JP4216453B2 - Manufacturing method of coating member - Google Patents

Manufacturing method of coating member Download PDF

Info

Publication number
JP4216453B2
JP4216453B2 JP2000347915A JP2000347915A JP4216453B2 JP 4216453 B2 JP4216453 B2 JP 4216453B2 JP 2000347915 A JP2000347915 A JP 2000347915A JP 2000347915 A JP2000347915 A JP 2000347915A JP 4216453 B2 JP4216453 B2 JP 4216453B2
Authority
JP
Japan
Prior art keywords
film
coating
coating member
base material
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000347915A
Other languages
Japanese (ja)
Other versions
JP2002155352A (en
Inventor
尊彦 新藤
章子 須山
剛 宇田川
秀泰 安藤
義康 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000347915A priority Critical patent/JP4216453B2/en
Publication of JP2002155352A publication Critical patent/JP2002155352A/en
Application granted granted Critical
Publication of JP4216453B2 publication Critical patent/JP4216453B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は溶射皮膜を緻密化し、皮膜の強度を向上するのに適するコーティング部材およびその製造方法に関する。
【0002】
【従来の技術】
金属材料からなる基材の表面に特別な性質を与えるのにコーティングが広く利用されている。とりわけ、溶射法で皮膜を形成する方法が広範な分野で利用されている。この皮膜の形成方法では溶射器から粒子状材料を噴出させ、基材の表面にこれを吹き付け、多層にわたって重ねて施工することになる。
【0003】
噴出する粒子状材料は溶射器で高温火炎あるいはアークなどによって加熱され、半溶融状態で基材の表面に付着して行く。粒径は比較的大きく、約30μm程度である。一般に、層をなす粒子と粒子との間には気孔と呼ばれる隙間が生じ、この気孔の生成により皮膜は多孔質で、脆い性質を持つことになる。
【0004】
【発明が解決しようとする課題】
溶射法で形成する皮膜は施工中に生成する気孔のために多孔質で、脆くなることが避けられない。このような皮膜の性質は、たとえば、溶射工程で処理条件を様々に変えたとしても、本質的に変化しない。
【0005】
基材の表面に皮膜を付けるのは、たとえば、耐熱性、耐磨耗性などの望ましい性質を部材に付与するためであるが、こうしたコーティング部材がある機器内に組み込まれ、通常の使用条件のもとで使用されるとき、多孔質である皮膜は基材と比べて強度的に余裕がなく、たとえば、外力の作用で許容応力を超えるようなことがあると、皮膜の一部が剥離してしまうなどの不具合が発生する。
【0006】
一度、こうした不具合が発生すれば、コーティング部材の交換を迫られ、これを組み込んだ機器は運転を休止しなければならず、機器以外への影響が大きくなる。また、皮膜だけの損傷でコーティング部材全体を交換するのは無駄が大きく、特に、供用中に損傷を生じないように、皮膜自身の強度を高めることが求められている。
【0007】
本発明の目的は溶射による皮膜の形成中に生成する気孔を激減させ、皮膜の強度を格段に高めるようにしたコーティング部材およびその製造法方法を提供することにある。
【0008】
【課題を解決するための手段】
上記の課題を解決するため、本発明は、Al、Fe、Cu、Ni、Mgから選択されるいずれか1つの金属またはこれらの金属の少なくとも1種を主成分とする合金群から選ばれた1種からなる基材を所定の形状に成形する工程と、前記基材の表面にCu、Al、Ag、Ti、Fe、Wから選択されるいずれか1つの金属あるいはこれらの金属の少なくとも1種を主成分とする合金群から選ばれた1種で構成される皮膜を1mmから10mmの範囲の厚みで溶射によって形成する工程と、前記基材の該皮膜部分を引っ張り機で伸ばし、材料に引っ張り応力を負荷する工程と、前記基材の該皮膜表面に対してFeまたはFeを主成分とする合金からなる直径10mm以下の球体を衝突させて緻密化処理する工程と、を含むことを特徴とする。
【0009】
このようなコーティング部材においては溶射による皮膜の形成で生じた気孔が緻密化処理で著しく減少し、あるいは後記の望ましい処理条件と組み合わせることで、大部分が消滅し、皮膜の強度を格段に向上させることができる。
【0012】
基材成形工程ではマシニング加工、プレス加工、ロール加工、スピニング加工、その他の加工で基材を成形する。皮膜形成工程ではガス溶射、アーク溶射、プラズマ溶射のいずれかの方法で基材の表面に皮膜を形成する。緻密化処理工程においては金属または非金属材料からなる固体を基材の皮膜表面に衝突させる。
【0018】
また、皮膜形成工程の後に追加の工程として基材の皮膜に引っ張り応力を負荷する工程を実施することで、曲げ強度が処理を施さないものと比べて著しく増大し、常態で処理したものと比べても、さらに一段と曲げ強度を高くすることができる。
【0020】
さらに皮膜形成工程において皮膜の厚さを1mmから10mmの範囲の膜厚に形成することで、緻密化処理の効果が失われず、本発明の効果を最大限に得ることが可能になる。
【0022】
また緻密化処理工程において基材および皮膜を加熱中あるいは加熱後に固体を衝突させることで、曲げ強度が処理を施さないものと比べてはるかに増大し、常温で処理したものと比べても、さらに一段と曲げ強度を高くすることができる。
【0027】
【発明の実施の形態】
(実施例1)
図1(a)において、Alの素材から基材1を成形し、次いで、基材1の表面に溶射によってCuからなる皮膜2を形成した。溶射ではプラズマ溶射によって一様な膜厚を保つように形成した。次に、媒体を用いて鉄球を加速し、皮膜2の表面に均一に衝突させた。得られたコーティング部材の皮膜2の状態を図1(b)に示している。
【0028】
比較のために皮膜2を形成した後、皮膜2に何も施さない試料(未処理試料)も製作した。これらのコーティング部材および未処理試料について皮膜中の気孔の体積割合を求め、得られたコーティング部材および試料を正確に評価した。
【0029】
図3に曲げ強度比を比較した結果を示している。従来のコーティング部材に相当する未処理試料と比べて実施例1のコーティング部材において曲げ強度が数倍以上増大することが確認された。
【0030】
さらに、図4に気孔の体積割合を基準に曲げ強度比を比較した結果を示している。皮膜中の気孔の体積割合が高い未処理試料と比べて体積割合が10%以下である実施例1のコーティング部材において曲げ強度が5倍程度向上できることが確認された。
【0031】
(実施例2)
Alを主成分とする合金の素材から基材1を成形し、次いで、基材1の表面に溶射によってCuを主成分とする合金からなる皮膜2を形成した。この溶射ではプラズマ溶射を用いて1mmから20mまでそれぞれ膜厚を変えて形成した。次に、媒体を用いて鉄球を加速し、皮膜2の表面に均一に衝突させた。各々コーティング部材について皮膜2中の気孔の体積割合を求め、これらのコーティング部材を正確に評価した。
【0032】
図5に皮膜中の気孔の体積割合について比較した結果を示している。皮膜2の厚さが約11mm以上になったとき、気孔の体積割合が急激に大きくなり、緻密化処理の効果が失われることが判明した。これに対して、皮膜2の厚さが約1mmから約10mmの範囲では気孔の体積割合が小さく、緻密化処理の効果が最大限に発揮できることが判明した。すなわち、皮膜2の厚さは約1mmから約10mmの範囲が望ましいことが確認された。
【0033】
(実施例3)
Alを主成分とする合金の素材から基材1を成形し、次いで、基材1の表面に溶射によってCuを主成分とする合金からなる皮膜2を形成した。この溶射ではプラズマ溶射を用いて一様な膜厚を保つように形成した。次に、基材1および皮膜2の双方をある温度に加熱した状態で媒体を用いて鉄球を加速し、皮膜2の表面に均一に衝突させた。
【0034】
比較のために皮膜2を形成した後、皮膜2に何も施さない試料(未処理試料)も製作した。得られたコーティング部材および未処理試料について皮膜2中の気孔の体積割合を求め、これらのコーティング部材および試料を正確に評価した。
【0035】
図6に曲げ強度比を比較した結果を示している。未処理試料と比べて実施例3のコーティング部材においては曲げ強度が10倍以上増大し、実施例1の常温で処理したものと比べても、さらに一段と高くなることが確認された。
【0036】
(実施例4)
Alを主成分とする合金の素材から基材1を成形し、次いで、基材1の表面に溶射によってCuを主成分とする合金からなる皮膜2を形成した。この溶射ではプラズマ溶射を用いて一様な膜厚を保つように形成した。次に、基材1および皮膜2の周囲をアルゴンガスで満たした状態で媒体を用いて鉄球を加速し、皮膜2の表面に均一に衝突させた。
【0037】
比較のために皮膜2を形成した後、皮膜2に何も施さない試料(未処理試料)も製作した。得られたコーティング部材および未処理試料について皮膜2中の気孔の体積割合を求め、これらのコーティング部材および試料を正確に評価した。
【0038】
図7に曲げ強度比について比較した結果を示している。未処理試料と比べて実施例4のコーティング部材においては曲げ強度が10倍近く増大し、実施例1の常態で処理したものと比べても、さらに一段と高くなることが確認された。
【0039】
(実施例5)
Alを主成分とする合金の素材から基材1を成形し、次いで、基材1の表面に溶射によってCuを主成分とする合金からなる皮膜2を形成した。この溶射ではプラズマ溶射を用いて一様な膜厚を保つように形成した。次に、基材1の皮膜2部分を引っ張り機で伸ばし、材料に引っ張り応力を負荷した。次に、媒体を用いて鉄球を加速し、皮膜2の表面に均一に衝突させた。
【0040】
比較のために皮膜2を形成した後、皮膜2に何も施さない試料(未処理試料)も製作した。得られたコーティング部材および未処理試料について皮膜2中の気孔の体積割合を求め、これらのコーティング部材および試料を正確に評価した。
【0041】
図8に曲げ強度比について比較した結果を示している。未処理試料と比べて実施例5のコーティング部材においては曲げ強度が10倍以上増大し、実施例1の常態で処理したものと比べても、さらに一段と高くなることが確認された。
【0042】
(実施例6)
図9(a)において、Alを主成分とする合金の素材から接点部材3を成形し、次いで、接点部材3の端面および端面から内側にかけての表面に溶射によってCuを主成分とする合金からなる皮膜4を形成した。この溶射ではプラズマ溶射を用いて一様な膜厚を保って形成した。次に、媒体を用いて鉄球を加速し、皮膜4の表面に均一に衝突させた。
【0043】
この接点部材3においても緻密化処理により皮膜4に望ましい強度が得られることが確認された。なお、図9(b)に示すような棒状接点部材5においても緻密化処理により皮膜4に望ましい強度が得られることが確認された。
【0044】
【発明の効果】
本発明によれば、溶射により基材の表面に形成した皮膜の表面に固体を衝突させ、皮膜を緻密化するようにしたので、皮膜自身の強度を格段に高めることが可能になり、コーティング部材を組み込む機器を長期にわたって安定に供用することができる。
【図面の簡単な説明】
【図1】本発明に係るコーティング部材を示すもので、(a)は皮膜を形成した基材を示す断面図、(b)は緻密化処理を施した基材を示す断面図。
【図2】本発明によるコーティング部材の製造方法を示す工程図。
【図3】本発明のコーティング部材の未処理試料との比較に基づく曲げ強度比を示す図。
【図4】本発明による気孔の体積割合と曲げ強度比の関係を示すグラフ。
【図5】本発明による皮膜の厚さと気孔の体積割合との関係を示すグラフ。
【図6】本発明のコーティング部材の未処理試料との比較に基づく曲げ強度比を示す図。
【図7】本発明のコーティング部材の未処理試料との比較に基づく曲げ強度比を示す図。
【図8】本発明のコーティング部材の未処理試料との比較に基づく曲げ強度比を示す図。
【図9】本発明によるコーティング部材の適用例を示すもので、(a)は電力用遮断器の接点部材の要部を示す断面図、(b)は開閉器の接点部材の要部を示す断面図。
【符号の説明】
1、3、5…基材、2、4…皮膜
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a coating member suitable for densifying a sprayed coating and improving the strength of the coating, and a method for producing the same.
[0002]
[Prior art]
Coatings are widely used to impart special properties to the surface of a substrate made of a metallic material. In particular, a method of forming a film by a thermal spraying method is used in a wide range of fields. In this film forming method, the particulate material is ejected from the thermal sprayer, sprayed onto the surface of the base material, and applied over multiple layers.
[0003]
The ejected particulate material is heated by a high-temperature flame or arc in a thermal sprayer, and adheres to the surface of the substrate in a semi-molten state. The particle size is relatively large, about 30 μm. In general, gaps called pores are formed between particles forming a layer, and the formation of the pores makes the film porous and brittle.
[0004]
[Problems to be solved by the invention]
The coating formed by the thermal spraying method is unavoidable to be porous and brittle due to pores generated during construction. The properties of such a coating do not change essentially even if, for example, the processing conditions are variously changed in the thermal spraying process.
[0005]
The reason why the coating is applied to the surface of the base material is, for example, to impart desirable properties such as heat resistance and abrasion resistance to the member. When used in the original, the porous film does not have a sufficient strength compared to the base material. For example, if the allowable stress is exceeded by the action of an external force, part of the film peels off. Problems such as end up occur.
[0006]
Once such a problem occurs, it is necessary to replace the coating member, and the device in which the coating member is incorporated must be stopped from operation, resulting in a large influence on other devices. In addition, it is wasteful to replace the entire coating member due to damage to the coating alone, and in particular, it is required to increase the strength of the coating itself so as not to cause damage during service.
[0007]
It is an object of the present invention to provide a coating member and a method for producing the same, in which pores generated during the formation of a coating by thermal spraying are drastically reduced and the strength of the coating is remarkably increased.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention is 1 selected from any one metal selected from Al, Fe, Cu, Ni, Mg or an alloy group mainly composed of at least one of these metals Forming a substrate made of seeds into a predetermined shape, and at least one metal selected from Cu, Al, Ag, Ti, Fe, W or at least one of these metals on the surface of the substrate Forming a film composed of one kind selected from an alloy group as a main component by thermal spraying with a thickness in the range of 1 mm to 10 mm, and stretching the film part of the base material with a pulling machine, and applying tensile stress to the material And a step of densifying by colliding a sphere having a diameter of 10 mm or less made of Fe or an alloy containing Fe as a main component against the coating surface of the substrate. .
[0009]
In such a coating member, pores generated by the formation of the film by thermal spraying are remarkably reduced by the densification treatment, or most of the pores disappear by combining with the desirable treatment conditions described later, and the strength of the coating is remarkably improved. be able to.
[0012]
In the base material forming process, the base material is formed by machining, pressing, roll processing, spinning, or other processing. In the film forming step, a film is formed on the surface of the substrate by any one of gas spraying, arc spraying, and plasma spraying. In the densification treatment step, a solid made of a metal or a non-metallic material is collided with the coating surface of the substrate.
[0018]
In addition, by carrying out a process of applying tensile stress to the film of the base material as an additional process after the film formation process , the bending strength is significantly increased compared to that which is not subjected to treatment, compared with that which is processed in a normal state. However, the bending strength can be further increased.
[0020]
Furthermore , by forming the film thickness in the film forming step in the range of 1 mm to 10 mm, the effect of the densification treatment is not lost, and the effect of the present invention can be obtained to the maximum.
[0022]
In addition , by colliding solids during or after heating the substrate and film in the densification treatment step, the bending strength is much increased compared to those not subjected to treatment, even compared to those treated at room temperature, Furthermore, the bending strength can be further increased.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
Example 1
In FIG. 1A, a substrate 1 was formed from an Al material, and then a coating 2 made of Cu was formed on the surface of the substrate 1 by thermal spraying. In the thermal spraying, a uniform film thickness was maintained by plasma spraying. Next, the iron ball was accelerated using a medium, and was uniformly collided with the surface of the film 2. The state of the film 2 of the obtained coating member is shown in FIG.
[0028]
After forming the film 2 for comparison, a sample (untreated sample) in which nothing was applied to the film 2 was also produced. The volume ratio of pores in the film was determined for these coated members and untreated samples, and the obtained coated members and samples were accurately evaluated.
[0029]
FIG. 3 shows the result of comparing the bending strength ratio. It was confirmed that the bending strength increased several times or more in the coating member of Example 1 compared to the untreated sample corresponding to the conventional coating member.
[0030]
Further, FIG. 4 shows the result of comparing the bending strength ratio based on the pore volume ratio. It was confirmed that the bending strength can be improved about 5 times in the coating member of Example 1 having a volume ratio of 10% or less as compared with an untreated sample having a high volume ratio of pores in the film.
[0031]
(Example 2)
A base material 1 was formed from an alloy material containing Al as a main component, and then a coating 2 made of an alloy containing Cu as a main component was formed on the surface of the base material 1 by thermal spraying. In this thermal spraying, plasma spraying was used to change the film thickness from 1 mm to 20 m. Next, the iron ball was accelerated using a medium, and was uniformly collided with the surface of the film 2. For each coating member, the volume ratio of pores in the film 2 was determined, and these coating members were accurately evaluated.
[0032]
FIG. 5 shows a comparison result of the volume ratio of pores in the film. It was found that when the thickness of the film 2 was about 11 mm or more, the volume ratio of the pores rapidly increased and the effect of the densification treatment was lost. On the other hand, it was found that when the thickness of the film 2 is in the range of about 1 mm to about 10 mm, the volume ratio of the pores is small, and the effect of the densification treatment can be maximized. That is, it was confirmed that the thickness of the film 2 is preferably in the range of about 1 mm to about 10 mm.
[0033]
(Example 3)
A base material 1 was formed from an alloy material containing Al as a main component, and then a coating 2 made of an alloy containing Cu as a main component was formed on the surface of the base material 1 by thermal spraying. In this thermal spraying, plasma spraying was used to maintain a uniform film thickness. Next, the iron ball was accelerated using a medium in a state where both the substrate 1 and the coating 2 were heated to a certain temperature, and uniformly collided with the surface of the coating 2.
[0034]
After forming the film 2 for comparison, a sample (untreated sample) in which nothing was applied to the film 2 was also produced. The volume ratio of the pores in the film 2 was obtained for the obtained coating member and untreated sample, and these coating member and sample were accurately evaluated.
[0035]
FIG. 6 shows the result of comparing the bending strength ratio. It was confirmed that the bending strength of the coating member of Example 3 increased by 10 times or more compared to the untreated sample, and even higher than that of Example 1 treated at room temperature.
[0036]
(Example 4)
A base material 1 was formed from an alloy material containing Al as a main component, and then a coating 2 made of an alloy containing Cu as a main component was formed on the surface of the base material 1 by thermal spraying. In this thermal spraying, plasma spraying was used to maintain a uniform film thickness. Next, the iron ball was accelerated using a medium in a state where the periphery of the substrate 1 and the film 2 was filled with argon gas, and was uniformly collided with the surface of the film 2.
[0037]
After forming the film 2 for comparison, a sample (untreated sample) in which nothing was applied to the film 2 was also produced. The volume ratio of the pores in the film 2 was obtained for the obtained coating member and untreated sample, and these coating member and sample were accurately evaluated.
[0038]
FIG. 7 shows a result of comparison with respect to the bending strength ratio. It was confirmed that the bending strength of the coating member of Example 4 was increased nearly 10 times compared to the untreated sample, and was even higher than that of the coating member of Example 1 processed in the normal state.
[0039]
(Example 5)
A base material 1 was formed from an alloy material containing Al as a main component, and then a coating 2 made of an alloy containing Cu as a main component was formed on the surface of the base material 1 by thermal spraying. In this thermal spraying, plasma spraying was used to maintain a uniform film thickness. Next, the film 2 portion of the substrate 1 was stretched with a pulling machine, and a tensile stress was applied to the material. Next, the iron ball was accelerated using a medium, and was uniformly collided with the surface of the film 2.
[0040]
After forming the film 2 for comparison, a sample (untreated sample) in which nothing was applied to the film 2 was also produced. The volume ratio of the pores in the film 2 was obtained for the obtained coating member and untreated sample, and these coating member and sample were accurately evaluated.
[0041]
FIG. 8 shows a result of comparison with respect to the bending strength ratio. It was confirmed that the bending strength of the coating member of Example 5 increased by 10 times or more compared to the untreated sample, and even higher than that of the coating member of Example 1 processed in the normal state.
[0042]
(Example 6)
In FIG. 9 (a), the contact member 3 is formed from a material of an alloy containing Al as a main component, and then the end surface of the contact member 3 and the surface from the end surface to the inside are made of an alloy containing Cu as a main component by thermal spraying. Film 4 was formed. In this thermal spraying, plasma spraying was used to maintain a uniform film thickness. Next, the iron ball was accelerated using a medium, and uniformly collided with the surface of the film 4.
[0043]
Also in this contact member 3, it was confirmed that desirable strength was obtained for the film 4 by the densification treatment. In addition, it was confirmed that the rod 4 contact member 5 as shown in FIG.
[0044]
【The invention's effect】
According to the present invention, since the solid is collided with the surface of the coating formed on the surface of the substrate by thermal spraying and the coating is densified, the strength of the coating itself can be remarkably increased, and the coating member It is possible to stably use a device that incorporates a long-term use.
[Brief description of the drawings]
1A and 1B show a coating member according to the present invention, in which FIG. 1A is a cross-sectional view showing a base material on which a film is formed, and FIG. 1B is a cross-sectional view showing a base material subjected to densification treatment.
FIG. 2 is a process diagram showing a method for producing a coating member according to the present invention.
FIG. 3 is a diagram showing a bending strength ratio based on comparison with an untreated sample of a coating member of the present invention.
FIG. 4 is a graph showing the relationship between the volume ratio of pores and the bending strength ratio according to the present invention.
FIG. 5 is a graph showing the relationship between the thickness of the film according to the present invention and the volume ratio of pores.
FIG. 6 is a diagram showing a bending strength ratio based on a comparison with an untreated sample of a coating member of the present invention.
FIG. 7 is a diagram showing a bending strength ratio based on comparison with an untreated sample of the coating member of the present invention.
FIG. 8 is a diagram showing a bending strength ratio based on comparison with an untreated sample of the coating member of the present invention.
9A and 9B show an application example of a coating member according to the present invention, in which FIG. 9A is a cross-sectional view showing a main part of a contact member of a power circuit breaker, and FIG. 9B shows a main part of a contact member of a switch; Sectional drawing.
[Explanation of symbols]
1, 3, 5 ... base material, 2, 4 ... coating

Claims (1)

Al、Fe、Cu、Ni、Mgから選択されるいずれか1つの金属またはこれらの金属の少なくとも1種を主成分とする合金群から選ばれた1種からなる基材を所定の形状に成形する工程と、
前記基材の表面にCu、Al、Ag、Ti、Fe、Wから選択されるいずれか1つの金属あるいはこれらの金属の少なくとも1種を主成分とする合金群から選ばれた1種で構成される皮膜を1mmから10mmの範囲の厚みで溶射によって形成する工程と、
前記基材の該皮膜部分を引っ張り機で伸ばし、材料に引っ張り応力を負荷する工程と、
前記基材の該皮膜表面に対してFeまたはFeを主成分とする合金からなる直径10mm以下の球体を衝突させて緻密化処理する工程と、
を含むことを特徴とするコーティング部材の製造方法。
A base material made of any one metal selected from Al, Fe, Cu, Ni, and Mg or an alloy group mainly composed of at least one of these metals is formed into a predetermined shape. Process ,
The surface of the base material is composed of any one metal selected from Cu, Al, Ag, Ti, Fe, and W, or one selected from an alloy group containing at least one of these metals as a main component. Forming a coating with a thickness of 1 mm to 10 mm by thermal spraying ;
Stretching the film portion of the substrate with a pulling machine and applying a tensile stress to the material;
A step of densifying a sphere having a diameter of 10 mm or less made of Fe or an alloy containing Fe as a main component with respect to the coating surface of the substrate;
The manufacturing method of the coating member characterized by including.
JP2000347915A 2000-11-15 2000-11-15 Manufacturing method of coating member Expired - Fee Related JP4216453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000347915A JP4216453B2 (en) 2000-11-15 2000-11-15 Manufacturing method of coating member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000347915A JP4216453B2 (en) 2000-11-15 2000-11-15 Manufacturing method of coating member

Publications (2)

Publication Number Publication Date
JP2002155352A JP2002155352A (en) 2002-05-31
JP4216453B2 true JP4216453B2 (en) 2009-01-28

Family

ID=18821574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000347915A Expired - Fee Related JP4216453B2 (en) 2000-11-15 2000-11-15 Manufacturing method of coating member

Country Status (1)

Country Link
JP (1) JP4216453B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH696811A5 (en) * 2003-09-26 2007-12-14 Michael Dvorak Dr Ing Dipl Phy Process for coating a substrate surface using a plasma jet.

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5938305B2 (en) * 1982-08-31 1984-09-14 積水樹脂株式会社 Manufacturing method of metal corrosion resistant body
JPS60197862A (en) * 1984-03-19 1985-10-07 Hitachi Zosen Corp Manufacture of anticorrosive and antifouling steel sheet
JPS62112769A (en) * 1985-11-12 1987-05-23 Tadahiro Shimazu Formation of thermally sprayed film having superior wear and corrosion resistance and durability
JPH0250947A (en) * 1988-08-11 1990-02-20 Yamada Kinzoku Boshoku Kk Sealing treatment for sprayed deposit
JPH05271900A (en) * 1992-03-23 1993-10-19 Mitsubishi Heavy Ind Ltd Heating and pressurizing method of thermally sprayed film
JPH05331614A (en) * 1992-06-01 1993-12-14 Mitsubishi Heavy Ind Ltd Screw and surface treatment for screw
JPH0688196A (en) * 1992-07-29 1994-03-29 Ishikawajima Harima Heavy Ind Co Ltd Method for working surface of thermally spraying metallic material
JP3358796B2 (en) * 1996-08-30 2002-12-24 株式会社豊田中央研究所 Method for modifying surface of Ti-Al alloy and Ti-Al alloy having modified layer on surface
JP3839939B2 (en) * 1997-11-19 2006-11-01 株式会社東芝 Coating end structure
JP2000024927A (en) * 1998-07-14 2000-01-25 Wada Hikari Surface treatment method of metallic product

Also Published As

Publication number Publication date
JP2002155352A (en) 2002-05-31

Similar Documents

Publication Publication Date Title
US7122100B2 (en) Porous getter devices with reduced particle loss and method for manufacturing same
JP6446175B2 (en) Thermal spray coated reinforced polymer composites
CN1149296C (en) Valve metal compositions and method
EP1780298A1 (en) Y2o3 thermal sprayed film coated member and process for producing the same
JP2007522346A (en) Porous coating member and method for producing the same using low temperature spraying method
WO2012128327A1 (en) Laminate, conductive material, and process for producing laminate
CN108987022A (en) A kind of FeSiAl powder core and preparation method thereof
CN106978586B (en) A kind of overlay coating processing method of arc-chutes copper tungsten electrical contact material
CN106435489A (en) Preparation method for oxidation resisting self-healing Cr/NiCr coatings on niobium-based surface
JP4216453B2 (en) Manufacturing method of coating member
CN109487195A (en) A kind of ultralimit ferroalloy and preparation method thereof
KR100915394B1 (en) Electric Conductivity and Anti-abrasion Property Excellent Material and the manufacturing method thereof
US5997957A (en) Process for deposition of layered coatings on copper and alloys thereof
WO2013061934A1 (en) Method for producing composite material, and composite material
CN108247042B (en) Ni-coated Al-coated Fe-based amorphous alloy composite powder and preparation method and application thereof
JPH0369830A (en) Coil spring and manufacture thereof
CN110735115B (en) Method for connecting aluminum oxide ceramic coating and metal substrate based on electron beam irradiation
KR100797827B1 (en) Method of coating on carbon fiber-epoxy composite
JPS63126682A (en) Positioning pin for projection welding subjected to ceramic coating by chemical compaction method
RU2192501C2 (en) Method of vacuum ion-plasma coating of substrate
CN116411235B (en) Method for preparing in-situ self-generated nano precipitated phase enhanced high-entropy alloy coating by plasma spraying
KR101543891B1 (en) Coating Method For Nano-structured Metallic Thin Films Using Supersonic Vacuum-Flow Deposition
CN209109361U (en) A kind of surface covering of colloid mill component
EP2087143A2 (en) Vapour-deposited coating and thermally stressable component having such a coating, and also a process and apparatus for producing such a coating
SU1646677A1 (en) Of manufacturing sintered products of metal powders

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040116

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050323

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050325

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050722

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees