JP6722770B2 - Composite material separation plate - Google Patents

Composite material separation plate Download PDF

Info

Publication number
JP6722770B2
JP6722770B2 JP2018554550A JP2018554550A JP6722770B2 JP 6722770 B2 JP6722770 B2 JP 6722770B2 JP 2018554550 A JP2018554550 A JP 2018554550A JP 2018554550 A JP2018554550 A JP 2018554550A JP 6722770 B2 JP6722770 B2 JP 6722770B2
Authority
JP
Japan
Prior art keywords
carbon fiber
woven fabric
fiber woven
electrically conductive
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018554550A
Other languages
Japanese (ja)
Other versions
JP2019514179A (en
Inventor
キム,ジヨン
キム,フェオン
チェ,ソンヒョン
ジョン,スンムン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LX Hausys Ltd
Original Assignee
LG Hausys Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Hausys Ltd filed Critical LG Hausys Ltd
Publication of JP2019514179A publication Critical patent/JP2019514179A/en
Application granted granted Critical
Publication of JP6722770B2 publication Critical patent/JP6722770B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0239Organic resins; Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、複合材分離板に関し、より詳細には、表面と厚さ方向両方の電気伝導性を向上させる複合材分離板に関する。 TECHNICAL FIELD The present invention relates to a composite material separating plate , and more particularly to a composite material separating plate that improves electrical conductivity both in the surface and in the thickness direction.

燃料電池スタックの構成要素である分離板は、反応ガス(水素及び酸素)の供給及び水の排出通路としての機能を有しており、燃料電池スタックの内部を電気的に連結させる。このような機能のため、分離板は、優れた電気伝導性と機械的物性、耐腐食性及び低い水素透過率が求められる。 The separation plate, which is a constituent element of the fuel cell stack, has a function as a supply passage of reaction gas (hydrogen and oxygen) and a discharge passage of water, and electrically connects the inside of the fuel cell stack. Due to such a function, the separator is required to have excellent electrical conductivity, mechanical properties, corrosion resistance and low hydrogen permeability.

最近、大型二次電池のうち、大きな注目を集めている水素燃料電池、レドックス・フロー電池などにおいても分離板が含まれる。このように、酸性雰囲気下で駆動する水素燃料電池及びレドックス・フロー電池は、電気伝導性と機械的物性、耐腐食性、耐化学性及び電解質不浸透性などの特性が求められる。 Among large-sized secondary batteries, hydrogen fuel cells, redox flow batteries, and the like, which have recently received a great deal of attention, also include a separation plate. As described above, hydrogen fuel cells and redox flow cells that are driven in an acidic atmosphere are required to have electrical conductivity and mechanical properties, corrosion resistance, chemical resistance, and electrolyte impermeability.

これを満たすため、従来には炭素繊維織物に熱硬化性樹脂を含浸させた複合材分離板を製造していた。このような複合材分離板に電気伝導性を与えるためには、熱硬化性樹脂の内部に高伝導性を有する伝導性粉末を多量混合しなければならない。 In order to satisfy this, conventionally, a composite material separating plate in which a carbon fiber woven fabric is impregnated with a thermosetting resin has been manufactured. In order to impart electrical conductivity to such a composite material separating plate, a large amount of conductive powder having high conductivity must be mixed inside the thermosetting resin.

しかし、伝導性粉末を熱硬化性樹脂に多量混合する場合、高い強度及び燃料物質の遮断率を確保することができず、多量の伝導性粉末を添加しても電気的特性を確保しがたい。 However, when a large amount of conductive powder is mixed with a thermosetting resin, it is not possible to secure high strength and cutoff rate of the fuel substance, and it is difficult to secure electrical characteristics even if a large amount of conductive powder is added. ..

関連する先行文献としては、韓国公開特許公報第10−2005−0120257号(2005年12月22日に公開)があり、同文献には燃料電池用炭素複合材の分離板が記載されている。 As a related prior document, there is Korean Published Patent Publication No. 10-2005-0120257 (published on December 22, 2005), which describes a separator of a carbon composite material for a fuel cell.

本発明の目的は、表面と厚さ方向両方の電気伝導性を向上させる複合材分離板を提供することである。 It is an object of the present invention to provide a composite separator which improves electrical conductivity both in the surface and in the thickness direction.

課題を解決しようとする手段Means to try to solve the problem

上記目的を達成するため本発明の実施例による複合材分離板は、炭素繊維織物;前記炭素繊維織物の内部に充填された伝導性粉末;及び前記炭素繊維織物の上面及び下面にそれぞれ配置しており、前記炭素繊維織物と合着した上部及び下部の伝導性コーティング層;を含むことを特徴とする。 In order to achieve the above object, a composite separator according to an embodiment of the present invention includes a carbon fiber woven fabric; a conductive powder filled in the carbon fiber woven fabric; and an upper surface and a lower surface of the carbon fiber woven fabric, respectively. And an upper conductive coating layer and a lower conductive coating layer bonded to the carbon fiber woven fabric.

上記目的を達成するため本発明の実施例による複合材分離板の製造方法は、(a)炭素繊維織物の内部に伝導性粉末を充填するステップ;(b)前記伝導性粉末が充填された炭素繊維織物の上面及び下面に上部及び下部の伝導性コーティング層を形成するステップ;及び、(c)前記炭素繊維織物と上部及び下部の伝導性コーティング層をホットプレスで圧着及び硬化して複合材分離板を得るステップ;を含むことを特徴とする。 In order to achieve the above object, a method of manufacturing a composite material separating plate according to an embodiment of the present invention includes (a) a step of filling conductive powder inside a carbon fiber woven fabric; (b) carbon filled with the conductive powder. Forming upper and lower conductive coating layers on the upper and lower surfaces of the fiber woven fabric; and (c) pressing and curing the carbon fiber woven fabric and the upper and lower conductive coating layers by hot pressing to separate the composite material. Obtaining a plate;

本発明による複合材分離板及びその製造方法は、炭素繊維織物の内部にパウダー状の伝導性粉末を先に充填した後、伝導性粉末が充填された炭素繊維織物の両面に上部及び下部の伝導性コーティング層を形成することによって、x−軸及びy−軸方向の表面電気伝導度と共にz−軸方向の垂直電気伝導性を改善することができる。 The composite material separating plate and the method for manufacturing the same according to the present invention include firstly filling a conductive powder powder into the inside of a carbon fiber woven fabric, and then conducting the upper and lower conductive layers on both sides of the carbon fiber woven fabric filled with the conductive powder. By forming the functional coating layer, it is possible to improve the surface electrical conductivity in the x-axis direction and the y-axis direction as well as the vertical electrical conductivity in the z-axis direction.

従って、本発明による複合材分離板は、炭素繊維織物の両面に形成された上部及び下部の伝導性コーティング層によってx−軸及びy−軸方向の表面電気伝導度を確保できるとともに、炭素繊維織物の内部に充填された伝導性粉末が炭素繊維織物の間間を有機的に連結させる構造を有することで、z−軸方向の垂直電気的特性が改善して接触抵抗が改善する。 Therefore, the composite separator according to the present invention can secure the surface electrical conductivity in the x-axis and the y-axis directions by the upper and lower conductive coating layers formed on both sides of the carbon fiber woven fabric, and at the same time, the carbon fiber woven fabric. Since the conductive powder filled inside has a structure that organically connects the carbon fiber fabrics, the vertical electrical characteristics in the z-axis direction are improved and the contact resistance is improved.

本発明の実施例による複合材分離板を示した断面図。FIG. 3 is a cross-sectional view showing a composite material separating plate according to an embodiment of the present invention. 図1の炭素繊維織物を示した斜視図。The perspective view which showed the carbon fiber woven fabric of FIG. 本発明の実施例による複合材分離板の製造方法を示した工程手順図。FIG. 6 is a process flow chart showing a method for manufacturing a composite material separating plate according to an embodiment of the present invention. 本発明の実施例による複合材分離板の製造方法を示した工程断面図。6A to 6C are process cross-sectional views showing a method for manufacturing a composite material separating plate according to an embodiment of the present invention. 本発明の実施例による複合材分離板の製造方法を示した工程断面図。6A to 6C are process cross-sectional views showing a method for manufacturing a composite material separating plate according to an embodiment of the present invention. 本発明の実施例による複合材分離板の製造方法を示した工程断面図。6A to 6C are process cross-sectional views showing a method for manufacturing a composite material separating plate according to an embodiment of the present invention.

本発明の利点及び特徴、そしてそれらを達成する方法は、添付の図面と共に詳細に後述されている実施例を参照すれば明確になる。しかし、本発明は、以下に開示する実施例に限定されるものではなく、異なる多様な形態に具現することができ、但し、本実施例は、本発明の開示を完全にして、本発明が属する技術分野で通常の知識を有する者に発明の範疇を完全に知らせるために提供されるものあって、本発明は、請求項の範疇によって定義されるだけである。全明細書における同じ参照符号は、同じ構成要素を指す。 Advantages and features of the present invention, and methods of achieving them, will become apparent with reference to the embodiments described in detail below in connection with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below and can be embodied in various different forms. However, the present invention is not limited to the embodiments disclosed in the present disclosure. The present invention is only defined by the scope of the claims, which is provided to inform those having ordinary skill in the art to the full scope of the invention. Like reference numerals in the entire specification refer to like elements.

以下に添付した図面を参照して本発明の好ましい実施例による複合材分離板及びその製造方法について詳説すれば、次のとおりである。 Hereinafter, a composite material separating plate and a method of manufacturing the same according to a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明の実施例による複合材分離板を示した断面図であり、図2は、図1の炭素繊維織物を示した斜視図である。 1 is a cross-sectional view showing a composite material separating plate according to an embodiment of the present invention, and FIG. 2 is a perspective view showing the carbon fiber woven fabric of FIG.

図1及び図2を参照すれば、本発明の実施例による複合材分離板100は、炭素繊維織物110、伝導性粉末120と、上部及び下部の伝導性コーティング層130、140を含む。このとき、伝導性粉末120は、炭素繊維織物110の内部に充填されて、伝導性粉末120が充填された炭素繊維織物110は、上部及び下部の伝導性コーティング層130、140とホットプレス(hot press)方式によって圧着して互いに接合する構造を有する。 Referring to FIGS. 1 and 2, a composite separator 100 according to an embodiment of the present invention includes a carbon fiber fabric 110, a conductive powder 120, and upper and lower conductive coating layers 130 and 140. At this time, the conductive powder 120 is filled in the carbon fiber woven fabric 110, and the carbon fiber woven fabric 110 filled with the conductive powder 120 is hot-pressed with the upper and lower conductive coating layers 130 and 140. It has a structure in which it is pressed and joined together by a press method.

炭素繊維織物110は、複合材分離板100の中間に配置する芯(core)基材として用いられて、複合材分離板100の機械的強度を向上させる役割を行う。このような炭素繊維織物110は、200〜400μm厚を有することが好ましい。炭素繊維織物110厚が200μm未満である場合には、その厚さが薄くて機械的強度を確保しがたい。逆に、炭素繊維織物110厚が400μmを超える場合には、それ以上の効果上昇がなく厚さ及び体積のみを増加させる要因に作用して、軽量化及び薄形化に反する結果をもたらし得るため、好ましくない。 The carbon fiber woven fabric 110 is used as a core substrate disposed in the middle of the composite material separating plate 100 and serves to improve the mechanical strength of the composite material separating plate 100. The carbon fiber woven fabric 110 preferably has a thickness of 200 to 400 μm. When the thickness of the carbon fiber woven fabric 110 is less than 200 μm, it is difficult to secure the mechanical strength because the thickness is thin. On the contrary, when the thickness of the carbon fiber woven fabric 110 exceeds 400 μm, there is no further effect increase and it acts on the factor that increases only the thickness and volume, which may result in a result contrary to weight reduction and thinning. , Not preferable.

かかる炭素繊維織物110は、少なくとも1つ以上が垂直に積層されてもよい。炭素繊維織物110は、1,000〜70,000本が集まった繊維束を緯糸及び経糸としてそれぞれ製織することで製造されてもよい。これにより、炭素繊維織物110は、緯糸方向に配置した緯糸炭素繊維112と経糸方向に配置した経糸炭素繊維114を含んでいてもよい。 At least one or more of the carbon fiber woven fabrics 110 may be vertically laminated. The carbon fiber woven fabric 110 may be manufactured by weaving a fiber bundle of 1,000 to 70,000 fibers as a weft yarn and a warp yarn, respectively. Accordingly, the carbon fiber woven fabric 110 may include the weft carbon fibers 112 arranged in the weft direction and the warp carbon fibers 114 arranged in the warp direction.

このとき、炭素繊維織物110の繊維束は、円形または楕円形の断面構造を有する。そして、炭素繊維織物110の繊維束は、平均離隔間隔が1.5〜2.0mmであってもよい。 At this time, the fiber bundle of the carbon fiber woven fabric 110 has a circular or elliptical cross-sectional structure. The fiber bundle of the carbon fiber woven fabric 110 may have an average separation distance of 1.5 to 2.0 mm.

伝導性粉末120は、炭素繊維織物110の内部に充填される。このような伝導性粉末120は、炭素繊維織物110の内部にコーティング方式によって充填されて、z−軸の垂直電気伝導性を向上させる役割を行う。 The conductive powder 120 is filled inside the carbon fiber woven fabric 110. The conductive powder 120 is filled in the carbon fiber woven fabric 110 by a coating method to improve the vertical electrical conductivity of the z-axis.

このため、伝導性粉末120は、炭素ナノチューブ(carbon nanotube)、黒鉛粉末(graphite powder)、炭素短繊維(chopped carbon fiber)、カーボンブラック(carbon black)、カーボン粉末(carbon powder)、グラファイトナノプレート(graphite nanoplate)及びグラフェン(graphene)のうちから選択された1種以上を含んでいてもよい。 Therefore, the conductive powder 120 includes carbon nanotubes, graphite powder, chopped carbon fiber, carbon black, carbon powder, and graphite nanoplate. It may include one or more selected from graphite nanoplate and graphene.

このとき、伝導性粉末120は、炭素繊維織物110の内部に粉末コーティング方式によって直接に充填されてもよい。他に、伝導性粉末120は、有機溶剤及び100cp以下の粘度を有するエポキシ液状樹脂に分散させた分散液を炭素繊維織物110の両面にエア噴射方式で塗布した後、乾燥して有機溶剤を揮発させる方式によってコーティングされてもよい。 At this time, the conductive powder 120 may be directly filled in the carbon fiber fabric 110 by a powder coating method. In addition, as the conductive powder 120, a dispersion liquid obtained by dispersing an organic solvent and an epoxy liquid resin having a viscosity of 100 cp or less is applied to both surfaces of the carbon fiber woven fabric 110 by an air injection method, and then dried to volatilize the organic solvent. The coating may be performed according to the method.

この場合、有機溶剤としては、揮発性に優れたエタノール、ブタノール、酢酸エチル、オクタノール、エトキシエタノールペンタノール、メトキシエタノール、エチレングリコール、アセトン、テトラヒドロフラン、ジメチルホルムアマイド、ジメチルアミン、ジクロロメタン及びジエチルエーテルのうち1種以上が用いられてもよい。 In this case, as the organic solvent, ethanol, butanol, ethyl acetate, octanol, ethoxyethanol pentanol, methoxyethanol, ethylene glycol, acetone, tetrahydrofuran, dimethylformamide, dimethylamine, dichloromethane and diethyl ether having excellent volatility are selected. One or more may be used.

上部及び下部の伝導性コーティング層130、140は、炭素繊維織物110の上面及び下面にそれぞれ配置して、炭素繊維織物110と合着する。 The upper and lower conductive coating layers 130 and 140 are disposed on the upper surface and the lower surface of the carbon fiber fabric 110, respectively, and are bonded to the carbon fiber fabric 110.

かかる上部及び下部の伝導性コーティング層130、140は、ホットプレス工程によって炭素繊維織物110と合着する。このとき、上部及び下部の伝導性コーティング層130、140は、炭素繊維織物110との合着によって、炭素繊維織物110の内部へ一部が含浸されて、互いに一体に連結される構造を有する。 The upper and lower conductive coating layers 130 and 140 are attached to the carbon fiber fabric 110 by a hot pressing process. At this time, the upper and lower conductive coating layers 130 and 140 have a structure in which the carbon fiber woven fabric 110 is partially impregnated into the carbon fiber woven fabric 110 by being bonded to the carbon fiber woven fabric 110 and is integrally connected to each other.

このとき、上部及び下部の伝導性コーティング層130、140は、それぞれ5〜100μm厚を有することが好ましい。上部及び下部の伝導性コーティング層130、140それぞれの厚が5μm未満である場合には、その厚さが薄すぎることから取り扱い性が悪く、表面電気伝導性が低下する問題がある。逆に、上部及び下部の伝導性コーティング層130、140それぞれの厚が100μmを超える場合には、それ以上の効果上昇がなく製造コストのみを上昇させる要因に作用し得るため、非経済的である。 At this time, each of the upper and lower conductive coating layers 130 and 140 preferably has a thickness of 5 to 100 μm. If the thickness of each of the upper and lower conductive coating layers 130 and 140 is less than 5 μm, the handleability is poor and the surface electrical conductivity is reduced because the thickness is too thin. On the contrary, when the thickness of each of the upper and lower conductive coating layers 130 and 140 exceeds 100 μm, it is uneconomical because it does not further increase the effect and may act as a factor that increases only the manufacturing cost. ..

かかる上部及び下部の伝導性コーティング層130、140は、それぞれ樹脂層と樹脂層内に含浸された伝導性フィラーを含む。 The upper and lower conductive coating layers 130 and 140 include a resin layer and a conductive filler impregnated in the resin layer, respectively.

樹脂層は、機械的強度を向上させる役割を行う。このような樹脂層は、フェノール樹脂、エポキシ樹脂、アミノ樹脂、尿素樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂及びポリイミド樹脂を含む熱硬化性樹脂のうちから選択されたいずれかの材質で形成される。 The resin layer plays a role of improving mechanical strength. Such a resin layer is made of any material selected from thermosetting resins including phenol resin, epoxy resin, amino resin, urea resin, melamine resin, unsaturated polyester resin, polyurethane resin and polyimide resin. To be done.

伝導性フィラーは、x−軸及びy−軸の表面電気伝導性を向上させるため樹脂層に添加して分散配置される。このため、伝導性フィラーは、炭素ナノチューブ(carbon nanotube)、黒鉛粉末(graphite powder)、炭素短繊維(chopped carbon fiber)、カーボンブラック(carbon black)、カーボン粉末(carbon powder)、グラファイトナノプレート(graphite nanoplate)及びグラフェン(graphene)のうちから選択された1種以上を含んでいてもよい。 The conductive filler is added to and dispersed in the resin layer in order to improve the surface electrical conductivity of the x-axis and the y-axis. Therefore, the conductive filler may be a carbon nanotube, a graphite powder, a chopped carbon fiber, a carbon black, a carbon powder, or a graphite nanoplate. It may include one or more selected from nanoplate and graphene.

このとき、上部及び下部の伝導性コーティング層130、140それぞれは、伝導性フィラーが固形粉基準として全体重量の15〜25重量%添加されることが好ましい。伝導性フィラーの含量が15重量%未満である場合には、表面電気伝導性を確保しがたい可能性がある。逆に、伝導性フィラーの含量が25重量%を超える場合には、ノズルの塞がりによるコーティング不良を引き起こす可能性がある。 In this case, each upper and lower conductive coating layer 130 and 140, it is preferable that the conductive filler is added 15 to 25 wt% of the total weight as solid content basis. When the content of the conductive filler is less than 15% by weight , it may be difficult to secure the surface electric conductivity. On the contrary, when the content of the conductive filler exceeds 25% by weight , the nozzle may be clogged to cause defective coating.

もし、炭素繊維織物110内に伝導性粉末120を充填することなく、炭素繊維織物110の両面に上部及び下部の伝導性コーティング層130、140のみを形成する場合、複合材分離板110の芯基材として用いられる炭素繊維織物110の表面に対してのみ伝導性フィラーが多量集中され、炭素繊維織物110の内部へ侵透できない問題によってz−軸方向の垂直電気伝導度が良くない問題がある。 If only the upper and lower conductive coating layers 130 and 140 are formed on both sides of the carbon fiber woven fabric 110 without filling the carbon fiber woven fabric 110 with the conductive powder 120, the core of the composite separating plate 110 may be formed. A large amount of conductive filler is concentrated only on the surface of the carbon fiber woven fabric 110 used as a material, and there is a problem that the vertical electrical conductivity in the z-axis direction is not good due to the problem that the conductive filler cannot penetrate into the inside of the carbon fiber woven fabric 110.

一方、前述した本発明の実施例による複合材分離板は、炭素繊維織物の内部にパウダー状の伝導性粉末を先に充填した後、伝導性粉末が充填された炭素繊維織物の両面に上部及び下部の伝導性コーティング層を形成することによって、x−軸及びy−軸方向の表面電気伝導度と共にz−軸方向の垂直電気伝導性を改善することができる。 On the other hand, the composite material separating plate according to the embodiment of the present invention described above, after the powdery conductive powder is first filled into the inside of the carbon fiber woven fabric, the conductive powder-filled carbon fiber woven fabric is topped on both sides and The formation of the lower conductive coating layer can improve the vertical electrical conductivity in the z-axis direction as well as the surface electrical conductivity in the x-axis and y-axis directions.

従って、本発明の実施例による複合材分離板は、炭素繊維織物の両面に形成された上部及び下部の伝導性コーティング層によってx−軸及びy−軸方向の表面電気伝導度を確保できるとともに、炭素繊維織物の内部に充填された伝導性粉末が炭素繊維織物の間間を有機的に連結させる構造を有することで、z−軸方向の垂直電気的特性が改善して接触抵抗が改善する。 Therefore, in the composite separator according to the embodiment of the present invention, the upper and lower conductive coating layers formed on both sides of the carbon fiber woven fabric can ensure surface electrical conductivity in the x-axis and y-axis directions, and Since the conductive powder filled in the carbon fiber fabric has a structure for organically connecting the carbon fiber fabrics, the vertical electrical characteristics in the z-axis direction are improved and the contact resistance is improved.

この結果、本発明の実施例による複合材分離板は、表面電気伝導度:100〜200S/cm、接触抵抗:10mΩ/cm2以下及び屈曲強度:80MPa以下を有する。 As a result, the composite material separator according to the embodiment of the present invention has a surface electric conductivity of 100 to 200 S/cm, a contact resistance of 10 /cm 2 or less, and a bending strength of 80 MPa or less.

以下では、添付の図面を参照して本発明の実施例による複合材分離板の製造方法について説明する。 Hereinafter, a method for manufacturing a composite material separating plate according to an embodiment of the present invention will be described with reference to the accompanying drawings.

図3は、本発明の実施例による複合材分離板の製造方法を示した工程手順図であり、図4〜図6は、本発明の実施例による複合材分離板の製造方法を示した工程断面図である。 FIG. 3 is a process flow chart showing a method of manufacturing a composite material separating plate according to an embodiment of the present invention, and FIGS. 4 to 6 are steps showing a method of manufacturing a composite material separating plate according to an embodiment of the present invention. FIG.

図3に示したように、本発明の実施例による複合材分離板の製造方法は、伝導性粉末充填ステップ(S110)、上部及び下部の伝導性コーティング層形成ステップ(S120)及びホットプレスステップ(S130)を含む。 As shown in FIG. 3, a method of manufacturing a composite material separating plate according to an embodiment of the present invention includes a conductive powder filling step (S110), an upper and lower conductive coating layer forming step (S120), and a hot pressing step (S120). S130) is included.

伝導性粉末充填
図3及び図4に示したように、伝導性粉末充填ステップ(S110)では、炭素繊維織物110の内部に伝導性粉末120を充填する。
Conductive Powder Filling As shown in FIGS. 3 and 4, in the conductive powder filling step (S110), conductive powder 120 is filled inside the carbon fiber woven fabric 110.

炭素繊維織物110は、少なくとも1つ以上が垂直に積層されてもよい。炭素繊維織物110は 1,000〜70,000本が集まった繊維束を緯糸及び経糸としてそれぞれ製織することで製造されてもよい。これにより、炭素繊維織物110は、緯糸方向に配置した緯糸炭素繊維112と経糸方向に配置した経糸炭素繊維114を含んでいてもよい。 At least one carbon fiber fabric 110 may be vertically laminated. The carbon fiber woven fabric 110 may be manufactured by weaving a fiber bundle of 1,000 to 70,000 fibers as a weft yarn and a warp yarn, respectively. Accordingly, the carbon fiber woven fabric 110 may include the weft carbon fibers 112 arranged in the weft direction and the warp carbon fibers 114 arranged in the warp direction.

このとき、炭素繊維織物110の繊維束は、円形または楕円形の断面構造を有する。そして、炭素繊維織物110の繊維束は、平均離隔間隔が1.5〜2.0mmであってもよい。 At this time, the fiber bundle of the carbon fiber woven fabric 110 has a circular or elliptical cross-sectional structure. Further, the fiber bundle of the carbon fiber woven fabric 110 may have an average separation distance of 1.5 to 2.0 mm.

伝導性粉末120は、炭素繊維織物110の内部にコーティング方式によって充填されたz−軸の垂直電気伝導性を向上させる役割を行う。 The conductive powder 120 serves to improve the vertical electrical conductivity of the z-axis filled in the carbon fiber fabric 110 by a coating method.

本ステップでは、炭素繊維織物110の内部へ伝導性粉末120が容易に挿入できるようにするため炭素繊維織物110を震動させることが好ましい。 In this step, it is preferable to vibrate the carbon fiber fabric 110 so that the conductive powder 120 can be easily inserted into the carbon fiber fabric 110.

このため、伝導性粉末120は、炭素ナノチューブ(carbon nanotube)、黒鉛粉末(graphite powder)、炭素短繊維(chopped carbon fiber)、カーボンブラック(carbon black)、カーボン粉末(carbon powder)、グラファイトナノプレート(graphite nanoplate)及びグラフェン(graphene)のうちから選択された1種以上を含んでいてもよい。 Therefore, the conductive powder 120 includes carbon nanotubes, graphite powder, chopped carbon fiber, carbon black, carbon powder, and graphite nanoplate. It may include one or more selected from graphite nanoplate and graphene.

このとき、伝導性粉末120は、炭素繊維織物110の内部に粉末コーティング方式によって直接に充填されてもよい。他に、伝導性粉末120は、有機溶剤及び100cp以下の粘度を有するエポキシ液状樹脂に分散させた分散液を炭素繊維織物110の両面にエア噴射方式で塗布した後、乾燥して有機溶剤を揮発させる方式によってコーティングされてもよい。 At this time, the conductive powder 120 may be directly filled in the carbon fiber fabric 110 by a powder coating method. In addition, as the conductive powder 120, a dispersion liquid obtained by dispersing an organic solvent and an epoxy liquid resin having a viscosity of 100 cp or less is applied to both surfaces of the carbon fiber woven fabric 110 by an air injection method, and then dried to volatilize the organic solvent. The coating may be performed according to the method.

この場合、有機溶剤としては、揮発性に優れたエタノール、ブタノール、酢酸エチル、オクタノール、エトキシエタノールペンタノール、メトキシエタノール、エチレングリコール、アセトン、テトラヒドロフラン、ジメチルホルムアマイド、ジメチルアミン、ジクロロメタン及びジエチルエーテルのうち1種以上が用いられてもよい。 In this case, as the organic solvent, ethanol, butanol, ethyl acetate, octanol, ethoxyethanol pentanol, methoxyethanol, ethylene glycol, acetone, tetrahydrofuran, dimethylformamide, dimethylamine, dichloromethane and diethyl ether having excellent volatility are selected. One or more may be used.

上部及び下部の伝導性コーティング層形成
図3及び図5に示したように、上部及び下部の伝導性コーティング層形成ステップ(S120)では、伝導性粉末120が充填された炭素繊維織物110の上面及び下面に上部及び下部の伝導性コーティング層130、140を形成する。
Forming Upper and Lower Conductive Coating Layers As shown in FIGS. 3 and 5, in the upper and lower conductive coating layer forming step (S120), the upper surface of the carbon fiber woven fabric 110 filled with the conductive powder 120 and Upper and lower conductive coating layers 130 and 140 are formed on the lower surface.

かかる上部及び下部の伝導性コーティング層130、140は、それぞれ樹脂層と樹脂層内に含浸された伝導性フィラーを含む。 The upper and lower conductive coating layers 130 and 140 include a resin layer and a conductive filler impregnated in the resin layer, respectively.

樹脂層は、機械的強度を向上させる役割を行う。このような樹脂層は、フェノール樹脂、エポキシ樹脂、アミノ樹脂、尿素樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂及びポリイミド樹脂を含む熱硬化性樹脂のうちから選択されたいずれかの材質で形成される。 The resin layer plays a role of improving mechanical strength. Such a resin layer is made of any material selected from thermosetting resins including phenol resin, epoxy resin, amino resin, urea resin, melamine resin, unsaturated polyester resin, polyurethane resin and polyimide resin. To be done.

伝導性フィラーは、x−軸及びy−軸の表面電気伝導性を向上させるため樹脂層に添加して分散配置される。このため、伝導性フィラーは、炭素ナノチューブ(carbon nanotube)、黒鉛粉末(graphite powder)、炭素短繊維(chopped carbon fiber)、カーボンブラック(carbon black)、カーボン粉末(carbon powder)、グラファイトナノプレート(graphite nanoplate)及びグラフェン(graphene)のうちから選択された1種以上を含んでいてもよい。 The conductive filler is added to and dispersed in the resin layer in order to improve the surface electrical conductivity of the x-axis and the y-axis. Therefore, the conductive filler may be a carbon nanotube, a graphite powder, a chopped carbon fiber, a carbon black, a carbon powder, or a graphite nanoplate. It may include one or more selected from nanoplate and graphene.

このとき、上部及び下部の伝導性コーティング層130、140それぞれは、伝導性フィラーが固形粉基準として全体重量の15〜25重量%添加されることが好ましい。伝導性フィラーの含量が15重量%未満である場合には、表面電気伝導度を確保しがたい可能性がある。逆に、伝導性フィラーの含量が25重量%を超える場合には、ノズルの塞がりによるコーティング不良を引き起こす可能性がある。 In this case, each upper and lower conductive coating layer 130 and 140, it is preferable that the conductive filler is added 15 to 25 wt% of the total weight as solid content basis. If the content of the conductive filler is less than 15% by weight , it may be difficult to secure the surface electric conductivity. On the contrary, when the content of the conductive filler exceeds 25% by weight , the nozzle may be clogged to cause defective coating.

本ステップでは、上部及び下部の伝導性コーティング層130、140は、ナイフコーティング(knife coating)、スプレーコーティング(spray coating)、ディップコーティング(dip coating)及びバーコーティング(bar coating)方法のうちいずれか以上によって形成されてもよい。このとき、スプレー時間、ディップコーティング時間、ナイフの高さ又はバーの高さなどを調節することによって、上部及び下部の伝導性コーティング層130、140厚を調節できるようになる。 In this step, the upper and lower conductive coating layers 130 and 140 may include at least one of knife coating, spray coating, dip coating, and bar coating methods. May be formed by. At this time, the thickness of the upper and lower conductive coating layers 130 and 140 can be adjusted by adjusting the spray time, the dip coating time, the height of the knife or the height of the bar.

ホットプレス
図3及び図6に示したように、ホットプレスステップ(S130)では、炭素繊維織物110と上部及び下部の伝導性コーティング層130、140をホットプレスで圧着及び硬化して複合材分離板100を得る。
Hot Pressing As shown in FIGS. 3 and 6, in the hot pressing step (S130), the carbon fiber woven fabric 110 and the upper and lower conductive coating layers 130 and 140 are pressed and cured by hot pressing to form a composite material separating plate. Get 100.

このとき、ホットプレスは、130〜200℃で10〜30MPaの圧力条件下で10〜60分間行うことが好ましい。ホットプレス温度が130℃未満であるか、ホットプレス時間が10分未満である場合には、硬化が十分になされないおそれが高い。逆に、ホットプレス温度が200℃を超えるか、ホットプレス時間が60分を超える場合には、それ以上の効果上昇がなく製造コストのみを上昇させる要因に作用し得るため、非経済的である。 At this time, hot pressing is preferably performed at 130 to 200° C. under a pressure condition of 10 to 30 MPa for 10 to 60 minutes. If the hot pressing temperature is lower than 130° C. or the hot pressing time is shorter than 10 minutes, there is a high possibility that the curing will not be sufficiently performed. On the other hand, when the hot pressing temperature exceeds 200° C. or the hot pressing time exceeds 60 minutes, it is uneconomical because it does not further increase the effect and may act on the factor that increases only the manufacturing cost. ..

また、ホットプレス圧力が10MPa未満である場合には、炭素繊維織物110と上部及び下部の伝導性コーティング層130、140間の界面付着力が不十分であり、剥離が生じ得る。逆に、ホットプレス圧力が30MPaを超える場合には、過度な圧力によって炭素繊維織物110と上部及び下部の伝導性コーティング層130、140にクラックなどの損傷が生じ得る。 Further, when the hot pressing pressure is less than 10 MPa, the interfacial adhesion between the carbon fiber woven fabric 110 and the upper and lower conductive coating layers 130 and 140 is insufficient, and peeling may occur. On the contrary, if the hot pressing pressure exceeds 30 MPa, the carbon fiber woven fabric 110 and the upper and lower conductive coating layers 130 and 140 may be damaged by cracks due to excessive pressure.

このようなホットプレスステップ(S130)の際、圧着によって炭素繊維織物110と上部及び下部の伝導性コーティング層130、140厚が減少することになる。このようなホットプレスステップ(S130)を行った後、炭素繊維織物110は、200〜400μm厚を有して、上部及び下部の伝導性コーティング層130、140それぞれは、5〜100μm厚を有してもよい。 During the hot pressing step (S130), the thickness of the carbon fiber fabric 110 and the thicknesses of the upper and lower conductive coating layers 130 and 140 are reduced due to the pressure bonding. After performing the hot pressing step (S130), the carbon fiber woven fabric 110 has a thickness of 200 to 400 μm, and the upper and lower conductive coating layers 130 and 140 have a thickness of 5 to 100 μm. May be.

前記過程(S110〜S130)によって製造される複合材分離板は、炭素繊維織物の内部にパウダー状の伝導性粉末を先に充填した後、伝導性粉末が充填された炭素繊維織物の両面に上部及び下部の伝導性コーティング層を形成することによって、x−軸及びy−軸方向の表面電気伝導度と共にz−軸方向の垂直電気伝導性を改善することができる。 The composite material separation plate manufactured by the above process (S110 to S130) is prepared by first filling the inside of the carbon fiber woven fabric with the conductive powder powder and then depositing the conductive powder on both sides of the carbon fiber woven fabric. And forming a lower conductive coating layer can improve vertical electrical conductivity in the z-axis direction as well as surface electrical conductivity in the x-axis and y-axis directions.

従って、本発明の実施例による方法で製造される複合材分離板は、炭素繊維織物の両面に形成された上部及び下部の伝導性コーティング層によってx−軸及びy−軸方向の表面電気伝導度を確保できるとともに、炭素繊維織物の内部に充填された伝導性粉末が炭素繊維織物の間間を有機的に連結させる構造を有することで、z−軸方向の垂直電気的特性が改善して接触抵抗が改善する。 Accordingly, the composite separator manufactured by the method according to the embodiment of the present invention may have a surface electrical conductivity in the x-axis and y-axis directions by the upper and lower conductive coating layers formed on both sides of the carbon fiber fabric. In addition, the conductive powder filled inside the carbon fiber woven fabric has a structure to organically connect the carbon fiber woven fabrics to each other, thereby improving the vertical electrical characteristics in the z-axis direction and improving the contact. Resistance improves.

この結果、本発明の実施例による方法で製造された複合材分離板は、表面電気伝導度:100〜200S/cm、接触抵抗:10mΩ/cm2以下及び屈曲強図:80MPa以下を有する。 As a result, the composite material separator manufactured by the method according to the embodiment of the present invention has a surface electric conductivity of 100 to 200 S/cm, a contact resistance of 10 /cm 2 or less, and a bending strength diagram of 80 MPa or less.

<実施例>
以下では、本発明の好ましい実施例によって本発明の構成及び作用をさらに詳説する。但し、これは、本発明の好ましい例示として提示されたものであって、どのような意味でも、これによって本発明が制限されると解釈されてはならない。
<Example>
Hereinafter, the configuration and operation of the present invention will be described in more detail with reference to the preferred embodiments of the present invention. However, this is presented as a preferred example of the present invention, and should not be construed as limiting the present invention in any way.

ここに記載していない内容は、この技術分野における熟練者であれば、技術的に十分に類推することができるため、その説明を省略する。 Since the contents not described here can be sufficiently inferred by a person skilled in the art, it will not be described.

1.複合材分離板製造
<実施例1>
250μmの平均厚を有する炭素繊維織物をアセトンにグラファイトナノプレート(GNP)3wt%を分散した後、GNPを炭素繊維織物の表面にバインディングさせるようにエポキシ樹脂10wt%を混合した溶液に浸漬した後、15分間超音波(Sonication)震動処理し、60℃で1時間乾燥して炭素繊維織物の内部へグラファイトナノプレート(GNP)を充填させた。
1. Manufacture of composite material separating plate <Example 1>
A carbon fiber fabric having an average thickness of 250 μm was dispersed in acetone with 3 wt% of graphite nanoplates (GNP), and then dipped in a solution containing 10 wt% of an epoxy resin so as to bind GNP to the surface of the carbon fiber fabric. Ultrasonic (Sonication) vibration treatment was performed for 15 minutes, followed by drying at 60° C. for 1 hour to fill the inside of the carbon fiber woven fabric with graphite nanoplates (GNP).

次に、エポキシ樹脂100重量部に炭素ナノチューブ(CNT)5+グラファイトナノプレート(GNT)15重量部を添加した分散液を炭素繊維織物の上部及び下部にナイフ(Knife)コーティング方法で150μm厚にそれぞれコーティングして、上部及び下部の伝導性コーティング層を形成した。 Next, a dispersion prepared by adding 100 parts by weight of an epoxy resin and 15 parts by weight of carbon nanotubes (CNT) 5+graphite nanoplates (GNT) was coated on the upper and lower parts of the carbon fiber fabric to a thickness of 150 μm by a knife coating method. Then, the upper and lower conductive coating layers were formed.

次に、グラファイトナノプレート(GNP)が挿入された炭素繊維織物と上部及び下部の伝導性コーティング層を150℃及び20MPaの圧力条件下で、30分間ホットプレスで圧着及び硬化して250μm 厚の複合材分離板を製造した。 Next, the carbon fiber woven fabric in which the graphite nanoplate (GNP) was inserted and the upper and lower conductive coating layers were pressed and cured by hot pressing for 30 minutes at a temperature of 150° C. and 20 MPa to form a composite having a thickness of 250 μm. A wood separating plate was manufactured.

<実施例2>
炭素繊維織物をアセトンにグラファイトナノプレート(GNP)5wt%及びエポキシ樹脂10wt%を分散混合した溶液に浸漬したことを除いては、実施例1と同じ方法で複合材分離板を製造した。
<Example 2>
A composite material separating plate was manufactured in the same manner as in Example 1, except that the carbon fiber woven fabric was immersed in a solution in which 5 wt% of graphite nanoplate (GNP) and 10 wt% of epoxy resin were dispersed and mixed in acetone.

<実施例3>
炭素繊維織物をアセトンにグラファイトナノプレート(GNP)3wt%及びエポキシ樹脂15wt%を分散混合した溶液に浸漬したことを除いては、実施例1と同じ方法で複合材分離板を製造した。
<実施例4>
炭素繊維織物をアセトンにグラファイトナノプレート(GNP)3wt%及びエポキシ樹脂10wt%を分散混合した溶液に浸漬して30分間超音波(Sonication)震動処理し、60℃で1時間乾燥したことを除いては、実施例1と同じ方法で複合材分離板を製造した。
<Example 3>
A composite material separating plate was manufactured in the same manner as in Example 1, except that the carbon fiber woven fabric was immersed in a solution in which 3 wt% of graphite nanoplate (GNP) and 15 wt% of epoxy resin were mixed and mixed in acetone.
<Example 4>
Except that the carbon fiber woven fabric was immersed in a solution in which 3 wt% of graphite nanoplate (GNP) and 10 wt% of epoxy resin were mixed and mixed in acetone, subjected to ultrasonic vibration for 30 minutes (Sonication), and dried at 60°C for 1 hour Manufactured a composite material separating plate in the same manner as in Example 1.

<実施例5>
炭素繊維織物をアセトンにグラファイトナノプレート(GNP)3wt%及びエポキシ樹脂10wt%を分散混合した溶液に浸漬して15分間超音波(Sonication)震動処理し、60℃で2時間乾燥したことを除いては、実施例1と同じ方法で複合材分離板を製造した。
<Example 5>
Except that the carbon fiber woven fabric was immersed in a solution in which 3 wt% of graphite nanoplate (GNP) and 10 wt% of epoxy resin were mixed and mixed in acetone, subjected to ultrasonic vibration for 15 minutes, and dried at 60° C. for 2 hours. Manufactured a composite material separating plate in the same manner as in Example 1.

<比較例1>
炭素繊維織物の上部及び下部にエポキシ樹脂100重量部に炭素ナノチューブ(CNT)15重量部を添加した分散液をナイフ(Knife)コーティング方法で150μm厚にそれぞれコーティングして、上部及び下部の伝導性コーティング層を形成した。
<Comparative Example 1>
A dispersion of 100 parts by weight of epoxy resin and 15 parts by weight of carbon nanotubes (CNT) is coated on the upper and lower parts of the carbon fiber fabric to a thickness of 150 μm by the Knife coating method, and the upper and lower conductive coatings are formed. Layers were formed.

次に、炭素繊維織物と上部及び下部の伝導性コーティング層を160℃及び20MPaの圧力条件下で、30分間ホットプレスで圧着及び硬化して複合材分離板を製造した。 Next, the carbon fiber woven fabric and the upper and lower conductive coating layers were pressed and cured by hot pressing for 30 minutes under a pressure condition of 160° C. and 20 MPa to manufacture a composite material separation plate.

<比較例2>
炭素繊維織物をアセトンにグラファイトナノプレート(GNP)10wt%及びエポキシ樹脂10wt%を分散混合した溶液に浸漬したことを除いては、実施例1と同じ方法で複合材分離板を製造した。
<Comparative example 2>
A composite material separating plate was manufactured in the same manner as in Example 1, except that the carbon fiber woven fabric was immersed in a solution in which 10 wt% graphite nanoplate (GNP) and 10 wt% epoxy resin were mixed and mixed in acetone.

<比較例3>
炭素繊維織物をアセトンにグラファイトナノプレート(GNP)3wt%及びエポキシ樹脂20wt%を分散混合した溶液に浸漬したことを除いては、実施例1と同じ方法で複合材分離板を製造した。
<Comparative example 3>
A composite material separation plate was manufactured in the same manner as in Example 1, except that the carbon fiber woven fabric was immersed in a solution in which 3 wt% of graphite nanoplate (GNP) and 20 wt% of epoxy resin were mixed and mixed in acetone.

<比較例4>
炭素繊維織物をアセトンにグラファイトナノプレート(GNP)3wt%及びエポキシ樹脂10wt%を分散混合した溶液に浸漬して5分間超音波(Sonication)震動処理し、60℃で1時間乾燥したことを除いては、実施例1と同じ方法で複合材分離板を製造した。
<Comparative example 4>
Except that the carbon fiber woven fabric was immersed in a solution in which 3 wt% of graphite nanoplate (GNP) and 10 wt% of epoxy resin were mixed and mixed in acetone, subjected to ultrasonic vibration for 5 minutes and dried at 60° C. for 1 hour. Manufactured a composite material separating plate in the same manner as in Example 1.

<比較例5>
炭素繊維織物をアセトンにグラファイトナノプレート(GNP)3wt%及びエポキシ樹脂10wt%を分散混合した溶液に浸漬して15分間超音波(Sonication)震動処理し、60℃で30分乾燥したことを除いては、実施例1と同じ方法で複合材分離板を製造した。
<Comparative Example 5>
Except that the carbon fiber woven fabric was immersed in a solution in which 3 wt% of graphite nanoplate (GNP) and 10 wt% of epoxy resin were mixed and mixed in acetone, and subjected to ultrasonic vibration for 15 minutes and then dried at 60° C. for 30 minutes. Manufactured a composite material separating plate in the same manner as in Example 1.

2.物性評価
表1は、実施例1〜5及び比較例1〜5によって製造された複合材分離板に関する物性評価結果を示したものである。
2. Evaluation of physical properties Table 1 shows the results of evaluation of physical properties of the composite material separation plates manufactured in Examples 1 to 5 and Comparative Examples 1 to 5.

1)表面電気伝導度
4探針法(4−point probe method)に基づいて表面電気伝導度を測定した。
1) Surface electric conductivity The surface electric conductivity was measured based on the 4-point probe method.

2)接触抵抗
測定方法:銅電極/GDL/分離板/GDL/銅電極の順に積層した後、両方の銅電極に5Aの電流を印加しながら、銅電極の間で発生する電圧降下を測定した。ここから出た電圧に加えた電流値を割って抵抗を測定して、測定に用いられた分離板の面積を掛けた。この時の分離板は、横5cm、縦5cmであった 。
2) Contact resistance measurement method: After stacking copper electrode/GDL/separator/GDL/copper electrode in this order, the voltage drop generated between the copper electrodes was measured while applying a current of 5 A to both copper electrodes. .. The resistance was measured by dividing the current value applied to the voltage generated from this, and the resistance was multiplied by the area of the separation plate used for the measurement. At this time, the separation plate had a width of 5 cm and a length of 5 cm.

銅電極とGDL間の接触抵抗を引くため、銅電極/GDL/銅電極の順に積層した後に抵抗を測定しており、上記値から引いて分離板の接触抵抗を計算した。 In order to draw the contact resistance between the copper electrode and the GDL, the resistance was measured after stacking copper electrode/GDL/copper electrode in this order, and the contact resistance of the separation plate was calculated by subtracting from the above value.

3)屈曲強度
ASTM D790−10に基づいて屈曲強度を測定した。この時の試片の大きさは、横1.27cm、縦12.7cmに製作したもものを用いた。
3) Flexural strength The flexural strength was measured based on ASTM D790-10. At this time, the size of the test piece used was 1.27 cm in width and 12.7 cm in length.

Figure 0006722770
Figure 0006722770

表1に示したように、実施例1〜5によって製造された複合材分離板の場合、表面電気伝導度及び屈曲強度は、比較例1〜5と大きな差はなかったが、接触抵抗が比較例1〜5に比べてかなり低い6.9〜7.5mΩ/cm2を有することが分かる。 As shown in Table 1, in the case of the composite material separation plates manufactured according to Examples 1 to 5, the surface electric conductivity and the bending strength were not significantly different from those of Comparative Examples 1 to 5, but the contact resistances were compared. It can be seen that it has a significantly lower 6.9-7.5 /cm 2 compared to Examples 1-5.

一方、グラファイトナノプレート(GNP)を充填しない比較例1の場合、表面電気伝導度には大きな差はないが、接触抵抗が実施例1に比べてかなり高く測定されており、試片内炭素の割合が少なく、屈曲強度は少し高く測定された。 On the other hand, in the case of Comparative Example 1 in which the graphite nanoplate (GNP) was not filled, there was no big difference in the surface electric conductivity, but the contact resistance was measured to be considerably higher than that in Example 1, and the carbon content in the sample was The proportion was low and the flexural strength was measured a little higher.

また、グラファイトナノプレート(GNP)を10wt%添加した比較例2の場合、炭素繊維とGNPの接触点が多くなり、実施例1に比べて接触抵抗が少し減少しており、試片内炭素の含量が多いため、屈曲強度が減少したことを確認することができる。 In addition, in the case of Comparative Example 2 in which 10 wt% of graphite nanoplate (GNP) was added, the number of contact points between the carbon fiber and GNP was large, and the contact resistance was slightly reduced as compared with Example 1, indicating that Since the content is high, it can be confirmed that the bending strength is reduced.

また、エポキシ樹脂が20wt%添加された比較例3の場合、過量のエポキシ樹脂が、伝導性コーティング層が覆われる前に炭素繊維表面を覆うため、縁切層として作用し、実施例1に比べて接触抵抗がかなり高く測定されたことを確認することができる。 In addition, in the case of Comparative Example 3 in which 20 wt% of the epoxy resin was added, an excessive amount of the epoxy resin covered the surface of the carbon fiber before the conductive coating layer was covered, so that it acted as an edge cutting layer, and compared with Example 1. Therefore, it can be confirmed that the contact resistance was measured to be considerably high.

また、超音波(Sonication)震動処理を5分間行った比較例4の場合、超音波震動処理時間が不十分であり、グラファイトナノプレート(GNP)が炭素繊維の内部へ十分に充填されず、接触抵抗が実施例1に比べて高く測定されたことを確認することができる。 In addition, in the case of Comparative Example 4 in which ultrasonic wave (Sonication) vibration treatment was performed for 5 minutes, the ultrasonic vibration treatment time was insufficient, and the graphite nanoplate (GNP) was not sufficiently filled into the inside of the carbon fiber, resulting in contact. It can be confirmed that the resistance was measured to be higher than that in Example 1.

また、乾燥時間を30分に減少した比較例5の場合、アセトンの乾燥時間が不十分であるため、試片内に残留しながら伝導性コーティング層を塗布して、熱圧着させる過程において蒸発して試片の内部に気孔を形成させ、接触抵抗は高くなり、気孔によって屈曲強度が低下したことを確認することができる。 Further, in the case of Comparative Example 5 in which the drying time was reduced to 30 minutes, since the drying time of acetone was insufficient, the conductive coating layer was applied while remaining in the sample and evaporated in the process of thermocompression bonding. It can be confirmed that pores are formed inside the test piece, the contact resistance is increased, and the flexural strength is decreased due to the pores.

以上では、本発明の実施例を中心にして説明したが、本発明が属する技術分野で通常の知識を有する技術者の水準で多様な変更や変形を加えることができる。このような変更と変形は、本発明が提供する技術思想の範囲を脱しない限り、本発明に属すると言える。従って、本発明の権利範囲は、以下に記載する請求範囲によって判断すべきである。 Although the embodiments of the present invention have been mainly described above, various changes and modifications can be made at the level of an engineer having ordinary knowledge in the technical field to which the present invention belongs. It can be said that such changes and modifications belong to the present invention as long as they do not depart from the scope of the technical idea provided by the present invention. Therefore, the scope of rights of the present invention should be determined by the claims set forth below.

Claims (6)

200〜400μm厚を有する炭素繊維織物;
前記炭素繊維織物の内部に充填された電気伝導性粉末;及び、
前記炭素繊維織物の上面及び下面にそれぞれ配置して、前記炭素繊維織物と合着した上部及び下部の電気伝導性コーティング層;
を含む複合材分離板であり、
前記上部及び下部の電気伝導性コーティング層は、それぞれ樹脂層と、前記樹脂層内に含浸された電気伝導性フィラーを含み、
前記上部及び下部の電気伝導性コーティング層は、それぞれ、前記電気伝導性フィラーが前記電気伝導性コーティング層中に15〜25重量%添加され、
前記複合材分離板は、表面電気伝導度が100〜200S/cm、接触抵抗が10mΩ/cm以下及び屈曲強度が80MPa以下を示す、
合材分離板。
Carbon fiber fabric having a thickness of 200-400 μm ;
Electrically conductive powder filled inside the carbon fiber fabric; and
Upper and lower electrically conductive coating layers which are respectively disposed on the upper surface and the lower surface of the carbon fiber woven fabric and which are bonded to the carbon fiber woven fabric;
Is a composite material separating plate containing
The upper and lower electrically conductive coating layers each include a resin layer and an electrically conductive filler impregnated in the resin layer,
The upper and lower electrically conductive coating layers each include the electrically conductive filler in an amount of 15 to 25 wt% in the electrically conductive coating layer,
The composite material separator has a surface electric conductivity of 100 to 200 S/cm, a contact resistance of 10 mΩ/cm or less, and a bending strength of 80 MPa or less.
Double if material separating plate.
前記炭素繊維織物は、
少なくともつ以上が垂直に積層された、請求項1に記載の複合材分離板。
The carbon fiber fabric is
The composite material separating plate according to claim 1, wherein at least two or more are vertically stacked.
前記上部及び下部の電気伝導性コーティング層は、
前記炭素繊維織物との合着によって、前記炭素繊維織物の内部へ一部が含浸されて、互いに一体に連結された、請求項1に記載の複合材分離板。
The upper and lower electrically conductive coating layers are
The composite material separating plate according to claim 1, wherein a part of the carbon fiber woven fabric is impregnated into the carbon fiber woven fabric by being attached to the carbon fiber woven fabric, and the carbon fiber woven fabric and the carbon fiber woven fabric are integrally connected to each other.
前記上部及び下部の電気伝導性コーティング層は、
それぞれ5〜100μm厚を有する、請求項1に記載の複合材分離板。
The upper and lower electrically conductive coating layers are
The composite separator according to claim 1, each having a thickness of 5 to 100 μm.
前記樹脂層は、
フェノール樹脂、エポキシ樹脂、アミノ樹脂、尿素樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂及びポリイミド樹脂から選択されたいずれかの材質で形成された、請求項1に記載の複合材分離板。
The resin layer is
Phenol resins, epoxy resins, amino resins, urea resins, melamine resins, unsaturated polyester resins, which is formed by any material selected polyurethane resin and polyimide resins or al, composite separator plate of claim 1 ..
前記電気伝導性粉末及び電気伝導性フィラーは、それぞれ、
炭素ナノチューブ(carbon nanotube)、黒鉛粉末(graphite powder)、炭素短繊維(chopped carbon fiber)、カーボンブラック(carbon black)、カーボン粉末(carbon powder)、グラファイトナノプレート(graphite nanoplate)及びグラフェン(graphene)のうちから選択された1種以上を含む、請求項1に記載の複合材分離板。
The electrically conductive powder and the electrically conductive filler, respectively,
Carbon nanotube, graphite powder, chopped carbon fiber, carbon black, carbon powder, graphite nanophene and graphene phenoplate. The composite material separation plate according to claim 1 , comprising one or more selected from the above.
JP2018554550A 2016-04-21 2016-12-02 Composite material separation plate Active JP6722770B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2016-0048973 2016-04-21
KR1020160048973A KR101926457B1 (en) 2016-04-21 2016-04-21 Composite materials separator and method of manufacturing the same
PCT/KR2016/014111 WO2017183791A1 (en) 2016-04-21 2016-12-02 Composite separator plate and production method therefor

Publications (2)

Publication Number Publication Date
JP2019514179A JP2019514179A (en) 2019-05-30
JP6722770B2 true JP6722770B2 (en) 2020-07-15

Family

ID=60117063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018554550A Active JP6722770B2 (en) 2016-04-21 2016-12-02 Composite material separation plate

Country Status (3)

Country Link
JP (1) JP6722770B2 (en)
KR (1) KR101926457B1 (en)
WO (1) WO2017183791A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101987211B1 (en) * 2017-12-26 2019-06-10 한국항공대학교산학협력단 Method of manufacturing for textile composite with smart composite fiber using 3d printer and textile composite with smart composite fiber

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050120515A (en) * 2004-06-19 2005-12-22 한국타이어 주식회사 A carbon composite, method for preparing the same, a fuel cell separator using the carbon composites
JP4650673B2 (en) * 2004-12-14 2011-03-16 東海カーボン株式会社 Separator material for fuel cell and manufacturing method thereof
JP2006347837A (en) * 2005-06-17 2006-12-28 Society Of Japanese Aerospace Co Inc Method for manufacturing continuous fiber-reinforced composite material
KR100797827B1 (en) * 2006-09-19 2008-01-24 재단법인 포항산업과학연구원 Method of coating on carbon fiber-epoxy composite
KR100901362B1 (en) * 2007-08-01 2009-06-05 한국과학기술원 Bipolar plate for fuel cell and manufacturing method thereof
US7981501B2 (en) * 2008-12-02 2011-07-19 GM Global Technology Operations LLC Laminated composites and methods of making the same
KR101092604B1 (en) * 2010-05-28 2011-12-13 주식회사 에이엔씨아이 Polymer composite comprising plated carbon fiber for manufacturing bipolar plate of fuel cell
KR101173059B1 (en) * 2010-09-29 2012-08-13 한국과학기술원 Separation plate for Polymer Electrolyte Membrane Fuel Cell and method for manufacturing the same
KR101371337B1 (en) * 2012-05-16 2014-03-10 한국과학기술원 Carbon fabric bipolar plate of fuel cell and method for manufacturing the same
JP5797164B2 (en) * 2012-07-13 2015-10-21 信越ポリマー株式会社 Manufacturing method of fuel cell separator
KR101353354B1 (en) * 2012-12-21 2014-01-22 한국과학기술원 Manufacturing for fiber reinforced composite material bipolar plate of fuel cell
KR101483282B1 (en) * 2013-11-06 2015-01-16 한국과학기술원 Method for manufacturing graphite coated composite bipolar plate of cell
KR102003682B1 (en) * 2014-09-18 2019-07-26 (주)엘지하우시스 Flow channel plate for fuel cell and method of manufacturing the same

Also Published As

Publication number Publication date
KR20170120452A (en) 2017-10-31
WO2017183791A1 (en) 2017-10-26
JP2019514179A (en) 2019-05-30
KR101926457B1 (en) 2018-12-07

Similar Documents

Publication Publication Date Title
JP5537664B2 (en) Conductive sheet and manufacturing method thereof
JP5987440B2 (en) Fine porous layer sheet for fuel cell and method for producing the same
KR102478772B1 (en) Bipolar plate for fuel cell, method of the same
JP5954506B1 (en) Carbon sheet, gas diffusion electrode substrate, and fuel cell
TW200401313A (en) Laminated electronic component
US20150099189A1 (en) Pasting paper made of glass fiber nonwoven comprising carbon graphite
EP2858143B1 (en) New pasting paper made of glass fiber nonwoven comprising carbon graphite
CN107302097B (en) Multi-layer carbon substrate for gas diffusion layer
US20180159122A1 (en) Conductive mat for battery electrode plate reinforcement and methods of use therefor
JP2002124266A (en) Fuel cell diffusion layer, its manufacturing method, and manufacturing device
US11283082B2 (en) Gas diffusion electrode and production method therefor
JP6722770B2 (en) Composite material separation plate
US10084170B2 (en) Pasting paper made of glass fiber nonwoven comprising carbon graphite
JP2002522885A (en) Layer material
JP4965832B2 (en) Manufacturing method of fuel cell separator and fuel cell separator
KR20170068686A (en) Composite materials separator and method of manufacturing the same
KR102003682B1 (en) Flow channel plate for fuel cell and method of manufacturing the same
JPWO2018003950A1 (en) Coil for rotating electrical machine, method for manufacturing coil for rotating electrical machine, mica tape, method for manufacturing mica tape, cured product and insulator of mica tape
KR101926458B1 (en) Composite materials separator and method of manufacturing the same
CN111048800A (en) Bipolar plate, preparation method thereof and fuel cell
US20100008020A1 (en) Electrode device
JP5416990B2 (en) Porous carbon electrode substrate, membrane-electrode assembly and solid polymer fuel cell using the same
CN107925093A (en) Gas-diffusion electrode and its manufacture method
KR20100098497A (en) Aid for electrical contacting of high-temperature fuel cells and method for production thereof
KR102388815B1 (en) High density gas diffusion layer, preparing method thereof, electrode, membrane-electrode assembly, and fuel cell emplying the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200622

R150 Certificate of patent or registration of utility model

Ref document number: 6722770

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250