JPH0369830A - Coil spring and manufacture thereof - Google Patents

Coil spring and manufacture thereof

Info

Publication number
JPH0369830A
JPH0369830A JP20416289A JP20416289A JPH0369830A JP H0369830 A JPH0369830 A JP H0369830A JP 20416289 A JP20416289 A JP 20416289A JP 20416289 A JP20416289 A JP 20416289A JP H0369830 A JPH0369830 A JP H0369830A
Authority
JP
Japan
Prior art keywords
film
coil spring
wire
titanium alloy
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20416289A
Other languages
Japanese (ja)
Other versions
JP2823169B2 (en
Inventor
Akira Tange
彰 丹下
Yuichi Nagase
長瀬 悠一
Sueyoshi Ookura
末代史 大倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
NHK Spring Co Ltd
Original Assignee
Daido Steel Co Ltd
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd, NHK Spring Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP1204162A priority Critical patent/JP2823169B2/en
Publication of JPH0369830A publication Critical patent/JPH0369830A/en
Application granted granted Critical
Publication of JP2823169B2 publication Critical patent/JP2823169B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To remarkably enhance abrasion resistance without deteriorating creep resistance and fatigue resistance in a coil spring by covering an element ire made of titanium or titanium alloy with one or more kinds of ceramics films in mono- or multilayers. CONSTITUTION:An element wire 11 made of titanium alloy is covered with a TiN film 12 as a ceramics film. beta-type titanium alloy is used for the element wire 11. Shot peening is performed so as to secure fatigue strength, and a compressive residual stress is applied onto the surface of the element wire 11. The element wire 11 is covered with the ceramics film 12 in order to provided abrasion resistance for a coil spring formed of the element wire 11. Fine TiN crystals are laminated in a direction of film thickness, obtaining the TiN ceramics film 12. With the resultant fine polycrystalline structure in multilayers, a stress inside the ceramics film 12 can be decreased.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、各種機器等に使用されるコイルばねに係り、
特にチタンまたはチタン合金製の索線を用いたコイルば
ねとその製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a coil spring used in various devices, etc.
In particular, the present invention relates to a coil spring using a cable made of titanium or a titanium alloy, and a method for manufacturing the same.

[従来の技術] 自動車等の車両用部品に使われるコイルばねをはじめと
して、各種機器に使用されるコイルばねは、省エネルギ
ー等の観点から軽量化の要望が強い。コイルばねを軽量
化する手段としては、材料強度を高くし、ばねの使用可
能な応力を高めるとか、比強度(強度/重量)の高い材
料を使用することが指針となっている。
[Prior Art] There is a strong desire to reduce the weight of coil springs used in various devices, including coil springs used in parts for vehicles such as automobiles, from the viewpoint of energy conservation. As a means to reduce the weight of a coil spring, the guidelines are to increase the strength of the material, increase the usable stress of the spring, or use a material with high specific strength (strength/weight).

比強度の高い材料として、チタンあるいはチタン合金が
知られている。しかしながら、チタンおよびチタン合金
からなるコイルばねは摩耗しゃすいため、ばねが撓んだ
時に線間接触する部位や座巻部端面等の摩耗が著しく進
行し、素線の断面形状が早期に変化することによりばね
定数が変ったり、摩耗のために疲労破壊が生じるなどの
重大な欠点があることから、未だコイルばねとしては実
用化されていないのが現状である。
Titanium or a titanium alloy is known as a material with high specific strength. However, coil springs made of titanium and titanium alloys are prone to wear, so when the spring is bent, the wear progresses significantly at the parts where the wires come in contact with each other, the end faces of the end turns, etc., and the cross-sectional shape of the wire changes quickly. At present, it has not been put into practical use as a coil spring because it has serious drawbacks such as the spring constant changing and fatigue failure occurring due to wear.

そこで、耐摩耗性を向上させる一手段として、従来から
鋼製ばねに適用されていた窒化あるいは浸炭等の拡散処
理による索線表面の改質や、硬質Crめっき、無電解N
iめっきなどのような表面被覆法をチタンばねあるいは
チタン合金ばねに適用することも検討された。
Therefore, as a means of improving wear resistance, the cable surface can be modified by diffusion treatments such as nitriding or carburizing, which have been conventionally applied to steel springs, hard Cr plating, electroless N
It has also been considered to apply surface coating methods such as i-plating to titanium springs or titanium alloy springs.

また、コイルばねは、耐摩耗性だけでなく、繰返し荷重
負荷によってもクリープ変形を生じないこと、および繰
返し67重負荀によっても疲労破壊を生じないことも不
可欠である。チタンあるいはチタン合金製のコイルばね
の場合、従来の鋼製ばねと同様に、索線の冷間引抜き加
工と時効処理とを組合わせたいわゆる加工熱処理によっ
て耐クリープ性を高めることが可能であり、更には周知
のショットピーニングによって耐疲労性を高めることも
可能である。
In addition, it is essential that coil springs not only have wear resistance, but also that they do not undergo creep deformation even when subjected to repeated loads, and that they do not cause fatigue failure even when subjected to repeated loads of 67 times. In the case of coil springs made of titanium or titanium alloys, as with conventional steel springs, it is possible to increase the creep resistance by so-called processing heat treatment, which is a combination of cold drawing of the cable wire and aging treatment. Furthermore, it is also possible to improve fatigue resistance by well-known shot peening.

[発明が解決しようとする課題] チタンあるいはチタン合金製ばねの耐摩耗性を高めるた
めに窒化や浸炭のような拡散処理による表面改質を行な
った場合、素線に対する密着性は良好であるが、チタン
あるいはチタン合金に対する窒素あるいは炭素原子の拡
散速度が鋼に比べて著しく遅いため、充分な耐摩耗効果
を発揮できる深さまで拡散層を得るには、チタンあるい
はチタン合金の溶体化温度(約800〜900℃)のよ
うな高温で処理しなければならない。
[Problems to be Solved by the Invention] When a titanium or titanium alloy spring is surface modified by diffusion treatment such as nitriding or carburizing in order to improve its wear resistance, the adhesion to the wire is good, but , the diffusion rate of nitrogen or carbon atoms in titanium or titanium alloys is significantly slower than in steel, so in order to obtain a diffusion layer deep enough to exhibit sufficient wear resistance, the solution temperature of titanium or titanium alloys (approximately 800 must be processed at high temperatures, such as ~900°C).

このため、素線をコイリングした後に拡散処理をした場
合には、せっかく加工熱処理によって強度が向上してい
ても、拡散処理に伴なう高温によって加工熱処理の効果
が失われてしまい、耐クリープ性に問題が生じる。また
、ショットピーニング後に拡散処理を行なった場合には
、材料が軟化することと圧縮残留応力の緩和のため、ク
リープ性および耐疲労特性が著しく損なわれてしまう。
For this reason, when diffusion treatment is applied after coiling the strands, even if the strength is improved by the heat treatment, the effect of the heat treatment is lost due to the high temperature associated with the diffusion treatment, resulting in poor creep resistance. A problem arises. Furthermore, if a diffusion treatment is performed after shot peening, the creep property and fatigue resistance properties will be significantly impaired due to the softening of the material and the relaxation of compressive residual stress.

また、索線の引抜き加工後に拡散処理を行なった場合に
は、材料表面が既に加工硬化しているためコイリングが
不rIJ能になる。
Furthermore, if the diffusion treatment is performed after the cable wire is drawn, coiling becomes impossible because the material surface has already been work hardened.

これらの理由から、拡散処理による表面改質はチタンあ
るいはチタン合金には適当な方法ではない。
For these reasons, surface modification by diffusion treatment is not a suitable method for titanium or titanium alloys.

一方、硬質Crめっきおよび無電解Niめっきによる表
面被覆法は、通常は加熱処理を伴わないため材料軟化や
残留応力解放の問題は生じないが、チタンあるいはチタ
ン合金の表面にはきわめて強固な酸化膜が存在するため
、充分な密着力をHするめっきを施すことが困難である
On the other hand, surface coating methods using hard Cr plating and electroless Ni plating do not usually involve heat treatment and therefore do not cause material softening or residual stress release problems, but they do not cause problems with material softening or residual stress release. Therefore, it is difficult to apply plating with sufficient adhesion.

従って本発明の目的は、コイルばねとして必要不可欠な
材料強度および疲労強度を維持しつつ、耐摩耗性に優れ
たチタンあるいはチタン合金からなるコイルばねを提供
することにある。
Therefore, an object of the present invention is to provide a coil spring made of titanium or a titanium alloy that has excellent wear resistance while maintaining material strength and fatigue strength that are essential for a coil spring.

[課題を解決するための手段] 上記目的を果たすために本発明者らが開発したコイルば
ねは、チタンまたはチタン合金からなる素線の表面に一
種類もしくは複数種類のセラミックス膜を中層もしくは
複数層彼覆したことを特徴とするものである。
[Means for Solving the Problems] The coil spring developed by the present inventors in order to achieve the above-mentioned purpose has an intermediate layer or multiple layers of one or more types of ceramic films on the surface of a wire made of titanium or a titanium alloy. It is characterized by overturning him.

セラミックス膜は、酸化物系、窒化物系、炭化物系全て
のものが使用可能であるが、チタンおよびチタン合金に
対する密着性の点で、特にTiを含むセラミックスが推
奨される。例えばT iO2。
Although oxide-based, nitride-based, and carbide-based ceramic films can be used, ceramics containing Ti are particularly recommended from the viewpoint of adhesion to titanium and titanium alloys. For example, TiO2.

TiN、Tic、Tin  A11v N2.TixA
llv cN2.  TiXA11v Cz、TiwA
RxV y N z 、  T i WA (l x 
V y  CN z 、  T l wAN x Vy
 Cz等のTiの酸化物、窒化物、あるいは炭化物が好
適である。
TiN, Tic, Tin A11v N2. TixA
llvcN2. TiXA11v Cz, TiwA
RxV y N z , T i WA (l x
V y CN z , T l wAN x Vy
Ti oxides, nitrides, or carbides such as Cz are suitable.

セラミックス膜が薄すぎると充分な耐摩耗性を発揮する
ことができない。そうかといって、過度に厚いセラミッ
クス膜はセラミックス自体の脆さのため、使用時に剥離
しやすくなる。このためセラミックス膜の厚さは0,5
〜10μmの範囲であることが望まれ、更に好ましくは
、1〜4μmの膜厚であることが推奨される。
If the ceramic film is too thin, it will not be able to exhibit sufficient wear resistance. On the other hand, an excessively thick ceramic film is likely to peel off during use due to the brittleness of the ceramic itself. Therefore, the thickness of the ceramic film is 0.5
It is desired that the film thickness be in the range of ~10 μm, and more preferably, it is recommended that the film thickness be in the range of 1 to 4 μm.

膜構造については、単層膜構造でも本発明の所期の目的
を果たせるが、膜厚方向に積層された微細な多結晶体構
造が密着性や耐摩耗性の点で優れている。これは、セラ
ミックスの結晶構造が微細なため成膜時に発生する膜応
力が低下されること、膜質が強靭化し、ばね使用時の撓
みから生じる歪みに対しても膜中にクラックが発生しに
くいという利点のためである。しかもこの微細な多結晶
構造は、複数種類のセラミックス膜を膜厚方向に積層し
た場合においても、密着性および膜強靭化という点で有
効である。
Regarding the film structure, although a single layer film structure can achieve the intended purpose of the present invention, a fine polycrystalline structure laminated in the film thickness direction is superior in terms of adhesion and wear resistance. This is because the film stress that occurs during film formation is reduced due to the fine crystal structure of ceramics, and the film quality is tougher, making it less likely that cracks will occur in the film even when subjected to distortion caused by deflection when using a spring. It's for the benefit. Moreover, this fine polycrystalline structure is effective in terms of adhesion and film toughness even when multiple types of ceramic films are laminated in the film thickness direction.

上記セラミックス膜を被覆する方法としては、より低温
での成膜処理が可能なスパッタリング。
The method for coating the ceramic film is sputtering, which allows film formation at lower temperatures.

イオンプレーティング等の物理蒸着法(PVD処理)、
もしくはプラズマCVDによって里ましい結果が得られ
る。また、成膜温度は、材料を軟化させない温度で、か
つショットピーニングによって得られた圧縮残留応力を
低下させない温度が望ましいことから、300℃以下が
推奨される。なお、チタン合金にあってはその時効処理
温度以下であることが必要である。
Physical vapor deposition method (PVD treatment) such as ion plating,
Alternatively, promising results can be obtained by plasma CVD. Further, the film forming temperature is recommended to be 300° C. or lower because it is desirable that the temperature does not soften the material and does not reduce the compressive residual stress obtained by shot peening. In addition, in the case of titanium alloys, it is necessary that the temperature is below the aging treatment temperature.

[作用] 本発明のコイルばねは、チタンあるいはチタン合金製の
素線の表面に上記セラミックス膜が強固に被覆されてい
るから、コイルばねのように表面部に純粋せん膜応力が
作用しかつ線間接触が繰返されるといった過酷な使用条
件下で使われても、剥離等の不具合を生じるようなこと
がなく優れた耐久性と耐摩耗性が維持され、しかも素線
自体の比強度が高いため軽量なコイルばねとなる。しか
も耐クリープ性や耐疲労性に悪影響を及ぼさないような
プロセスで成膜することが可能である。
[Function] In the coil spring of the present invention, since the surface of the titanium or titanium alloy wire is strongly coated with the ceramic film described above, pure film stress acts on the surface like a coil spring, and the wire Even when used under harsh conditions such as repeated contact between wires, it does not suffer from problems such as peeling and maintains excellent durability and wear resistance, and the wire itself has a high specific strength. It becomes a lightweight coil spring. Furthermore, it is possible to form the film using a process that does not adversely affect creep resistance or fatigue resistance.

[実施例1] 以下に本発明の第1実施例について第1図ないし第4図
を参照して説明する。本実施例の弁ばね用コイルばねは
、第1図に模式的に断面を示したように、チタン合金製
の素線11の外側にセラミックス膜としてのTiN膜1
2が被覆されている。
[Embodiment 1] A first embodiment of the present invention will be described below with reference to FIGS. 1 to 4. As shown schematically in cross section in FIG. 1, the coil spring for a valve spring of this embodiment has a TiN film 1 as a ceramic film on the outside of a strand 11 made of titanium alloy.
2 is coated.

素線11に使われるのはβ型チタン合金であり、その組
成(重量%)は、13%V、 11%C「、3%A11
)である。このチタン合金を用い、第2図に示した製造
工程を経てコイルばねを得る。本実施例のコイルばねの
主要諸元を表1に示した。
A β-type titanium alloy is used for the wire 11, and its composition (weight %) is 13%V, 11%C, 3%A11.
). Using this titanium alloy, a coil spring is obtained through the manufacturing process shown in FIG. Table 1 shows the main specifications of the coil spring of this example.

表     1 第2図に例示された製造工程において、溶体化温度で処
理された素材に耐クリープ性を付与するため、ダイスを
使った冷間引抜きが行なわれる。
Table 1 In the manufacturing process illustrated in FIG. 2, cold drawing using a die is performed to impart creep resistance to the material treated at the solution temperature.

この減面加工では、素線11に減面率約80%の大きな
塑性加工を与え、そののち素線11が延性を保っている
状態でコイリングを行なう。コイリング終了後、427
℃x G2hrの時効処理を施すことで、引張強度を約
170 kg f / mm 2に保持する。
In this area-reducing process, the strand 11 is subjected to large plastic working with an area reduction rate of about 80%, and then coiling is performed while the strand 11 maintains its ductility. After coiling, 427
The tensile strength is maintained at about 170 kg f/mm 2 by aging at ℃ x G 2 hr.

上記時効処理後、疲労強度を確保するためにショットピ
ーニングが行なわれ、素線11の表面に圧縮残留応力が
付与される。そののち、180℃×10m1nの歪み取
り低温焼鈍が実施される。
After the aging treatment, shot peening is performed to ensure fatigue strength, and compressive residual stress is applied to the surface of the wire 11. After that, low-temperature annealing at 180° C. x 10 m1 to remove strain is performed.

更に、この素線11を使ったコイルばねに耐摩耗性を付
与するために、セラミックス膜12を素線11の表面に
被覆する。本実施例のセラミックス膜12はTiNであ
り、約2μmの厚さに成膜される。しかもこのTiNセ
ラミックス膜12は第3図に模式的に示したように膜厚
方向に微細なTiN結晶を積層する。すなわちTiNの
微細な多結晶体とした。このような多層状の微細化多結
晶構造によって、セラミックス膜12内部の応力低下が
囚れるとともに、脆い性質をもつセラミ・ソクスの弱点
を克服でき、圧縮コイルばねのように最大主応力が引張
であるものに使われても、素線11に対するセラミック
ス膜12の密着性か一段と向上し、使用時にセラミック
ス膜12にクラックが発生しにくくなる。
Further, in order to impart wear resistance to the coil spring using this wire 11, a ceramic film 12 is coated on the surface of the wire 11. The ceramic film 12 of this embodiment is made of TiN and is formed to a thickness of about 2 μm. Moreover, this TiN ceramic film 12 has fine TiN crystals laminated in the film thickness direction, as schematically shown in FIG. That is, it was made into a fine polycrystalline body of TiN. Such a multi-layered fine polycrystalline structure suppresses the stress drop inside the ceramic film 12 and overcomes the weakness of ceramic socks, which have brittle properties. Even if it is used for something, the adhesion of the ceramic film 12 to the wire 11 will be further improved, and the ceramic film 12 will be less likely to crack during use.

上記微細化多結晶体構造のセラミックス膜12を得るた
めの装置の一例として、アーク放電式イオンプレーティ
ング装置が使われる。上述のような微細な多結晶体をイ
オンプレーティング法によって得るには、処理品として
の素線11の表面にTiN膜1膜上2膜するに際し、所
定膜厚に達するまでは素線11を装置外に取出さず、所
定膜厚に至るまでの成膜プロセスを複数回に分けて成膜
と冷却を繰返すようにする。すなわち第4図に実線で示
したように、複数に分けられた成膜プロセス間のインタ
ーバルを充分にとることにより、成膜プロセス間で処理
品の冷却を行なう。このように成膜プロセスを複数回に
分けて行なうことにより、同種のセラミックスであって
も膜の多層化すなわち微細化多結晶体構造を有するセラ
ミックス膜12が得られる。
An arc discharge type ion plating device is used as an example of a device for obtaining the ceramic film 12 having the fine polycrystalline structure. In order to obtain the above-mentioned fine polycrystalline body by ion plating, when depositing two TiN films on the surface of the wire 11 as a processed product, the wire 11 is kept until a predetermined film thickness is reached. The film formation process is divided into multiple steps and the film formation and cooling are repeated until a predetermined film thickness is reached without taking the film out of the apparatus. That is, as shown by the solid line in FIG. 4, by providing a sufficient interval between the film forming processes divided into a plurality of parts, the product to be processed is cooled between the film forming processes. By performing the film-forming process in multiple steps in this manner, the ceramic film 12 having a multilayered film, that is, a fine polycrystalline structure, can be obtained even when the ceramic film is of the same type.

ちなみに本実施例では約0.5μmずつ4回に分けて成
膜を行なうことで、所定の厚み2μmを達成した。この
プロセスのもう一つの重要な利点は、−回分のプロセス
で成膜される膜厚を少なくすることにより、成膜時に生
じる素線11の昇温を抑制できるという点である。本実
施例においては、イオンプレーティング時の昇温か約3
00 ’Cに抑えられている。こうすることにより、素
線11の軟化を防止できるとともに、成膜前にショット
ピーニングによって素線11に付与されている圧縮残留
応力が解放されてしまうことを防止でき、耐摩耗性のみ
ならず耐クリープ性と耐疲労性に対しても優れたチタン
合金コイルばねが得られる。
Incidentally, in this example, the predetermined thickness of 2 .mu.m was achieved by forming the film in four steps of approximately 0.5 .mu.m each. Another important advantage of this process is that by reducing the thickness of the film formed in the -step process, it is possible to suppress the rise in temperature of the wire 11 that occurs during film formation. In this example, the temperature rise during ion plating is approximately 3
It is suppressed to 00'C. By doing this, it is possible to prevent the strands 11 from softening, and also to prevent the compressive residual stress imparted to the strands 11 by shot peening before film formation from being released, improving not only wear resistance but also resistance. A titanium alloy coil spring with excellent creep resistance and fatigue resistance can be obtained.

第5図に、本実施品の耐摩耗性を調べるために行なった
疲労試験の結果を示す。試験条件は平均応力36kg 
f / m+s 2、応力振幅16.4kg f / 
mm 2である。図中の未処理品(a)は被覆されてい
ないチタン合金コイルばねであるが、僅かaXlOb回
撓みを繰返しただけで、摩耗重量が約1.35gにも達
してしまった。この未処理品は摩耗前で10.7K L
かないため、この1.35frの摩耗によりばね定数が
大きく低下し、ばねとしての所期の機能を満たさないも
のになっている。
FIG. 5 shows the results of a fatigue test conducted to examine the wear resistance of this product. The test conditions were an average stress of 36 kg.
f/m+s 2, stress amplitude 16.4 kg f/
It is mm2. The untreated product (a) in the figure is an uncoated titanium alloy coil spring, but the abrasion weight reached approximately 1.35 g after only a few repetitions of aXlOb bending. This untreated product weighs 10.7K L before wear.
Because of this 1.35 fr wear, the spring constant decreases significantly, and the spring no longer fulfills its intended function.

このような未処理品に対し、図中(b)に示した実施例
品は、TiNを単層で0.5μmの厚さに被覆したもの
であるが、摩耗量は3X 106回で、約0.75gと
僅かであり、摩耗量は未処理品に比べて大幅に減少して
いる。更に、図中(C)に示された本実施例品はTiN
膜を前述した微細な多結晶構造(第3図参照)にしたも
のであり、3X 106同の繰返し撓みに後も摩耗量は
僅か0.4gであり、未処理品に比べて著しい耐摩耗効
果のあることが確認された。
In contrast to such an untreated product, the example product shown in (b) in the figure is coated with a single layer of TiN to a thickness of 0.5 μm, and the amount of wear is 3×106 times, which is approximately The amount of wear is only 0.75g, which is a significant reduction compared to the untreated product. Furthermore, the product of this example shown in (C) in the figure is made of TiN.
The film has the aforementioned fine polycrystalline structure (see Figure 3), and even after repeated bending of 3X106, the amount of wear is only 0.4g, and it has a remarkable wear resistance effect compared to untreated products. It was confirmed that there is.

[実施例2] 第6図に本実施例品の断面の一部を模式的に示した。本
実施例のコイルばねは、素線11の表面に下地としてT
iAj7Nからなる第1のセラミックス膜15を被覆し
、更にその上に第2のセラミックス膜16としてTiA
jilCN膜を被覆している。
[Example 2] FIG. 6 schematically shows a part of the cross section of the product of this example. The coil spring of this embodiment has T as a base on the surface of the wire 11.
A first ceramic film 15 made of iAj7N is coated, and a second ceramic film 16 of TiA is coated thereon.
It is coated with jilCN film.

このような多層膜構造を得るための一手段として、スパ
ッタリングプロセスが採用される。すなわち、TiAj
750:50(原子比)のターゲットをアルゴン雰囲気
でマグネトロン・スパッタリングするとともに、反応性
ガスとしての窒素ガスを導入して窒化膜を成膜する反応
性スパッタリングにより、チタン合金の上にTiAIN
(膜厚約1μm)を成膜し、その後、更にアセチレンガ
スを所定の流量まで徐々に増やしながら加え、TiAg
CN膜(膜厚約0.5.czm)をトップコートする。
A sputtering process is employed as one means for obtaining such a multilayer film structure. That is, TiAj
TiAIN was deposited on the titanium alloy by magnetron sputtering with a target of 750:50 (atomic ratio) in an argon atmosphere and by reactive sputtering, which formed a nitride film by introducing nitrogen gas as a reactive gas.
After that, acetylene gas was gradually increased to a predetermined flow rate, and TiAg
Top coat with a CN film (film thickness approximately 0.5.czm).

TiAgN膜15は、前述したTiN膜1膜上2ぼ同等
の硬度と素線11に対する優れた密着力をもち、更に耐
酸化性に優れるという特性をもつ。
The TiAgN film 15 has a hardness comparable to that of the TiN film 1 and 2 described above, has excellent adhesion to the wire 11, and has excellent oxidation resistance.

更に、成膜条件としてTiN膜よりも低いバイアス電圧
で密着性の優れた膜を作ることができるため、コーティ
ング時によくおこる処理品の温度過剰上昇を防ぐことが
できるという有利な条件をもつ。例えば、今回使用した
マグネトロン・スパッタリング装置では、通常のTiN
膜では−150Vのバイアス電圧を要するところ、Ti
A、pN膜15−の成膜では一100v程度のバイアス
電圧で緻密な膜を堆積させることかできる。
Furthermore, since a film with excellent adhesion can be formed under a bias voltage lower than that of a TiN film, it has the advantage of being able to prevent excessive temperature rise of the processed product, which often occurs during coating. For example, in the magnetron sputtering equipment used this time, ordinary TiN
Where the film requires a bias voltage of -150V, the Ti
A, in forming the pN film 15-, a dense film can be deposited with a bias voltage of about -100V.

TiANCN膜16を最膜面6トップコートしたのは、
この膜16は硬度が高く耐摩耗性に優れているとともに
、摩擦係数が小さいからである。すなわちTiNやTi
Aj7N膜のビッカース硬度が2000〜2700kg
 / m+s 2であるのに対し、TiAl1CN膜は
2800〜3600kg / m112の硬度をもち、
しかもTiA、&CN膜の摩擦係数は約0.I5と小さ
い。このため圧縮コイルばねのように繰返し荷重が負荷
され圧縮変形が繰返される場合には、素線11の長平方
向に働く摩擦力を軽減するのに6効であり、ひいては摩
耗量を減少させる効果を発揮できる。なお、TiA、1
7cN膜16を直接チタン合金の表面に成膜させると密
着力が劣るため、本実施例のようにTiA、17N膜1
5を介してTiA、QCN膜16を形成させるようにし
た。
The TiANCN film 16 was top coated on the outermost film surface 6.
This is because this film 16 has high hardness and excellent wear resistance, and has a small coefficient of friction. In other words, TiN and Ti
Vickers hardness of Aj7N film is 2000-2700kg
/m+s2, whereas the TiAl1CN film has a hardness of 2800-3600kg/m112,
Moreover, the friction coefficient of TiA, &CN film is about 0. It's as small as I5. Therefore, in cases where repeated loads are applied and compression deformation is repeated, such as in the case of compression coil springs, it is effective in reducing the frictional force acting in the longitudinal direction of the strands 11, and in turn has the effect of reducing the amount of wear. I can demonstrate it. In addition, TiA, 1
If the 7cN film 16 is directly formed on the surface of the titanium alloy, the adhesion will be poor, so as in this example, the TiA, 17N film 1
A TiA, QCN film 16 was formed through the film 5.

本実施例の膜構造を得るためのプロセスは前述した実施
例1においてTiN膜を作る場合と類似の方法でよいが
、更に好ましい例として第4図に2点鎖線で示したよう
に成膜プロセスの分割数を実施例1よりも多くした。こ
の成膜プロセスに使用した装置の一例を第7図に示す。
The process for obtaining the film structure of this example may be similar to that for forming the TiN film in Example 1 described above, but as a more preferable example, the film formation process as shown by the two-dot chain line in FIG. The number of divisions was made larger than in Example 1. An example of the apparatus used in this film forming process is shown in FIG.

処理品としてのβ型チタン合金素線11は、円筒状の真
空チャンバ20の内部にセットされる。すなわち円周方
向に複数対設けられたマグネトロン・カソード21.2
2の放電で作られるプラズマゾーン23の巾に、ターゲ
ット24が配置されるとともに素線11が収容される。
The β-type titanium alloy strand 11 as a processed product is set inside a cylindrical vacuum chamber 20 . That is, a plurality of pairs of magnetron cathodes 21.2 are provided in the circumferential direction.
The target 24 is placed in the width of the plasma zone 23 created by the second discharge, and the wire 11 is housed therein.

素線11は真空チャンバ20の円周方向に移動させられ
ることによって、間欠的にプラズマゾーン23に出入り
し、所定膜厚に達するまで成膜と冷却が繰返される。従
って、滉られたセラミックス膜は、前記実施例の多結晶
構造のものと同様に、層状に積み重なった微細な多結晶
体である。本実施例の場合、所定膜厚に達するまでの成
膜プロセスを多くすることで、成膜中の素線11の昇温
を約250 ’Cに抑えることができた。
By moving the wire 11 in the circumferential direction of the vacuum chamber 20, the wire 11 enters and exits the plasma zone 23 intermittently, and film formation and cooling are repeated until a predetermined film thickness is reached. Therefore, like the polycrystalline structure of the above-mentioned embodiment, the rolled ceramic film is a fine polycrystalline body stacked in layers. In the case of this example, by increasing the number of film forming processes until a predetermined film thickness is reached, the temperature rise of the wire 11 during film formation could be suppressed to about 250'C.

そしてこの実施例品は、摩擦係数を減少させることに効
果のあるTiA、QCN膜16が最表面に被覆されてい
るため、優れた耐摩耗性を発揮する。
Since the outermost surface of this example product is coated with a TiA, QCN film 16 that is effective in reducing the coefficient of friction, it exhibits excellent wear resistance.

第5図中の(d)に示されるように、3×106回程度
の撓みの繰返しでは摩耗量はゼロであり、表面の光沢が
増した程度であって磨耗は全く認められなかった。ちな
みに、2×107回まで繰返し撓ませても摩耗量は0.
005 gであり、はとんど摩耗は認められなかった。
As shown in FIG. 5(d), after repeated bending of about 3×10 6 times, the amount of wear was zero, and the gloss of the surface only increased, and no wear was observed at all. By the way, even after repeated bending up to 2x107 times, the amount of wear is 0.
005 g, and almost no wear was observed.

[発明の効果コ 本発明によれば、チタンあるいはチタン合金からなる比
強度の高い素線を用いたコイルばねの耐クリープ性およ
び耐疲労性を損なうことなく耐摩耗性を大幅に向上させ
ることができる。
[Effects of the Invention] According to the present invention, the wear resistance of a coil spring using a wire made of titanium or a titanium alloy with high specific strength can be greatly improved without impairing the creep resistance and fatigue resistance. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例のコイルばねを模式的に示
す断面図、第2図は第1図に示されたコイルばねの製造
工程を示す工程説明図、第3図は微細な多結晶体を模式
的に示す断面図、第4図は成膜プロセスを複数回に分け
て行なう場合の膜厚と温度との関係を示す図、第5図は
耐摩耗性を調べた疲労試験の結果を示す図、第6図は本
発明の他の実施例の膜構造の一部を模式的に示す断面図
、第7図は成膜装置の一例の概要を示す断面図である。 11・・・素線、12,15.16・・・セラミックス
膜。
Fig. 1 is a sectional view schematically showing a coil spring according to a first embodiment of the present invention, Fig. 2 is a process explanatory drawing showing the manufacturing process of the coil spring shown in Fig. A cross-sectional view schematically showing a polycrystalline body, Figure 4 is a diagram showing the relationship between film thickness and temperature when the film formation process is performed in multiple steps, and Figure 5 is a fatigue test to investigate wear resistance. FIG. 6 is a sectional view schematically showing a part of a film structure of another example of the present invention, and FIG. 7 is a sectional view schematically showing an example of a film forming apparatus. 11...Element wire, 12,15.16...Ceramics film.

Claims (6)

【特許請求の範囲】[Claims] (1)チタンまたはチタン合金からなる素線の表面に一
種類もしくは複数種類のセラミックス膜を単層もしくは
複数層被覆したことを特徴とするコイルばね。
(1) A coil spring characterized in that the surface of a wire made of titanium or a titanium alloy is coated with a single layer or multiple layers of one or more types of ceramic film.
(2)上記セラミックス膜に酸化物系,窒化物系,炭化
物系のセラミックスのうちいずれかを選択して用いた請
求項1記載のコイルばね。
(2) The coil spring according to claim 1, wherein the ceramic film is selected from among oxide-based, nitride-based, and carbide-based ceramics.
(3)上記セラミックス膜に、Tiを含む酸化物系,窒
化物系,炭化物系のセラミックスのうちいずれかを選択
して用いた請求項2記載のコイルばね。
(3) The coil spring according to claim 2, wherein the ceramic film is selected from among oxide-based, nitride-based, and carbide-based ceramics containing Ti.
(4)上記セラミックス膜が厚み方向に積層された微細
な多結晶体である請求項1記載のコイルばね。
(4) The coil spring according to claim 1, wherein the ceramic film is a fine polycrystalline body laminated in the thickness direction.
(5)β型チタン合金からなる素線の表面に、下地とし
てのTiAlNの膜を被覆し、更にその上にTi_XA
l_YCN_Zの膜を被覆した請求項1記載のコイルば
ね。
(5) The surface of the wire made of β-type titanium alloy is coated with a TiAlN film as a base, and then Ti_XA
The coil spring according to claim 1, wherein the coil spring is coated with a film of l_YCN_Z.
(6)チタンまたはチタン合金からなる素線を所定の線
径まで減面加工する工程と、減面後の素線をコイリング
する工程と、コイリング後の素線にショットピーニング
を行なう工程と、素線の表面にイオンプレーティングま
たはスパッタリングによって微細な多結晶体からなるセ
ラミックス膜を形成する工程とを具備したことを特徴と
するコイルばねの製造方法。
(6) A step of reducing the area of a wire made of titanium or a titanium alloy to a predetermined wire diameter, a step of coiling the wire after the area reduction, a step of shot peening the wire after coiling, 1. A method for manufacturing a coil spring, comprising the step of forming a ceramic film made of fine polycrystalline material on the surface of a wire by ion plating or sputtering.
JP1204162A 1989-08-07 1989-08-07 Coil spring and its manufacturing method Expired - Lifetime JP2823169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1204162A JP2823169B2 (en) 1989-08-07 1989-08-07 Coil spring and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1204162A JP2823169B2 (en) 1989-08-07 1989-08-07 Coil spring and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH0369830A true JPH0369830A (en) 1991-03-26
JP2823169B2 JP2823169B2 (en) 1998-11-11

Family

ID=16485862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1204162A Expired - Lifetime JP2823169B2 (en) 1989-08-07 1989-08-07 Coil spring and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2823169B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000144378A (en) * 1998-11-05 2000-05-26 Yamaguchi Prefecture Formation of composite hard film with low coefficient of friction
WO2006015897A1 (en) * 2004-08-04 2006-02-16 Robert Bosch Gmbh Compression spring used to control a dynamically stressed element
JP2007032558A (en) * 2005-06-22 2007-02-08 Yamaha Motor Co Ltd Titanium component for internal combustion engine
JP2007170215A (en) * 2005-12-20 2007-07-05 Yamaha Motor Co Ltd Component for internal combustion engines and its manufacturing method
DE102009030767A1 (en) * 2009-06-27 2011-03-03 Man Diesel & Turbo Se Control unit, particularly valve or pump, for influence or supply of flow of fluid, has spring element formed as coil spring, where coil spring or guiding device of coil spring is coated in sections
JP2011208756A (en) * 2010-03-30 2011-10-20 Chuo Spring Co Ltd Spiral spring and manufacturing method therefor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8394469B2 (en) 2004-07-14 2013-03-12 Yamaha Hatsudoki Kabushiki Kaisha Exhaust pipe for internal combustion engine
ATE521727T1 (en) 2005-06-22 2011-09-15 Yamaha Motor Co Ltd TITANIUM COMPONENT FOR AN INTERNAL COMBUSTION ENGINE
ATE382780T1 (en) 2005-09-06 2008-01-15 Yamaha Motor Co Ltd EXHAUST PIPE FOR AN INTERNAL COMBUSTION ENGINE

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51126950A (en) * 1975-04-25 1976-11-05 Statni Vyzkumny Ustav Material Protective covering for engine parts
JPS618436A (en) * 1984-06-22 1986-01-16 Nissan Motor Co Ltd Accel control device of internal combustion engine for vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51126950A (en) * 1975-04-25 1976-11-05 Statni Vyzkumny Ustav Material Protective covering for engine parts
JPS618436A (en) * 1984-06-22 1986-01-16 Nissan Motor Co Ltd Accel control device of internal combustion engine for vehicle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000144378A (en) * 1998-11-05 2000-05-26 Yamaguchi Prefecture Formation of composite hard film with low coefficient of friction
WO2006015897A1 (en) * 2004-08-04 2006-02-16 Robert Bosch Gmbh Compression spring used to control a dynamically stressed element
JP2007032558A (en) * 2005-06-22 2007-02-08 Yamaha Motor Co Ltd Titanium component for internal combustion engine
JP4641284B2 (en) * 2005-06-22 2011-03-02 ヤマハ発動機株式会社 Titanium parts for internal combustion engines
JP2007170215A (en) * 2005-12-20 2007-07-05 Yamaha Motor Co Ltd Component for internal combustion engines and its manufacturing method
DE102009030767A1 (en) * 2009-06-27 2011-03-03 Man Diesel & Turbo Se Control unit, particularly valve or pump, for influence or supply of flow of fluid, has spring element formed as coil spring, where coil spring or guiding device of coil spring is coated in sections
DE102009030767A8 (en) * 2009-06-27 2011-06-01 Man Diesel & Turbo Se control device
JP2011208756A (en) * 2010-03-30 2011-10-20 Chuo Spring Co Ltd Spiral spring and manufacturing method therefor

Also Published As

Publication number Publication date
JP2823169B2 (en) 1998-11-11

Similar Documents

Publication Publication Date Title
JP4311803B2 (en) Surface coating mold and manufacturing method thereof
US3974555A (en) Rolls for rolling mills and method for making same
US9968980B2 (en) Coatings for forming tools
JP3341846B2 (en) Ion nitriding-ceramic coating continuous treatment method
JPH0369830A (en) Coil spring and manufacture thereof
US5916517A (en) Nitrogen-bearing iron-based alloy for machine parts subject to sliding friction
JP2000038653A (en) Die or mold having surface film
EP2952609A1 (en) Hard coating film having adhesion resistance to soft metal
JP3154403B2 (en) Coating mold
CN109252137B (en) Preparation method of zirconium alloy surface coating
JP3638332B2 (en) Coated hard alloy
JP2773092B2 (en) Surface coated steel products
JPS61270363A (en) Diffused alloy steel foil
JPH06293954A (en) Slide material and its production
JPS6326210A (en) Work roll for cold rolling
JP2885087B2 (en) Extrusion dies having a hard coating with excellent exfoliation resistance, a method for producing the dies, and an extruded aluminum profile with excellent surface properties
JP2010222649A (en) Production method of carbon steel material and carbon steel material
JP2011147946A (en) Warm/hot forging die and method of manufacturing the same
JP2008150712A (en) Die or mold having surface coating film
JPH09137267A (en) Alloyed zinc-magnesium base plated steel sheet excellent in corrosion resistance and its production
JP2019060002A (en) Protective tube structure of incinerator thermo couple and method for manufacturing the same
JPH0483820A (en) Production of mechanism element
JP2010168638A (en) Hard film-coated member and fixing tool for molding
JP3212636B2 (en) Sliding material
JP2022534753A (en) Coated forming tools for improved performance and service life