JP2015518085A - Member with metallurgically bonded coating - Google Patents

Member with metallurgically bonded coating Download PDF

Info

Publication number
JP2015518085A
JP2015518085A JP2014561403A JP2014561403A JP2015518085A JP 2015518085 A JP2015518085 A JP 2015518085A JP 2014561403 A JP2014561403 A JP 2014561403A JP 2014561403 A JP2014561403 A JP 2014561403A JP 2015518085 A JP2015518085 A JP 2015518085A
Authority
JP
Japan
Prior art keywords
layer
coating
remelted
sprayed
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2014561403A
Other languages
Japanese (ja)
Other versions
JP2015518085A5 (en
Inventor
マットホイス・ゲッツ
Original Assignee
テルミコ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンデイトゲゼルシヤフト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルミコ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンデイトゲゼルシヤフト filed Critical テルミコ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンデイトゲゼルシヤフト
Publication of JP2015518085A publication Critical patent/JP2015518085A/en
Publication of JP2015518085A5 publication Critical patent/JP2015518085A5/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

本発明は、冶金学的に結合され、そして溶射され、そして再溶融されたコーティング(3)を備える部材(1)に関する。部材(1)中に力が加えられ、そしてさらなる表面負荷がかかる際に、連続して起こる摩耗現象を回避するために、本発明は、コーティング(3)に溶射層(4)が設けられる。The present invention relates to a member (1) comprising a metallurgically bonded and sprayed and remelted coating (3). In order to avoid continuous wear phenomena when force is applied in the member (1) and further surface loading is applied, the present invention is provided with a sprayed layer (4) in the coating (3).

Description

本発明は、冶金学的に結合され、溶射されそして再溶融されたコーティングに関する。   The present invention relates to metallurgically bonded, sprayed and remelted coatings.

さらに、本発明は、部材の表面上に溶射されそして再溶融された、冶金学的に結合されたコーティングの製造方法に関する。   Furthermore, the invention relates to a method for producing a metallurgically bonded coating which has been sprayed and remelted on the surface of a member.

上述の種類の部材は当業者に知られていて周知であり、近年では、レーザー技術を用いて溶射された被膜を再溶融することが、広範な科学的研究においてますます議論されている。   The above types of components are known and well known to those skilled in the art, and in recent years it has been increasingly discussed in extensive scientific research to remelt a sprayed coating using laser technology.

冶金学的に結合されたコーティングは、その製造時に溶射の利点がレーザー溶融の利点と組み合わされて、高い耐摩耗特性及び耐腐食特性を有する。   Metallurgically bonded coatings have high wear and corrosion resistance properties, combining the advantages of thermal spraying with the advantages of laser melting during their manufacture.

例えば、IN 625 HVOF層の形で存在するコーティングを、タービン翼のような部材の表面上に施用後、いくつかの溶融ラインが、集中的な円及びほぼ円形状の移動によって、矩形又は楕円状の光点を生じるように、産業的な処理が行われる。そのために必要な移動手段は、高い正確さでのビームガイドであり、これは、溶融箇所の幾何学的形状、溶融ラインの重なりの必要性、並びに溶融ラインの製造の要求される再現性に依存する。   For example, after applying a coating that exists in the form of an IN 625 HVOF layer onto the surface of a member such as a turbine blade, several melting lines may be rectangular or elliptical by intensive circles and nearly circular movements. Industrial processing is performed so as to generate light spots. The moving means required for this is a beam guide with high accuracy, which depends on the geometry of the melting point, the need for overlap of the melting lines and the required reproducibility of the production of the melting lines. To do.

最初に述べた種類の冶金学的に結合されたコーティングは、例えば、英国特許出願第1039633号明細書(特許文献1)に開示されており、そこではレーザー装置を用いて溶射された層の再溶融が行われ、該レーザー装置は、溶射層にわたって点状の光点を案内してそれらを溶融する。この場合、それぞれの溶射箇所も層全体も、レーザーを使って再溶融される。この結果、コーティングの改善された機械的特性が得られ、特に、溶射層の機械的粘着性が溶融によって改善される。   A metallurgically bonded coating of the type mentioned at the outset is disclosed, for example, in UK patent application No. 1039633, in which a layer sprayed with a laser device is re-applied. Melting takes place and the laser device guides the pointed light spots across the sprayed layer to melt them. In this case, each sprayed point and the entire layer are remelted using a laser. This results in improved mechanical properties of the coating, in particular the mechanical adhesion of the sprayed layer is improved by melting.

上述の種類の冶金学的に結合されたコーティングはまた、最近開示された論文でも論じられており、レーザーを使って再溶融された、鋼及びTI6A4V上に塗工されたIN 625 HVOF層の残留応力が議論されている。この論文では、再溶融されたIN 625層中に残留引張応力が確認されている。その開示論文は、レーザーによる再溶融を利用して達成する上での困難、危機的でない応力の状態、すなわち、あたりさわりのない残留引張応力、及び残留圧縮応力を示している。円形状のレーザー箇所にCO−レーザーを使用した場合、該レーザーは、200Hzの周波数で、126mmの長さにわたり、部材表面の上に案内された(Arif, A.F.M, Yilbas, B.S., Surface Engineering, Volume 25, No. 3, April 2009, pp 249−256(非特許文献1))。 Metallurgically bonded coatings of the type described above are also discussed in a recently disclosed paper, and the remnants of IN 625 HVOF layers coated on steel and TI6A4V remelted using a laser. Stress has been discussed. In this paper, residual tensile stress has been identified in the remelted IN 625 layer. The disclosed paper shows the difficulty to achieve using laser remelting, the state of non-critical stress, i.e. unrestrained residual tensile stress, and residual compressive stress. CO 2 in a circular shape of the laser point - when using laser, the laser is at a frequency of 200 Hz, over a length of 126 mm, which is guided over the surface of the member (Arif, A.F.M, Yilbas, B S., Surface Engineering, Volume 25, No. 3, April 2009, pp 249-256 (Non-Patent Document 1)).

同様に、最近開示された論文では、280μmの厚さのHVOF WC−CrC−Ni−層が、レーザーを使って熱処理され、そして圧縮された。この場合、多孔率、硬度及び耐摩耗性という特性が改善された。レーザー箇所は、400ワットのレーザー出力の場合、400mm/分の移動速度で30%の重なり度でもって5mm×4mmの楕円形状が選択された(Journal of the Korean Physical Society, Volume 54, No. 3; March 2009(非特許文献2))。   Similarly, in a recently disclosed paper, a 280 μm thick HVOF WC—CrC—Ni— layer was heat treated and compressed using a laser. In this case, the properties of porosity, hardness and wear resistance were improved. The laser spot was selected to have an elliptical shape of 5 mm × 4 mm with a degree of overlap of 30% at a moving speed of 400 mm / min for a laser output of 400 watts (Journal of the Korean Physical Society, Volume 54, No. 3). March 2009 (non-patent document 2)).

この従来技術から知られる、部材の表面上に溶射され、そしてレーザー技術を使って再溶融された冶金学的に結合されたコーティングは、部材中に力が加えられ(Kraftaufschlagung)そしてさらに表面に負荷が加えられた場合に、摩耗現象が起こるという欠点を有する。   A metallurgically bonded coating, known from this prior art, sprayed onto the surface of the part and remelted using laser technology, is forced into the part (Kraftaufschlagung) and further loaded onto the surface. When is added, there is a disadvantage that a wear phenomenon occurs.

英国特許出願第1039633号明細書British Patent Application No. 1039633

Arif, A.F.M, Yilbas, B.S., Surface Engineering, Volume 25, No. 3, April 2009, pp 249−256Arif, A.M. F. M, Yilbas, B.M. S. , Surface Engineering, Volume 25, No. 3, April 2009, pp 249-256 Journal of the Korean Physical Society, Volume 54, No. 3; March 2009Journal of the Korean Physical Society, Volume 54, No. 3; March 2009

それ故、本発明の課題はこれらの欠点を回避することである。   The object of the present invention is therefore to avoid these drawbacks.

この課題は、請求項1に記載の特徴によって解決される。本発明の有利な実施形態は従属の請求項に与えられている。   This problem is solved by the features of claim 1. Advantageous embodiments of the invention are given in the dependent claims.

本発明は、冶金学的に結合されたコーティングに少なくとも1つの溶射層を設けることを提供する。   The present invention provides for providing at least one sprayed layer on a metallurgically bonded coating.

本発明の主題の中核は、冶金学的に結合されたコーティングに、溶射された上張り層を設けることである。驚くことに、部材にコーティングが冶金学的に結合され、その部材の拡張時に、その上張り層の許容値のために、その上張り層だけがクラッキング(ひび割れ)を生ずることが見出された。それゆえ、本発明のコーティングの場合、再溶融されたコーティングではクラック(ひび割れ)が継続しない。そのため、密な腐食保護層が与えられ、基本材料、すなわち部材の材料が腐食攻撃からその後も保護される。   The core of the subject of the present invention is to provide a sprayed overlay layer on the metallurgically bonded coating. Surprisingly, it has been found that the coating is metallurgically bonded to the part, and when the part is expanded, only the top layer cracks due to the tolerance of the top layer. . Therefore, in the case of the coating of the present invention, cracks do not continue in the remelted coating. Therefore, a dense corrosion protection layer is provided and the basic material, i.e. the material of the component, is subsequently protected from corrosion attack.

請求項1〜10のいずれか一つの具体的な部材は、ツインバレル及びスクリューであり、これらは、プラスチック処理用押出機で使用される。ツインバレルでは、2つのスクリューが、とりわけ熱可塑性プラスチック材料、例えば、PVCを、高圧及び高温下で送り出して圧縮する。プラスチック材料には、ガラス繊維、木粉及び着色料のような摩耗性の追加材料が追加される。摩耗作用性の追加材料の割合は、50体積%超であってよい。ツインバレル及びスクリューは強い摩耗に曝され、さらに、スクリューはバレルの内側表面で支持されており、これは、高い表面圧力及び曲げ応力(Walkbelastung)を表面にもたらす。PVCの処理の間、PVCの分解が起こる可能性があり、そして、バレル及びスクリューに腐食を引き起こす塩酸が発生する場合がある。   Specific members of any one of claims 1 to 10 are a twin barrel and a screw, which are used in an extruder for plastic processing. In twin barrels, two screws, among other things, feed and compress thermoplastic materials, such as PVC, at high pressures and temperatures. Plastic materials are subject to additional wearable materials such as glass fiber, wood flour and colorants. The proportion of the wear-active additional material may be greater than 50% by volume. Twin barrels and screws are subject to high wear, and the screws are supported on the inner surface of the barrel, which results in high surface pressure and bending stress on the surface. During PVC processing, PVC degradation can occur and hydrochloric acid can be generated which causes corrosion in the barrel and screw.

コーティングとしては、HVOF法を使って施用される、金属結合性の炭化タングステン、例えば、WC−CoCr又はWC−CrC−Niをベースとする硬質金属層が、摩損に抵抗するのに適している。   As the coating, a hard metal layer based on metal-bonded tungsten carbide, for example WC-CoCr or WC-CrC-Ni, applied using the HVOF method is suitable for resisting abrasion.

WCをベースとするHVOF層は冶金学的に結合を有さないが、機械的な粘着機構に基づいて粘着性である。機械的な粘着は、主として、粒子の運動エネルギー及び基材の硬度の影響を受ける。40〜45HRcの中硬度の基本材料上にHVOF層を施用した場合、250〜350MPaのせん断強度が得られ、そして、55〜57HRcの硬度の基材の場合には、より低い、50〜150MPaのせん断強度が得られる。   WC-based HVOF layers do not have metallurgical bonds but are sticky based on a mechanical sticking mechanism. Mechanical adhesion is primarily affected by the kinetic energy of the particles and the hardness of the substrate. When an HVOF layer is applied on a medium hardness basic material of 40-45 HRc, a shear strength of 250-350 MPa is obtained, and in the case of a substrate of 55-57 HRc hardness, a lower, 50-150 MPa Shear strength is obtained.

ツイン押出バレルには、より高い粘着性及び250MPaのせん断強度を有するコーティングを基材上に施用しなければならず、それにより、コーティングは機械的応力に耐えられることが判明した。さらに、コーティングの55HRc未満の硬度中に、少なくとも0.5mmの深さの支持領域が存在しなくてはならず、それにより、高い表面圧力及び曲げ作用によって基材中へ金属結合性のWC層が押し込まれることがない。   For twin extrusion barrels, it was found that a coating with higher tack and shear strength of 250 MPa had to be applied on the substrate, so that the coating could withstand mechanical stress. In addition, there must be a support region at least 0.5 mm deep in the hardness of the coating below 55 HRc, so that a metal-bonded WC layer into the substrate due to high surface pressure and bending action. Will not be pushed in.

提案されるコーティング系により、基材において、55HRcの硬度の支持層上の、>250MPaのせん断応力の硬質金属コーティングが可能となる。この場合、前者の、Niベースの合金からなる中硬度の薄層を施用し、そして、レーザーを用いて再溶融し、次いでWC−HVOFコーティングを施用する。冶金学的に結合された層は、本発明によれば、中硬度、Niベースの合金、例えば、ホウ素、ケイ素及び炭素の部分を有する、NiCrMoの種類の合金からなる、40〜45HRcの硬度のコーティングである。   The proposed coating system allows a hard metal coating with a shear stress of> 250 MPa on a support layer with a hardness of 55 HRc in the substrate. In this case, the former, a thin layer of medium hardness made of a Ni-based alloy is applied and remelted with a laser, and then a WC-HVOF coating is applied. According to the invention, the metallurgically bonded layer consists of a medium hardness, Ni-based alloy, for example a NiCrMo type alloy with boron, silicon and carbon parts, with a hardness of 40-45 HRc. It is a coating.

より硬度の高いバレル材料、例えば、42CrMo4又はX40Cr17Mo、の場合、前者の溶射により被覆されたNiベース層のレーザー再溶融によって、冶金学的に結合され、密でかつ腐食保護性のNiCrMo−BSiCコーティングがもたらされる。レーザー再溶融により、NiCrMo−BSiC合金からなる前者の層の下方にある基材が硬化する。上述のバレル及びスクリュー材料の場合、55〜57HRcの硬度を有する硬質領域は、約0.5〜2mmの深さに生じる。前者の再溶融された層は、5〜30μmと薄く、そして40〜45HRcの平均高度を有する。その薄くて、中程度の硬度の冶金学的に結合されたNiベースの層に対する高いせん断力及び表面圧力は、硬質なWCコーティングの深刻なプラスチックの変形及び陥没痕を生じさせることなく、基材の硬化された領域中で発現できることが判明した。   In the case of higher hardness barrel materials, such as 42CrMo4 or X40Cr17Mo, a dense and corrosion-protective NiCrMo-BSiC coating by laser remelting of the Ni base layer coated by the former spraying Is brought about. By laser remelting, the base material under the former layer made of NiCrMo—BSiC alloy is cured. For the barrel and screw materials described above, the hard region having a hardness of 55-57 HRc occurs at a depth of about 0.5-2 mm. The former remelted layer is as thin as 5-30 μm and has an average altitude of 40-45 HRc. The high shear force and surface pressure on the thin, medium hardness metallurgically bonded Ni-based layer allows the substrate to be processed without causing severe plastic deformation and dents in the hard WC coating. It was found that it can be expressed in the cured region of

本発明のコーティングにより、ツインバレルの内面及びスクリューのバレル面の上に施用される、250MPaのせん断強度を有する硬質な金属のHVOFコーティングが可能となり、これは、前者の溶射により被覆されたコーティングのレーザー再溶融によって基材を硬化させ、そしてそのコーティングの十分な支持を可能にする。そのコーティングは、HVOF WCコーティング中に高い機械応力によるクラックが生じた場合に、レーザーで再溶融されたNiCrMo−BSiC合金によって、塩酸による下方部の腐食に対する保護を可能にする。   The coating of the present invention enables a hard metal HVOF coating with a shear strength of 250 MPa applied on the inner surface of the twin barrel and the barrel surface of the screw, which is a coating of the former coated by thermal spraying. The substrate is cured by laser remelting and allows sufficient support of the coating. The coating allows protection against corrosion of the lower part by hydrochloric acid by a NiCrMo-BSiC alloy remelted with a laser when cracks due to high mechanical stress occur in the HVOF WC coating.

さらに、本発明のコーティングは、耐食性、耐衝撃性及びクラッキング耐性だけでなく、高い歪み許容性も有することが判明した。   Furthermore, it has been found that the coatings of the present invention have not only corrosion resistance, impact resistance and cracking resistance, but also high strain tolerance.

例えば、タービン翼、ボール弁、スクリューローター又はバレルなどの管の内面のような複雑な寸法形状を有する部材に適用できる。   For example, the present invention can be applied to a member having a complicated size and shape such as an inner surface of a pipe such as a turbine blade, a ball valve, a screw rotor, or a barrel.

本発明のコーティングの製造は、次の3つの工程、すなわち、
1.部材の表面上に、溶射を使って、薄いコーティング、つまり、好ましくは5〜300μmの厚さを有するコーティングを形成する工程。その表面の材料として、特に、耐酸化性及び/又は耐食性の材料が利用される。
2.該溶射により施用されたコーティングを再溶融する工程。ここで、その再溶融は、好ましくはレーザー技術を使って行う。
3.該再溶融したコーティング上に、少なくとも1つの別の層を噴霧する工程。ここで、その層は、好ましくは、酸化物セラミック材料からなるプラズマ層か、又は金属結合性炭化物からなるHVOF層である。
によって特徴付けられる。
The production of the coating of the present invention involves the following three steps:
1. Forming a thin coating, ie a coating having a thickness of preferably 5 to 300 μm, on the surface of the member using thermal spraying; As the material for the surface, in particular, an oxidation-resistant and / or corrosion-resistant material is used.
2. Remelting the coating applied by spraying; Here, the remelting is preferably performed using laser technology.
3. Spraying at least one other layer onto the remelted coating. Here, the layer is preferably a plasma layer made of an oxide ceramic material or an HVOF layer made of a metal-bonded carbide.
Is characterized by

溶射の変法としては、特に、プラズマ溶射及び高速フレーム溶射が適している。   Plasma spraying and high-speed flame spraying are particularly suitable as thermal spraying variants.

好ましくは、溶射層は再溶融される。再溶融のための信頼できる器機としては、ここでもレーザー技術が適している。再溶融された層の利点とは、下方にある、冶金学的に結合され、溶射され、そして再溶融されたコーティング中で合金が形成されることである。   Preferably, the sprayed layer is remelted. Again, laser technology is suitable as a reliable instrument for remelting. The advantage of the remelted layer is that an alloy is formed in the underlying, metallurgically bonded, sprayed and remelted coating.

本発明のさらなる有利な実施形態は、層が、酸化物セラミック材料からなるプラズマ層を提供する。この層は、高い硬度及び低い熱伝導率を有するため、この層は、断熱部材に特に適していることによって有利に特徴づけられる。   A further advantageous embodiment of the invention provides a plasma layer, wherein the layer consists of an oxide ceramic material. Since this layer has a high hardness and low thermal conductivity, this layer is advantageously characterized by being particularly suitable for thermal insulation members.

本発明の実用的な変更例は、金属結合性炭化物からなる層、特に、WC−CrC−NiからなるHVOF層を提供する。これにより、高い硬度及び堅牢度を有する層が与えられる。さらに、該層は、電気電導性であり、そして高い熱伝導率を有する。   A practical variant of the invention provides a layer made of metal-bonded carbide, in particular an HVOF layer made of WC—CrC—Ni. This gives a layer with high hardness and fastness. Furthermore, the layer is electrically conductive and has a high thermal conductivity.

さらに、押出ツインバレル中での請求項1〜10のいずれか一つに記載の層順序の使用が提供される。   Furthermore, the use of a layer sequence according to any one of claims 1 to 10 in an extruded twin barrel is provided.

以下で、図面に基づいて本発明をより詳細に説明する。図面は次の略図を示す。   Hereinafter, the present invention will be described in more detail with reference to the drawings. The drawings show the following schematics:

冶金学的に結合され、そして溶射され、かつ再溶融されたコーティングが設けられた慣用的な部材。A conventional member provided with a metallurgically bonded and sprayed and remelted coating. 図2aは、クラックを有する、本発明による部材を示している。FIG. 2a shows a member according to the invention with cracks. 図2bは、クラックのない、本発明による部材を示している。FIG. 2b shows the member according to the invention without cracks.

図1は、コーティング3が設けられた慣用的な部材を示している。   FIG. 1 shows a conventional member provided with a coating 3.

コーティング3は、部材1の表面2に冶金学的に結合され、そして再溶融される。コーティング3は、予め、部材1の表面2上に溶射されている。図1に示した部材はスクリューローターである。コーティング2の厚さは5μm〜300μmである。   The coating 3 is metallurgically bonded to the surface 2 of the member 1 and remelted. The coating 3 is previously sprayed on the surface 2 of the member 1. The member shown in FIG. 1 is a screw rotor. The thickness of the coating 2 is 5 μm to 300 μm.

本発明の本質的な方法では、冶金学的に結合されたコーティング3には、図2aからさらに明らかなように、溶射層4がさらに設けられる。図2a、図2bでは、図示する目的で、図1に示された部材1を完全には示していない。層4の場合、その厚さは約30μmであり、該層は、冶金学的に結合されたコーティング3の上に溶射された層である。層4は、酸化物セラミック材料からなるプラズマ層である。あるいはまた、該層は、WC−CrC−NiからなるHVOF層であることもできる。   In the essential method of the present invention, the metallurgically bonded coating 3 is further provided with a sprayed layer 4, as is further evident from FIG. 2a. 2a and 2b do not completely show the member 1 shown in FIG. 1 for the purpose of illustration. In the case of layer 4, the thickness is about 30 μm, which is a layer sprayed onto the metallurgically bonded coating 3. Layer 4 is a plasma layer made of an oxide ceramic material. Alternatively, the layer can be an HVOF layer made of WC—CrC—Ni.

図2aの層構造の利点は、図2bに示されている。部材の高められた応力に起因してクラッキングが引き起こされる場合、そのクラッキングは層4でのみ起こる。図1bから明らかなように、クラック5は層4でのみ広がっており、冶金学的に結合されたコーティング3中で継続するクラックは見られない。   The advantages of the layer structure of FIG. 2a are illustrated in FIG. 2b. If cracking is caused due to the increased stress of the member, that cracking only occurs in layer 4. As can be seen from FIG. 1b, the crack 5 only spreads in the layer 4 and no cracks continue in the metallurgically bonded coating 3 are seen.

本発明は、上述の実施形態にそれらの形態が限定されない。むしろ、多数の変更が考えられ、それらは、その他の変更された実施形態の場合にも、示された解法を利用している。   As for this invention, those forms are not limited to the above-mentioned embodiment. Rather, many changes are possible and they utilize the indicated solution in the case of other modified embodiments.

例えば、層4は、5μm〜300μm、好ましくは5μm〜150μmの厚さを有することもでき、費用を削減する理由から、特に好ましくは5μm〜30μmの厚さを有することもできる。   For example, the layer 4 may have a thickness of 5 μm to 300 μm, preferably 5 μm to 150 μm, and may particularly preferably have a thickness of 5 μm to 30 μm for reasons of cost reduction.

さらに、コーティング3は、MGAlYのような高温ガス耐酸化性材料又はNiGMoのような耐食性材料からなることができる。   Furthermore, the coating 3 can be made of a hot gas oxidation resistant material such as MGAlY or a corrosion resistant material such as NiGMo.

さらに、本発明の範囲内で次の点を企図することができる。
−硬化された表面の上の層4、部材1の内側コーティングに限定され、ツインバレルの幾何学形状に限定され、回転バーナーを備えた噴射に限定され、
−硬化された表面上の、再溶融された層4が<5μmを有する、請求項1に記載の層順序、
−RMTUを有する回転式内側コーティングバーナー、
−小さい内径のための、及びそのための粉末のためのHVOF内側コーティングバーナー、ツイン燃焼室、水素霧化、灯油、ラムダ<1、短い噴霧距離、活性ガスによる保護作用、粉末プラズマ球状化、<15μm、好ましくは0.5〜6μm、2〜9μm、
−金属結合性炭化タングステン及びモリブデンからなる部材1の内側コーティング、
−微小粒子のための粉末供給装置、バイブレーション、ボール、球体の床、振動装置、デリバリチャンネル、溝、ホッパー又はバレル、コンベヤーディスク、
−内側及び外側コーティングを有する管、コンビネーションレーザーHVOF及びHVOF、及びレーザーHVOF、ソフトレーザーHVOFハード、腐食耐性硬質金属HVOF層、例えば、該層中に少量の金属バインダーを含有する粉末WC−CrC−Niからなる。
Furthermore, the following points can be contemplated within the scope of the present invention.
-Layer 4 on the hardened surface, limited to the inner coating of member 1, limited to twin barrel geometry, limited to spray with rotating burner,
The layer sequence according to claim 1, wherein the remelted layer 4 on the cured surface has <5 μm;
A rotary inner coating burner with RMTU,
HVOF inner coating burner for small inner diameters and for powders, twin combustion chambers, hydrogen atomization, kerosene, lambda <1, short spray distance, protection with active gas, powder plasma spheronization, <15 μm , Preferably 0.5-6 μm, 2-9 μm,
The inner coating of the member 1 made of metal-bonded tungsten carbide and molybdenum,
-Powder feeders for fine particles, vibrations, balls, spherical floors, vibration devices, delivery channels, grooves, hoppers or barrels, conveyor disks,
-Tubes with inner and outer coatings, combination lasers HVOF and HVOF, and laser HVOF, soft laser HVOF hard, corrosion resistant hard metal HVOF layer, eg powder WC-CrC-Ni containing a small amount of metal binder in the layer Consists of.

ここに提案されるのは、層及び本体を製造するための炭化タングステン粉末が、球状、プラズマ球状化された、タングステン、クロム、炭素、及びFe、Co、Niのようなバインダーからなり、クロムを有するWC、例えば、低い金属バインダー含有量のWC−CrC−Ni、微小化WC及び微小化CrC、構造WC、W2C、(WCr)2C、Cr3C2、Cr7C3、W分を有するCr23C6((CrW)23C6)、(WCr)3NiC、(WCr)4Ni2C、(WC)6Ni6Cからなる、炭化クロムは、炭素供給物質である。この場合、炭素は過剰に存在し、グラファイトのように遊離している。これは、脆性のn−カーバイドを抑制するのに有利である。   Suggested here is that tungsten carbide powder for producing layers and bodies consists of spherical, plasma spheroidized tungsten, chromium, carbon and binders such as Fe, Co, Ni, and chromium. WC having, for example, WC-CrC-Ni with low metal binder content, miniaturized WC and miniaturized CrC, structures WC, W2C, (WCr) 2C, Cr3C2, Cr7C3, Cr23C6 with W content ((CrW) 23C6) , (WCr) 3NiC, (WCr) 4Ni2C, (WC) 6Ni6C, chromium carbide is a carbon supply material. In this case, carbon is present in excess and is liberated like graphite. This is advantageous for suppressing brittle n-carbide.

1 部材
2 表面
3 コーティング
4 溶射層
5 クラック
1 Member 2 Surface 3 Coating 4 Thermal Spray Layer 5 Crack

Claims (15)

冶金学的に結合、溶射及び再溶融されたコーティング(3)を備えた部材(1)であって、
該コーティング(3)に、少なくとも一つの溶射層(4)が設けられることを特徴とする、上記の部材。
A member (1) with a metallurgically bonded, sprayed and remelted coating (3),
Said member, characterized in that at least one sprayed layer (4) is provided on the coating (3).
前記層(4)が再溶融されたことを特徴とする、請求項1に記載の部材。   2. Member according to claim 1, characterized in that the layer (4) has been remelted. 前記層(4)の厚さが5〜500μmであることを特徴とする、請求項2に記載の部材。   The member according to claim 2, wherein the layer (4) has a thickness of 5 to 500 μm. 前記層(4)の厚さが5〜150μmであることを特徴とする、請求項2又は3に記載の部材。   The member according to claim 2 or 3, characterized in that the layer (4) has a thickness of 5 to 150 µm. 前記層(4)の厚さが5〜30μmであることを特徴とする、請求項3又は4に記載の部材。   The member according to claim 3 or 4, characterized in that the layer (4) has a thickness of 5 to 30 m. 前記層(4)が、酸化物セラミック材料からのプラズマ層であることを特徴とする、請求項1〜5のいずれか一つに記載の部材。   6. Member according to claim 1, characterized in that the layer (4) is a plasma layer from an oxide ceramic material. 前記層(4)が、金属結合した炭化物、特に、WC−CrC−NiからなるHVOF層であることを特徴とする、請求項1〜5のいずれか一つに記載の部材。   6. The member according to claim 1, wherein the layer is a HVOF layer made of a metal bonded carbide, in particular WC—CrC—Ni. 前記コーティング(3)が、高温ガスの酸化に抵抗性の材料からなる、請求項1〜7のいずれか一つに記載の部材。   The member according to any one of claims 1 to 7, wherein the coating (3) is made of a material resistant to oxidation of hot gases. 前記コーティング(3)が耐食性であることを特徴とする、請求項1〜7のいずれか一つに記載の部材。   8. Member according to any one of the preceding claims, characterized in that the coating (3) is corrosion resistant. 前記コーティング(3)が、表面(2)上及び/又は前記部材(1)の内側表面上にあることを特徴とする、請求項1〜9のいずれか一つに記載の部材。   10. A member according to any one of the preceding claims, characterized in that the coating (3) is on the surface (2) and / or on the inner surface of the member (1). 部材(1)の表面(2)上に溶射され、そしてレーザーを用いて再溶融された、冶金学的に結合されたコーティング(3)を製造する方法であって、
該コーティング(3)上に、少なくとも一つのさらなる層(4)が溶射されることを特徴とする、上記の方法。
A method of producing a metallurgically bonded coating (3) sprayed onto a surface (2) of a member (1) and remelted with a laser comprising:
Process as described above, characterized in that at least one further layer (4) is sprayed onto the coating (3).
前記層(4)が再溶融されることを特徴とする、請求項11に記載の方法。   12. Method according to claim 11, characterized in that the layer (4) is remelted. 前記層(4)が、レーザーを用いて再溶融されることを特徴とする、請求項12に記載の方法。   13. Method according to claim 12, characterized in that the layer (4) is remelted using a laser. 前記層(4)が、プラズマ溶射を用いて施用されることを特徴とする、請求項11〜13のいずれか一つに記載の方法。   14. Method according to any one of claims 11 to 13, characterized in that the layer (4) is applied using plasma spraying. 前記層(4)が、高速フレーム溶射を用いて施用されることを特徴とする、請求項11〜14のいずれか一つに記載の方法。   15. Method according to any one of claims 11 to 14, characterized in that the layer (4) is applied using high-speed flame spraying.
JP2014561403A 2012-03-13 2013-03-11 Member with metallurgically bonded coating Withdrawn JP2015518085A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE201210102087 DE102012102087A1 (en) 2012-03-13 2012-03-13 Component with a metallurgically bonded coating
DE102012102087.6 2012-03-13
PCT/EP2013/054901 WO2013135638A1 (en) 2012-03-13 2013-03-11 Component with a metallurgically bonded coating

Publications (2)

Publication Number Publication Date
JP2015518085A true JP2015518085A (en) 2015-06-25
JP2015518085A5 JP2015518085A5 (en) 2016-02-04

Family

ID=47891678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014561403A Withdrawn JP2015518085A (en) 2012-03-13 2013-03-11 Member with metallurgically bonded coating

Country Status (6)

Country Link
US (1) US20150017430A1 (en)
EP (1) EP2825681A1 (en)
JP (1) JP2015518085A (en)
CA (1) CA2867192A1 (en)
DE (1) DE102012102087A1 (en)
WO (1) WO2013135638A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109266997A (en) * 2018-10-30 2019-01-25 广东技术师范学院 A kind of metal works duplex coating and preparation method thereof suitable for hot environment
WO2023113035A1 (en) * 2021-12-16 2023-06-22 日本ピストンリング株式会社 Thermal spray coating film, sliding member and piston ring

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2871257A1 (en) * 2013-11-11 2015-05-13 Siemens Aktiengesellschaft Method of coating with subsequent remelting method
WO2016052741A1 (en) * 2014-10-02 2016-04-07 新日鐵住金株式会社 Hearth roll and manufacturing method therefor
CN104388887B (en) * 2014-11-20 2017-01-04 西安交通大学 A kind of heavy-duty gear surface recombination gradient coating and preparation method thereof
CN108220860A (en) * 2017-12-21 2018-06-29 中国科学院兰州化学物理研究所 A kind of preparation method of graded composite wear-and corrosion-resistant coating
CN109554656B (en) * 2018-12-13 2020-10-09 西安交通大学 Preparation method and system of compact ceramic coating in normal-temperature atmosphere
DE202018107169U1 (en) * 2018-12-14 2019-01-02 Höganäs Ab Coating especially for brake discs, brake drums and clutch discs, brake disc for a disc brake or brake drum for a drum brake or clutch disc for a clutch, disc brake or drum brake or clutch and use of a coating
US11339096B1 (en) * 2019-05-13 2022-05-24 Sumitomo Electric Industries, Ltd. Tungsten carbide powder

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3310423A (en) 1963-08-27 1967-03-21 Metco Inc Flame spraying employing laser heating
DE3437983C1 (en) * 1984-10-17 1986-03-20 Eisen- und Stahlwerk Pleissner GmbH, 3420 Herzberg Method for applying a metallic protective film onto a metallic substrate
DE3512176A1 (en) * 1985-04-03 1986-10-09 Winfried 7758 Meersburg Heinzel METHOD FOR TREATING THE SURFACE OF A PRINTING MACHINE CYLINDER
US5576069A (en) * 1995-05-09 1996-11-19 Chen; Chun Laser remelting process for plasma-sprayed zirconia coating
DE19740205B4 (en) * 1997-09-12 2004-11-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for applying a coating by means of plasma spraying
US6933061B2 (en) * 2002-12-12 2005-08-23 General Electric Company Thermal barrier coating protected by thermally glazed layer and method for preparing same
EP1561839A1 (en) * 2004-01-27 2005-08-10 Siemens Aktiengesellschaft Process of manufacturing a layered structure comprising a columnar ceramic layer
US8465602B2 (en) * 2006-12-15 2013-06-18 Praxair S. T. Technology, Inc. Amorphous-nanocrystalline-microcrystalline coatings and methods of production thereof
US9103358B2 (en) * 2010-03-16 2015-08-11 Eaton Corporation Corrosion-resistant position measurement system and method of forming same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109266997A (en) * 2018-10-30 2019-01-25 广东技术师范学院 A kind of metal works duplex coating and preparation method thereof suitable for hot environment
WO2023113035A1 (en) * 2021-12-16 2023-06-22 日本ピストンリング株式会社 Thermal spray coating film, sliding member and piston ring

Also Published As

Publication number Publication date
DE102012102087A1 (en) 2013-09-19
CA2867192A1 (en) 2013-09-19
US20150017430A1 (en) 2015-01-15
WO2013135638A1 (en) 2013-09-19
EP2825681A1 (en) 2015-01-21

Similar Documents

Publication Publication Date Title
JP2015518085A (en) Member with metallurgically bonded coating
JP4772860B2 (en) Abrasion resistant metal matrix composite coating layer forming method and coating layer manufactured using the same
US8153204B2 (en) Imparting functional characteristics to engine portions
WO2006134831A1 (en) Rotor for steam turbine and process for producing the same
US20130333989A1 (en) Brake disc and production method thereof
CN104789921A (en) Process for spraying composite coating on metal surface
EP2035350B1 (en) Refractory metallic oxide ceramic part having platinum group metal or platinum group metal alloy coating
CN106756717B (en) Preparation method of high-strength wear-resistant copper-nickel-tin alloy coating
CN103374693A (en) Nano thermal barrier coating on surface of high-temperature furnace roller and preparation method thereof
JP2007298035A (en) Coating for gas turbine engine component, seal assembly, and coating method
CN105648296A (en) Re-contained high-temperature-resisting wolfram-carbide-based metal ceramic composite powder and coating and preparing technology of coating
Amanov Wear resistance and adhesive failure of thermal spray ceramic coatings deposited onto graphite in response to ultrasonic nanocrystal surface modification technique
JP2008261329A (en) Thermal spraying method for coating piston ring groove, use of thermal spraying wire, and piston including thermal spraying layer
CN108866470A (en) A kind of preparation method of air plasma spraying alloy-ceramic laminar coating
JP5230312B2 (en) Coating method using plasma shock wave
US20090223756A1 (en) Method for producing friction surfaces or friction layers of a carbon-ceramic brake disk as well as a carbon-ceramic brake disk provided with such friction surfaces or friction layers
US20150110962A1 (en) Process for applying a protective layer to a turbine component
JP5605901B2 (en) Method for repairing metal material by cold spray method, method for producing powder material for cold spray, and cold spray film
CN111004991A (en) Preparation method of high-wear-resistance and high-corrosion-resistance protective layer of hot work die steel
Pavan et al. Review of ceramic coating on mild steel methods, applications and opportunities
KR100797827B1 (en) Method of coating on carbon fiber-epoxy composite
CN107382354A (en) A kind of preparation method of new high-temperature oxidation resistant C/C composite coatings
RU2633434C2 (en) Device and method of improving physical properties of detail surface
CN206175805U (en) Wear -resisting anti -corrosion governing valve seal assembly
JP4639317B2 (en) Roll manufacturing method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151207

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20160315