahl zugeführt werden. Es handelt sich dabei um sogenannte thermische Plasmen, bei denen im Kern des austretenden freien Plasmastrahles Temperaturen bis zu 20'000°C herrschen. Die Plasmastabilisierung findet hierbei durch hohe Stromstärken (> 200 A) und einfach zu ionisierende Gase statt. Ein derartiges Plasma bedingt eine hohe Temperaturbelastung des zu beschichtenden Bauteiles. Findet der Beschichtungsvorgang unter Atmosphäre statt, oxidieren ausserdem metallische Beschichtungswerkstoffe teilweise. Daher ist der Verwendungsbereich sehr eingeengt. Die Beschichtung und oder Verarbeitung niedrigschmelzender Werkstoffe ist, wenn überhaupt, nur durch eine äusserst aufwendige Prozessführung und dem Einsatz starker Kühlung möglich.It is known to apply refractory layers to a substrate surface by means of a plasma jet, by using suitable substances, e.g. Tungsten or oxide ceramics are supplied in powder form in a plasma free jet. These are so-called thermal plasmas in which temperatures of up to 20,000 ° C. prevail in the core of the exiting free plasma jet. The plasma stabilization takes place here by high currents (> 200 A) and easy to ionizing gases. Such a plasma causes a high temperature load of the component to be coated. If the coating process takes place under atmosphere, metallic coating materials also partly oxidize. Therefore, the range of use is very narrow. The coating and / or processing of low-melting materials is possible, if at all, only by extremely complex process control and the use of strong cooling.

In der Druckschrift WO 03/029762 ist ein Verfahren und eine Vorrichtung zur Zuführung dosierter Mengen eines feinkörnigen Schüttgutes erläutert.In the publication WO 03/029762 a method and a device for supplying metered quantities of a fine-grained bulk material is explained.

Es ist ausserdem erwähnt, dass mit einer solchen Vorrichtung Stoffe dosiert unter oder ohne Druck in einen Beschichtungsprozess, z.B. Plasma-Pulver-Auftragsschweissen, und anderen zugeführt werden können, was als allgemeiner Hinweis zu verstehen ist.It is also mentioned that with such a device, substances are metered under or without pressure into a coating process, e.g. Plasma powder deposition welding, and others can be fed, which is to be understood as a general guide.

In der Druckschrift WO 01/32949 ist ein Verfahren zur Beschichtung von Oberflächen erläutert, bei dem mit Hilfe eines Plasmas ein Precursormaterial zur Reaktion gebracht und das Reaktionsprodukt dann auf der zu beschichtenden Oberfläche abgeschieden wird. Dieses Precursormaterial, sei es flüssig und/oder fest, wird getrennt vom Arbeitsgas in den Plasmastrahl eingespeist. Sobald, wenn eine Reaktion des eingeleiteten Materials stattfinden soll, muss eine ausreichende Erhitzung des Recursormaterials erzielt werden.In the publication WO 01/32949 describes a method for coating surfaces, in which a precursor material is reacted by means of a plasma and the reaction product is then deposited on the surface to be coated. This precursor material, be it liquid and / or solid, is fed separately from the working gas into the plasma jet. As soon as a reaction of the introduced material is to take place, sufficient heating of the recurser material must be achieved.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art vorzuschlagen, mittels welchen gut haftende Schichten auf Metall, Glas, Kunststoff oder andere Substratoberflächen aufgetragen werden können.The present invention has for its object to provide a method of the type mentioned, by means of which well adhering layers can be applied to metal, glass, plastic or other substrate surfaces.

Diese Aufgabe wird erfindungsgemäss durch ein Verfahren mit den Merkmalen des Anspruches 1 gelöst.This object is achieved according to the invention by a method having the features of claim 1.

Bevorzugte Weitergestaltungcn des erfindungsgemässen Verfahrens bilden den Gegenstand der abhängigen Ansprüche.Preferred developments of the process according to the invention form the subject matter of the dependent claims.

Besonders vorteilhaft ist die Anwendung des erfindungsgemässen Verfahrens zum Aufbringen einer Zinkschicht auf Schweiss-oder Lötstellen von verzinkten Metallteilen oder Blechen, idealerweise direkt nach dem Schweiss- bzw. Lötvorgang in dem das Plasmatron hinter dem Schweissverfahren nachgeführt wird und die Prozesswärme des vorherigen Fügevorganges ausnutzt, um eine verbesserte Anbindung der Zinkschicht an das Bauteil zu erreichen.Particularly advantageous is the application of the inventive method for applying a zinc layer on welding or soldering of galvanized metal parts or sheets, ideally directly after the welding or soldering process in which the Plasmatron is tracked behind the welding process and the process heat of the previous joining process exploits to achieve an improved connection of the zinc layer to the component.

Das vom freien Plasmastrahl auf die Substratoberfläche aufgebrachte Pulver wird auf diese gut haftend aufgetragen, ohne dass die Substrattemperatur unzulässig ansteigt. Dennoch wird durch diesen mikroskopischen Plasmaprozess auch unter Luftatmosphäre eine ausgezeichnete Haftung der aufgetragenen Schicht erreicht. Metallische Schichten zeichnen sich ferner durch Ihren äusserst geringen Sauerstoffgehalt aus.The powder applied to the substrate surface by the free plasma jet is applied with good adhesion without the substrate temperature rising inadmissibly. Nevertheless, an excellent adhesion of the applied layer is achieved even under air atmosphere by this microscopic plasma process. Metallic layers are also characterized by their extremely low oxygen content.

Die Erfindung wird nachfolgend anhand der Zeichnung näher erläutert. Es zeigt:

Fig. 1
schematisch ein Prinzip des erfindungsgemässen Verfahrens.
The invention will be explained in more detail with reference to the drawing. It shows:
Fig. 1
schematically a principle of the inventive method.

Fig.1 zeigt eine an sich bekannte Plasmadüse 1 zur Erzeugung eines freien Plasmastrahles 2, der aus einer unteren Düsenöffnung 3 des Plasmatrons 1 austritt und auf eine Substratoberfläche 4 gerichtet ist. Fig.1 shows a known per se plasma nozzle 1 for generating a free plasma jet 2, which emerges from a lower nozzle opening 3 of the Plasmatrons 1 and is directed to a substrate surface 4.

Das Plasmatron 1 weist üblicherweise ein langgestrecktes, rohrförmiges Gehäuse 5 auf, das sich im unteren Bereich 6 zu der bereits erwähnten Düsenöffnung 3 konisch verjüngt. Das metallene Gehäuse 5 ist geerdet und bildet mit der Düsenspitze zum Beispiel eine Aussenelektrode. Ein primäres Ungleichgewichts-Plasma mit niedriger elektrischer Leistung (< 5 kW) wird innerhalb des Plasmatrons 5 - mit Box 11 angedeutet - durch hochfrequenten Wechselstrom (> 10 KHz) beispielsweise über ein Magnetron, ein RF-Plasma, eine direkte Hochspannungsentladung, einer Coronabarriereentladung oder ähnlichem erzeugt. In das Plasmatron 1 wird von oben durch eine Zuleitung 7 ein Plasma- bzw. Arbeitsgas so strömungstechnisch eingeleitet, dass dadurch das primäre Plasma stabilisiert wird (gasstabilisiertes Plasmatron und bspw. auch vortexstabilsiertes Plasmatron).The plasmatron 1 usually has an elongated, tubular housing 5, which tapers conically in the lower region 6 to the already mentioned nozzle opening 3. The metal housing 5 is grounded and forms with the nozzle tip, for example, an outer electrode. A primary imbalance plasma with low electrical power (<5 kW) is indicated within the plasmatron 5 - with box 11 - by high frequency alternating current (> 10 kHz), for example via a magnetron, an RF plasma, a direct high voltage discharge, a Coronabarriereentladung or similar generated. In the Plasmatron 1, a plasma or working gas is introduced from above through a supply line 7 so fluidly that thereby stabilizes the primary plasma (gas-stabilized plasmatron and, for example, vortex-stabilized plasmatron).

Als Plasma- bzw. Arbeitsgas wird vorzugsweise Luft oder auch Wasserdampf eingesetzt (kostengünstig). Der Luft können bei Bedarf noch z.B. Stickstoff, Kohlendioxid, Methan oder Edelgase beigemischt werden. Diese anderen Gase können jedoch auch in reiner Form oder in Mischungen verwendet werden. Auch sind Dämpfe anderer Flüssigkeiten in reiner Form oder in Mischungen als Plasmagase zu verwenden.As plasma or working gas preferably air or steam is used (cost). The air can still be added as needed. Nitrogen, carbon dioxide, methane or noble gases are added. However, these other gases can also be used in pure form or in mixtures. Also, vapors of other liquids in pure form or in mixtures are to be used as plasma gases.

Der austretende atmosphärische Plasmafreistrahl 2 zeichnet sich insbesondere durch eine niedrige Temperatur (im Kernbereich < 500 °C) und geringer geometrischer Ausdehnung aus (Durchmesser typischerweise < 5 mm). Erfindungsgemäss wird nun dem freien Plasmastrahl 2 als ein fluidisiertes, feinkörniges Pulver dasjenige Material in genau dosierter Menge zugefügt, das die vorgesehene Beschichtung der Substratoberfläche bilden soll. Dort wird es infolge der Wechselwirkung mit dem Plasma auf- oder auch nur angeschmolzen und in Richtung der zu beschichtenden Oberfläche beschleunigt, wo es sich letztlich niederschlägt. Das Pulvermaterial wird dabei aus einem Behälter 15 mittels eines Pulverförderers 16 geliefert und wahlweise in das sekundäre Plasma oder auch primäre Plasma eingeleitet.The emerging atmospheric plasma jet 2 is characterized in particular by a low temperature (in the core region <500 ° C.) and low geometric expansion (diameter typically <5 mm). According to the invention, the free plasma jet 2 is then added as a fluidized, fine-grained powder in exactly metered amount, which is intended to form the intended coating on the substrate surface. There it is due to the interaction with the plasma up or even melted and accelerated in the direction of the surface to be coated, where it ultimately settles. The powder material is delivered from a container 15 by means of a powder conveyor 16 and optionally introduced into the secondary plasma or primary plasma.

Das Niedertemperaturplasma zeichnet sich dadurch aus, dass das nach Ausbildung eines elektrisch oder elektromagnetisch erzeugten primären Ungleichgewichts-Plasmas (Nichtthermisches Plasma) in einem partiell geschlossen Plasmaerzeuger, der durch geeignete Massnahmen gerichtete primäre Plasmastrahl mittels einer ringförmigen Düse am Übergang zur Umgebung (Austrittsöffnung 3) stark beschleunigt wird und sich folgedessen nach der Düse ein sekundäres Plasma bei Umgebungsdruck ausbildet. Ist die Substratoberfläche elektrisch leitend, kann zudem eine weitere Spannung (sogenannter übertragener Lichbogen oder auch direktes Plasmatron) zwischen Düse und dem Substrat angelegt werden. Die Temperatur des Plasmas gemessen mit einem Thermoelement Typ NiCr/Ni, Spitzendurchmesser 4 mm, in 10 mm Abstand vom Düsenaustritt beträgt weniger als 900°C im Kern des sekundären Plasmastrahles (2) bei Umgebungsdruck.The low-temperature plasma is characterized in that after formation of an electrically or electromagnetically generated primary imbalance plasma (non-thermal plasma) in a partially closed plasma generator, the directed by suitable measures primary plasma jet by means of an annular nozzle at the transition to the environment (outlet 3) strong is accelerated and consequently after the nozzle forms a secondary plasma at ambient pressure. If the substrate surface is electrically conductive, a further voltage (so-called transferred arc or also direct plasmatron) can also be applied between the nozzle and the substrate. The temperature of the plasma measured with a thermocouple type NiCr / Ni, tip diameter 4 mm, at 10 mm distance from the nozzle outlet is less than 900 ° C in the core of the secondary plasma jet (2) at ambient pressure.

Als Pulverförderer 16 wird vorzugsweise eine aus der PCT-Patentanmeldung Nr. PCT/EP02/10709 bekannte Vorrichtung zur Zuführung dosierter Mengen eines feinkörnigen Schüttgutes verwendet, die mindestens zwei wechselweise füll- und entleerbare Dosierkammern aufweist, wobei die Dosierkammern jeweils durch Anschluss an eine Saug-bzw. Vakuumleitung mit dem Pulver gefüllt und durch Anschluss an eine Druckgasleitung entleert und dabei das Pulver vom Druckgas fluidisiert und pneumatisch weitergefördert wird.As a powder conveyor 16 is preferably one of the PCT patent application no. PCT / EP02 / 10709 known device for supplying metered quantities of fine-grained bulk material used, which has at least two alternately fillable and emptying metering chambers, wherein the metering chambers each by connection to a suction or. Vacuum line filled with the powder and emptied by connection to a compressed gas line while the powder is fluidized by the pressurized gas and pneumatically conveyed on.

Das Einschalten und Ausschalten des Sauganschlusses sowie das Einschalten und Ausschalten des Druckgasanschlusses erfolgt über pneumatisch und/oder hydraulisch gesteuerte Ventile. Eine solche Vorrichtung als Pulverförderer 16 erlaubt eine höchst präzise Dosierung und sowohl eine gepulste als auch eine kontinuierliche, agglomerationsfreie Zuführung des feinsten Pulvers, dessen Korngrösse im Nanometerbereich bis Mikrometerbereich (1 nm bis 100 µm) liegt. Die möglichen Ausgestaltungen eines derartigen Pulverförderers zur elektronisch steuerbaren Förderung sind der vorstehend genannten Patentanmeldung zu entnehmen und werden daher hier im Detail nicht näher beschrieben.The switching on and off of the suction connection as well as the switching on and off of the compressed gas connection takes place via pneumatically and / or hydraulically controlled valves. Such a device as a powder conveyor 16 allows a highly precise metering and both a pulsed and a continuous, agglomeration-free supply of the finest powder whose grain size in the nanometer range to micrometer range (1 nm to 100 microns). The possible embodiments of such a powder conveyor for electronically controllable promotion can be found in the aforementioned patent application and are therefore not described here in detail in detail.

Das fluidisierte, feinkörnige Pulver wird über eine Leitung 20 in das Plasmatron 1 und dort in das sekundäre Plasma eingeführt und/oder über eine Leitung 21 direkt in den aus der Düsenöffnung 3 austretenden Plasmastrahl 2 eingeleitet. Von Vorteil ist auch eine Pulverzuführung in den sich zur Düsenöffnung 3 hin verjüngenden Bereich 6 des Plasmatrons 1 (oder in die Düsenöffnung 3 selber) über eine in Fig. 1 gestrichelt angedeutete Leitung 22. Eine weitere Möglichkeit besteht darin, das Pulver über eine ebenfalls gestrichelt angedeutete Leitung 23 direkt durch das primäre Plasma hindurch in Strömungsrichtung des Plasmastrahles bis zu der Düsenöffnung 3 zuzuführen.The fluidized, fine-grained powder is introduced via a line 20 into the plasmatron 1 and there into the secondary plasma and / or introduced via a line 21 directly into the emerging from the nozzle opening 3 plasma jet 2. A powder feed in the area 6 of the plasma jet 1 tapering towards the nozzle opening 3 (or into the nozzle opening 3 itself) via an in Fig. 1 A further possibility is to supply the powder via a likewise indicated by dashed lines 23 directly through the primary plasma in the flow direction of the plasma jet to the nozzle opening 3.

Die Menge des für die pneumatische Förderung des Pulvermaterials benötigten Druckgases beträgt vorzugsweise 2 bis 20% der Plasmagasmenge. Der Plasmagasverbrauch liegt etwa bei 100 bis 5000 nl/h).The amount of compressed gas required for the pneumatic delivery of the powder material is preferably 2 to 20% of the plasma gas amount. The plasma gas consumption is about 100 to 5000 nl / h).

Das vom Plasmafreistrahl 2 auf die Substratoberfläche 4 aufgebrachte Pulver wird auf diese gut haftend aufgetragen, ohne dass die Substrattemperatur unzulässig ansteigt. Die Temperatur des Plasmas gemessen mit einem Thermoelement Typ NiCr/Ni, Spitzendurchmesser 3 mm, in 10 mm Abstand vom Düsenaustritt beträgt weniger als 900°C im Kern des sekundären Plasmafreistrahles bei Umgebungsdruck. Die Substrattemperaturerhöhung liegt während und nach dem Beschichtungsprozess deutlich unterhalb 100°C, vorzugsweise unter 50°C. Dennoch wird durch diesen mikroskopischen atmosphärischen Plasmaprozess eine ausgezeichnete Haftung der aufgetragenen Schicht erreicht.The powder applied to the substrate surface 4 by the plasma jet 2 is applied with good adhesion without the substrate temperature rising inadmissibly. The temperature of the plasma measured with a thermocouple type NiCr / Ni, tip diameter 3 mm, at a distance of 10 mm from the nozzle outlet is less than 900 ° C in the core of the secondary plasma free jet at ambient pressure. The substrate temperature increase during and after the coating process is well below 100 ° C., preferably below 50 ° C. Nevertheless, excellent adhesion of the coated layer is achieved by this microscopic atmospheric plasma process.

Ein Vorteil des erfindungsgemässen Verfahrens besteht darin, dass die zu beschichtende Substratoberfläche 4 keiner speziellen Vorbereitung bedarf.An advantage of the method according to the invention is that the substrate surface 4 to be coated requires no special preparation.

Eine Oberflächenreinigung kann durch den Plasmaprozess selber durchgeführt werden. Mit Vorteil wird zu diesem Zweck anfänglich ein- oder mehrmals der Plasmastrahl ohne Pulverzusatz auf die zu beschichtende Fläche gerichtet, bevor die eigentliche Beschichtung erfolgt. Dieser Vorgang dient vor allem zur Temperierung der Oberfläche und zu deren Mikro- bzw. Nanostrukturierung.A surface cleaning can be carried out by the plasma process itself. Advantageously, for this purpose initially one or more times the plasma jet is directed without powder additive on the surface to be coated before the actual coating takes place. This process is used primarily for tempering the surface and for its micro- or nanostructuring.

Das erfindungsgemässe Verfahren eignet sich ausgezeichnet beispielsweise zum Aufbringen einer Zinkschicht auf Schweiss- oder Lötstellen von verzinkten Metallteilen oder Blechen, die insbesondere in der Autoindustrie verwendet werden. Bekanntlich wird die Zinkschicht der konventionell verzinkten Metallteile oder Bleche beim Schweissen oder Löten entfernt, wodurch eine Korrosionsgefahr an solchen Stellen besteht. Mit dem erfindungsgemässen Verfahren kann ein Plasmastrahl mit genau definierter Breite auf die zu behandelnde Stelle, beispielsweise eine Schweissnaht, gerichtet werden und durch einen relativen Vorschub Substrat/Plasmadüse (z.B. 0,3 m/s) eine Zinkschicht mit einer entsprechenden Breite (z.B. 2 bis 8 mm) exakt aufgetragen werden. Als das feinkörnige, dem Plasmastrahl zugefügte Pulvermaterial wird kommerziell erhältlicher Zinkstaub verwendet. Die Pulverzufuhr liegt im Bereich von ca. 0,5 bis 10 g/min. Die erzielbaren Schichtdicken betragen typischerweise 0,1 bis 100 Mikrometer pro Überlauf. Die Vorrichtung kann direkt dem Schweissprozess nachlaufend angewendet werden (In-Line Prozess).The inventive method is excellent for example for applying a zinc layer on welding or soldering of galvanized metal parts or sheets, which are used in particular in the auto industry. It is known that the zinc layer of the conventionally galvanized metal parts or sheets is removed during welding or soldering, whereby there is a risk of corrosion at such locations. With the method according to the invention, a plasma jet having a precisely defined width can be directed onto the site to be treated, for example a weld, and a zinc layer having a corresponding width (eg 2 to 3 μm / s) can be directed through a relative feed substrate / plasma nozzle (eg 0.3 m / s) 8 mm) can be applied exactly. As the fine-grained powder material added to the plasma jet, commercially available zinc dust is used. The powder feed is in the range of about 0.5 to 10 g / min. The achievable layer thicknesses are typically 0.1 to 100 microns per overflow. The device can be applied directly after the welding process (in-line process).

Selbstverständlich können auch andere Materialien (Metalle, Keramiken, Thermoplaste oder auch deren Mischungen etc.) auf andere Substratflächen (Metall, Glas, Kunststoff etc.) mit dem erfindungsgemässen Verfahren aufgetragen werden und Funktionsschichten wie beispielsweise Schutz-, Verschleiss-, Isolierschichten oder auch Schichten mit antibakteriellen, selbstreinigenden oder auch katalytischen Eigenschaften bilden. Das Verfahren kann aber auch zu medizinischen Zwecken genutzt werden und beispielsweise zum Aufbringen von biologisch aktiven Schichten auf Hautersatz oder Knochenimplantaten dienen, mit Ziel einer schnelleren und verbesserten Integration des Implantates in das menschliche Gewebe.Of course, other materials (metals, ceramics, thermoplastics or mixtures thereof, etc.) can be applied to other substrate surfaces (metal, glass, plastic, etc.) with the inventive method and functional layers such as protective, wear, insulating layers or layers with antibacterial, form self-cleaning or catalytic properties. However, the method can also be used for medical purposes and serve, for example, for applying biologically active layers to skin substitutes or bone implants, with the aim of faster and improved integration of the implant into the human tissue.

Das Verfahren kann auch zum dosierten bzw. schonenden und gezielten Vormetallisieren oder Metallisieren von Kunststoffen, Papier, Halbleitern oder Nichtleitern, beispielsweise zur Herstellung elektrisch leitfähiger Schichten aus Zn, Cu oder Ag auf Si-Wafern, angewendet werden.The method can also be used for the metered or selective pretreating or metallization of plastics, paper, semiconductors or nonconductors, for example for the production of electrically conductive layers of Zn, Cu or Ag on Si wafers.

Des Weiteren kann das Verfahren angewendet werden zur zersetzungsfreien Aufbringung von gut haftenden Schichten aus Kunststoffen, wie Polyamid, oder Hochleistungs-Kunststoffen, wie PEEK ohne oder mit Zusätzen von anorganischen nanometer- bis einige mikrometergrosse Partikel auf Kunststoffe, Holz, Papier oder Metalle.Furthermore, the method can be used for the decomposition-free application of well-adhering layers of plastics, such as polyamide, or high-performance plastics, such as PEEK with or without addition of inorganic nanometer to some micrometer-sized particles on plastics, wood, paper or metals.

Wird das in den Plasmastrahl eingegebene Pulver oder Pulvergemisch nachfolgend nicht auf eine Oberfläche als Schicht aufgetragen, sondern über eine geeignete Vorrichtung gefangen, ergeben sich Pulver mit gezielt chemisch und oder physikalisch veränderter Oberfläche. Diese Pulver können dann als verbessertes oder neues Vorprodukt für andere Prozesse dienen (bspw. Änderung des hydrophoben Verhaltens von Russ in ein hydrophiles Verhalten).If the powder or powder mixture introduced into the plasma jet is subsequently not applied to a surface as a layer but trapped by a suitable device, powders with a specifically chemically and / or physically modified surface result. These powders can then serve as an improved or new precursor for other processes (eg, changing the hydrophobic behavior of soot into a hydrophilic behavior).

Claims (17)

  1. Method for coating a substrate surface (4) using a plasma beam (2), to which a fine granular powder forming the coating is added in metered amount by a controllable device as powder feed (16), characterised in that
    a beam (8, 2) of a low-temperature plasma is directed at the substrate surface (4), to which this powder is added in metered amount, whereby the substrate temperature increase during and after the coating process lies below 100°C, preferably under 50°C.
  2. Method according to claim 1, characterised in that the particle size of the fine granular powder or of the powder mixture can be in the nanometre range between 1 nanometre to 10 micrometres.
  3. Method according to claim 1 or 2, characterised in that the fine granular powder is supplied from a container (15) by means of a powder feeder (16) which has at least two dosing chambers which alternately can be filled and emptied, whereby the dosing chambers are each filled with the powder by connection to a suction or vacuum line, and emptied by connection to a pressure gas line and thereby the powder is fluidized by the pressure gas and conveyed onwards pneumatically, whereby the suction and the pressure gas connections are opened and closed via pneumatically and/or hydraulically controlled valves.
  4. Method according to anyone of the claims 1 to 3, characterised in that the plasma is created in a plasma nozzle (1) under the introduction of a working gas and/or of a vaporable fluid and generation of a discharge which is initiated by high voltage and/or high-frequency electrical and/or electromagnetic coupling and the primary plasma beam (8) is blown out through an opening (3) of the plasmatron (1) in the form of a nozzle onto the substrate surface (4), whereby the fine granular powder is introduced into the primary plasma, and from there goes into the secondary plasma beam (2) and/or is introduced directly into the secondary plasma beam (2) emerging from the nozzle opening (3).
  5. Method according to claim 4, characterised in that the fine granular powder is introduced into an area (6) of the plasma nozzle (1) tapering towards the nozzle opening (3).
  6. Method according to claim 4, characterised in that the fine granular powder is fed directly (23) into the primary plasma.
  7. Method according to one of the claims 3 to 6, characterised in that the volume of pressure gas for pneumatic feeding (20) of the fine granular powder amounts to 2 to 20% of the plasma gas volume (7).
  8. Method according to one of claims 4 to 7, characterised in that air is used as working and/or plasma gas.
  9. Method according to one of the claims 1 to 8, characterised in that in the low-temperature plasma, after forming an electrically or electromagnetically generated primary non-equilibrium plasma in a partially-closed plasma generator, the primary plasma beam, directed by suitable means, is powerfully accelerated by means of an annular nozzle (3) at the transition to the environment and consequently a secondary plasma forms after the nozzle at ambient pressure.
  10. Method according to one of the claims 1 to 8, characterised in that the substrate surface (4) is cleansed and/or micro- or nanostructured by the secondary plasma beam (2) without the addition of powder.
  11. Method according to one of the claims 4 to 10, characterised in that a high-frequency alternating or direct current at frequencies of between 10 kHz to 10 GHz and an electrical power of less than 5 kW is used to generate the primary plasma (8).
  12. Method according to claim 1 or 2, characterised in that the fine granular powder is converted into an aqueous suspension and added to the plasma with the aid of at least one feeder unit.
  13. Application of the method according to one of claims 1 to 12 to deposit a zinc coating on welding or solder points of galvanised metal parts or sheets.
  14. Application of the method according to one of the claims 1 to 12 for the deposition of solder, with and without flux, onto components.
  15. Application of the method according to one of the claims 1 to 12 for the deposition copper coatings.
  16. Application of the method according to one of the claims 1 to 12 for metered pre-metallisation or metallisation of plastics, paper, semiconductors or dielectrics, like for the manufacture of electrically-conductive coatings made from Zn, Cu or Ag on Si wafers.
  17. Application of the method according to one of the claims 1 to 12 for non-decomposing deposition of coatings made from plastics, such as polyamide, or high-performance plastics, such as PEEK with or without additives of anorganic particles with a size in the nanometre to a few micrometres range, made from plastics, wood, paper or metals.
EP04786991A 2003-09-26 2004-09-23 Method for coating a substrate surface using a plasma beam Revoked EP1675971B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL04786991T PL1675971T3 (en) 2003-09-26 2004-09-23 Method for coating a substrate surface using a plasma beam

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH01639/03A CH696811A5 (en) 2003-09-26 2003-09-26 Process for coating a substrate surface using a plasma jet.
PCT/EP2004/010675 WO2005031026A1 (en) 2003-09-26 2004-09-23 Method for coating a substrate surface using a plasma beam

Publications (2)

Publication Number Publication Date
EP1675971A1 EP1675971A1 (en) 2006-07-05
EP1675971B1 true EP1675971B1 (en) 2010-05-19

Family

ID=34383946

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04786991A Revoked EP1675971B1 (en) 2003-09-26 2004-09-23 Method for coating a substrate surface using a plasma beam

Country Status (8)

Country Link
EP (1) EP1675971B1 (en)
JP (1) JP2007521395A (en)
AT (1) ATE468418T1 (en)
CH (1) CH696811A5 (en)
DE (1) DE502004011185D1 (en)
ES (1) ES2345986T3 (en)
PL (1) PL1675971T3 (en)
WO (1) WO2005031026A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012065704A1 (en) 2010-11-15 2012-05-24 Michael Dvorak Process for producing coating components of finely particulate powders
WO2012123530A1 (en) 2011-03-16 2012-09-20 Reinhausen Plasma Gmbh Coating, and method and device for coating
DE102011052121A1 (en) 2011-07-25 2013-01-31 Eckart Gmbh Coating process using special powder coating materials and use of such coating materials
WO2013014213A2 (en) 2011-07-25 2013-01-31 Eckart Gmbh Methods for substrate coating and use of additive-containing powdered coating materials in such methods
DE102011052118A1 (en) 2011-07-25 2013-01-31 Eckart Gmbh Method for applying a coating to a substrate, coating and use of particles
WO2013014211A2 (en) 2011-07-25 2013-01-31 Eckart Gmbh Use of specially coated powdered coating materials and coating methods using such coating materials
DE102011052119A1 (en) 2011-07-25 2013-01-31 Eckart Gmbh Coating method of particle-containing powdery coating material used for automobile component, involves performing flame spraying, high-speed flame spraying, thermal plasma spraying and/or non-thermal plasma spraying method
DE202012011217U1 (en) 2012-11-21 2014-02-27 Leoni Bordnetz-Systeme Gmbh Device for dividing a stream of material in a surface coating system and such a coating system
WO2015055486A1 (en) 2013-10-14 2015-04-23 Plasma Innovations GmbH Production method for a plasma-coated molded body and component
EP2959992A1 (en) 2014-06-26 2015-12-30 Eckart GmbH Method for producing a particulate-containing aerosol

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1871921B1 (en) * 2005-03-22 2021-04-28 Erbslöh Aluminium GmbH Method for partial or complete coating of the surfaces of an aluminium material component
DE102006061435A1 (en) * 2006-12-23 2008-06-26 Leoni Ag Method and device for spraying in particular a conductor track, electrical component with a conductor track and metering device
EP2179071B1 (en) * 2007-08-14 2016-04-13 Université Libre de Bruxelles Method of depositing nanoparticles on a support
EP2419231B1 (en) * 2009-04-17 2021-05-05 Michael Dvorak Method for powder coating or for producing composite materials, preferably when processing plastics or spray compacting metals
WO2010118896A2 (en) * 2009-04-17 2010-10-21 Bayer International Sa Method and system of feeding a carbon nano tubes (cnts) to a fluid for forming a composite material
FR2947814B1 (en) * 2009-07-13 2011-10-14 Serigne Dioum FLUID DEPOLLUTION PRODUCT AND METHOD OF OBTAINING
DE102010014552A1 (en) 2010-03-22 2011-09-22 Timo Brummer Coating a substrate surface using a plasma beam or plasma beams, comprises directing a beam of an atmospheric low-temperature plasma to the substrate surface according to respective plasma coating nozzle in opposition to thermal injection
DE102010032187A1 (en) * 2010-07-23 2012-01-26 Reinhausen Plasma Gmbh Process for producing a solar cell and solar cell
DE202010016599U1 (en) * 2010-12-15 2012-03-16 Leoni Bordnetz-Systeme Gmbh Apparatus for spraying a structure of conductive material onto a substrate
DE102010056325B3 (en) * 2010-12-27 2012-02-16 Maschinenfabrik Reinhausen Gmbh Method for producing a shield
DE202012011219U1 (en) 2012-11-21 2014-02-24 Leoni Bordnetz-Systeme Gmbh Device for dissolving agglomerations of solid particles in a stream, in particular gas stream in a surface coating plant
CN103074569A (en) * 2013-01-29 2013-05-01 电子科技大学 Atmosphere glow discharge low-temperature plasma coating device
DE102013103693A1 (en) * 2013-04-12 2014-10-16 Reinhausen Plasma Gmbh Method and device for constructing a structure on a substrate
DE102013010126B4 (en) * 2013-06-18 2015-12-31 Häuser & Co. GmbH Plasmapulverspritzverfahren and apparatus for coating panels for boiler walls in conjunction with a laser beam device
DE202013007063U1 (en) 2013-08-07 2013-09-03 Marco De Paolis Electrode for use in plasma spray nozzles
DE102014219756A1 (en) * 2014-09-30 2016-03-31 Evonik Degussa Gmbh Plasma coating of thermoelectric active material with nickel and tin
ES2704132T3 (en) 2016-01-21 2019-03-14 Evonik Degussa Gmbh Rational procedure for the powder metallurgical production of thermoelectric components
EP3327165A1 (en) * 2016-11-24 2018-05-30 Valeo Iluminacion Method for creating a conductive track
DE102020212302A1 (en) 2020-09-29 2022-03-31 Contitech Techno-Chemie Gmbh Plastic pipe with integrated connection

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6452053A (en) * 1987-08-19 1989-02-28 Oki Electric Ind Co Ltd Production of superconducting ceramic body
JP2772971B2 (en) * 1989-04-18 1998-07-09 松下電器産業株式会社 Welding method for surface treated steel sheet
JPH09143667A (en) * 1995-11-21 1997-06-03 Mitsubishi Heavy Ind Ltd Production of high temperature member made of rhenium
JP2995250B2 (en) * 1997-07-22 1999-12-27 哲二 平野 A method for plasma spraying titanium oxide powder on a substrate and a product having a plasma sprayed coating.
DE19807086A1 (en) * 1998-02-20 1999-08-26 Fraunhofer Ges Forschung Atmospheric pressure plasma deposition for adhesion promoting, corrosion protective, surface energy modification or mechanical, electrical or optical layers
DE19856307C1 (en) * 1998-12-07 2000-01-13 Bosch Gmbh Robert Apparatus for producing a free cold plasma jet
DE29919142U1 (en) * 1999-10-30 2001-03-08 Agrodyn Hochspannungstechnik G Plasma nozzle
JP2002121024A (en) * 2000-10-12 2002-04-23 Seiko Epson Corp Method for manufacturing titanium oxide film, titanium oxide film and solar cell
JP4216453B2 (en) * 2000-11-15 2009-01-28 株式会社東芝 Manufacturing method of coating member
EP1432964B1 (en) * 2001-09-29 2012-05-23 Michael Dvorak Method and device for conveying dosed quantities of a fine-grained bulk material

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012065704A1 (en) 2010-11-15 2012-05-24 Michael Dvorak Process for producing coating components of finely particulate powders
WO2012123530A1 (en) 2011-03-16 2012-09-20 Reinhausen Plasma Gmbh Coating, and method and device for coating
WO2013014211A2 (en) 2011-07-25 2013-01-31 Eckart Gmbh Use of specially coated powdered coating materials and coating methods using such coating materials
WO2013014214A2 (en) 2011-07-25 2013-01-31 Eckart Gmbh Coating method using special powdered coating materials and use of such coating materials
WO2013014213A2 (en) 2011-07-25 2013-01-31 Eckart Gmbh Methods for substrate coating and use of additive-containing powdered coating materials in such methods
DE102011052118A1 (en) 2011-07-25 2013-01-31 Eckart Gmbh Method for applying a coating to a substrate, coating and use of particles
DE102011052121A1 (en) 2011-07-25 2013-01-31 Eckart Gmbh Coating process using special powder coating materials and use of such coating materials
DE102011052120A1 (en) 2011-07-25 2013-01-31 Eckart Gmbh Use of specially coated, powdery coating materials and coating methods using such coating materials
WO2013014212A2 (en) 2011-07-25 2013-01-31 Eckart Gmbh Method for applying a coating to a substrate, coating, and use of particles
DE102011052119A1 (en) 2011-07-25 2013-01-31 Eckart Gmbh Coating method of particle-containing powdery coating material used for automobile component, involves performing flame spraying, high-speed flame spraying, thermal plasma spraying and/or non-thermal plasma spraying method
US9580787B2 (en) 2011-07-25 2017-02-28 Eckart Gmbh Coating method using special powdered coating materials and use of such coating materials
DE202012011217U1 (en) 2012-11-21 2014-02-27 Leoni Bordnetz-Systeme Gmbh Device for dividing a stream of material in a surface coating system and such a coating system
WO2015055486A1 (en) 2013-10-14 2015-04-23 Plasma Innovations GmbH Production method for a plasma-coated molded body and component
DE102013111306A1 (en) 2013-10-14 2015-04-30 Ensinger Gmbh Manufacturing method for a plasma-coated molded body and component
EP2959992A1 (en) 2014-06-26 2015-12-30 Eckart GmbH Method for producing a particulate-containing aerosol

Also Published As

Publication number Publication date
JP2007521395A (en) 2007-08-02
CH696811A5 (en) 2007-12-14
ATE468418T1 (en) 2010-06-15
ES2345986T3 (en) 2010-10-07
PL1675971T3 (en) 2010-10-29
WO2005031026A1 (en) 2005-04-07
DE502004011185D1 (en) 2010-07-01
EP1675971A1 (en) 2006-07-05

Similar Documents

Publication Publication Date Title
EP1675971B1 (en) Method for coating a substrate surface using a plasma beam
EP2486163B1 (en) Atmospheric pressure plasma method for producing surface-modified particles and coatings
DE10261303B3 (en) Electrically conducting composite material used in automotive applications as electrical contact components, such as connectors or connections, comprises a metal strip and a contact layer containing carbon powder and a further additive
EP2104750B1 (en) Method and device for spraying a conductive line
EP3083107B1 (en) Device and method for melting a material without a crucible and for atomizing the melted material in order to produce powder
EP1230414A1 (en) Method and device for plasma coating surfaces
DE102011052118A1 (en) Method for applying a coating to a substrate, coating and use of particles
WO2012123530A1 (en) Coating, and method and device for coating
DE10223865B4 (en) Process for the plasma coating of workpieces
EP1095169A1 (en) Method and device for producing a powder aerosol and use thereof
AT517694B1 (en) Apparatus and method for applying a coating
DE102012107076A1 (en) Method and device for thermal spraying of coating materials
EP3768870B1 (en) Apparatus for conveying and charging powder, apparatus for producing a layered structure on a surface region of a component, sheet-like heating element and method for producing a sheet-like heating element
DE102010014552A1 (en) Coating a substrate surface using a plasma beam or plasma beams, comprises directing a beam of an atmospheric low-temperature plasma to the substrate surface according to respective plasma coating nozzle in opposition to thermal injection
EP2468914B1 (en) Method and device for arc spraying
EP1358943B1 (en) Method and apparatus for electric arc spraying
DE102018113643A1 (en) Device for coating a surface
DE10331664B4 (en) Plasma spraying process and device suitable for this purpose
DE10256257A1 (en) Device and method for coating a substrate and coating on a substrate
WO2015055711A1 (en) Method and device for producing particles in an atmospheric pressure plasma
EP4082670A1 (en) Device for thermal coating by means of wire arc spraying
DE102010033290A1 (en) Applying coating made of conductive coating material on surface of component to be coated, comprises melting wire made of coating material and transporting melt by gas stream to surface, and carrying out the melting by an induction coil
DE10314015A1 (en) Process for coating substrates with a plastic containing an injection material in the form of plastic encased with metal and/or ceramic comprises feeding the injection material into a colder injection region during thermal injection

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060315

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20060829

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502004011185

Country of ref document: DE

Date of ref document: 20100701

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2345986

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100519

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100820

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100920

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100519

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100519

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100519

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100519

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100519

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: LEONI BORDNETZ-SYSTEME GMBH

Effective date: 20110218

Opponent name: ECKART GMBH

Effective date: 20110218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502004011185

Country of ref document: DE

Effective date: 20110218

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20110922

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100923

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101120

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100519

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20120921

Year of fee payment: 9

Ref country code: SE

Payment date: 20120919

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20120918

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120926

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20120920

Year of fee payment: 9

Ref country code: BE

Payment date: 20120920

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20121228

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100819

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

BERE Be: lapsed

Owner name: DVORAK, MICHAEL

Effective date: 20130930

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20140401

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130923

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130923

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130924

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20120921

Year of fee payment: 9

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140401

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20141007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130923

REG Reference to a national code

Ref country code: PL

Ref legal event code: LAPE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130924

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: LEONI BORDNETZ-SYSTEME GMBH

Effective date: 20110218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130923

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160920

Year of fee payment: 13

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160922

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170923

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20180911

Year of fee payment: 15

RDAD Information modified related to despatch of communication that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSCREV1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

REG Reference to a national code

Ref country code: DE

Ref legal event code: R064

Ref document number: 502004011185

Country of ref document: DE

Ref country code: DE

Ref legal event code: R103

Ref document number: 502004011185

Country of ref document: DE

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 468418

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190923

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200914

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20221121

Year of fee payment: 19

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

REG Reference to a national code

Ref country code: DE

Ref legal event code: R103

Ref document number: 502004011185

Country of ref document: DE

Ref country code: DE

Ref legal event code: R064

Ref document number: 502004011185

Country of ref document: DE

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20230207

REG Reference to a national code

Ref country code: AT

Ref legal event code: MA03

Ref document number: 468418

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230207