WO2017183791A1 - Composite separator plate and production method therefor - Google Patents

Composite separator plate and production method therefor Download PDF

Info

Publication number
WO2017183791A1
WO2017183791A1 PCT/KR2016/014111 KR2016014111W WO2017183791A1 WO 2017183791 A1 WO2017183791 A1 WO 2017183791A1 KR 2016014111 W KR2016014111 W KR 2016014111W WO 2017183791 A1 WO2017183791 A1 WO 2017183791A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
woven fabric
fiber woven
resin
composite separator
Prior art date
Application number
PCT/KR2016/014111
Other languages
French (fr)
Korean (ko)
Inventor
김지연
김혜원
최성현
정승문
Original Assignee
(주)엘지하우시스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엘지하우시스 filed Critical (주)엘지하우시스
Priority to JP2018554550A priority Critical patent/JP6722770B2/en
Publication of WO2017183791A1 publication Critical patent/WO2017183791A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0239Organic resins; Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a composite separator and a method for manufacturing the same, and more particularly, to a composite separator and a method of manufacturing the same that can improve the electrical conductivity in both the surface and the thickness direction.
  • the separator which is a component of the fuel cell stack, functions as a supply passage of reaction gas (hydrogen and oxygen) and a discharge passage of water, and electrically connects the inside of the fuel cell stack.
  • reaction gas hydrogen and oxygen
  • the separator requires excellent electrical conductivity, mechanical properties, corrosion resistance and low hydrogen permeability.
  • a separator plate is also included in a hydrogen fuel cell, a redox flow battery, and the like, which have attracted much attention among large secondary batteries.
  • the hydrogen fuel cell and the redox flow battery which operate in an acidic atmosphere are required to have characteristics such as electrical conductivity, mechanical properties, corrosion resistance, chemical resistance, and electrolyte impermeability.
  • thermosetting resin In order to satisfy this, conventionally, a composite separator plate in which a carbon fiber woven fabric is impregnated with a thermosetting resin is manufactured. In order to impart electrical conductivity to the composite separator, a large amount of conductive powder having high conductivity must be mixed inside the thermosetting resin.
  • Composite separator for achieving the above object is a carbon fiber woven material; Conductive powder filled in the carbon fiber woven fabric; And upper and lower conductive coating layers disposed on upper and lower surfaces of the carbon fiber woven fabric, respectively, and bonded to the carbon fiber woven fabric.
  • Method for producing a composite separator for achieving the above object (a) filling the conductive powder in the carbon fiber woven fabric; (b) forming upper and lower conductive coating layers on upper and lower surfaces of the carbon fiber woven fabric filled with the conductive powder; And (c) pressing and curing the carbon fiber woven fabric and the upper and lower conductive coating layers by a hot press to obtain a composite separator.
  • the composite separator according to the present invention and a method for manufacturing the same are first filled with a conductive powder in a powder state inside the carbon fiber woven fabric, and then forming upper and lower conductive coating layers on both surfaces of the carbon fiber woven fabric filled with the conductive powder.
  • the vertical electrical conductivity in the z-axis direction can be improved.
  • the composite separator according to the present invention can secure the surface electrical conductivity in the x-axis and y-axis directions by the upper and lower conductive coating layers formed on both sides of the carbon fiber woven fabric, and inside the carbon fiber woven fabric.
  • the filled conductive powder has a structure for organically connecting between the carbon fiber woven fabrics, vertical electrical properties in the z-axis direction may be improved, thereby improving contact resistance.
  • FIG. 1 is a cross-sectional view showing a composite separator according to an embodiment of the present invention.
  • Figure 2 is a perspective view of the carbon fiber woven fabric of Figure 1;
  • Figure 3 is a process flow chart showing a composite separation plate manufacturing method according to an embodiment of the present invention.
  • 4 to 6 is a cross-sectional view showing a method for manufacturing a composite separator according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional view showing a composite separator according to an embodiment of the present invention
  • Figure 2 is a perspective view showing a carbon fiber woven fabric of FIG.
  • the composite separator 100 includes a carbon fiber woven fabric 110, a conductive powder 120, and upper and lower conductive coating layers 130 and 140.
  • the conductive powder 120 is filled in the carbon fiber woven fabric 110
  • the carbon fiber woven fabric 110 filled with the conductive powder 120 is the upper and lower conductive coating layers (130, 140) and hot press (hot) It is pressed by the press method and has a structure where they mutually bond.
  • Carbon fiber woven fabric 110 is used as a core substrate (core) disposed in the middle of the composite separating plate 100, serves to improve the mechanical strength of the composite separating plate (100).
  • the carbon fiber woven fabric 110 preferably has a thickness of 200 ⁇ 400 ⁇ m. When the thickness of the carbon fiber woven fabric 110 is less than 200 ⁇ m, it may be difficult to secure mechanical strength due to its thickness being thin. On the contrary, when the thickness of the carbon fiber woven fabric 110 exceeds 400 ⁇ m, the thickness of the carbon fiber woven fabric 110 may increase the thickness and volume without increasing any further effects, resulting in weight reduction and thinning.
  • At least one carbon fiber woven fabric 110 may be stacked vertically.
  • the carbon fiber woven fabric 110 may be manufactured by weaving fiber bundles of 1,000 to 70,000 strands into weft and warp yarns, respectively. Accordingly, the carbon fiber woven fabric 110 may include the weft carbon fiber 112 disposed in the weft direction and the inclined carbon fiber 114 disposed in the inclined direction.
  • the fiber bundles of the carbon fiber woven fabric 110 has a circular or oval cross-sectional structure. And, the fiber bundles of the carbon fiber woven fabric 110 may have an average spacing of 1.5 ⁇ 2.0mm.
  • the conductive powder 120 is filled in the carbon fiber woven fabric 110.
  • the conductive powder 120 is filled in the interior of the carbon fiber woven fabric 110 by a coating method to improve the vertical electrical conductivity of the z-axis.
  • the conductive powder 120 is carbon nanotube, graphite powder, chopped carbon fiber, carbon black, carbon powder, graphite nanoplatelet. It may include one or more selected from (graphite nanoplate) and graphene (graphene).
  • the conductive powder 120 may be directly filled by the powder coating method inside the carbon fiber woven fabric 110.
  • the conductive powder 120 is applied to both surfaces of the carbon fiber woven fabric 110 by air spraying the dispersion dispersed in an organic solvent and an epoxy liquid resin having a viscosity of 100cp or less, and then dried to volatilize the organic solvent. It may also be coated in a manner.
  • organic solvent volatile ethanol, butanol, ethyl acetate, octanol, ethoxy ethanol pentanol, methoxy ethanol, ethylene glycol, acetone, tetrahydrofuran, dimethylformamide, dimethylamine, dichloromethane And one or more of diethyl ether may be used.
  • the upper and lower conductive coating layers 130 and 140 are disposed on the upper and lower surfaces of the carbon fiber woven fabric 110, respectively, and are bonded to the carbon fiber woven fabric 110.
  • the upper and lower conductive coating layers 130 and 140 are bonded to the carbon fiber woven fabric 110 by a hot pressing process.
  • the upper and lower conductive coating layers 130 and 140 have a structure in which some of the upper and lower conductive coating layers 130 and 140 are impregnated into the carbon fiber woven fabric 110 to be integrally connected to each other.
  • the upper and lower conductive coating layers 130 and 140 preferably have a thickness of 5 ⁇ 100 ⁇ m respectively.
  • the thickness of each of the upper and lower conductive coating layers 130 and 140 is less than 5 ⁇ m, the handling is difficult because the thickness is too thin, and there is a problem that the surface electrical conductivity is lowered.
  • the thickness of each of the upper and lower conductive coating layers 130 and 140 exceeds 100 ⁇ m, it may act as a factor of increasing the manufacturing cost without any further effect increase, and thus is not economical.
  • the upper and lower conductive coating layers 130 and 140 respectively include a resin layer and a conductive filler impregnated in the resin layer.
  • the resin layer serves to improve the mechanical strength.
  • the resin layer is formed of any one selected from a thermosetting resin including a phenol resin, an epoxy resin, an amino resin, a urea resin, a melamine resin, an unsaturated polyester resin, a polyurethane resin, and a polyimide resin.
  • the conductive filler is added and dispersed in the resin layer to improve the surface electrical conductivity of the x-axis and the y-axis.
  • the conductive filler is carbon nanotube, graphite powder, chopped carbon fiber, carbon black, carbon powder, graphite nanoplate ) And graphene may include one or more selected from.
  • the conductive filler is added to 15 to 25% by weight of the total weight based on the solid content. If the content of the conductive filler is less than 15% by weight, it may be difficult to secure the surface electrical conductivity. On the contrary, when the content of the conductive filler exceeds 25% by weight, coating failure may be caused by clogging of the nozzle.
  • the composite separator 110 may be formed.
  • the conductive filler is concentrated in large amounts only on the surface of the carbon fiber woven fabric 110 used as the core substrate of the core, and the vertical electrical conductivity in the z-axis direction is not good because it does not penetrate into the interior of the carbon fiber woven fabric 110. There is.
  • the composite separator according to the embodiment of the present invention described above first fills the conductive powder in a powder state inside the carbon fiber woven fabric, and then forms upper and lower conductive coating layers on both sides of the carbon fiber woven fabric filled with the conductive powder.
  • By forming it is possible to improve the vertical electrical conductivity in the z-axis direction along with the surface electrical conductivity in the x-axis and y-axis directions.
  • the composite separator according to the embodiment of the present invention can secure the surface electrical conductivity in the x-axis and y-axis directions by the upper and lower conductive coating layers formed on both sides of the carbon fiber woven fabric, and the carbon fiber woven fabric
  • the conductive powder filled in the structure has a structure for organically connecting between the carbon fiber woven fabrics, vertical electrical properties in the z-axis direction may be improved, thereby improving contact resistance.
  • the composite separator according to the embodiment of the present invention has a surface electrical conductivity: 100 ⁇ 200S / cm, contact resistance: 10mPa / cm2 or less and flexural strength: 80MPa or less.
  • FIG 3 is a process flow chart showing a method for manufacturing a composite separator according to an embodiment of the present invention
  • Figures 4 to 6 is a cross-sectional view showing a method for manufacturing a composite separator according to an embodiment of the present invention.
  • the composite separator according to an embodiment of the present invention manufacturing method includes a conductive powder filling step (S110), the upper and lower conductive coating layer forming step (S120) and hot press step (S130).
  • the conductive powder 120 is filled into the carbon fiber woven fabric 110.
  • Carbon fiber woven fabric 110 may be at least one stacked vertically.
  • the carbon fiber woven fabric 110 may be manufactured by weaving fiber bundles of 1,000 to 70,000 strands into weft and warp yarns, respectively. Accordingly, the carbon fiber woven fabric 110 may include the weft carbon fiber 112 disposed in the weft direction and the inclined carbon fiber 114 disposed in the inclined direction.
  • the fiber bundles of the carbon fiber woven fabric 110 has a circular or oval cross-sectional structure. And, the fiber bundles of the carbon fiber woven fabric 110 may have an average spacing of 1.5 ⁇ 2.0mm.
  • the conductive powder 120 is filled in the interior of the carbon fiber woven fabric 110 by a coating method to improve the vertical electrical conductivity of the z-axis.
  • the conductive powder 120 is carbon nanotube, graphite powder, chopped carbon fiber, carbon black, carbon powder, graphite nanoplatelet. It may include one or more selected from (graphite nanoplate) and graphene (graphene).
  • the conductive powder 120 may be directly filled by the powder coating method inside the carbon fiber woven fabric 110.
  • the conductive powder 120 is applied to both surfaces of the carbon fiber woven fabric 110 by air spraying the dispersion dispersed in an organic solvent and an epoxy liquid resin having a viscosity of 100cp or less, and then dried to volatilize the organic solvent. It may be coated in a manner.
  • organic solvent volatile ethanol, butanol, ethyl acetate, octanol, ethoxy ethanol pentanol, methoxy ethanol, ethylene glycol, acetone, tetrahydrofuran, dimethylformamide, dimethylamine, dichloromethane And one or more of diethyl ether may be used.
  • the upper and lower conductive coating layers 130 and 140 are formed on the upper and lower surfaces of the carbon fiber woven fabric 110 filled with the conductive powder 120. ).
  • the upper and lower conductive coating layers 130 and 140 respectively include a resin layer and a conductive filler impregnated in the resin layer.
  • the resin layer serves to improve the mechanical strength.
  • the resin layer is formed of any one selected from a thermosetting resin including a phenol resin, an epoxy resin, an amino resin, a urea resin, a melamine resin, an unsaturated polyester resin, a polyurethane resin, and a polyimide resin.
  • the conductive filler is added and dispersed in the resin layer to improve the surface electrical conductivity of the x-axis and the y-axis.
  • the conductive filler is carbon nanotube, graphite powder, chopped carbon fiber, carbon black, carbon powder, graphite nanoplate ) And graphene may include one or more selected from.
  • the conductive filler is added to 15 to 25% by weight of the total weight based on the solid content. If the content of the conductive filler is less than 15% by weight, it may be difficult to secure the surface electrical conductivity. On the contrary, when the content of the conductive filler exceeds 25% by weight, coating failure may be caused by clogging of the nozzle.
  • the upper and lower conductive coating layers 130 and 140 are formed by any one or more of knife coating, spray coating, dip coating and bar coating methods. Can be.
  • the thickness of the upper and lower conductive coating layers 130 and 140 may be adjusted by adjusting the spray time, dip coating time, knife height or bar height.
  • the carbon fiber woven fabric 110 and the upper and lower conductive coating layers (130, 140) by pressing and curing with a hot press to the composite separation plate 100 To obtain.
  • the hot press is preferably carried out for 10 to 60 minutes at 130 ⁇ 200 °C under a pressure condition of 10 ⁇ 30MPa.
  • the hot press temperature is less than 130 ° C. or the hot press time is less than 10 minutes, there is a high possibility that sufficient curing will not occur.
  • the hot press temperature exceeds 200 ° C. or the hot press time exceeds 60 minutes, it is not economical because it may act as a factor of increasing the manufacturing cost without any further effect increase.
  • the hot press pressure when the hot press pressure is less than 10MPa, the interfacial adhesion between the carbon fiber woven fabric 110 and the upper and lower conductive coating layers 130 and 140 may not be sufficient, thereby causing peeling. On the contrary, when the hot press pressure exceeds 30 MPa, damage to the carbon fiber woven fabric 110 and the upper and lower conductive coating layers 130 and 140 may occur due to excessive pressure.
  • the thickness of the carbon fiber woven fabric 110 and the upper and lower conductive coating layers (130, 140) is reduced by compression.
  • the carbon fiber woven fabric 110 has a thickness of 200 ⁇ 400 ⁇ m
  • each of the upper and lower conductive coating layers (130, 140) may have a thickness of 5 ⁇ 100 ⁇ m.
  • Composite plate prepared by the above process (S110 ⁇ S130) is first filled with the conductive powder in the powder state inside the carbon fiber woven fabric, and then the upper and lower conductive coating layers on both sides of the carbon fiber woven fabric filled with the conductive powder By forming, it is possible to improve the vertical electrical conductivity in the z-axis direction along with the surface electrical conductivity in the x-axis and y-axis directions.
  • the composite separator prepared by the method according to the embodiment of the present invention can secure the surface electrical conductivity in the x-axis and y-axis directions by the upper and lower conductive coating layers formed on both sides of the carbon fiber woven fabric.
  • the conductive powder filled inside the carbon fiber woven fabric has a structure for organically connecting between the carbon fiber woven fabrics, vertical electrical characteristics in the z-axis direction may be improved, thereby improving contact resistance.
  • the composite separator prepared by the method according to the embodiment of the present invention has a surface electrical conductivity: 100 ⁇ 200S / cm, contact resistance: 10mPa / cm2 or less and bending strength: 80MPa or less.
  • a carbon fiber woven fabric having an average thickness of 250 ⁇ m was immersed in a solution in which 10 wt% of epoxy resin was mixed to bind GNP to the surface of the carbon fiber woven fabric. After sonication for 15 minutes and dried at 60 ° C. for 1 hour, graphite nanoplates (GNP) were filled into the inside of the carbon fiber woven fabric.
  • CNT carbon nanotubes
  • GNT graphite nanoplatelets
  • a composite plate of 250 ⁇ m in thickness was prepared by pressing and curing the carbon nanofiber woven fabric containing graphite nanoplates (GNP) and the upper and lower conductive coating layers by hot pressing for 30 minutes under a pressure condition of 150 ° C. and 20 MPa. .
  • GNP graphite nanoplates
  • a composite separator was manufactured in the same manner as in Example 1, except that the carbon fiber woven fabric was immersed in a solution in which 5 wt% of graphite nanoplatelets (GNP) and 10 wt% of epoxy resin were dispersed and mixed in acetone.
  • GNP graphite nanoplatelets
  • a composite separator was prepared in the same manner as in Example 1, except that the carbon fiber woven fabric was immersed in a solution in which 3 wt% of graphite nanoplatelets (GNP) and 15 wt% of epoxy resin were dispersed and mixed in acetone.
  • GNP graphite nanoplatelets
  • Example 1 except that the carbon fiber woven fabric was immersed in a solution of 3% by weight of graphite nanoplatelets (GNP) and 10% by weight of epoxy resin in acetone, and subjected to ultrasonic vibration for 30 minutes and dried at 60 ° C for 1 hour. In the same manner, a composite separator was prepared.
  • GNP graphite nanoplatelets
  • Example 1 except that the carbon fiber woven fabric was immersed in a solution of 3% by weight of graphite nanoplatelets (GNP) and 10% by weight of epoxy resin in acetone, and subjected to ultrasonic vibration for 15 minutes and dried at 60 ° C. for 2 hours. In the same manner, a composite separator was prepared.
  • GNP graphite nanoplatelets
  • Top and bottom conductive coating layers were formed by coating a dispersion of 15 parts by weight of carbon nanotubes (CNT) added to 100 parts by weight of epoxy resin on the top and bottom of the carbon fiber woven fabric with a thickness of 150 ⁇ m by knife coating. .
  • CNT carbon nanotubes
  • the carbon fiber woven fabric and the upper and lower conductive coating layers were pressed and cured in a hot press for 30 minutes under pressure conditions of 160 ° C. and 20 MPa to prepare a composite separator.
  • a composite separator was prepared in the same manner as in Example 1, except that the carbon fiber woven fabric was immersed in a solution in which 10 wt% of graphite nanoplatelets (GNP) and 10 wt% of epoxy resin were dispersed and mixed in acetone.
  • GNP graphite nanoplatelets
  • a composite separator was prepared in the same manner as in Example 1, except that the carbon fiber woven fabric was immersed in a solution in which 3 wt% of graphite nanoplatelets (GNP) and 20 wt% of epoxy resin were dispersed and mixed in acetone.
  • GNP graphite nanoplatelets
  • Example 1 except that the carbon fiber woven fabric was immersed in a solution of 3% by weight of graphite nanoplatelet (GNP) and 10% by weight of epoxy resin in acetone, and subjected to ultrasonic vibration for 5 minutes and dried at 60 ° C for 1 hour. In the same manner, a composite separator was prepared.
  • GNP graphite nanoplatelet
  • Example 1 except that the carbon fiber woven fabric was immersed in a solution in which 3% by weight of graphite nanoplatelets (GNP) and 10% by weight of epoxy resin were dispersed and mixed with acetone, subjected to sonication for 15 minutes, and dried at 60 ° C for 30 minutes. In the same manner, a composite separator was prepared.
  • GNP graphite nanoplatelets
  • Table 1 shows the physical property evaluation results for the composite separators prepared according to Examples 1 to 5 and Comparative Examples 1 to 5.
  • Measuring method After laminating
  • Flexural strength was measured according to ASTM D790-10. At this time, the size of the specimen was used to produce a width of 1.27cm, length 12.7cm.
  • Comparative Example 1 which is not filled with graphite nanoplates (GNP)
  • GNP graphite nanoplates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)
  • Laminated Bodies (AREA)

Abstract

Disclosed are: a composite separator plate capable of improvement on the electrical conductivity of both the surface and thickness direction thereof; and a production method therefor. The composite separator plate according to the present invention comprises: a carbon fiber fabric; a conductive powder filled in the carbon fiber fabric; and upper and lower conductive coating layers disposed respectively on the upper and lower surfaces of the carbon fiber fabric and bonded to the carbon fiber fabric.

Description

복합재 분리판 및 그 제조 방법Composite Separator and its Manufacturing Method
본 발명은 복합재 분리판 및 그 제조 방법에 관한 것으로, 보다 상세하게는 표면과 두께 방향 모두의 전기전도성을 향상시킬 수 있는 복합재 분리판 및 그 제조 방법에 관한 것이다.The present invention relates to a composite separator and a method for manufacturing the same, and more particularly, to a composite separator and a method of manufacturing the same that can improve the electrical conductivity in both the surface and the thickness direction.
연료전지 스택의 구성요소인 분리판은 반응 가스(수소 및 산소)의 공급과 물의 배출 통로로서의 기능을 갖고 있으며, 연료전지 스택의 내부를 전기적으로 연결시켜 준다. 이러한 기능을 위해, 분리판은 우수한 전기전도성과 기계적 물성, 내부식성 및 낮은 수소 투과율이 요구된다.The separator, which is a component of the fuel cell stack, functions as a supply passage of reaction gas (hydrogen and oxygen) and a discharge passage of water, and electrically connects the inside of the fuel cell stack. For this function, the separator requires excellent electrical conductivity, mechanical properties, corrosion resistance and low hydrogen permeability.
최근, 대형 이차전지 중에서 크게 주목을 받고 있는 수소연료전지, 레독스 흐름전지 등에서도 분리판이 포함된다. 이와 같이, 산성 분위기에서 구동하는 수소연료전지 및 레독스 흐름전지는 전기전도성과 기계적 물성, 내부식성, 내화학성 및 전해질 불침투성 등의 특성이 요구된다.Recently, a separator plate is also included in a hydrogen fuel cell, a redox flow battery, and the like, which have attracted much attention among large secondary batteries. As such, the hydrogen fuel cell and the redox flow battery which operate in an acidic atmosphere are required to have characteristics such as electrical conductivity, mechanical properties, corrosion resistance, chemical resistance, and electrolyte impermeability.
이를 만족하기 위해, 종래에는 탄소섬유 직조물에 열경화성 수지를 함침시킨 복합재 분리판을 제조하고 있다. 이러한 복합재 분리판에 전기 전도성을 부여하기 위해서는 열경화성 수지의 내부에 고전도성을 갖는 전도성 분말을 다량 혼합해야 한다.In order to satisfy this, conventionally, a composite separator plate in which a carbon fiber woven fabric is impregnated with a thermosetting resin is manufactured. In order to impart electrical conductivity to the composite separator, a large amount of conductive powder having high conductivity must be mixed inside the thermosetting resin.
그러나, 전도성 분말을 열경화성 수지에 다량 혼합할 경우 높은 강도 및 연료물질의 차단율을 확보할 수 없으며, 다량의 전도성 분말을 첨가하더라도 전기적 특성을 확보하는데 어려움이 따르고 있다.However, when a large amount of conductive powder is mixed with a thermosetting resin, high strength and a blocking rate of fuel material cannot be secured, and even when a large amount of conductive powder is added, it is difficult to secure electrical characteristics.
관련 선행 문헌으로는 대한민국 공개특허공보 제10-2005-0120257호(2005.12.22. 공개)가 있으며, 상기 문헌에는 연료전지용 탄소복합재 분리판이 기재되어 있다.Related prior art documents include Korean Patent Laid-Open Publication No. 10-2005-0120257 (published on Dec. 22, 2005), which discloses a carbon composite separator plate for a fuel cell.
본 발명의 목적은 표면과 두께 방향 모두의 전기전도성을 향상시킬 수 있는 복합재 분리판 및 그 제조 방법을 제공하는 것이다.It is an object of the present invention to provide a composite separator and a method for producing the same that can improve the electrical conductivity in both the surface and the thickness direction.
상기 목적을 달성하기 위한 본 발명의 실시예에 따른 복합재 분리판은 탄소섬유 직조물; 상기 탄소섬유 직조물의 내부에 충진된 전도성 분말; 및 상기 탄소섬유 직조물의 상면 및 하면에 각각 배치되어, 상기 탄소섬유 직조물과 합착된 상부 및 하부 전도성 코팅층;을 포함하는 것을 특징으로 한다.Composite separator according to an embodiment of the present invention for achieving the above object is a carbon fiber woven material; Conductive powder filled in the carbon fiber woven fabric; And upper and lower conductive coating layers disposed on upper and lower surfaces of the carbon fiber woven fabric, respectively, and bonded to the carbon fiber woven fabric.
상기 목적을 달성하기 위한 본 발명의 실시예에 따른 복합재 분리판 제조 방법은 (a) 탄소섬유 직조물의 내부에 전도성 분말을 충진하는 단계; (b) 상기 전도성 분말이 충진된 탄소섬유 직조물의 상면 및 하면에 상부 및 하부 전도성 코팅층을 형성하는 단계; 및 (c) 상기 탄소섬유 직조물과 상부 및 하부 전도성 코팅층을 핫 프레스로 압착 및 경화하여 복합재 분리판을 수득하는 단계;를 포함하는 것을 특징으로 한다.Method for producing a composite separator according to an embodiment of the present invention for achieving the above object (a) filling the conductive powder in the carbon fiber woven fabric; (b) forming upper and lower conductive coating layers on upper and lower surfaces of the carbon fiber woven fabric filled with the conductive powder; And (c) pressing and curing the carbon fiber woven fabric and the upper and lower conductive coating layers by a hot press to obtain a composite separator.
본 발명에 따른 복합재 분리판 및 그 제조 방법은 탄소섬유 직조물의 내부에 파우더 상태의 전도성 분말을 먼저 충진시킨 후, 전도성 분말이 충진된 탄소섬유 직조물의 양면에 상부 및 하부 전도성 코팅층을 형성하는 것에 의해, x-축 및 y-축 방향의 표면 전기전도도와 더불어 z-축 방향의 수직 전기전도성을 개선할 수 있다.The composite separator according to the present invention and a method for manufacturing the same are first filled with a conductive powder in a powder state inside the carbon fiber woven fabric, and then forming upper and lower conductive coating layers on both surfaces of the carbon fiber woven fabric filled with the conductive powder. In addition to the surface electrical conductivity in the x-axis and y-axis directions, the vertical electrical conductivity in the z-axis direction can be improved.
따라서, 본 발명에 따른 복합재 분리판은 탄소섬유 직조물의 양면에 형성된 상부 및 하부 전도성 코팅층에 의해 x-축 및 y-축 방향의 표면 전기전도도를 확보할 수 있음과 더불어, 탄소섬유 직조물의 내부에 충진된 전도성 분말이 탄소섬유 직조물의 사이 사이를 유기적으로 연결시키는 구조를 가짐에 따라 z-축 방향의 수직 전기적 특성이 개선되어 접촉저항이 개선될 수 있다.Therefore, the composite separator according to the present invention can secure the surface electrical conductivity in the x-axis and y-axis directions by the upper and lower conductive coating layers formed on both sides of the carbon fiber woven fabric, and inside the carbon fiber woven fabric. As the filled conductive powder has a structure for organically connecting between the carbon fiber woven fabrics, vertical electrical properties in the z-axis direction may be improved, thereby improving contact resistance.
도 1은 본 발명의 실시예에 따른 복합재 분리판을 나타낸 단면도.1 is a cross-sectional view showing a composite separator according to an embodiment of the present invention.
도 2는 도 1의 탄소섬유 직조물을 나타낸 사시도.Figure 2 is a perspective view of the carbon fiber woven fabric of Figure 1;
도 3은 본 발명의 실시예에 따른 복합재 분리판 제조 방법을 나타낸 공정 순서도.Figure 3 is a process flow chart showing a composite separation plate manufacturing method according to an embodiment of the present invention.
도 4 내지 도 6은 본 발명의 실시예에 따른 복합재 분리판 제조 방법을 나타낸 공정 단면도.4 to 6 is a cross-sectional view showing a method for manufacturing a composite separator according to an embodiment of the present invention.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다.Advantages and features of the present invention and methods for achieving them will be apparent with reference to the embodiments described below in detail with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various different forms, only the present embodiments to make the disclosure of the present invention complete, and common knowledge in the art to which the present invention pertains. It is provided to fully inform the person having the scope of the invention, which is defined only by the scope of the claims. Like reference numerals refer to like elements throughout.
이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 복합재 분리판 및 그 제조 방법에 관하여 상세히 설명하면 다음과 같다.Hereinafter, the composite separator according to a preferred embodiment of the present invention and a manufacturing method thereof with reference to the accompanying drawings in detail as follows.
도 1은 본 발명의 실시예에 따른 복합재 분리판을 나타낸 단면도이고, 도 2는 도 1의 탄소섬유 직조물을 나타낸 사시도이다.1 is a cross-sectional view showing a composite separator according to an embodiment of the present invention, Figure 2 is a perspective view showing a carbon fiber woven fabric of FIG.
도 1 및 도 2를 참조하면, 본 발명의 실시예에 따른 복합재 분리판(100)은 탄소섬유 직조물(110), 전도성 분말(120)과 상부 및 하부 전도성 코팅층(130, 140)을 포함한다. 이때, 전도성 분말(120)은 탄소섬유 직조물(110)의 내부에 충진되며, 전도성 분말(120)이 충진된 탄소섬유 직조물(110)은 상부 및 하부 전도성 코팅층(130, 140)과 핫 프레스(hot press) 방식에 의해 압착되어 상호 간이 접합되는 구조를 갖는다.1 and 2, the composite separator 100 according to the embodiment of the present invention includes a carbon fiber woven fabric 110, a conductive powder 120, and upper and lower conductive coating layers 130 and 140. At this time, the conductive powder 120 is filled in the carbon fiber woven fabric 110, the carbon fiber woven fabric 110 filled with the conductive powder 120 is the upper and lower conductive coating layers (130, 140) and hot press (hot) It is pressed by the press method and has a structure where they mutually bond.
탄소섬유 직조물(110)은 복합재 분리판(100)의 중간에 배치되는 코어(core) 기재로 사용되어, 복합재 분리판(100)의 기계적 강도를 향상시키는 역할을 한다. 이러한 탄소섬유 직조물(110)은 200 ~ 400㎛의 두께를 갖는 것이 바람직하다. 탄소섬유 직조물(110)의 두께가 200㎛ 미만일 경우에는 그 두께가 얇아 기계적 강도 확보에 어려움이 따를 수 있다. 반대로, 탄소섬유 직조물(110)의 두께가 400㎛를 초과할 경우에는 더 이상의 효과 상승 없이 두께 및 부피만을 증가시키는 요인으로 작용하여 경량화 및 박형화에 역행하는 결과를 초래할 수 있으므로, 바람직하지 못하다.Carbon fiber woven fabric 110 is used as a core substrate (core) disposed in the middle of the composite separating plate 100, serves to improve the mechanical strength of the composite separating plate (100). The carbon fiber woven fabric 110 preferably has a thickness of 200 ~ 400㎛. When the thickness of the carbon fiber woven fabric 110 is less than 200 μm, it may be difficult to secure mechanical strength due to its thickness being thin. On the contrary, when the thickness of the carbon fiber woven fabric 110 exceeds 400 μm, the thickness of the carbon fiber woven fabric 110 may increase the thickness and volume without increasing any further effects, resulting in weight reduction and thinning.
이러한 탄소섬유 직조물(110)은 적어도 하나 이상이 수직적으로 적층될 수 있다. 탄소섬유 직조물(110)은 1,000 ~ 70,000 가닥이 모인 섬유다발들을 위사 및 경사로 각각 직조하는 것에 의해 제조될 수 있다. 이에 따라, 탄소섬유 직조물(110)은 위사 방향으로 배치된 위사 탄소섬유(112)와 경사 방향으로 배치된 경사 탄소섬유(114)를 포함할 수 있다.At least one carbon fiber woven fabric 110 may be stacked vertically. The carbon fiber woven fabric 110 may be manufactured by weaving fiber bundles of 1,000 to 70,000 strands into weft and warp yarns, respectively. Accordingly, the carbon fiber woven fabric 110 may include the weft carbon fiber 112 disposed in the weft direction and the inclined carbon fiber 114 disposed in the inclined direction.
이때, 탄소섬유 직조물(110)의 섬유다발들은 원형 또는 타원형의 단면 구조를 갖는다. 그리고, 탄소섬유 직조물(110)의 섬유다발들은 평균 이격 간격이 1.5 ~ 2.0mm일 수 있다.At this time, the fiber bundles of the carbon fiber woven fabric 110 has a circular or oval cross-sectional structure. And, the fiber bundles of the carbon fiber woven fabric 110 may have an average spacing of 1.5 ~ 2.0mm.
전도성 분말(120)은 탄소섬유 직조물(110)의 내부에 충진된다. 이러한 전도성 분말(120)은 탄소섬유 직조물(110)의 내부에 코팅 방식에 의해 충진되어 z-축의 수직 전기전도성을 향상시키는 역할을 한다.The conductive powder 120 is filled in the carbon fiber woven fabric 110. The conductive powder 120 is filled in the interior of the carbon fiber woven fabric 110 by a coating method to improve the vertical electrical conductivity of the z-axis.
이를 위해, 전도성 분말(120)은 탄소나노튜브(carbon nanotube), 흑연분말(graphite powder), 탄소 단섬유(chopped carbon fiber), 카본블랙(carbon black), 카본분말(carbon powder), 그라파이트 나노플레이트(graphite nanoplate) 및 그래핀(graphene) 중 선택된 1종 이상을 포함할 수 있다.To this end, the conductive powder 120 is carbon nanotube, graphite powder, chopped carbon fiber, carbon black, carbon powder, graphite nanoplatelet. It may include one or more selected from (graphite nanoplate) and graphene (graphene).
이때, 전도성 분말(120)은 탄소섬유 직조물(110)의 내부에 분말 코팅 방식에 의해 직접 충진될 수 있다. 이와 달리, 전도성 분말(120)은 유기 용제 및 100cp 이하의 점도를 갖는 에폭시 액상 수지에 분산시킨 분산액을 탄소섬유 직조물(110)의 양면에 에어 분사 방식으로 도포한 후, 건조시켜 유기 용제를 휘발시키는 방식에 의해 코팅될 수도 있다.In this case, the conductive powder 120 may be directly filled by the powder coating method inside the carbon fiber woven fabric 110. On the other hand, the conductive powder 120 is applied to both surfaces of the carbon fiber woven fabric 110 by air spraying the dispersion dispersed in an organic solvent and an epoxy liquid resin having a viscosity of 100cp or less, and then dried to volatilize the organic solvent. It may also be coated in a manner.
이 경우, 유기 용제로는 휘발성이 우수한 에탄올, 부탄올, 아세트산에틸, 옥탄올, 에톡시 에탄올펜탄올, 메톡시 에탄올, 에틸렌 글리콜, 아세톤, 테트라하이드로퓨란, 디메틸포름아마이드, 디메틸아민, 다이클로로메테인 및 다이에틸에테르 중 1종 이상이 이용될 수 있다.In this case, as the organic solvent, volatile ethanol, butanol, ethyl acetate, octanol, ethoxy ethanol pentanol, methoxy ethanol, ethylene glycol, acetone, tetrahydrofuran, dimethylformamide, dimethylamine, dichloromethane And one or more of diethyl ether may be used.
상부 및 하부 전도성 코팅층(130, 140)은 탄소섬유 직조물(110)의 상면 및 하면에 각각 배치되어, 탄소섬유 직조물(110)과 합착된다.The upper and lower conductive coating layers 130 and 140 are disposed on the upper and lower surfaces of the carbon fiber woven fabric 110, respectively, and are bonded to the carbon fiber woven fabric 110.
이러한 상부 및 하부 전도성 코팅층(130, 140)은 핫 프레스 공정에 의해 탄소섬유 직조물(110)과 합착된다. 이때, 상부 및 하부 전도성 코팅층(130, 140)은 탄소섬유 직조물(110)과의 합착에 의해, 탄소섬유 직조물(110)의 내부로 일부가 함침되어 상호 간이 일체로 연결되는 구조를 갖는다.The upper and lower conductive coating layers 130 and 140 are bonded to the carbon fiber woven fabric 110 by a hot pressing process. In this case, the upper and lower conductive coating layers 130 and 140 have a structure in which some of the upper and lower conductive coating layers 130 and 140 are impregnated into the carbon fiber woven fabric 110 to be integrally connected to each other.
이때, 상부 및 하부 전도성 코팅층(130, 140)은 각각 5 ~ 100㎛의 두께를 갖는 것이 바람직하다. 상부 및 하부 전도성 코팅층(130, 140) 각각의 두께가 5㎛ 미만일 경우에는 그 두께가 너무 얇은 관계로 취급성이 어려우며, 표면 전기전도성이 저하되는 문제가 있다. 반대로, 상부 및 하부 전도성 코팅층(130, 140) 각각의 두께가 100㎛를 초과할 경우에는 더 이상의 효과 상승 없이 제조 비용만을 상승시키는 요인으로 작용할 수 있으므로, 경제적이지 못하다.At this time, the upper and lower conductive coating layers 130 and 140 preferably have a thickness of 5 ~ 100㎛ respectively. When the thickness of each of the upper and lower conductive coating layers 130 and 140 is less than 5 μm, the handling is difficult because the thickness is too thin, and there is a problem that the surface electrical conductivity is lowered. On the contrary, when the thickness of each of the upper and lower conductive coating layers 130 and 140 exceeds 100 μm, it may act as a factor of increasing the manufacturing cost without any further effect increase, and thus is not economical.
이러한 상부 및 하부 전도성 코팅층(130, 140)은 각각 수지층과 수지층 내에 함침된 전도성 필러를 포함한다.The upper and lower conductive coating layers 130 and 140 respectively include a resin layer and a conductive filler impregnated in the resin layer.
수지층은 기계적 강도를 향상시키는 역할을 한다. 이러한 수지층은 페놀 수지, 에폭시 수지, 아미노 수지, 우레아 수지, 멜라민 수지, 불포화 폴리에스텔 수지, 폴리우레탄 수지 및 폴리이미드 수지를 포함하는 열경화성 수지 중 선택된 어느 하나의 재질로 형성된다.The resin layer serves to improve the mechanical strength. The resin layer is formed of any one selected from a thermosetting resin including a phenol resin, an epoxy resin, an amino resin, a urea resin, a melamine resin, an unsaturated polyester resin, a polyurethane resin, and a polyimide resin.
전도성 필러는 x-축 및 y축의 표면 전기전도성을 향상시키기 위해 수지층에 첨가되어 분산 배치된다. 이를 위해, 전도성 필러는 탄소나노튜브(carbon nanotube), 흑연분말(graphite powder), 탄소 단섬유(chopped carbon fiber), 카본블랙(carbon black), 카본분말(carbon powder), 그라파이트 나노플레이트(graphite nanoplate) 및 그래핀(graphene) 중 선택된 1종 이상을 포함할 수 있다.The conductive filler is added and dispersed in the resin layer to improve the surface electrical conductivity of the x-axis and the y-axis. To this end, the conductive filler is carbon nanotube, graphite powder, chopped carbon fiber, carbon black, carbon powder, graphite nanoplate ) And graphene may include one or more selected from.
이때, 상부 및 하부 전도성 코팅층(130, 140) 각각은 전도성 필러가 고형분 기준으로 전체 중량의 15 ~ 25 중량%로 첨가되는 것이 바람직하다. 전도성 필러의 함량이 15 중량% 미만일 경우에는 표면 전기전도성 확보에 어려움이 따를 수 있다. 반대로, 전도성 필러의 함량이 25 중량%를 초과할 경우에는 노즐 막힘에 의한 코팅 불량을 유발할 수 있다.In this case, the upper and lower conductive coating layers 130 and 140, respectively, it is preferable that the conductive filler is added to 15 to 25% by weight of the total weight based on the solid content. If the content of the conductive filler is less than 15% by weight, it may be difficult to secure the surface electrical conductivity. On the contrary, when the content of the conductive filler exceeds 25% by weight, coating failure may be caused by clogging of the nozzle.
만일, 탄소섬유 직조물(110) 내에 전도성 분말(120)을 충진하는 것 없이, 탄소섬유 직조물(110)의 양면에 상부 및 하부 전도성 코팅층(130, 140)만을 형성할 경우, 복합재 분리판(110)의 코어 기재로 사용되는 탄소섬유 직조물(110)의 표면에 대해서만 전도성 필러가 다량으로 집중되고, 탄소섬유 직조물(110)의 내부로 침투하지 못하는 문제로 z-축 방향의 수직 전기전도도가 좋지 않은 문제가 있다.If only the upper and lower conductive coating layers 130 and 140 are formed on both surfaces of the carbon fiber woven fabric 110 without filling the conductive powder 120 in the carbon fiber woven fabric 110, the composite separator 110 may be formed. The conductive filler is concentrated in large amounts only on the surface of the carbon fiber woven fabric 110 used as the core substrate of the core, and the vertical electrical conductivity in the z-axis direction is not good because it does not penetrate into the interior of the carbon fiber woven fabric 110. There is.
이와 달리, 전술한 본 발명의 실시예에 따른 복합재 분리판은 탄소섬유 직조물의 내부에 파우더 상태의 전도성 분말을 먼저 충진시킨 후, 전도성 분말이 충진된 탄소섬유 직조물의 양면에 상부 및 하부 전도성 코팅층을 형성하는 것에 의해, x-축 및 y-축 방향의 표면 전기전도도와 더불어 z-축 방향의 수직 전기전도성을 개선할 수 있다.In contrast, the composite separator according to the embodiment of the present invention described above first fills the conductive powder in a powder state inside the carbon fiber woven fabric, and then forms upper and lower conductive coating layers on both sides of the carbon fiber woven fabric filled with the conductive powder. By forming, it is possible to improve the vertical electrical conductivity in the z-axis direction along with the surface electrical conductivity in the x-axis and y-axis directions.
따라서, 본 발명의 실시예에 따른 복합재 분리판은 탄소섬유 직조물의 양면에 형성된 상부 및 하부 전도성 코팅층에 의해 x-축 및 y-축 방향의 표면 전기전도도를 확보할 수 있음과 더불어, 탄소섬유 직조물의 내부에 충진된 전도성 분말이 탄소섬유 직조물의 사이 사이를 유기적으로 연결시키는 구조를 가짐에 따라 z-축 방향의 수직 전기적 특성이 개선되어 접촉저항이 개선될 수 있다.Therefore, the composite separator according to the embodiment of the present invention can secure the surface electrical conductivity in the x-axis and y-axis directions by the upper and lower conductive coating layers formed on both sides of the carbon fiber woven fabric, and the carbon fiber woven fabric As the conductive powder filled in the structure has a structure for organically connecting between the carbon fiber woven fabrics, vertical electrical properties in the z-axis direction may be improved, thereby improving contact resistance.
이 결과, 본 발명의 실시예에 따른 복합재 분리판은 표면 전기전도도 : 100 ~ 200S/cm, 접촉저항 : 10mΩ/㎠ 이하 및 굴곡강도 : 80MPa 이하를 갖는다.As a result, the composite separator according to the embodiment of the present invention has a surface electrical conductivity: 100 ~ 200S / cm, contact resistance: 10mPa / ㎠ or less and flexural strength: 80MPa or less.
이하, 첨부된 도면을 참조하여 본 발명의 실시예에 따른 복합재 분리판의 제조 방법에 대하여 설명하도록 한다.Hereinafter, with reference to the accompanying drawings will be described for the manufacturing method of the composite separator according to an embodiment of the present invention.
도 3은 본 발명의 실시예에 따른 복합재 분리판 제조 방법을 나타낸 공정 순서도이고, 도 4 내지 도 6은 본 발명의 실시예에 따른 복합재 분리판 제조 방법을 나타낸 공정 단면도이다.3 is a process flow chart showing a method for manufacturing a composite separator according to an embodiment of the present invention, Figures 4 to 6 is a cross-sectional view showing a method for manufacturing a composite separator according to an embodiment of the present invention.
도 3에 도시된 바와 같이, 본 발명의 실시예에 따른 복합재 분리판 제조 방법은 전도성 분말 충진 단계(S110), 상부 및 하부 전도성 코팅층 형성 단계(S120) 및 핫 프레스 단계(S130)를 포함한다.As shown in Figure 3, the composite separator according to an embodiment of the present invention manufacturing method includes a conductive powder filling step (S110), the upper and lower conductive coating layer forming step (S120) and hot press step (S130).
전도성 분말 Conductive powder 충진Filling
도 3 및 도 4에 도시된 바와 같이, 전도성 분말 충진 단계(S110)에서는 탄소섬유 직조물(110)의 내부에 전도성 분말(120)을 충진한다.3 and 4, in the conductive powder filling step S110, the conductive powder 120 is filled into the carbon fiber woven fabric 110.
탄소섬유 직조물(110)은 적어도 하나 이상이 수직적으로 적층될 수 있다. 탄소섬유 직조물(110)은 1,000 ~ 70,000 가닥이 모인 섬유다발들을 위사 및 경사로 각각 직조하는 것에 의해 제조될 수 있다. 이에 따라, 탄소섬유 직조물(110)은 위사 방향으로 배치된 위사 탄소섬유(112)와 경사 방향으로 배치된 경사 탄소섬유(114)를 포함할 수 있다.Carbon fiber woven fabric 110 may be at least one stacked vertically. The carbon fiber woven fabric 110 may be manufactured by weaving fiber bundles of 1,000 to 70,000 strands into weft and warp yarns, respectively. Accordingly, the carbon fiber woven fabric 110 may include the weft carbon fiber 112 disposed in the weft direction and the inclined carbon fiber 114 disposed in the inclined direction.
이때, 탄소섬유 직조물(110)의 섬유다발들은 원형 또는 타원형의 단면 구조를 갖는다. 그리고, 탄소섬유 직조물(110)의 섬유다발들은 평균 이격 간격이 1.5 ~ 2.0mm일 수 있다.At this time, the fiber bundles of the carbon fiber woven fabric 110 has a circular or oval cross-sectional structure. And, the fiber bundles of the carbon fiber woven fabric 110 may have an average spacing of 1.5 ~ 2.0mm.
전도성 분말(120)은 탄소섬유 직조물(110)의 내부에 코팅 방식에 의해 충진되어 z-축의 수직 전기전도성을 향상시키는 역할을 한다.The conductive powder 120 is filled in the interior of the carbon fiber woven fabric 110 by a coating method to improve the vertical electrical conductivity of the z-axis.
본 단계에서, 탄소섬유 직조물(110)의 내부로 전도성 분말(120)이 용이하게 삽입되도록 하기 위해 탄소섬유 직조물(110)을 진동시키는 것이 바람직하다.In this step, it is preferable to vibrate the carbon fiber woven fabric 110 so that the conductive powder 120 is easily inserted into the carbon fiber woven fabric 110.
이를 위해, 전도성 분말(120)은 탄소나노튜브(carbon nanotube), 흑연분말(graphite powder), 탄소 단섬유(chopped carbon fiber), 카본블랙(carbon black), 카본분말(carbon powder), 그라파이트 나노플레이트(graphite nanoplate) 및 그래핀(graphene) 중 선택된 1종 이상을 포함할 수 있다.To this end, the conductive powder 120 is carbon nanotube, graphite powder, chopped carbon fiber, carbon black, carbon powder, graphite nanoplatelet. It may include one or more selected from (graphite nanoplate) and graphene (graphene).
이때, 전도성 분말(120)은 탄소섬유 직조물(110)의 내부에 분말 코팅 방식에 의해 직접 충진될 수 있다. 이와 달리, 전도성 분말(120)은 유기 용제 및 100cp 이하의 점도를 갖는 에폭시 액상 수지에 분산시킨 분산액을 탄소섬유 직조물(110)의 양면에 에어 분사 방식으로 도포한 후, 건조시켜 유기 용제를 휘발시키는 방식에 의해 코팅될 수도 있다.In this case, the conductive powder 120 may be directly filled by the powder coating method inside the carbon fiber woven fabric 110. On the other hand, the conductive powder 120 is applied to both surfaces of the carbon fiber woven fabric 110 by air spraying the dispersion dispersed in an organic solvent and an epoxy liquid resin having a viscosity of 100cp or less, and then dried to volatilize the organic solvent. It may be coated in a manner.
이 경우, 유기 용제로는 휘발성이 우수한 에탄올, 부탄올, 아세트산에틸, 옥탄올, 에톡시 에탄올펜탄올, 메톡시 에탄올, 에틸렌 글리콜, 아세톤, 테트라하이드로퓨란, 디메틸포름아마이드, 디메틸아민, 다이클로로메테인 및 다이에틸에테르 중 1종 이상이 이용될 수 있다.In this case, as the organic solvent, volatile ethanol, butanol, ethyl acetate, octanol, ethoxy ethanol pentanol, methoxy ethanol, ethylene glycol, acetone, tetrahydrofuran, dimethylformamide, dimethylamine, dichloromethane And one or more of diethyl ether may be used.
상부 및 하부 전도성 코팅층 형성Form upper and lower conductive coating layers
도 3 및 도 5에 도시된 바와 같이, 상부 및 하부 전도성 코팅층 형성 단계(S120)에서는 전도성 분말(120)이 충진된 탄소섬유 직조물(110)의 상면 및 하면에 상부 및 하부 전도성 코팅층(130, 140)을 형성한다.As shown in FIGS. 3 and 5, in the forming of the upper and lower conductive coating layers (S120), the upper and lower conductive coating layers 130 and 140 are formed on the upper and lower surfaces of the carbon fiber woven fabric 110 filled with the conductive powder 120. ).
이러한 상부 및 하부 전도성 코팅층(130, 140)은 각각 수지층과 수지층 내에 함침된 전도성 필러를 포함한다.The upper and lower conductive coating layers 130 and 140 respectively include a resin layer and a conductive filler impregnated in the resin layer.
수지층은 기계적 강도를 향상시키는 역할을 한다. 이러한 수지층은 페놀 수지, 에폭시 수지, 아미노 수지, 우레아 수지, 멜라민 수지, 불포화 폴리에스텔 수지, 폴리우레탄 수지 및 폴리이미드 수지를 포함하는 열경화성 수지 중 선택된 어느 하나의 재질로 형성된다.The resin layer serves to improve the mechanical strength. The resin layer is formed of any one selected from a thermosetting resin including a phenol resin, an epoxy resin, an amino resin, a urea resin, a melamine resin, an unsaturated polyester resin, a polyurethane resin, and a polyimide resin.
전도성 필러는 x-축 및 y-축의 표면 전기전도성을 향상시키기 위해 수지층에 첨가되어 분산 배치된다. 이를 위해, 전도성 필러는 탄소나노튜브(carbon nanotube), 흑연분말(graphite powder), 탄소 단섬유(chopped carbon fiber), 카본블랙(carbon black), 카본분말(carbon powder), 그라파이트 나노플레이트(graphite nanoplate) 및 그래핀(graphene) 중 선택된 1종 이상을 포함할 수 있다.The conductive filler is added and dispersed in the resin layer to improve the surface electrical conductivity of the x-axis and the y-axis. To this end, the conductive filler is carbon nanotube, graphite powder, chopped carbon fiber, carbon black, carbon powder, graphite nanoplate ) And graphene may include one or more selected from.
이때, 상부 및 하부 전도성 코팅층(130, 140) 각각은 전도성 필러가 고형분 기준으로 전체 중량의 15 ~ 25 중량%로 첨가되는 것이 바람직하다. 전도성 필러의 함량이 15 중량% 미만일 경우에는 표면 전기전도도 확보에 어려움이 따를 수 있다. 반대로, 전도성 필러의 함량이 25 중량%를 초과할 경우에는 노즐 막힘에 의한 코팅 불량을 유발할 수 있다.In this case, the upper and lower conductive coating layers 130 and 140, respectively, it is preferable that the conductive filler is added to 15 to 25% by weight of the total weight based on the solid content. If the content of the conductive filler is less than 15% by weight, it may be difficult to secure the surface electrical conductivity. On the contrary, when the content of the conductive filler exceeds 25% by weight, coating failure may be caused by clogging of the nozzle.
본 단계에서, 상부 및 하부 전도성 코팅층(130, 140)은 나이프 코팅(knife coating), 스프레이 코팅(spray coating), 딥 코팅(dip coating) 및 바 코팅(bar coating) 방법 중 어느 하나 이상에 의해 형성될 수 있다. 이때, 스프레이 시간, 딥 코팅 시간, 나이프 높이 또는 바의 높이 등을 조절하는 것에 의해 상부 및 하부 전도성 코팅층(130, 140)의 두께를 조절할 수 있게 된다.In this step, the upper and lower conductive coating layers 130 and 140 are formed by any one or more of knife coating, spray coating, dip coating and bar coating methods. Can be. In this case, the thickness of the upper and lower conductive coating layers 130 and 140 may be adjusted by adjusting the spray time, dip coating time, knife height or bar height.
핫 프레스Hot press
도 3 및 도 6에 도시된 바와 같이, 핫 프레스 단계(S130)에서는 탄소섬유 직조물(110)과 상부 및 하부 전도성 코팅층(130, 140)을 핫 프레스로 압착 및 경화하여 복합재 분리판(100)을 수득한다.As shown in Figure 3 and 6, in the hot press step (S130) the carbon fiber woven fabric 110 and the upper and lower conductive coating layers (130, 140) by pressing and curing with a hot press to the composite separation plate 100 To obtain.
이때, 핫 프레스는 130 ~ 200℃에서 10 ~ 30MPa의 압력 조건으로 10 ~ 60분 동안 실시하는 것이 바람직하다. 핫 프레스 온도가 130℃ 미만이거나, 핫 프레스 시간이 10분 미만일 경우에는 충분한 경화가 이루어지지 않을 우려가 크다. 반대로, 핫 프레스 온도가 200℃를 초과하거나, 핫 프레스 시간이 60분을 초과할 경우에는 더 이상의 효과 상승 없이 제조비용만을 상승시키는 요인으로 작용할 수 있으므로, 경제적이지 못하다.At this time, the hot press is preferably carried out for 10 to 60 minutes at 130 ~ 200 ℃ under a pressure condition of 10 ~ 30MPa. When the hot press temperature is less than 130 ° C. or the hot press time is less than 10 minutes, there is a high possibility that sufficient curing will not occur. On the contrary, when the hot press temperature exceeds 200 ° C. or the hot press time exceeds 60 minutes, it is not economical because it may act as a factor of increasing the manufacturing cost without any further effect increase.
또한, 핫 프레스 압력이 10MPa 미만일 경우에는 탄소섬유 직조물(110)과 상부 및 하부 전도성 코팅층(130, 140) 간의 계면 부착력이 충분하지 못하여 박리가 일어날 수 있다. 반대로, 핫 프레스 압력이 30MPa을 초과할 경우에는 과도한 압력으로 인해 탄소섬유 직조물(110)과 상부 및 하부 전도성 코팅층(130, 140)에 크랙 등의 손상이 발생할 수 있다.In addition, when the hot press pressure is less than 10MPa, the interfacial adhesion between the carbon fiber woven fabric 110 and the upper and lower conductive coating layers 130 and 140 may not be sufficient, thereby causing peeling. On the contrary, when the hot press pressure exceeds 30 MPa, damage to the carbon fiber woven fabric 110 and the upper and lower conductive coating layers 130 and 140 may occur due to excessive pressure.
이러한 핫 프레스 단계(S130) 시, 압착에 의해 탄소섬유 직조물(110)과 상부 및 하부 전도성 코팅층(130, 140)의 두께가 감소하게 된다. 이러한 핫 프레스 단계(S130)를 실시한 이후, 탄소섬유 직조물(110)은 200 ~ 400㎛의 두께를 갖고, 상부 및 하부 전도성 코팅층(130, 140) 각각은 5 ~ 100㎛의 두께를 가질 수 있다.During this hot press step (S130), the thickness of the carbon fiber woven fabric 110 and the upper and lower conductive coating layers (130, 140) is reduced by compression. After the hot pressing step (S130), the carbon fiber woven fabric 110 has a thickness of 200 ~ 400㎛, each of the upper and lower conductive coating layers (130, 140) may have a thickness of 5 ~ 100㎛.
상기의 과정(S110 ~ S130)에 의해 제조되는 복합재 분리판은 탄소섬유 직조물의 내부에 파우더 상태의 전도성 분말을 먼저 충진시킨 후, 전도성 분말이 충진된 탄소섬유 직조물의 양면에 상부 및 하부 전도성 코팅층을 형성하는 것에 의해, x-축 및 y-축 방향의 표면 전기전도도와 더불어 z-축 방향의 수직 전기전도성을 개선할 수 있다.Composite plate prepared by the above process (S110 ~ S130) is first filled with the conductive powder in the powder state inside the carbon fiber woven fabric, and then the upper and lower conductive coating layers on both sides of the carbon fiber woven fabric filled with the conductive powder By forming, it is possible to improve the vertical electrical conductivity in the z-axis direction along with the surface electrical conductivity in the x-axis and y-axis directions.
따라서, 본 발명의 실시예에 따른 방법으로 제조되는 복합재 분리판은 탄소섬유 직조물의 양면에 형성된 상부 및 하부 전도성 코팅층에 의해 x-축 및 y-축 방향의 표면 전기전도도를 확보할 수 있음과 더불어, 탄소섬유 직조물의 내부에 충진된 전도성 분말이 탄소섬유 직조물의 사이 사이를 유기적으로 연결시키는 구조를 가짐에 따라 z-축 방향의 수직 전기적 특성이 개선되어 접촉저항이 개선될 수 있다.Therefore, the composite separator prepared by the method according to the embodiment of the present invention can secure the surface electrical conductivity in the x-axis and y-axis directions by the upper and lower conductive coating layers formed on both sides of the carbon fiber woven fabric. As the conductive powder filled inside the carbon fiber woven fabric has a structure for organically connecting between the carbon fiber woven fabrics, vertical electrical characteristics in the z-axis direction may be improved, thereby improving contact resistance.
이 결과, 본 발명의 실시예에 따른 방법으로 제조된 복합재 분리판은 표면 전기전도도 : 100 ~ 200S/cm, 접촉저항 : 10mΩ/㎠ 이하 및 굴곡강도 : 80MPa 이하를 갖는다.As a result, the composite separator prepared by the method according to the embodiment of the present invention has a surface electrical conductivity: 100 ~ 200S / cm, contact resistance: 10mPa / ㎠ or less and bending strength: 80MPa or less.
실시예Example
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.Hereinafter, the configuration and operation of the present invention through the preferred embodiment of the present invention will be described in more detail. However, this is presented as a preferred example of the present invention and in no sense can be construed as limiting the present invention.
여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.Details that are not described herein will be omitted since those skilled in the art can sufficiently infer technically.
1. 복합재 분리판 제조1. Composite Separator Manufacturing
실시예Example 1 One
250㎛ 의 평균 두께를 갖는 탄소섬유 직조물을 아세톤에 그라파이트나노플레이트(GNP) 3wt%를 분산한 후, GNP를 탄소섬유 직조물의 표면에 바인딩시킬 수 있도록 에폭시 수지 10wt%를 혼합시킨 용액에 침지한 후, 15분 동안 초음파(Sonication) 진동 처리하고 60℃에서 1시간 동안 건조시켜 탄소섬유 직조물의 내부로 그라파이트나노플레이트(GNP)를 충진시켰다.After dispersing 3 wt% of graphite nanoplatelets (GNP) in acetone, a carbon fiber woven fabric having an average thickness of 250 μm was immersed in a solution in which 10 wt% of epoxy resin was mixed to bind GNP to the surface of the carbon fiber woven fabric. After sonication for 15 minutes and dried at 60 ° C. for 1 hour, graphite nanoplates (GNP) were filled into the inside of the carbon fiber woven fabric.
다음으로, 에폭시 수지 100 중량부에 탄소나노튜브(CNT) 5 + 그라파이트 나노플레이트(GNT) 15 중량부를 첨가한 분산액을 탄소섬유 직조물의 상부 및 하부에 나이프(Knife) 코팅 방법으로 150㎛의 두께로 각각 코팅하여 상부 및 하부 전도성 코팅층을 형성하였다.Next, a dispersion of 15 parts by weight of carbon nanotubes (CNT) 5 + graphite nanoplatelets (GNT) was added to 100 parts by weight of epoxy resin to a thickness of 150 μm by a knife coating method on the upper and lower portions of the carbon fiber woven fabric. Each was coated to form a top and bottom conductive coating layer.
다음으로, 그라파이트나노플레이트(GNP)가 삽입된 탄소섬유 직조물과 상부 및 하부 전도성 코팅층을 150℃ 및 20MPa의 압력 조건으로 30분 동안 핫 프레스로 압착 및 경화하여 두께 250㎛의 복합재 분리판을 제조하였다.Next, a composite plate of 250 μm in thickness was prepared by pressing and curing the carbon nanofiber woven fabric containing graphite nanoplates (GNP) and the upper and lower conductive coating layers by hot pressing for 30 minutes under a pressure condition of 150 ° C. and 20 MPa. .
실시예Example 2 2
탄소섬유 직조물을 아세톤에 그라파이트나노플레이트(GNP) 5wt% 및 에폭시 수지 10wt%를 분산 혼합시킨 용액에 침지한 것을 제외하고 실시예 1과 동일한 방법으로 복합재 분리판을 제조하였다.A composite separator was manufactured in the same manner as in Example 1, except that the carbon fiber woven fabric was immersed in a solution in which 5 wt% of graphite nanoplatelets (GNP) and 10 wt% of epoxy resin were dispersed and mixed in acetone.
실시예Example 3 3
탄소섬유 직조물을 아세톤에 그라파이트나노플레이트(GNP) 3wt% 및 에폭시 수지 15wt%를 분산 혼합시킨 용액에 침지한 것을 제외하고 실시예 1과 동일한 방법으로 복합재 분리판을 제조하였다.A composite separator was prepared in the same manner as in Example 1, except that the carbon fiber woven fabric was immersed in a solution in which 3 wt% of graphite nanoplatelets (GNP) and 15 wt% of epoxy resin were dispersed and mixed in acetone.
실시예Example 4 4
탄소섬유 직조물을 아세톤에 그라파이트나노플레이트(GNP) 3wt% 및 에폭시 수지 10wt%를 분산 혼합시킨 용액에 침지하고 30분 동안 초음파(Sonication) 진동 처리하고 60℃에서 1시간 건조한 것을 제외하고 실시예 1과 동일한 방법으로 복합재 분리판을 제조하였다.Example 1 except that the carbon fiber woven fabric was immersed in a solution of 3% by weight of graphite nanoplatelets (GNP) and 10% by weight of epoxy resin in acetone, and subjected to ultrasonic vibration for 30 minutes and dried at 60 ° C for 1 hour. In the same manner, a composite separator was prepared.
실시예Example 5 5
탄소섬유 직조물을 아세톤에 그라파이트나노플레이트(GNP) 3wt% 및 에폭시 수지 10wt%를 분산 혼합시킨 용액에 침지하고 15분 동안 초음파(Sonication) 진동 처리하고 60℃에서 2시간 건조한 것을 제외하고 실시예 1과 동일한 방법으로 복합재 분리판을 제조하였다.Example 1 except that the carbon fiber woven fabric was immersed in a solution of 3% by weight of graphite nanoplatelets (GNP) and 10% by weight of epoxy resin in acetone, and subjected to ultrasonic vibration for 15 minutes and dried at 60 ° C. for 2 hours. In the same manner, a composite separator was prepared.
비교예Comparative example 1 One
탄소섬유 직조물의 상부 및 하부에 에폭시 수지 100 중량부에 탄소나노튜브(CNT) 15 중량부를 첨가한 분산액을 나이프(Knife) 코팅 방법으로 150㎛의 두께로 각각 코팅하여 상부 및 하부 전도성 코팅층을 형성하였다.Top and bottom conductive coating layers were formed by coating a dispersion of 15 parts by weight of carbon nanotubes (CNT) added to 100 parts by weight of epoxy resin on the top and bottom of the carbon fiber woven fabric with a thickness of 150 μm by knife coating. .
다음으로, 탄소섬유 직조물과 상부 및 하부 전도성 코팅층을 160℃ 및 20MPa의 압력 조건으로 30분 동안 핫 프레스로 압착 및 경화하여 복합재 분리판을 제조하였다.Next, the carbon fiber woven fabric and the upper and lower conductive coating layers were pressed and cured in a hot press for 30 minutes under pressure conditions of 160 ° C. and 20 MPa to prepare a composite separator.
비교예Comparative example 2 2
탄소섬유 직조물을 아세톤에 그라파이트나노플레이트(GNP) 10wt% 및 에폭시 수지 10wt%를 분산 혼합시킨 용액에 침지한 것을 제외하고 실시예 1과 동일한 방법으로 복합재 분리판을 제조하였다.A composite separator was prepared in the same manner as in Example 1, except that the carbon fiber woven fabric was immersed in a solution in which 10 wt% of graphite nanoplatelets (GNP) and 10 wt% of epoxy resin were dispersed and mixed in acetone.
비교예Comparative example 3 3
탄소섬유 직조물을 아세톤에 그라파이트나노플레이트(GNP) 3wt% 및 에폭시 수지 20wt%를 분산 혼합시킨 용액에 침지한 것을 제외하고 실시예 1과 동일한 방법으로 복합재 분리판을 제조하였다.A composite separator was prepared in the same manner as in Example 1, except that the carbon fiber woven fabric was immersed in a solution in which 3 wt% of graphite nanoplatelets (GNP) and 20 wt% of epoxy resin were dispersed and mixed in acetone.
비교예Comparative example 4 4
탄소섬유 직조물을 아세톤에 그라파이트나노플레이트(GNP) 3wt% 및 에폭시 수지 10wt%를 분산 혼합시킨 용액에 침지하고 5분 동안 초음파(Sonication) 진동 처리하고 60℃에서 1시간 건조한 것을 제외하고 실시예 1과 동일한 방법으로 복합재 분리판을 제조하였다.Example 1 except that the carbon fiber woven fabric was immersed in a solution of 3% by weight of graphite nanoplatelet (GNP) and 10% by weight of epoxy resin in acetone, and subjected to ultrasonic vibration for 5 minutes and dried at 60 ° C for 1 hour. In the same manner, a composite separator was prepared.
비교예Comparative example 5 5
탄소섬유 직조물을 아세톤에 그라파이트나노플레이트(GNP) 3wt% 및 에폭시 수지 10wt%를 분산 혼합시킨 용액에 침지하고 15분 동안 초음파(Sonication) 진동 처리하고 60℃에서 30분 건조한 것을 제외하고 실시예 1과 동일한 방법으로 복합재 분리판을 제조하였다.Example 1 except that the carbon fiber woven fabric was immersed in a solution in which 3% by weight of graphite nanoplatelets (GNP) and 10% by weight of epoxy resin were dispersed and mixed with acetone, subjected to sonication for 15 minutes, and dried at 60 ° C for 30 minutes. In the same manner, a composite separator was prepared.
2. 물성 평가2. Property evaluation
표 1은 실시예 1 ~ 5 및 비교예 1 ~ 5에 따라 제조된 복합재 분리판들에 대한 물성 평가 결과를 나타낸 것이다.Table 1 shows the physical property evaluation results for the composite separators prepared according to Examples 1 to 5 and Comparative Examples 1 to 5.
1) 표면 전기전도도1) Surface Conductivity
4-탐침법(4-point probe method)에 의거하여 표면 전기전도도를 측정하였다.Surface electrical conductivity was measured based on the 4-point probe method.
2) 접촉저항2) contact resistance
측정 방법 : 구리 전극 / GDL / 분리판 / GDL / 구리 전극의 순서대로 적층한 후, 양쪽의 구리 전극에 5A의 전류를 인가하면서, 구리 전극 사이에서 발생하는 전압 강하를 측정하였다. 여기서 나온 전압에 가해준 전류 값을 나누어 저항을 측정하고, 측정에 사용된 분리판의 면적을 곱해주었다. 이때, 분리판은 가로 5cm, 세로 5cm 이었다.Measuring method: After laminating | stacking in order of copper electrode / GDL / separator / GDL / copper electrode, the voltage drop which generate | occur | produces between copper electrodes was measured, applying a current of 5A to both copper electrodes. The resistance was measured by dividing the current applied to the voltage, and multiplied by the area of the separator used for the measurement. At this time, the separator was 5 cm wide and 5 cm long.
구리 전극과 GDL 사이의 접촉 저항을 빼주기 위해, 구리 전극 / GDL / 구리 전극의 순서대로 적층한 후 저항을 측정하였고, 위의 값에서 빼주어 분리판의 접촉 저항을 계산하였다.In order to subtract the contact resistance between the copper electrode and the GDL, after stacking in order of the copper electrode / GDL / copper electrode, the resistance was measured, and subtracted from the above value to calculate the contact resistance of the separator.
3) 굴곡강도3) flexural strength
ASTM D790-10에 의거하여 굴곡강도를 측정하였다. 이때, 시편의 크기는 가로 1.27cm, 세로 12.7cm로 제작한 것을 이용하였다.Flexural strength was measured according to ASTM D790-10. At this time, the size of the specimen was used to produce a width of 1.27cm, length 12.7cm.
[표 1]TABLE 1
Figure PCTKR2016014111-appb-I000001
Figure PCTKR2016014111-appb-I000001
표 1에 도시된 바와 같이, 실시예 1 ~ 5에 따라 제조된 복합재 분리판의 경우, 표면 전기전도도 및 굴곡강도는 비교예 1 ~ 5와 큰 차이가 없었으나, 접촉저항이 비교예 1 ~ 5에 비하여 상당히 낮은 6.9 ~ 7.5 mΩ/㎠을 갖는 것을 알 수 있다.As shown in Table 1, in the case of the composite separator prepared according to Examples 1 to 5, the surface electrical conductivity and flexural strength were not significantly different from Comparative Examples 1 to 5, but the contact resistance was Comparative Examples 1 to 5 It can be seen that it has a significantly lower than 6.9 ~ 7.5 mPa / ㎠.
반면, 그라파이트나노플레이트(GNP)를 충진하지 않은 비교예 1의 경우에는 표면 전기전도도에는 큰 차이가 없으나, 접촉저항이 실시예 1에 비하여 상당히 높게 측정되었으며, 시편 내의 탄소 비율이 적어 굴곡강도는 약간 높게 측정되었다.On the other hand, in the case of Comparative Example 1, which is not filled with graphite nanoplates (GNP), there was no significant difference in the surface electrical conductivity, but the contact resistance was measured to be considerably higher than that of Example 1, and the flexural strength was slightly decreased due to the low carbon ratio in the specimen. Highly measured.
또한, 그라파이트나노플레이트(GNP)를 10wt%로 첨가한 비교예 2의 경우에는 탄소섬유와 GNP의 접촉점이 많아져 실시예 1에 비하여 접촉저항이 약간 감소하고, 시편 내의 탄소 함량이 많기 때문에 굴곡강도가 감소한 것을 확인할 수 있다.In addition, in the case of Comparative Example 2 in which graphite nanoplate (GNP) was added at 10wt%, the contact point of carbon fiber and GNP was increased, so that the contact resistance was slightly decreased as compared with Example 1, and the flexural strength was high because the carbon content in the specimen was large. It can be seen that decreases.
또한, 에폭시 수지가 20wt%로 첨가된 비교예 3의 경우에는 과량의 에폭시 수지가 전도성 코팅층이 덮이기 전에 탄소섬유 표면을 감싸기 때문에 절연층으로 작용하여 실시예 1에 비하여 접촉저항이 상당히 높게 측정된 것을 확인할 수 있다.In addition, in the case of Comparative Example 3 in which the epoxy resin was added at 20wt%, since the excess epoxy resin covered the carbon fiber surface before the conductive coating layer was covered, the contact resistance was measured to be considerably higher than that of Example 1 as an insulating layer. You can see that.
또한, 초음파(Sonication) 진동 처리를 5분 동안 실시한 비교예 4의 경우에는 초음파 진동 처리 시간이 충분하지 않아 그라파이트나노플레이트(GNP)가 탄소섬유 내부로 충분히 충진되지 않아 접촉저항이 실시예 1에 비하여 높게 측정된 것을 확인할 수 있다.In addition, in the case of Comparative Example 4 in which the ultrasonic vibration treatment was performed for 5 minutes, the ultrasonic vibration treatment time was not sufficient, and thus, the graphite nanoplate (GNP) was not sufficiently filled into the carbon fiber, so that the contact resistance was higher than that of Example 1. It can be confirmed that the measurement is high.
또한, 건조 시간을 30분으로 감소시킨 비교예 5의 경우에는 아세톤의 건조 시간이 충분하지 않아 시편 내에 잔류하면서 전도성 코팅층을 도포하고, 열압착시키는 과정에서 증발하여 시편 내부에 기공을 형성시켜 접촉저항은 높아지고, 기공에 의해 굴곡강도가 저하된 것을 확인할 수 있다.In addition, in the case of Comparative Example 5 in which the drying time was reduced to 30 minutes, the drying time of acetone was not sufficient, so that the conductive coating layer was applied while remaining in the specimen, and evaporated in the process of thermocompression to form pores in the specimen, thereby contact resistance It becomes high, and it can confirm that bending strength fell by pore.
이상에서는 본 발명의 실시예를 중심으로 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 기술자의 수준에서 다양한 변경이나 변형을 가할 수 있다. 이러한 변경과 변형은 본 발명이 제공하는 기술 사상의 범위를 벗어나지 않는 한 본 발명에 속한다고 할 수 있다. 따라서 본 발명의 권리범위는 이하에 기재되는 청구범위에 의해 판단되어야 할 것이다.Although the above has been described with reference to the embodiments of the present invention, various changes and modifications can be made at the level of those skilled in the art. Such changes and modifications can be said to belong to the present invention without departing from the scope of the technical idea provided by the present invention. Therefore, the scope of the present invention will be determined by the claims described below.

Claims (16)

  1. 탄소섬유 직조물; Carbon fiber wovens;
    상기 탄소섬유 직조물의 내부에 충진된 전도성 분말; 및 Conductive powder filled in the carbon fiber woven fabric; And
    상기 탄소섬유 직조물의 상면 및 하면에 각각 배치되어, 상기 탄소섬유 직조물과 합착된 상부 및 하부 전도성 코팅층; Upper and lower conductive coating layers disposed on upper and lower surfaces of the carbon fiber woven fabric, respectively, and bonded to the carbon fiber woven fabric;
    을 포함하는 복합재 분리판.Composite separator comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 탄소섬유 직조물은 The carbon fiber woven fabric
    200 ~ 400㎛의 두께를 갖는 복합재 분리판.Composite separator having a thickness of 200 ~ 400㎛.
  3. 제1항에 있어서,The method of claim 1,
    상기 탄소섬유 직조물은 The carbon fiber woven fabric
    적어도 하나 이상이 수직적으로 적층된 복합재 분리판.Composite separator in which at least one is stacked vertically.
  4. 제1항에 있어서,The method of claim 1,
    상기 상부 및 하부 전도성 코팅층은 The upper and lower conductive coating layer
    상기 탄소섬유 직조물과의 합착에 의해, 상기 탄소섬유 직조물의 내부로 일부가 함침되어 상호 간이 일체로 연결된 복합재 분리판.Partial impregnation into the interior of the carbon fiber woven fabric by the bonding with the carbon fiber woven fabric, the composite separating plate connected to each other integrally.
  5. 제1항에 있어서,The method of claim 1,
    상기 상부 및 하부 전도성 코팅층은 각각 The upper and lower conductive coating layers are respectively
    5 ~ 100㎛의 두께를 갖는 복합재 분리판.Composite separator having a thickness of 5 ~ 100㎛.
  6. 제1항에 있어서,The method of claim 1,
    상기 상부 및 하부 전도성 코팅층은 각각 The upper and lower conductive coating layers are respectively
    수지층과, Resin layer,
    상기 수지층 내에 함침된 전도성 필러를 포함하는 복합재 분리판.Composite separator comprising a conductive filler impregnated in the resin layer.
  7. 제6항에 있어서,The method of claim 6,
    상기 수지층은 The resin layer is
    페놀 수지, 에폭시 수지, 아미노 수지, 우레아 수지, 멜라민 수지, 불포화 폴리에스텔 수지, 폴리우레탄 수지 및 폴리이미드 수지를 포함하는 열경화성 수지 중 선택된 어느 하나의 재질로 형성된 복합재 분리판.A composite separator formed of any one selected from a thermosetting resin including a phenol resin, an epoxy resin, an amino resin, a urea resin, a melamine resin, an unsaturated polyester resin, a polyurethane resin, and a polyimide resin.
  8. 제6항에 있어서,The method of claim 6,
    상기 상부 및 하부 전도성 코팅층은 각각 The upper and lower conductive coating layers are respectively
    상기 전도성 필러가 고형분 기준으로 전체 중량의 15 ~ 25 중량%로 첨가된 복합재 분리판.Composite conductive plate is added to the conductive filler 15 to 25% by weight of the total weight based on solids.
  9. 제6항에 있어서,The method of claim 6,
    상기 전도성 분말 및 전도성 필러는 각각 The conductive powder and the conductive filler are each
    탄소나노튜브(carbon nanotube), 흑연분말(graphite powder), 탄소 단섬유(chopped carbon fiber), 카본블랙(carbon black), 카본분말(carbon powder), 그라파이트 나노플레이트(graphite nanoplate) 및 그래핀(graphene) 중 선택된 1종 이상을 포함하는 복합재 분리판.Carbon nanotube, graphite powder, chopped carbon fiber, carbon black, carbon powder, graphite nanoplate and graphene Composite separator comprising at least one selected from.
  10. (a) 탄소섬유 직조물의 내부에 전도성 분말을 충진하는 단계; (a) filling the conductive powder into the carbon fiber woven fabric;
    (b) 상기 전도성 분말이 충진된 탄소섬유 직조물의 상면 및 하면에 상부 및 하부 전도성 코팅층을 형성하는 단계; 및 (b) forming upper and lower conductive coating layers on upper and lower surfaces of the carbon fiber woven fabric filled with the conductive powder; And
    (c) 상기 탄소섬유 직조물과 상부 및 하부 전도성 코팅층을 핫 프레스로 압착 및 경화하여 복합재 분리판을 수득하는 단계; (c) pressing and curing the carbon fiber woven fabric and the upper and lower conductive coating layers with a hot press to obtain a composite separator;
    를 포함하는 복합재 분리판 제조 방법.Composite separator manufacturing method comprising a.
  11. 제10항에 있어서,The method of claim 10,
    상기 (a) 단계는, In step (a),
    상기 탄소섬유 직조물을 진동시켜 상기 탄소섬유 직조물의 내부로 전도성 분말이 충진되도록 하는 복합재 분리판 제조 방법.And vibrating the carbon fiber woven fabric to allow conductive powder to be filled into the carbon fiber woven fabric.
  12. 제10항에 있어서,The method of claim 10,
    상기 상부 및 하부 전도성 코팅층은 각각 The upper and lower conductive coating layers are respectively
    수지층과, Resin layer,
    상기 수지층 내에 함침된 전도성 필러를 포함하는 복합재 분리판 제조 방법.Method of manufacturing a composite separator comprising a conductive filler impregnated in the resin layer.
  13. 제12항에 있어서,The method of claim 12,
    상기 수지층은 The resin layer is
    페놀 수지, 에폭시 수지, 아미노 수지, 우레아 수지, 멜라민 수지, 불포화 폴리에스텔 수지, 폴리우레탄 수지 및 폴리이미드 수지를 포함하는 열경화성 수지 중 선택된 어느 하나의 재질로 형성된 복합재 분리판 제조 방법.A method for producing a composite separator formed of any one selected from a thermosetting resin including a phenol resin, an epoxy resin, an amino resin, a urea resin, a melamine resin, an unsaturated polyester resin, a polyurethane resin, and a polyimide resin.
  14. 제12항에 있어서,The method of claim 12,
    상기 전도성 분말 및 전도성 필러는 각각 The conductive powder and the conductive filler are each
    탄소나노튜브(carbon nanotube), 흑연분말(graphite powder), 탄소 단섬유(chopped carbon fiber), 카본블랙(carbon black), 카본분말(carbon powder), 그라파이트 나노플레이트(graphite nanoplate) 및 그래핀(graphene) 중 선택된 1종 이상을 포함하는 복합재 분리판 제조 방법.Carbon nanotube, graphite powder, chopped carbon fiber, carbon black, carbon powder, graphite nanoplate and graphene Method for producing a composite separator comprising at least one selected from).
  15. 제10항에 있어서,The method of claim 10,
    상기 (c) 단계에서, In the step (c),
    상기 핫 프레스는 The hot press
    130 ~ 200℃에서 10 ~ 30MPa의 압력 조건으로 10 ~ 60분 동안 실시하는 복합재 분리판 제조 방법.Method for producing a composite separator for 10 to 60 minutes at 130 ~ 200 ℃ under pressure conditions of 10 to 30MPa.
  16. 제10항에 있어서,The method of claim 10,
    상기 (c) 단계에서, In the step (c),
    상기 상부 및 하부 전도성 코팅층은 The upper and lower conductive coating layer
    상기 탄소섬유 직조물과의 합착에 의해, 상기 탄소섬유 직조물의 내부로 일부가 함침되어 상호 간이 일체로 연결되는 복합재 분리판 제조 방법.By bonding with the carbon fiber woven fabric, part of the carbon fiber woven fabric is impregnated into the composite separator manufacturing method of mutually integrally connected to each other.
PCT/KR2016/014111 2016-04-21 2016-12-02 Composite separator plate and production method therefor WO2017183791A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018554550A JP6722770B2 (en) 2016-04-21 2016-12-02 Composite material separation plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0048973 2016-04-21
KR1020160048973A KR101926457B1 (en) 2016-04-21 2016-04-21 Composite materials separator and method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2017183791A1 true WO2017183791A1 (en) 2017-10-26

Family

ID=60117063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/014111 WO2017183791A1 (en) 2016-04-21 2016-12-02 Composite separator plate and production method therefor

Country Status (3)

Country Link
JP (1) JP6722770B2 (en)
KR (1) KR101926457B1 (en)
WO (1) WO2017183791A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101987211B1 (en) * 2017-12-26 2019-06-10 한국항공대학교산학협력단 Method of manufacturing for textile composite with smart composite fiber using 3d printer and textile composite with smart composite fiber

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050120515A (en) * 2004-06-19 2005-12-22 한국타이어 주식회사 A carbon composite, method for preparing the same, a fuel cell separator using the carbon composites
KR100797827B1 (en) * 2006-09-19 2008-01-24 재단법인 포항산업과학연구원 Method of coating on carbon fiber-epoxy composite
KR20110130640A (en) * 2010-05-28 2011-12-06 주식회사 에이엔씨아이 Polymer composite comprising plated carbon fiber for manufacturing bipolar plate of fuel cell
KR20130128493A (en) * 2012-05-16 2013-11-27 한국과학기술원 Carbon fabric bipolar plate of fuel cell and method for manufacturing the same
KR20160033857A (en) * 2014-09-18 2016-03-29 (주)엘지하우시스 Flow channel plate for fuel cell and method of manufacturing the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4650673B2 (en) * 2004-12-14 2011-03-16 東海カーボン株式会社 Separator material for fuel cell and manufacturing method thereof
JP2006347837A (en) * 2005-06-17 2006-12-28 Society Of Japanese Aerospace Co Inc Method for manufacturing continuous fiber-reinforced composite material
KR100901362B1 (en) * 2007-08-01 2009-06-05 한국과학기술원 Bipolar plate for fuel cell and manufacturing method thereof
US7981501B2 (en) * 2008-12-02 2011-07-19 GM Global Technology Operations LLC Laminated composites and methods of making the same
KR101173059B1 (en) * 2010-09-29 2012-08-13 한국과학기술원 Separation plate for Polymer Electrolyte Membrane Fuel Cell and method for manufacturing the same
JP5797164B2 (en) * 2012-07-13 2015-10-21 信越ポリマー株式会社 Manufacturing method of fuel cell separator
KR101353354B1 (en) * 2012-12-21 2014-01-22 한국과학기술원 Manufacturing for fiber reinforced composite material bipolar plate of fuel cell
KR101483282B1 (en) * 2013-11-06 2015-01-16 한국과학기술원 Method for manufacturing graphite coated composite bipolar plate of cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050120515A (en) * 2004-06-19 2005-12-22 한국타이어 주식회사 A carbon composite, method for preparing the same, a fuel cell separator using the carbon composites
KR100797827B1 (en) * 2006-09-19 2008-01-24 재단법인 포항산업과학연구원 Method of coating on carbon fiber-epoxy composite
KR20110130640A (en) * 2010-05-28 2011-12-06 주식회사 에이엔씨아이 Polymer composite comprising plated carbon fiber for manufacturing bipolar plate of fuel cell
KR20130128493A (en) * 2012-05-16 2013-11-27 한국과학기술원 Carbon fabric bipolar plate of fuel cell and method for manufacturing the same
KR20160033857A (en) * 2014-09-18 2016-03-29 (주)엘지하우시스 Flow channel plate for fuel cell and method of manufacturing the same

Also Published As

Publication number Publication date
JP2019514179A (en) 2019-05-30
KR101926457B1 (en) 2018-12-07
KR20170120452A (en) 2017-10-31
JP6722770B2 (en) 2020-07-15

Similar Documents

Publication Publication Date Title
WO2020116877A1 (en) Carbon substrate comprising carbon fibers unidirectionally aligned, and gas diffusion layer employing same
EP1139703B1 (en) Substrate of circuit board
US10998488B2 (en) Piezoelectric stack
JP4471175B2 (en) Porous carbon electrode substrate and method for producing the same
KR101351142B1 (en) Microporous layer
US6039823A (en) Composite article
WO2014104785A1 (en) Reinforced composite membrane for fuel cell and membrane-electrode assembly for fuel cell comprising the same
KR102478772B1 (en) Bipolar plate for fuel cell, method of the same
WO2020130420A1 (en) Graphitized carbon substrate and gas diffusion layer employing same
JPWO2003034519A1 (en) Carbon fiber fabric for fuel cell, electrode body, fuel cell, moving body, and method for producing carbon fiber fabric for fuel cell
WO2019039820A2 (en) Porous composite separator and manufacturing method therefor
WO2017183791A1 (en) Composite separator plate and production method therefor
WO2017099403A1 (en) Composite separator plate and method for preparing same
WO2017183792A1 (en) Composite separator plate and production method therefor
TWI276194B (en) Transfer member with electric conductivity and its manufacturing method
KR102269931B1 (en) Precursor of thermoplastic prepreg for biporal plate and method of thermoplastic prepreg for biporal plate thereby
KR102003682B1 (en) Flow channel plate for fuel cell and method of manufacturing the same
KR101027778B1 (en) Piezoresistive composite with high hardness and conductivity and method for preparing the same
WO2019098498A1 (en) Fabric material-based flexible electrode and manufacturing method thereof
WO2021034159A1 (en) Composite separator for lithium secondary battery, and manufacturing method therefor
WO2021029480A1 (en) Binder-free self-supporting electode and method for manufacturing same
WO2016105097A1 (en) Composite material for fuel cell separator plate, fuel cell separator plate and method for preparing same
WO2017099350A1 (en) Carbon fiber separator plate and method for preparing same
JP2003277529A (en) Carbon fiber reinforced resin sheet and its production method
WO2023038186A1 (en) High-efficiency hybrid heater and manufacturing method therefor

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018554550

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16899559

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16899559

Country of ref document: EP

Kind code of ref document: A1