KR100797827B1 - Method of coating on carbon fiber-epoxy composite - Google Patents

Method of coating on carbon fiber-epoxy composite Download PDF

Info

Publication number
KR100797827B1
KR100797827B1 KR1020060090622A KR20060090622A KR100797827B1 KR 100797827 B1 KR100797827 B1 KR 100797827B1 KR 1020060090622 A KR1020060090622 A KR 1020060090622A KR 20060090622 A KR20060090622 A KR 20060090622A KR 100797827 B1 KR100797827 B1 KR 100797827B1
Authority
KR
South Korea
Prior art keywords
carbon fiber
coating
epoxy composite
epoxy
metal
Prior art date
Application number
KR1020060090622A
Other languages
Korean (ko)
Inventor
김형준
보 현 이
이창엽
Original Assignee
재단법인 포항산업과학연구원
보 현 이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 포항산업과학연구원, 보 현 이 filed Critical 재단법인 포항산업과학연구원
Priority to KR1020060090622A priority Critical patent/KR100797827B1/en
Application granted granted Critical
Publication of KR100797827B1 publication Critical patent/KR100797827B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/123Spraying molten metal
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Electrochemistry (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

A method of coating on a carbon fiber-epoxy composite is provided to achieve excellent surface roughness, durability and corrosion resistance by high velocity oxygen fuel thermal spray coating. A method of coating on a carbon fiber-epoxy composite comprises the steps of: applying Ag powder onto a surface of a carbon fiber-epoxy composite; electroplating the Ag powder-applied surface of the carbon fiber-epoxy composite with a metal coating material such of Cu or Ni to the thickness of 0.1 to 0.5 mm; and coating the electroplated carbon fiber-epoxy composite by high velocity oxygen fuel thermal spray coating, where a non-coating surface of the carbon fiber-epoxy composite is cooled to maintain the temperature of the electroplated carbon fiber-epoxy composite at 100 deg.C or below.

Description

탄소섬유-에폭시 복합재에의 코팅방법{METHOD OF COATING ON CARBON FIBER-EPOXY COMPOSITE}Coating method on carbon fiber-epoxy composites {METHOD OF COATING ON CARBON FIBER-EPOXY COMPOSITE}

도 1은 일반적인 탄소섬유-에폭시 복합재의 단면 조직을 나타내는 사진이다.1 is a photograph showing the cross-sectional structure of a typical carbon fiber-epoxy composite.

도 2는 본 발명의 실험예에 따른 탄소섬유-에폭시 복합재에 Cr3C2-NiCr로 구성되는 서메트 등이 코팅된 것을 나타내는 사진이다.FIG. 2 is a photograph showing that a cermet composed of Cr 3 C 2 -NiCr is coated on a carbon fiber-epoxy composite according to an experimental example of the present invention.

도 3은 도 2의 확대 사진이다.3 is an enlarged photograph of FIG. 2.

도 4는 본 발명의 실험예에 따른 탄소섬유-에폭시 복합재와 Cu 도금층의 경계면을 나타내는 사진이다.Figure 4 is a photograph showing the interface between the carbon fiber-epoxy composite and the Cu plating layer according to the experimental example of the present invention.

도 5는 도 4에서의 Ag 원소를 맵핑한 사진이다.FIG. 5 is a photograph in which Ag elements in FIG. 4 are mapped. FIG.

본 발명은 탄소섬유-에폭시 복합재에의 코팅방법에 대한 것으로, 보다 상세하게는 탄소섬유-에폭시 복합재에 표면조도, 내구성, 내부식성을 부여하기 위하여 코팅하는 방법에 대한 것이다.The present invention relates to a coating method on a carbon fiber-epoxy composite, and more particularly, to a coating method for imparting surface roughness, durability, and corrosion resistance to the carbon fiber-epoxy composite.

탄소섬유-에폭시 복합재는 도 1에서 보이는 바와 같이 탄소섬유의 방향에 따 라 강도나 전도성 등과 같은 기계적, 물리적 성질이 다른 특성을 지니게 된다. 탄소섬유-에폭시 복합재는 통상적으로 부피비가30~70%인 에폭시를 통하여 탄소섬유를 지지하게 되며, 그대로 사용시에는 사용 중 탄소섬유가 이탈되므로 고분자 수지나 금속을 코팅하여 사용한다.As shown in FIG. 1, the carbon fiber-epoxy composite has different mechanical and physical properties, such as strength and conductivity, depending on the direction of the carbon fiber. Carbon fiber-epoxy composites typically support carbon fiber through epoxy with a volume ratio of 30-70%, and when used as it is, carbon fiber is released during use, so it is used by coating polymer resin or metal.

그러나, 고분자 수지를 사용하면 내구성 및 전기전도성이 저하되므로, 이러한 내구성 및 전기전도성이 요구되는 적용처에는 금속을 코팅하여야 한다. 금속 코팅의 경우는 여러가지 코팅방법 중 용사(thermal spray) 코팅이 주로 적용된다. 그러나, 탄소섬유-에폭시 복합재는 에폭시가 100℃~150℃ 근처에서 용융되므로, 코팅 시의 온도가 최소 100℃~150℃ 이하에서 이루어져야 한다. However, the use of polymer resins degrades durability and electrical conductivity, so metals should be coated in applications where such durability and electrical conductivity are required. In the case of metal coating, thermal spray coating is mainly applied among various coating methods. However, since the carbon fiber-epoxy composite melts at around 100 ° C. to 150 ° C., the coating temperature should be at least 100 ° C. to 150 ° C. or less.

용사코팅 중 플라즈마 용사코팅이나 고속용사 (HVOF) 코팅은 고속과 고온을 사용하므로 코팅 특성 자체는 우수하나 고온으로 인하여 탄소섬유-에폭시 복합재에는 코팅이 거의 불가능하다. 따라서, 공정 온도가 낮은 화염 용사나 전기 아크 용사를 사용하게 된다. 그러나, 화염이나 전기 아크 용사 코팅은 산화물 생성 및 5~15% 정도의 기공 형성으로 인하여 평균 표면 조도를 1㎛ 이하로 제어하기가 곤란할 뿐만 아니라, 코팅 두께가 증가함에 따라 복합재 기판의 온도가 상승하는 단점을 지니게 된다. 또한, 연마를 하더라도 군데군데 표면에 결함을 지니게 된다.Plasma spray coating or high speed spray (HVOF) coating is excellent in coating characteristics because it uses high speed and high temperature, but it is almost impossible to coat carbon fiber-epoxy composites due to high temperature. Therefore, flame spraying or electric arc spraying having a low process temperature is used. However, the flame or electric arc spray coating is not only difficult to control the average surface roughness to 1 μm or less due to oxide generation and pore formation of about 5 to 15%, and the temperature of the composite substrate increases as the coating thickness increases. It has its drawbacks. In addition, even if polished, the surface will have defects in several places.

아울러, 최근에 개발된 저온 분사 공정으로 탄소섬유-에폭시 모재에 코팅 시 저온 분사 공정의 고속 입자로 인하여 모재가 함몰하는 현상을 보여서 코팅이 거의 불가능하게 된다.In addition, the coating is almost impossible due to the high speed particles of the low temperature spraying process when coating the carbon fiber-epoxy base material with the recently developed low temperature spraying process.

본 발명은 상술한 바와 같은 종래기술의 문제점을 해결하기 위한 것으로, 본 발명의 목적은 고속용사 코팅에 의하여 표면조도, 내구성, 내부식성이 우수한 탄소섬유-에폭시 복합재에의 코팅방법을 제공함에 있다. The present invention is to solve the problems of the prior art as described above, an object of the present invention is to provide a coating method to the carbon fiber-epoxy composite having excellent surface roughness, durability, and corrosion resistance by high-speed spray coating.

본 발명에 따른 탄소섬유-에폭시 복합재에의 코팅방법은 탄소섬유-에폭시 복합재의 표면에 Ag 분말을 도포하는 단계, 상기 Ag 분말이 도포된 탄소섬유-에폭시 복합재 표면을 전기 도금하는 단계 및 고속용사에 의해 상기 전기 도금된 탄소섬유-에폭시 복합재를 코팅하는 단계를 포함한다.The coating method on the carbon fiber-epoxy composite according to the present invention comprises the steps of applying Ag powder to the surface of the carbon fiber-epoxy composite, electroplating the surface of the carbon fiber-epoxy composite coated with the Ag powder, and high-speed spray Coating the electroplated carbon fiber-epoxy composite.

이때, 상기 전기 도금 시의 금속 코팅재는 Cu 또는 Ni을 이용하는 것이 바람직하다. 또한, 상기 전기 도금시 코팅의 두께는 0.1 mm 내지 0.5 mm로 형성하는 것이 바람직하다.At this time, it is preferable to use Cu or Ni as the metal coating material during the electroplating. In addition, the thickness of the coating during the electroplating is preferably formed to 0.1 mm to 0.5 mm.

또한, 상기 고속용사 코팅 시 상기 탄소섬유-에폭시 복합재의 비코팅면을 냉각하여 상기 탄소섬유-에폭시 복합재의 온도를 100℃ 이하로 하는 것이 바람직하다. 또한, 상기 고속용사 코팅 시의 코팅 두께는 0.1 mm 내지 0.5 mm로 형성하는 것이 바람직하다.In addition, it is preferable to cool the uncoated surface of the carbon fiber-epoxy composite to the temperature of the carbon fiber-epoxy composite to 100 ° C. or less during the high speed spray coating. In addition, the coating thickness during the high-temperature spray coating is preferably formed in 0.1 mm to 0.5 mm.

또한, 상기 고속용사 코팅 시 코팅 소재는 금속 또는 서메트를 이용하는 것이 바람직하다. 상기 금속으로는 스테인레스를 포함하는 금속을 이용하고, 서메트로는 WC-Co 또는 Cr3C2-NiCr을 이용하는 것이 바람직하다.In addition, when the high-speed spray coating, the coating material is preferably a metal or cermet. The metal is used as the metal containing stainless steel, and the standing Metro it is preferred to use a WC-Co or Cr 3 C 2 -NiCr.

한편, 본 발명에 따른 탄소섬유-에폭시 복합재는 탄소섬유-에폭시 복합재, 전기도금이 가능하도록 상기 탄소섬유-에폭시 복합재의 일면에 도포된 Ag층, 상기 Ag층 상에 전기도금으로 형성되고 고속용사 코팅시 탄소섬유-에폭시 복합재의 용융을 방지하는 금속 코팅층 및 상기 금속 코팅층 상에 고속용사 코팅 방법으로 형성된 금속층 또는 서메트층을 포함한다.On the other hand, the carbon fiber-epoxy composite according to the present invention is a carbon fiber-epoxy composite, an Ag layer applied to one surface of the carbon fiber-epoxy composite to enable electroplating, formed by electroplating on the Ag layer and a high-temperature spray coating Metal coating layer to prevent melting of the carbon fiber-epoxy composite and a metal layer or cermet layer formed by the high-temperature spray coating method on the metal coating layer.

이때, 상기 금속 코팅층은 Cu 또는 Ni을 포함하여 형성되는 것이 바람직하다. 또한, 상기 고속용사 코팅 시의 금속층은 스테인레스를 포함하여 형성되는 것이 바람직하고, 상기 고속용사 코팅 시의 서메트층은 Cr3C2-NiCr을 포함하여 형성되는 것이 바람직하다.At this time, the metal coating layer is preferably formed containing Cu or Ni. In addition, the metal layer during the high-temperature spray coating is preferably formed containing stainless, the cermet layer during the high-speed spray coating is preferably formed containing Cr 3 C 2 -NiCr.

이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.

이하 본 발명의 실시예에 따른 탄소섬유-에폭시 복합체에의 코팅방법 및 이 방법을 이용하여 코팅된 탄소섬유-에폭시 복합체에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다.Hereinafter, a coating method on a carbon fiber-epoxy composite according to an embodiment of the present invention and a carbon fiber-epoxy composite coated using the method can be easily carried out by those skilled in the art. It will be explained in detail.

본 발명의 실시예에 따른 탄소섬유-에폭시 복합체에의 코팅방법은 우선, 용사 코팅에 대한 내열 금속으로서 Cu 또는 Ni을 코팅재로 하여 상기 탄소섬유-에폭시 복합체의 표면에 전기 도금의 방법으로 코팅한다. 이때, 탄소섬유-에폭시 복합체는 그대로는 전기 도금이 불가능하므로, 표면에 Ag 분말을 페이스트(paste) 형태 로 만들어 탄소섬유-에폭시 복합체의 표면에 얇게 도포하여 표면에 전기가 통하게 하여 후속 전기 도금이 가능하게 한다.In the coating method on the carbon fiber-epoxy composite according to an embodiment of the present invention, first, the surface of the carbon fiber-epoxy composite is coated by electroplating with Cu or Ni as a coating material as the heat-resistant metal for the thermal spray coating. At this time, since the carbon fiber-epoxy composite is not possible to be electroplated as it is, the Ag powder is formed into a paste form on the surface, and is thinly applied to the surface of the carbon fiber-epoxy composite to allow electricity to pass through the surface to allow subsequent electroplating. Let's do it.

상기 Ag 분말의 도포 후 Cu 또는 Ni을 전기 도금할 때 코팅층의 두께는 0.1 mm 내지 0.5 mm로 형성시키는 것이 바람직하다. 상기 두께가 0.1 mm 이하에서는 코팅 두께가 너무 작아서 후속의 고속용사 코팅이 불가능하게 되고, 두께가 0.5 mm 이상에서는 코팅의 잔류 인장 응력이 증대하기 때문에 코팅이 박리될 가능성이 높다.When electroplating Cu or Ni after the application of the Ag powder, the coating layer preferably has a thickness of 0.1 mm to 0.5 mm. If the thickness is 0.1 mm or less, the coating thickness is too small to allow subsequent high speed spray coating, and if the thickness is 0.5 mm or more, the residual tensile stress of the coating increases, so that the coating is likely to be peeled off.

다음으로, 고속용사에 의해 상기 전기 도금된 탄소섬유-에폭시 복합재를 금속이나 서메트(thermet)로 코팅하게 된다. 상기 고속 용사 코팅 시의 코팅 소재는 탄소섬유-에폭시 복합재의 내구성, 전도성을 부여하기 위하여 스테인레스를 포함하는 금속 또는 서메트를 이용하는 것이 바람직하다. 서메트로는 WC-Co 또는 Cr3C2-NiCr을 이용하는 것이 바람직하다. Next, the electroplated carbon fiber-epoxy composite is coated with metal or thermomet by high speed spraying. In the high-speed spray coating, it is preferable to use a metal or cermet including stainless in order to provide durability and conductivity of the carbon fiber-epoxy composite. It is preferable to use WC-Co or Cr 3 C 2 -NiCr as the cermet.

또한, 상기 고속 용사 코팅 시의 코팅층의 두께는 0.1 mm 내지 0.5 mm로 형성하는 것이 바람직한데, 코팅층의 두께가 0.1 mm 이하인 경우 코팅후 연마하게 되면 코팅 두께가 너무 작기 때문에 원하는 특성을 얻을 수 없으며, 코팅층의 두께가 0.5 mm 이상인 경우에는 생산성 및 경제성이 저하되기 때문이다. In addition, the thickness of the coating layer during the high-speed spray coating is preferably formed in 0.1 mm to 0.5 mm, if the thickness of the coating layer is 0.1 mm or less, if the polishing after coating is too small to obtain the desired characteristics, This is because when the thickness of the coating layer is 0.5 mm or more, productivity and economical efficiency are reduced.

한편, 고속용사 코팅은 고속과 고온을 사용하므로 고온으로 인해 에폭시가 150℃ 근처에서 용융할 수 있으므로, 상기 고속용사 코팅 시에는 탄소섬유-에폭시 복합체의 모재 후면이나 파이프 형태인 경우에는 파이프 내부를 공기로 냉각하여 탄소섬유-에폭시 복합체의 모재가100℃ 이하의 온도가 되도록 한다. 따라서 탄소섬유-에폭시 복합체의 경우에도 고속용사에 의한 코팅이 가능하다.On the other hand, since the high-speed spray coating uses high speed and high temperature, the epoxy can be melted at around 150 ° C due to the high temperature. The base material of the carbon fiber-epoxy composite is cooled to 100 ° C. or lower. Therefore, in the case of carbon fiber-epoxy composite, it is possible to coat by high-speed spraying.

이상과 같이, 탄소섬유-에폭시 복합체에 금속 또는 서메트를 용사코팅 방식에 의하여 코팅하게 되므로, 내구성 및 전도성이 향상되고, 연마 후 우수한 표면조도를 부여할 수 있고, 우수한 내식성 및 내마모성을 지닌 탄소섬유-에폭시 복합체를 얻을 수 있다.As described above, since the metal fiber or cermet is coated on the carbon fiber-epoxy composite by the thermal spray coating method, durability and conductivity can be improved, excellent surface roughness can be given after polishing, and carbon fiber having excellent corrosion resistance and wear resistance. Epoxy complex can be obtained.

이하에서는 실험예를 통하여 본 발명을 좀더 상세하게 설명한다. 이러한 실험예는 단지 본 발명은 예시하기 위한 것이며, 본 발명이 여기에 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail through experimental examples. These experimental examples are only for illustrating the present invention, and the present invention is not limited thereto.

실험예Experimental Example

본 발명의 실험예에서는 탄소섬유에 에폭시가 부피비로 약 40% 첨가된 탄소섬유-에폭시 복합재 롤(roll)을 준비하였다. 롤의 두께는 10 mm, 롤의 외경과 길이는 각각 30, 200 mm이다. 먼저 탄소섬유-에폭시 복합재의 롤 표면에 Ag 분말을 페이스트 형태로 만들어 도포한 후, 전기 도금 방식으로 Cu를 약 0.15 mm 코팅하였다. 그 후 바로 고속용사 공정으로 Cr3C2-NiCr 소재를0.35 mm 두께로 코팅하여 완성하였다.In the experimental example of the present invention, a carbon fiber-epoxy composite roll having about 40% epoxy by volume ratio was prepared. The thickness of the roll is 10 mm, and the outer diameter and length of the roll are 30 and 200 mm, respectively. First, Ag powder was applied in the form of a paste on the roll surface of the carbon fiber-epoxy composite, and then about 0.15 mm of Cu was coated by electroplating. Immediately thereafter, a Cr 3 C 2 -NiCr material was coated with a thickness of 0.35 mm by a high speed spraying process.

도 2는 본 발명의 실험예에 따른 탄소섬유-에폭시 복합재에 Cr3C2-NiCr로 구성되는 서메트 등이 코팅된 것을 나타내는 사진이고, 도 3은 도 2의 확대 사진이다.FIG. 2 is a photograph showing that a cermet composed of Cr 3 C 2 -NiCr is coated on a carbon fiber-epoxy composite according to an experimental example of the present invention, and FIG. 3 is an enlarged photograph of FIG. 2.

도 2 및 3에서 도시된 바와 같이, 탄소섬유-에폭시 복합체의 모재와 Cu 도금층과의 사이에 우수한 경계면이 형성된 것을 알 수 있다. 또한 상기 Cu 도금층은 두번쩨 코팅층인 고속용사 코팅층과의 사이에도 우수한 경계면이 형성된 것을 알 수 있다. 따라서, 우수한 코팅층이 형성되는 것을 확인할 수 있다. As shown in FIGS. 2 and 3, it can be seen that an excellent interface is formed between the base material of the carbon fiber-epoxy composite and the Cu plating layer. In addition, it can be seen that the Cu plating layer has an excellent interface between the second spray coating layer and the high-speed spray coating layer. Therefore, it can be seen that an excellent coating layer is formed.

도 4는 본 발명의 실험예에 따른 탄소섬유-에폭시 복합재와 Cu 도금층의 경계면을 나타내는 사진이고, 도 5는 도 4에서 Ag 원소를 맵핑한 사진이다. 4 is a photograph showing an interface between a carbon fiber-epoxy composite and a Cu plating layer according to an experimental example of the present invention, and FIG. 5 is a photograph mapping Ag elements in FIG. 4.

도 4를 참조하면, 탄소섬유-에폭시 모재와 Cu 도금층과의 사이에 형성된 경계면이 Ag임을 알 수 있다. 도 5를 참조하면Ag 분말이 탄소섬유-에폭시 모재와 Cu 도금층 사이에 분산된 것을 확인할 수 있다.Referring to Figure 4, it can be seen that the interface formed between the carbon fiber-epoxy base material and the Cu plating layer is Ag. Referring to Figure 5 it can be seen that the Ag powder is dispersed between the carbon fiber-epoxy base material and the Cu plating layer.

이때, Cu 도금층의 평균 경도는 비커스 경도로 약 154 HV이고, Cr3C2-NiCr 고속용사층의 평균 비커스 경도는 약 800 HV이다. 연마 후 표면조도는 평균 0.1㎛ 이하를 부여한다. 따라서, 내구성 및 표면 조도가 우수한 탄소섬유-에폭시 복합체를 얻을 수 있다.At this time, the average hardness of the Cu plating layer is about 154 HV in Vickers hardness, and the average Vickers hardness of the Cr 3 C 2 -NiCr high-speed spray layer is about 800 HV. The surface roughness after polishing gives an average of 0.1 mu m or less. Thus, a carbon fiber-epoxy composite having excellent durability and surface roughness can be obtained.

상기에서는 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다. Although the preferred embodiments of the present invention have been described above, the present invention is not limited thereto, and various modifications and changes can be made within the scope of the claims and the detailed description of the invention and the accompanying drawings. Naturally, it belongs to the range of.

본 발명은 탄소섬유-에폭시 복합체에 금속 또는 서메트를 용사코팅 방식에 의하여 코팅하게 되므로, 코팅 특성이 뛰어날 뿐만 아니라, 내구성 및 전도성이 향상되는 탄소섬유-에폭시 복합체를 제조할 수 있다. In the present invention, since the metal fiber or cermet is coated on the carbon fiber-epoxy composite by the thermal spray coating method, the carbon fiber-epoxy composite having excellent coating properties as well as durability and conductivity can be prepared.

또한, 본 발명은 탄소섬유-에폭시 복합체에 서메트를 코팅하므로 연마 후 우수한 표면 조도를 부여할 수 있다.In addition, the present invention can provide a good surface roughness after polishing because the cermet is coated on the carbon fiber-epoxy composite.

Claims (10)

탄소섬유-에폭시 복합재의 표면에 Ag 분말을 도포하는 단계;Applying Ag powder to the surface of the carbon fiber-epoxy composite; 상기 Ag 분말이 도포된 탄소섬유-에폭시 복합재의 표면을 Cu 또는 Ni인 금속 코팅재로 전기 도금하는 단계; 및Electroplating the surface of the Ag-coated carbon fiber-epoxy composite with a metal coating material of Cu or Ni; And 고속용사에 의해 상기 전기 도금된 탄소섬유-에폭시 복합재를 코팅하는 단계Coating the electroplated carbon fiber-epoxy composite by high speed spraying 를 포함하는 탄소섬유 에폭시-복합재에의 코팅방법.Coating method on a carbon fiber epoxy-composite comprising a. 삭제delete 제1 항에 있어서, According to claim 1, 상기 전기 도금시 금속 코팅재의 두께는 0.1 mm 내지 0.5 mm로 형성하는 탄소섬유 에폭시-복합재에의 코팅방법.The coating method of the carbon fiber epoxy-composite to form a thickness of the metal coating material in the electroplating is 0.1 mm to 0.5 mm. 제3 항에 있어서, The method of claim 3, wherein 상기 고속용사 코팅 시 상기 탄소섬유-에폭시 복합재의 비코팅면을 냉각하여 상기 탄소섬유-에폭시 복합재의 온도를100℃ 이하로 하는 탄소섬유-에폭시 복합재에의 코팅방법.Coating the carbon fiber-epoxy composite to cool the uncoated surface of the carbon fiber-epoxy composite to 100 ° C. or less when the high-speed spray coating. 제4 항에 있어서, The method of claim 4, wherein 상기 고속용사 코팅 시의 코팅 두께는 0.1 mm 내지 0.5 mm로 형성하는 탄소섬유-에폭시 복합재에의 코팅방법.The coating thickness of the high-speed spray coating coating method to the carbon fiber-epoxy composite to form 0.1 mm to 0.5 mm. 제5 항에 있어서,The method of claim 5, 상기 고속용사 코팅 시 코팅 소재는 금속 또는 서메트를 이용하는 탄소섬유-에폭시 복합재에의 코팅방법.The coating material when the high-speed spray coating is a coating method on a carbon fiber-epoxy composite using a metal or cermet. 제6 항에 있어서,The method of claim 6, 상기 금속으로는 스테인레스를 포함하는 금속을 이용하고, 상기 서메트로는 WC-Co 또는 Cr3C2-NiCr을 이용하는 탄소섬유-에폭시 복합재에의 코팅방법.A method of coating on a carbon fiber-epoxy composite using a metal including stainless as the metal and WC-Co or Cr 3 C 2 -NiCr as the cermet. 탄소섬유-에폭시 복합재;Carbon fiber-epoxy composites; 전기도금이 가능하도록 상기 탄소섬유-에폭시 복합재의 일면에 도포된 Ag층;An Ag layer coated on one surface of the carbon fiber-epoxy composite to enable electroplating; 상기 Ag층 상에 전기도금으로 형성되고, 고속용사 코팅시 탄소섬유-에폭시 복합재의 용융을 방지하는 금속 코팅층; 및A metal coating layer formed by electroplating on the Ag layer to prevent melting of the carbon fiber-epoxy composite during high-speed spray coating; And 상기 금속 코팅층 상에 고속용사 코팅 방법으로 형성된 금속층 또는 서메트층A metal layer or cermet layer formed on the metal coating layer by a high speed spray coating method 을 포함하는 탄소섬유-에폭시 복합재.Carbon fiber-epoxy composite comprising a. 제8 항에 있어서,The method of claim 8, 상기 금속코팅층은 Cu 또는 Ni을 포함하여 형성되는 탄소섬유-에폭시 복합재.The metal coating layer is formed of a carbon fiber-epoxy composite including Cu or Ni. 제8 항에 있어서,The method of claim 8, 상기 고속용사 코팅 시의 금속층은 스테인레스를 포함하여 형성되고, 서메트층은 WC-Co 또는Cr3C2-NiCr을 포함하여 형성되는 탄소섬유-에폭시 복합재.The metal layer during the high-temperature spray coating is formed of stainless, and the cermet layer is formed of carbon fiber-epoxy composite including WC-Co or Cr 3 C 2 -NiCr.
KR1020060090622A 2006-09-19 2006-09-19 Method of coating on carbon fiber-epoxy composite KR100797827B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060090622A KR100797827B1 (en) 2006-09-19 2006-09-19 Method of coating on carbon fiber-epoxy composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060090622A KR100797827B1 (en) 2006-09-19 2006-09-19 Method of coating on carbon fiber-epoxy composite

Publications (1)

Publication Number Publication Date
KR100797827B1 true KR100797827B1 (en) 2008-01-24

Family

ID=39219205

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060090622A KR100797827B1 (en) 2006-09-19 2006-09-19 Method of coating on carbon fiber-epoxy composite

Country Status (1)

Country Link
KR (1) KR100797827B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101066431B1 (en) * 2008-11-26 2011-09-21 창원대학교 산학협력단 Carbon/epoxy laminated composite and method to produce the same
WO2017183791A1 (en) * 2016-04-21 2017-10-26 (주)엘지하우시스 Composite separator plate and production method therefor
WO2021020650A1 (en) * 2019-07-31 2021-02-04 (주)다인스 Conductive flexible carbon fibers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02296008A (en) * 1989-05-10 1990-12-06 Nippon Carbon Co Ltd Reinforced-plastic-made metal-coat roll
KR920021629A (en) * 1991-05-22 1992-12-18 하베니히트 힌리히 Coating method of fiber-reinforced resin
JPH11106271A (en) 1997-09-30 1999-04-20 Mitsubishi Heavy Ind Ltd Formation of metal thick film onto surface of carbon-based composite material
JP2001240953A (en) 2000-03-02 2001-09-04 Tocalo Co Ltd Plastic base composite material excellent in surface characteristic such as wear resistance, and its manufacturing method
KR20030019527A (en) * 2003-02-10 2003-03-06 김기동 Electromagnetic Wave Shielding Material using Carbon Nano-Composites and Preparation Method Thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02296008A (en) * 1989-05-10 1990-12-06 Nippon Carbon Co Ltd Reinforced-plastic-made metal-coat roll
KR920021629A (en) * 1991-05-22 1992-12-18 하베니히트 힌리히 Coating method of fiber-reinforced resin
JPH11106271A (en) 1997-09-30 1999-04-20 Mitsubishi Heavy Ind Ltd Formation of metal thick film onto surface of carbon-based composite material
JP2001240953A (en) 2000-03-02 2001-09-04 Tocalo Co Ltd Plastic base composite material excellent in surface characteristic such as wear resistance, and its manufacturing method
KR20030019527A (en) * 2003-02-10 2003-03-06 김기동 Electromagnetic Wave Shielding Material using Carbon Nano-Composites and Preparation Method Thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101066431B1 (en) * 2008-11-26 2011-09-21 창원대학교 산학협력단 Carbon/epoxy laminated composite and method to produce the same
WO2017183791A1 (en) * 2016-04-21 2017-10-26 (주)엘지하우시스 Composite separator plate and production method therefor
WO2021020650A1 (en) * 2019-07-31 2021-02-04 (주)다인스 Conductive flexible carbon fibers

Similar Documents

Publication Publication Date Title
US5660934A (en) Clad plastic particles suitable for thermal spraying
RU2423543C2 (en) Procedure for application of coating on part
Ganesan et al. The effect of CFRP surface treatment on the splat morphology and coating adhesion strength
US20090023567A1 (en) Coated Member, Especially Roller, Made of Carbon Fiber-Reinforced Plastic (CFK) for Paper Machines and Printing Presses, and Method for the Production of such a Member
WO1996021050A9 (en) Clad plastic particles suitable for thermal spraying
CN102925842A (en) Supersonic air plasma spraying method of ceramic coating on crystallizer copper plate surface
EP3006590B1 (en) Thermal spray for durable and lage-area hydrophobic and superhydrophobic/icephobic coatings
US5695883A (en) Carbon member having a metal spray coating
JP2015518085A (en) Member with metallurgically bonded coating
KR100797827B1 (en) Method of coating on carbon fiber-epoxy composite
KR100915394B1 (en) Electric Conductivity and Anti-abrasion Property Excellent Material and the manufacturing method thereof
KR20110131687A (en) Coating method of stainless steel using high-velocity oxy-fuel thermal spraying
CN111424229B (en) Preparation method of composite coating resistant to liquid metal alloy etching
JP2012091484A (en) Fiber-reinforced plastic-based composite material and method for producing the same
JPH07151135A (en) Carbon fiber reinforced resin roll and manufacture thereof
CN107447179B (en) Composite thermal spraying method
JPH03277779A (en) Production of composite coating film
JP2006029452A (en) Paper manufacturing machine having thermal splay coating, roller made of carbon fiber reinforced resin for printing machine, and its manufacturing method
CN108754402A (en) Carbon fiber surface thermal spraying alloy coating and preparation method thereof
JP2008190656A (en) Supporting device and method of manufacturing same
CN208883969U (en) Carbon fiber surface thermal spraying alloy coating
JPH1071454A (en) Mold for continuous casting
JP2006150595A (en) Carbon roll and its manufacturing method
JPH10175044A (en) Mold for continuous casting and manufacture thereof
Bidmeshki et al. Microstructural, Mechanical, and Tribological Evaluation of Cu-Al-based Coatings Deposited by APS and HVOF

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130118

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140117

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150116

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160118

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170117

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180117

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190117

Year of fee payment: 12