KR101483282B1 - Method for manufacturing graphite coated composite bipolar plate of cell - Google Patents

Method for manufacturing graphite coated composite bipolar plate of cell Download PDF

Info

Publication number
KR101483282B1
KR101483282B1 KR20130134253A KR20130134253A KR101483282B1 KR 101483282 B1 KR101483282 B1 KR 101483282B1 KR 20130134253 A KR20130134253 A KR 20130134253A KR 20130134253 A KR20130134253 A KR 20130134253A KR 101483282 B1 KR101483282 B1 KR 101483282B1
Authority
KR
South Korea
Prior art keywords
composite material
expanded graphite
carbon fiber
fiber composite
graphite foils
Prior art date
Application number
KR20130134253A
Other languages
Korean (ko)
Inventor
이대길
김기현
최재헌
남수현
임준우
최일범
유영호
김민국
이동영
김부기
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR20130134253A priority Critical patent/KR101483282B1/en
Application granted granted Critical
Publication of KR101483282B1 publication Critical patent/KR101483282B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Abstract

The present invention provides a method for manufacturing a graphite coated composite bipolar plate for a battery, which manufactures a composite bipolar plate by co-curing laminated carbon fiber composite material sheets and expanded graphite foils. According to the present invention, multiple carbon fiber composite material sheets and multiple expanded graphite foils are laminated alternately, and the carbon fiber composite material sheets and the expanded graphite foils are co-cured so that the expanded graphite foils are bonded to both sides of the laminated multiple carbon fiber composite material sheets. The expanded graphite foils are individually separated to form expanded graphite layers on both sides of the carbon fiber composite material sheets. Also, two expanded graphite foils are laminated between carbon fiber composite material sheets, a film is interposed between the two expanded graphite foils, and, then, the carbon fiber composite material sheets and two expanded graphite foils are co-cured. According to the present invention, the carbon fiber composite material sheets and the expanded graphite foils are alternately laminated, and the laminated carbon fiber composite material sheets and expanded graphite foils are co-cured to manufacture a composite bipolar plate, thereby improving the productivity and reducing the production costs. Furthermore, the expanded graphite layer is uniformly coated on the surface of the composite bipolar plate without a post-processing, thereby improving the quality.

Description

전지용 흑연 코팅 복합재료 분리판의 제조 방법{METHOD FOR MANUFACTURING GRAPHITE COATED COMPOSITE BIPOLAR PLATE OF CELL}TECHNICAL FIELD [0001] The present invention relates to a method for producing a graphite-coated composite material separator for a battery,

본 발명은 전지용 분리판에 관한 것으로, 보다 상세하게는 적층되어 있는 탄소섬유 복합재료시트(Carbon fiber composite material sheet)와 팽창흑연포일(Expanded graphite foil)을 동시경화(Co-cure)에 의하여 복합재료 분리판을 제조하는 전지용 흑연 코팅 복합재료 분리판의 제조 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a separator for a battery, and more particularly, to a separator for a battery, which comprises a carbon fiber composite material sheet and an expanded graphite foil which are co- To a method for producing a graphite-coated composite material separator for a battery.

연료전지는 연료의 산화에 의하여 발생되는 화학에너지를 전기에너지로 직접 변환시켜 주는 에너지 변환장치이다. 연료전지는 전지에 이용되는 연료의 종류에 따라 다양한 형태와 구조로 개발되어 있다. 고분자 전해질 연료전지(Polymer Electrolyte Membrane Fuel Cell, PEMFC)는 수소이온 교환특성을 갖는 고분자막을 전해질로 사용한다. 또한, 여러 가지 에너지 저장 시스템(Energy storage system) 중에서 재생에너지의 저장에 효율적인 대용량 이차전자(Secondary battery)로 레독스 흐름 전지(Redox flow battery)의 연구와 개발이 활발하게 진행되고 있다. 레독스 흐름 전지는 전해질(Electrolyte) 중의 활물질(Active material)이 산화(Oxdaition)-환원(Reduction)되어 충전·방전되는 시스템으로 전해액의 화학적 에너지를 직접 전기에너지 저장시키는 전기화학적 축전장치이다. Fuel cells are energy conversion devices that directly convert the chemical energy generated by the oxidation of fuel into electrical energy. Fuel cells have been developed in various forms and structures depending on the type of fuel used in the battery. Polymer Electrolyte Membrane Fuel Cell (PEMFC) uses a polymer membrane with hydrogen ion exchange properties as an electrolyte. Also, research and development of redox flow battery is being actively carried out as a secondary battery which is effective for storing renewable energy among various energy storage systems. A redox flow cell is an electrochemical storage device in which the active energy of an electrolyte is oxidized and reduced to charge and discharge the chemical energy of the electrolyte directly.

미국 특허 제7,862,922호 "연료전지용 고분자 전해질막 및 이것을 포함하는 연료전지 시스템(Polymer electrolyte membrane for fuel cell and fuel cell system comprising same)"과 미국 특허 제7,901,836호 "고분자 전해질 연료전지(Polymer electrolyte fuel cell)"이 개시되어 있다. 이 특허 문헌들에 개시되어 있는 PEMFC의 스택(Stack)은 기본적으로 복수의 단위전지(Unit cell/Single cell)들과 두 개의 엔드플레이트(End plate)들로 구성되어 있다. U.S. Patent No. 7,862,922 entitled " Polymer electrolyte membrane for a fuel cell and a fuel cell system comprising same "and U.S. Patent No. 7,901,836" Polymer electrolyte fuel cell " " The stack of the PEMFC disclosed in these patent documents basically consists of a plurality of unit cells and two end plates.

PEMFC는 양극(Anode), 음극(Cathode), 고분자 전해질막(Polymer electrolyte membrane), 두 개의 가스확산층(Gas diffusion layer, GDL)들, 복수의 개스킷(Gasket)들과 두 개의 분리판들로 구성되어 있다. 분리판은 전기저항이 낮고, 내화학성(Chemical resistance)과 기계적 물성이 높으며, 수소와 산소의 누설을 방지하기 위하여 가스투과율이 낮아야 한다. 또한, 인접하는 두 분리판들 사이의 전기접촉저항(Electrical contact resistance)이 낮아야 한다. 분리판의 재료는 흑연(Graphite), 팽창 카본(Expanded carbon), 스테인리스스틸(Stainless steel)로 구성되거나 고분자 기지(Polymer matrix)에 카본입자, 흑연입자를 첨가한 고분자 기지 섬유강화 복합재료(Polymer matrix composite)가 사용되고 있다. The PEMFC consists of an anode, a cathode, a polymer electrolyte membrane, two gas diffusion layers (GDLs), a plurality of gaskets and two separators have. The separator has low electrical resistance, high chemical resistance and mechanical properties, and low gas permeability to prevent leakage of hydrogen and oxygen. Also, the electrical contact resistance between two adjacent separator plates should be low. The material of the separator plate is composed of graphite, expanded carbon, stainless steel, or a polymer matrix with carbon particles and graphite particles added to a polymer matrix composite is used.

레독스 흐름 전지는 미국 특허 제8,288,030호, 미국 특허 제8,221,911호, 미국 특허 제7,537,859호 등 많은 특허 문헌들에 개시되어 있다. 레독스 흐름 전지는 단위 셀(Unit cell/Single cell)들이 직렬로 적층되어 있는 스택과, 산화 상태가 각각 다른 활물질이 저장되어 있는 탱크들과, 충전·방전 시 활물질을 순환시키는 펌프들로 구성되어 있다. 단위 셀들은 기본적으로 멤브레인(Membrane)과, 멤브레인의 양쪽에 배치되어 있는 전극들과, 전극들의 양쪽에 배치되어 있는 분리판들을 구비한다. 분리판은 흑연을 소재로 제조되고 있다.Redox flow cells are disclosed in many patent documents such as U.S. Patent No. 8,288,030, U.S. Patent No. 8,221,911, U.S. Patent No. 7,537,859. The redox flow battery is composed of a stack in which unit cells (single cells) are stacked in series, tanks in which different oxidation states are stored, and pumps that circulate the active material during charging and discharging have. The unit cells basically have a membrane, electrodes disposed on both sides of the membrane, and separators disposed on both sides of the electrodes. The separator is made of graphite.

상기한 바와 같은 종래 전지용 흑연 분리판은 접촉저항이 낮고 전기전도도가 높으나, 얇은 흑연판을 밀링(Milling) 등의 기계가공에 의하여 성형해야 하므로 제조비가 비싸고, 생산성이 낮으며, 충격에 의한 파손 가능성이 큰 문제가 있다. 한편, 팽창 카본 분리판과 고분자 기지 섬유강화 복합재료는 유체의 흐름을 위한 채널의 미세한 성형이 어렵고, 전기전도도가 흑연에 비하여 낮은 단점이 있다. 고분자 기지 섬유강화 복합재료 분리판은 전기저항이 높은 단점이 있다. 스테인리스스틸 분리판은 생산성이 높으나, 접촉저항이 높고 부식이 발생되는 단점이 있다. Since the conventional graphite separator for a battery has a low contact resistance and a high electrical conductivity, a thin graphite plate must be formed by machining such as milling, resulting in high manufacturing cost, low productivity, This is a big problem. On the other hand, the expanded carbon separator and the polymer matrix-based fiber reinforced composite material have a disadvantage in that it is difficult to finely form a channel for fluid flow and the electric conductivity is lower than that of graphite. Polymer base fiber reinforced composite separator plates have a disadvantage of high electrical resistance. The stainless steel separator is high in productivity, but has a disadvantage of high contact resistance and corrosion.

본 발명은 상기와 같은 종래 전지용 분리판의 여러 가지 문제점들을 해결하기 위한 것이다. 본 발명의 목적은, 적층되어 있는 탄소섬유 복합재료시트와 팽창흑연포일을 동시경화에 의하여 복합재료 분리판으로 제조하여 생산성을 향상시키고, 생산비를 절감할 수 있는 새로운 전지용 흑연 코팅 복합재료 분리판의 제조 방법을 제공하는 것이다.The present invention is intended to solve various problems of the separator for a conventional battery. An object of the present invention is to provide a new graphite-coated composite material separator for a battery, which can be produced as a composite material separator by simultaneous curing of a laminated carbon fiber composite material sheet and an expanded graphite foil, And a method for manufacturing the same.

본 발명의 다른 목적은, 팽창흑연층이 균일하게 코팅되어 있는 전지용 흑연 코팅 복합재료 분리판의 제조 방법을 제공하는 것이다. Another object of the present invention is to provide a method for producing a graphite-coated composite material separator for a battery in which an expanded graphite layer is uniformly coated.

본 발명의 일 측면에 따르면, 전지용 흑연 코팅 복합재료 분리판의 제조 방법이 제공된다. 본 발명에 따른 전지용 흑연 코팅 복합재료 분리판의 제조 방법은, 복수의 탄소섬유 복합재료시트들과 복수의 팽창흑연포일들을 번갈아 적층하는 단계와; 적층되어 있는 복수의 탄소섬유 복합재료시트들의 양면에 복수의 팽창흑연포일들이 접합되도록 복수의 탄소섬유 복합재료시트들과 복수의 팽창흑연포일들을 동시경화하는 단계와; 복수의 팽창흑연포일들 각각을 분리하여 복수의 탄소섬유 복합재료시트들의 양면에 팽창흑연층을 형성하는 단계를 포함한다. According to an aspect of the present invention, there is provided a method of manufacturing a graphite-coated composite material separator for a battery. The method for manufacturing a graphite-coated composite material separator for a battery according to the present invention includes the steps of: alternately laminating a plurality of sheets of carbon fiber composite material and a plurality of expanded graphite foils; Simultaneously curing a plurality of carbon fiber composite material sheets and a plurality of expanded graphite foils such that a plurality of expanded graphite foils are bonded to both sides of a plurality of carbon fiber composite material sheets stacked; And separating each of the plurality of expanded graphite foils to form an expanded graphite layer on both sides of the plurality of carbon fiber composite material sheets.

본 발명의 다른 측면에 따른 전지용 흑연 코팅 복합재료 분리판의 제조 방법은, 한 개의 탄소섬유 복합재료시트와 두 개의 팽창흑연포일들을 번갈아 적층하는 단계와; 두 개의 팽창흑연포일들 사이에 필름을 개재하는 단계와; 적층되어 있는 탄소섬유 복합재료시트의 양면에 두 개의 팽창흑연포일들 각각이 접합되도록 탄소섬유 복합재료시트와 두 개의 팽창흑연포일들을 동시경화하는 단계와; 두 개의 팽창흑연포일들을 분리하여 탄소섬유 복합재료시트의 양면에 팽창흑연층을 형성하는 단계를 포함한다. According to another aspect of the present invention, there is provided a method of manufacturing a graphite-coated composite separator for a battery, comprising: alternately laminating a sheet of carbon fiber composite material and two expanded graphite foils; Interposing a film between the two expanded graphite foils; Simultaneously curing the carbon fiber composite material sheet and the two expanded graphite foils so that each of the two expanded graphite foils is bonded to both sides of the laminated carbon fiber composite material sheet; And separating the two expanded graphite foils to form an expanded graphite layer on both sides of the carbon fiber composite material sheet.

본 발명에 따른 전지용 흑연 코팅 복합재료 분리판의 제조 방법은, 탄소섬유 복합재료시트와 팽창흑연포일을 번갈아 적층한 후, 적층되어 있는 탄소섬유 복합재료시트와 팽창흑연포일을 동시경화에 의하여 복합재료 분리판으로 제조하여 생산성을 향상시키고, 생산비를 절감할 수 있다. 또한, 후가공 없이 팽창흑연층이 복합재료 분리판의 표면에 균일하게 코팅되어 품질을 향상시킬 수 있는 유용한 효과가 있다. A method for manufacturing a graphite-coated composite material separator for a battery according to the present invention is a method for producing a composite sheet for graphite-coated composite material for batteries, comprising the steps of: alternately laminating a sheet of carbon fiber composite material and an expanded graphite foil and then curing the laminated sheet of carbon fiber composite material and the expanded graphite foil It can be manufactured as a separator to improve the productivity and reduce the production cost. In addition, there is a useful effect that the expanded graphite layer can be uniformly coated on the surface of the composite separator without post-processing to improve the quality.

도 1은 본 발명에 따른 전지용 흑연 코팅 복합재료 분리판의 구성을 나타낸 사시도이다.
도 2는 본 발명에 따른 전지용 흑연 코팅 복합재료 분리판의 제조 방법에서 동시경화를 설명하기 위하여 나타낸 단면도이다.
도 3은 본 발명에 따른 전지용 흑연 코팅 복합재료 분리판의 제조 방법에서 팽창흑연층의 코팅을 설명하기 위하여 나타낸 단면도이다.
도 4는 본 발명에 따른 전지용 흑연 코팅 복합재료 분리판의 제조 방법에서 팽창흑연포일에 노치가 형성되어 있는 구성을 나타낸 단면도이다.
도 5는 본 발명에 따른 전지용 흑연 코팅 복합재료 분리판의 제조 방법의 다른 실시예를 설명하기 위하여 나타낸 단면도이다.
1 is a perspective view showing a configuration of a graphite-coated composite material separator for a battery according to the present invention.
2 is a cross-sectional view illustrating simultaneous curing in the process for producing a graphite-coated composite separator for a battery according to the present invention.
3 is a cross-sectional view illustrating the coating of the expanded graphite layer in the method of manufacturing the graphite-coated composite separator for a battery according to the present invention.
4 is a cross-sectional view showing a structure in which a notch is formed in an expanded graphite foil in a method of manufacturing a graphite-coated composite separator for a battery according to the present invention.
5 is a cross-sectional view illustrating another embodiment of a method for manufacturing a graphite-coated composite material separator for a battery according to the present invention.

본 발명의 그 밖의 목적, 특정한 장점들과 신규한 특징들은 첨부된 도면들과 연관되어지는 이하의 상세한 설명과 바람직한 실시예들로부터 더욱 분명해질 것이다.Other objects, specific advantages and novel features of the present invention will become more apparent from the following detailed description and preferred embodiments with reference to the accompanying drawings.

이하, 본 발명에 따른 전지용 흑연 코팅 복합재료 분리판의 제조 방법에 대한 바람직한 실시예들을 첨부된 도면들에 의거하여 상세하게 설명한다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, preferred embodiments of a method of manufacturing a graphite-coated composite separator for a battery according to the present invention will be described in detail with reference to the accompanying drawings.

먼저, 도 1을 참조하면, 본 발명에 따른 전지용 흑연 코팅 복합재료 분리판(10)은 탄소섬유 복합재료시트(Carbon fiber composite material sheet: 20)와, 탄소섬유 복합재료시트(20)의 표면에 코팅되어 있는 팽창흑연층(Expanded graphite layer: 30)을 구비한다. 본 발명에 따른 전지용 흑연 코팅 복합재료 분리판(10)은 복수의 탄소섬유 복합재료시트(20)들과 복수의 팽창흑연포일(Expanded graphite foil: 40)들을 번갈아 적층한 후 동시경화(Co-cure)에 의하여 제조한다. 1, a graphite-coated composite material separator for a battery 10 according to the present invention comprises a carbon fiber composite material sheet 20 and a carbon fiber composite material sheet 20 on the surface of the carbon fiber composite material sheet 20, And an expanded graphite layer (30) coated thereon. The graphite-coated composite material separator for a battery 10 according to the present invention comprises a plurality of carbon fiber composite material sheets 20 and a plurality of expanded graphite foils 40 alternately stacked and then co- ).

탄소섬유 복합재료시트(20)는 복수의 탄소섬유(22)들을 폴리머 매트릭스(Polymer matrix; 24)에 함침시켜 시트 또는 층(Laminate)으로 제조한다. 탄소섬유(22)들은 평직, 능직, 수자직으로 직조될 수 있다. 탄소섬유 복합재료시트(20)는 프리프레그(Prepreg), 시트몰딩컴파운드(Sheet molding compound), 촙드스트랜드매트(Chopped strand mat), 직물로빙(Woven roving) 등 다양한 형태와 구조로 구성될 수 있다. 폴리머 매트릭스(24)는 열경화성 수지나 열가소성 수지가 사용될 수 있다. 열경화성 수지는 페놀수지(Phenolic resin), 에폭시수지(Epoxy resin), 폴리에스테르수지(Polyester resin) 등이 사용될 수 있다. 열가소성 수지는 폴리프로필렌(Polypropylene), 폴리에틸렌(Polyethylene), 폴리염화비닐(Polyvinyl chloride, PVC) 등이 사용될 수 있다. The carbon fiber composite material sheet 20 is prepared by impregnating a plurality of carbon fibers 22 into a polymer matrix 24 to form a sheet or a laminate. The carbon fibers 22 may be woven in plain weave, twill weave, or water weave. The carbon fiber composite material sheet 20 may have various shapes and structures such as a prepreg, a sheet molding compound, a chopped strand mat, and a woven roving. As the polymer matrix 24, a thermosetting resin or a thermoplastic resin can be used. The thermosetting resin may be a phenolic resin, an epoxy resin, a polyester resin, or the like. The thermoplastic resin may be polypropylene, polyethylene, polyvinyl chloride (PVC), or the like.

열경화성 수지의 경화는 80∼400℃ 정도의 온도로 열경화성 수지를 가열하면, 모노머(Monomer) 형태의 수지가 가교반응(Cross-linking)을 하거나 비-스테이지(B-stage)의 수지가 일단 용융되었다가 가교반응에 의하여 액체에서 고체로 변화하여 이루어진다. 열가소성 수지의 경화는 열에너지의 부여에 의하여 수지가 완전히 용융되어 탄소섬유들의 계면에 충전되고, 온도가 낮아지면 다시 고체로 변화하여 이루어진다. When the thermosetting resin is cured at a temperature of about 80 to 400 占 폚, the resin in the form of a monomer is cross-linked or the resin in the non-stage (B-stage) is once melted Is changed from a liquid to a solid by a crosslinking reaction. The curing of the thermoplastic resin is accomplished by completely melting the resin by the application of heat energy to fill the interface of the carbon fibers, and then to solid again when the temperature is lowered.

천연흑연에 황산증기나 황산 및 질산 혼합물을 첨가하여 가수분해한 후, 세척하여 건조하면 흑연 산화물이 된다. 이 흑연 산화물을 1,000℃에서 빨리 가열하여 압축하면 팽창흑연포일(40)이 된다. 팽창흑연포일(40)은 가스와 액체에 대하여 불침투성을 보이고, -200∼1,650℃ 범위에서 탄성과 유연성을 유지하며, 내열성을 가진다. 또한, 팽창흑연포일(40)은 고압과 화학시약에도 장시간 안정된 특성을 가지며, 각 흑연 입자 사이의 결합력이 약하여 여러 개의 층으로 분리하기 쉬운 특성을 갖는다. When natural graphite is hydrolyzed by adding sulfuric acid vapor or a mixture of sulfuric acid and nitric acid, it is washed and dried to give graphite oxide. When this graphite oxide is heated at 1,000 ° C. for a short time and compressed, it becomes an expanded graphite foil (40). The expanded graphite foil 40 is impermeable to gases and liquids, maintains elasticity and flexibility in the range of -200 to 1,650 DEG C, and has heat resistance. In addition, the expanded graphite foil 40 has stable characteristics for a long period of time at a high pressure and a chemical reagent, and has a characteristic of being easy to separate into several layers due to weak binding force between the respective graphite particles.

도 1과 도 2를 참조하면, 복합재료 분리판(10)의 동시경화를 위한 금형(50)은 하부금형(52)과 상부금형(54)을 구비한다. 작업자는 하부금형(52)과 상부금형(54)의 형개(Mold opening) 상태에서 복수의 탄소섬유 복합재료시트(20)들과 복수의 팽창흑연포일(40)들은 하부금형(52) 위에 번갈아 적층한다. 이때, 적층되어 있는 탄소섬유 복합재료시트(20)들 중 맨 아래의 탄소섬유 복합재료시트(20-1)와 하부금형(52), 맨 위의 탄소섬유 복합재료시트(20-n)와 상부금형(54) 사이에도 팽창흑연포일(40) 각각을 개재한다. Referring to FIGS. 1 and 2, a mold 50 for simultaneous hardening of the composite material separation plate 10 includes a lower mold 52 and an upper mold 54. A plurality of carbon fiber composite material sheets 20 and a plurality of expanded graphite foils 40 are stacked alternately on the lower mold 52 in the mold opening state of the lower mold 52 and the upper mold 54. [ do. At this time, the carbon fiber composite material sheet 20-1 and the bottom metal mold 52, the top carbon fiber composite material sheet 20-n, and the top carbon fiber composite material sheet 20-1 among the stacked carbon fiber composite material sheets 20, And each of the expanded graphite foils 40 is interposed between the molds 54 as well.

계속해서, 작업자는 탄소섬유 복합재료시트(20)들과 팽창흑연포일(40)들의 적층이 완료되면, 하부금형(52)과 상부금형(54)의 형폐(Mold closing) 후, 하부금형(52)과 상부금형(54)을 히터(Heater) 등의 가열수단에 의하여 가열하면서 하부금형(52)과 상부금형(54)에 의하여 탄소섬유 복합재료시트(20)들과 팽창흑연포일(40)들을 압밀·경화시킨다. 이러한 탄소섬유 복합재료시트(20)들과 팽창흑연포일(40)들의 압밀·경화는 오토클레이브 성형(Autoclave molding)이나 핫프레스 성형(Hot press molding) 등에 의하여 다양하게 실시될 수 있다. 오토클레이브 성형은 압력과 열을 부여하여 진공상태에서 탄소섬유 복합재료시트(20)들과 팽창흑연포일(40)들을 동시경화시켜 성형하는 방법이다. 핫프레스 성형은 히터가 설치되어 있는 상부금형(54)의 가압에 의하여 탄소섬유 복합재료시트(20)들과 팽창흑연포일(40)들을 동시경화시켜 성형하는 방법이다.Subsequently, when the stacking of the carbon fiber composite material sheets 20 and the expanded graphite foils 40 is completed, the worker presses the lower mold 52 and the upper mold 54, The upper mold 54 and the upper mold 54 are heated by heating means such as heater to form the carbon fiber composite material sheets 20 and the expanded graphite foils 40 by the lower mold 52 and the upper mold 54, Consolidate and cure. The consolidation and curing of the carbon fiber composite material sheets 20 and the expanded graphite foils 40 can be variously performed by autoclave molding or hot press molding. The autoclave molding is a method in which the carbon fiber composite material sheets 20 and the expanded graphite foils 40 are co-cured by applying pressure and heat to form the carbon fiber composite material sheets 20 in a vacuum state. Hot press molding is a method of simultaneously molding the carbon fiber composite material sheets 20 and the expanded graphite foils 40 by pressing the upper mold 54 provided with the heater.

도 3을 참조하면, 작업자는 탄소섬유 복합재료시트(20)들과 팽창흑연포일(40)들의 동시경화 후, 금형(50)으로부터 꺼내서 탄소섬유 복합재료시트(20)들을 분리하면, 탄소섬유 복합재료시트(20)들 각각의 표면에 팽창흑연층(30)이 코팅되어 복합재료 분리판(10)이 제조된다. 즉, 팽창흑연포일(40)들 각각은 동시경화 시 폴리머 매트릭스(24)에 접합되어 있게 되고, 탄소섬유 복합재료시트(20)들을 분리하면 팽창흑연포일(40)들이 양분되면서 탄소섬유 복합재료시트(20)들 각각의 양면에 팽창흑연층(30)을 형성하게 된다. 3, when the carbon fiber composite material sheets 20 and the expanded graphite foils 40 are co-cured and the carbon fiber composite material sheets 20 are taken out from the mold 50, The surface of each of the material sheets 20 is coated with the expanded graphite layer 30 to produce the composite separator plate 10. [ That is, each of the expanded graphite foils 40 is bonded to the polymer matrix 24 at the time of simultaneous curing, and when the carbon fiber composite material sheets 20 are separated, the expanded graphite foils 40 are divided into two, The expanded graphite layer 30 is formed on both sides of each of the first and second layers 20.

도 2를 다시 참조하면, 맨 아래의 탄소섬유 복합재료시트(20-1)와 하부금형(52), 맨 위의 탄소섬유 복합재료시트(20-n)와 상부금형(54) 사이에 개재되어 있는 팽창흑연포일(40) 각각은 하부 및 상부금형(52, 54)으로부터 맨 아래 및 맨 위의 탄소섬유 복합재료시트(20-1, 20-n)가 쉽게 분리되도록 이형제 역할을 한다. 따라서 탄소섬유 복합재료시트(20)들과 팽창흑연포일(40)들의 동시경화 후, 금형(50)으로부터 용이하게 취출할 수 있다. 2, the carbon fiber composite material sheet 20-1 and the lower mold 52, the uppermost carbon fiber composite material sheet 20-n, and the upper mold 54 are interposed Each of the expanded graphite foils 40 serves as a release agent so that the bottom and top carbon fiber composite material sheets 20-1 and 20-n from the lower and upper dies 52 and 54 are easily separated. Therefore, after the carbon fiber composite material sheets 20 and the expanded graphite foils 40 are co-cured, they can be easily taken out from the mold 50.

도 4에 도시되어 있는 바와 같이, 팽창흑연포일(40)들 각각의 가장자리 중앙에 노치(Notch: 42)가 팽창흑연포일(40)들 각각의 가장자리를 따라 형성되어 있다. 경화되어 있는 탄소섬유 복합재료시트(20)를 분리할 때, 팽창흑연포일(40)들은 노치(42)를 기준으로 균일하게 양분된다. 따라서 팽창흑연층(30)의 표면은 후가공하지 않고서도 균일하게 형성된다. 4, a notch 42 is formed along the edge of each of the expanded graphite foils 40 at the center of the edge of each of the expanded graphite foils 40. As shown in Fig. When separating the cured carbon fiber composite material sheet 20, the expanded graphite foils 40 are uniformly bisected with respect to the notches 42. Therefore, the surface of the expanded graphite layer 30 is uniformly formed without post-processing.

도 5에 본 발명에 따른 전지용 흑연 코팅 복합재료 분리판의 제조 방법의 다른 실시예가 도시되어 있다. 도 5를 참조하면, 적층되어 있는 탄소섬유 복합재료시트(20)들 사이에 두 장의 팽창흑연포일(40)들이 개재되어 있다. 두 장의 팽창흑연포일(40)들의 사이에 필름(Film: 60)이 개재되어 있다. 필름(60)은 폴리테트라플루오르에틸렌(Polytetrafluorethylene, PTFE), 폴리프로필렌, 폴리에틸렌, 금속박막 등으로 구성될 수 있다. 5 shows another embodiment of a method for producing a graphite-coated composite separator for a battery according to the present invention. Referring to FIG. 5, two expanded graphite foils 40 are interposed between the carbon fiber composite material sheets 20 stacked. A film 60 is interposed between the two expanded graphite foils 40. The film 60 may be composed of polytetrafluorethylene (PTFE), polypropylene, polyethylene, a metal thin film, or the like.

탄소섬유 복합재료시트(20)들과 팽창흑연포일(40)들의 동시경화 후, 탄소섬유 복합재료시트(20)들을 분리하게 되면, 탄소섬유 복합재료시트(20)들 각각의 양면에 팽창흑연포일(40)들이 접합되어 팽창흑연층(30)을 형성하게 된다. 이때, 두 장의 탄소섬유 복합재료시트(20)들 사이에 개재되어 있는 두 장의 팽창흑연포일(40)들은 필름(60)에 의하여 쉽게 분리되어 탄소섬유 복합재료시트(20)들 각각에 접합되게 된다. 이와 같이 팽창흑연포일(40)들이 필름(60)에 의하여 쉽게 분리되면서 균일한 팽창흑연층(30)을 형성하게 되므로, 복합재료 분리판(10)의 생산성 및 품질을 향상시킬 수 있다. When the carbon fiber composite material sheets 20 are separated after the co-curing of the carbon fiber composite material sheets 20 and the expanded graphite foils 40, the expanded graphite foils 40 are formed on both sides of the carbon fiber composite material sheets 20, (40) are joined together to form an expanded graphite layer (30). At this time, the two expanded graphite foils 40 interposed between the two sheets of carbon fiber composite material 20 are easily separated by the film 60 and bonded to the respective sheets of carbon fiber composite material 20 . Since the expanded graphite foils 40 are easily separated by the film 60 to form the uniform expanded graphite layer 30, the productivity and quality of the composite separator 10 can be improved.

이상에서 설명된 실시예는 본 발명의 바람직한 실시예를 설명한 것에 불과하고, 본 발명의 권리범위는 설명된 실시예에 한정되는 것은 아니며, 본 발명의 기술적 사상과 특허청구범위 내에서 이 분야의 당업자에 의하여 다양한 변경, 변형 또는 치환이 가능할 것이며, 그와 같은 실시예들은 본 발명의 범위에 속하는 것으로 이해되어야 한다.While the present invention has been described in connection with what is presently considered to be practical exemplary embodiments, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.

10: 흑연 코팅 복합재료 분리판 20: 탄소섬유 복합재료시트
30: 팽창흑연층 40: 팽창흑연포일
42: 노치 52: 하부금형
54: 상부금형 60: 필름
10: graphite-coated composite material separation plate 20: carbon fiber composite material sheet
30: expanded graphite layer 40: expanded graphite foil
42: notch 52: lower mold
54: Upper mold 60: Film

Claims (5)

복수의 탄소섬유 복합재료시트들과 복수의 팽창흑연포일들을 번갈아 적층하는 단계와;
적층되어 있는 상기 복수의 탄소섬유 복합재료시트들의 양면에 상기 복수의 팽창흑연포일들이 접합되도록 상기 복수의 탄소섬유 복합재료시트들과 상기 복수의 팽창흑연포일들을 동시경화하는 단계와;
상기 복수의 팽창흑연포일들 각각을 분리하여 상기 복수의 탄소섬유 복합재료시트들의 양면에 팽창흑연층을 형성하는 단계를 포함하는 전지용 흑연 코팅 복합재료 분리판의 제조 방법.
Alternately stacking a plurality of sheets of carbon fiber composite material and a plurality of expanded graphite foils;
Simultaneously curing the plurality of sheets of carbon fiber composite material and the plurality of expanded graphite foils so that the plurality of expanded graphite foils are bonded to both surfaces of the plurality of carbon fiber composite material sheets stacked;
And separating each of the plurality of expanded graphite foils to form an expanded graphite layer on both sides of the plurality of sheets of carbon fiber composite material.
제1항에 있어서,
상기 복수의 팽창흑연포일들 각각의 양분을 위하여 상기 복수의 팽창흑연포일들 각각의 가장자리 중앙에 노치를 형성하는 단계를 더 포함하는 전지용 흑연 코팅 복합재료 분리판의 제조 방법.
The method according to claim 1,
Further comprising forming a notch at the center of each of the plurality of expanded graphite foils for natures of each of the plurality of expanded graphite foils.
제1항 또는 제2항에 있어서,
상기 복수의 탄소섬유 복합재료시트들과 상기 복수의 팽창흑연포일들은 하부금형과 상부금형 사이에 번갈아 적층하고, 상기 복수의 탄소섬유 복합재료시트들 중 맨 아래 탄소섬유 복합재료시트와 상기 하부금형 사이에 팽창흑연포일을 개재하며, 상기 복수의 탄소섬유 복합재료시트들 중 맨 위 탄소섬유 복합재료시트와 상기 상부금형 사이에 팽창흑연포일을 개재하는 전지용 흑연 코팅 복합재료 분리판의 제조 방법.
3. The method according to claim 1 or 2,
Wherein the plurality of sheets of carbon fiber composite material and the plurality of expanded graphite foils are alternately stacked between a lower mold and an upper mold, and the plurality of sheets of carbon fiber composite material and the plurality of expanded graphite foils are stacked alternately between the lower mold and the upper mold, And the expanded graphite foil is interposed between the top carbon fiber composite material sheet and the upper metal mold among the plurality of carbon fiber composite material sheets.
한 개의 탄소섬유 복합재료시트와 두 개의 팽창흑연포일들을 번갈아 적층하는 단계와;
상기 두 개의 팽창흑연포일들 사이에 필름을 개재하는 단계와;
적층되어 있는 상기 탄소섬유 복합재료시트의 양면에 상기 두 개의 팽창흑연포일들 각각이 접합되도록 상기 탄소섬유 복합재료시트와 상기 두 개의 팽창흑연포일들을 동시경화하는 단계와;
상기 두 개의 팽창흑연포일들을 분리하여 상기 탄소섬유 복합재료시트의 양면에 팽창흑연층을 형성하는 단계를 포함하는 전지용 흑연 코팅 복합재료 분리판의 제조 방법.
Alternately stacking one sheet of carbon fiber composite material and two expanded graphite foils;
Interposing a film between the two expanded graphite foils;
Simultaneously curing the carbon fiber composite material sheet and the two expanded graphite foils so that the two expanded graphite foils are bonded to both sides of the laminated carbon fiber composite material sheet;
And separating the two expanded graphite foils to form an expanded graphite layer on both surfaces of the carbon fiber composite material sheet.
제4항에 있어서,
상기 한 개의 탄소섬유 복합재료시트와 상기 두 개의 팽창흑연포일은 하부금형과 상부금형 사이에 번갈아 적층하고, 적층되어 있는 탄소섬유 복합재료시트 중 맨 아래 탄소섬유 복합재료시트와 상기 하부금형 사이에 팽창흑연포일을 개재하며, 적층되어 있는 탄소섬유 복합재료시트 중 맨 위 탄소섬유 복합재료시트와 상기 상부금형 사이에 팽창흑연포일을 개재하는 전지용 흑연 코팅 복합재료 분리판의 제조 방법.
5. The method of claim 4,
Wherein the one sheet of the carbon fiber composite material and the two expanded graphite foils are alternately stacked between the lower mold and the upper mold, and the sheet of the lower carbon fiber composite material among the sheets of the laminated carbon fiber composite material, A method for manufacturing a graphite-coated composite material separation plate for a battery, comprising interposing a graphite foil and interposing an expanded graphite foil between a top carbon fiber composite material sheet and a top metal mold among the stacked carbon fiber composite material sheets.
KR20130134253A 2013-11-06 2013-11-06 Method for manufacturing graphite coated composite bipolar plate of cell KR101483282B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20130134253A KR101483282B1 (en) 2013-11-06 2013-11-06 Method for manufacturing graphite coated composite bipolar plate of cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20130134253A KR101483282B1 (en) 2013-11-06 2013-11-06 Method for manufacturing graphite coated composite bipolar plate of cell

Publications (1)

Publication Number Publication Date
KR101483282B1 true KR101483282B1 (en) 2015-01-16

Family

ID=52590645

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20130134253A KR101483282B1 (en) 2013-11-06 2013-11-06 Method for manufacturing graphite coated composite bipolar plate of cell

Country Status (1)

Country Link
KR (1) KR101483282B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101660032B1 (en) * 2015-04-08 2016-09-27 한국철도기술연구원 Carbon fiber layer with carbon coating
WO2017099403A1 (en) * 2015-12-09 2017-06-15 (주)엘지하우시스 Composite separator plate and method for preparing same
DE102016219214A1 (en) 2016-10-04 2018-04-05 Schunk Kohlenstofftechnik Gmbh Method for producing a component and component
JP2019514179A (en) * 2016-04-21 2019-05-30 エルジー・ハウシス・リミテッドLg Hausys,Ltd. Composite material separator and method of manufacturing the same
KR20200094468A (en) 2019-01-30 2020-08-07 금오공과대학교 산학협력단 Method for manufacturing separator containing carbon black for fuel cell and separator for fuel cell manufactured by same
KR20210023211A (en) 2019-08-22 2021-03-04 금오공과대학교 산학협력단 conductive polymer composite, separator for fuel cell formed using the same and manufacturing method thereof
CN114976097A (en) * 2022-04-22 2022-08-30 同济大学 Layered composite graphite polar plate for fuel cell and preparation method thereof
CN115799552A (en) * 2023-02-10 2023-03-14 海卓动力(青岛)能源科技有限公司 Preparation method of composite graphite resin carbon fiber polar plate
US11660846B2 (en) * 2015-04-30 2023-05-30 Board Of Trustees Of Michigan State University Composite article and method of manufacture

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009129601A (en) 2007-11-21 2009-06-11 Nippon Pillar Packing Co Ltd Fuel cell separator, and manufacturing method thererof
KR101134482B1 (en) 2009-11-30 2012-04-13 한국과학기술원 Separation plate for Polymer Electrolyte Membrane Fuel Cell and method for manufacturing the same
KR101173059B1 (en) 2010-09-29 2012-08-13 한국과학기술원 Separation plate for Polymer Electrolyte Membrane Fuel Cell and method for manufacturing the same
KR101315738B1 (en) 2011-02-15 2013-10-10 한국과학기술원 Manufacturing method of prepreg for composite separation plate, and manufacturing method of composite separation plate for fuel cell using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009129601A (en) 2007-11-21 2009-06-11 Nippon Pillar Packing Co Ltd Fuel cell separator, and manufacturing method thererof
KR101134482B1 (en) 2009-11-30 2012-04-13 한국과학기술원 Separation plate for Polymer Electrolyte Membrane Fuel Cell and method for manufacturing the same
KR101173059B1 (en) 2010-09-29 2012-08-13 한국과학기술원 Separation plate for Polymer Electrolyte Membrane Fuel Cell and method for manufacturing the same
KR101315738B1 (en) 2011-02-15 2013-10-10 한국과학기술원 Manufacturing method of prepreg for composite separation plate, and manufacturing method of composite separation plate for fuel cell using the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101660032B1 (en) * 2015-04-08 2016-09-27 한국철도기술연구원 Carbon fiber layer with carbon coating
WO2016163784A1 (en) * 2015-04-08 2016-10-13 한국철도기술연구원 Carbon fiber layer having carbon coating
US20180051398A1 (en) * 2015-04-08 2018-02-22 Korea Railroad Research Institute Carbon fiber layer having carbon coating
US11660846B2 (en) * 2015-04-30 2023-05-30 Board Of Trustees Of Michigan State University Composite article and method of manufacture
WO2017099403A1 (en) * 2015-12-09 2017-06-15 (주)엘지하우시스 Composite separator plate and method for preparing same
JP2019514179A (en) * 2016-04-21 2019-05-30 エルジー・ハウシス・リミテッドLg Hausys,Ltd. Composite material separator and method of manufacturing the same
DE102016219214A1 (en) 2016-10-04 2018-04-05 Schunk Kohlenstofftechnik Gmbh Method for producing a component and component
KR20200094468A (en) 2019-01-30 2020-08-07 금오공과대학교 산학협력단 Method for manufacturing separator containing carbon black for fuel cell and separator for fuel cell manufactured by same
KR20210023211A (en) 2019-08-22 2021-03-04 금오공과대학교 산학협력단 conductive polymer composite, separator for fuel cell formed using the same and manufacturing method thereof
CN114976097A (en) * 2022-04-22 2022-08-30 同济大学 Layered composite graphite polar plate for fuel cell and preparation method thereof
CN114976097B (en) * 2022-04-22 2024-02-27 同济大学 Layered composite graphite polar plate for fuel cell and preparation method thereof
CN115799552A (en) * 2023-02-10 2023-03-14 海卓动力(青岛)能源科技有限公司 Preparation method of composite graphite resin carbon fiber polar plate

Similar Documents

Publication Publication Date Title
KR101483282B1 (en) Method for manufacturing graphite coated composite bipolar plate of cell
Lim et al. Composite structures for proton exchange membrane fuel cells (PEMFC) and energy storage systems (ESS)
US20110162198A1 (en) Method of producing solid electrolyte-electrode assembly
KR101371337B1 (en) Carbon fabric bipolar plate of fuel cell and method for manufacturing the same
KR101134482B1 (en) Separation plate for Polymer Electrolyte Membrane Fuel Cell and method for manufacturing the same
CN106797035B (en) Gas diffusion layer for fuel cell, and method for forming gas diffusion layer for fuel cell
KR101173059B1 (en) Separation plate for Polymer Electrolyte Membrane Fuel Cell and method for manufacturing the same
JP5368828B2 (en) Separation plate for fuel cell stack and method for producing the same
KR102053791B1 (en) A method for preparing a composite separation plate for battery using spread tow carbon fiber fabric and a composite separation plate for battery prepared therefrom
US20080116609A1 (en) In-Situ Molding Of Fuel Cell Separator Plate Reinforcement
KR101743924B1 (en) Carbon fiber felt integrated bipolar plate for batteries and method for manufacturing same
JP4792445B2 (en) Fuel cell separator
JP2005085594A (en) Solid polymer electrolyte type fuel cell and manufacturing method of the same
KR20170126727A (en) Fuel Cell Bipolar Plate and Manufacturing Method thereof
KR101220866B1 (en) Separator for proton exchange membrane fuel cell and proton exchange membrane fuel cell using the same
KR101731845B1 (en) Composite separation plate for fuel cell and method for manufacturing the same
JP2017004607A (en) Manufacturing method of electrolyte membrane electrode structure with resin frame for fuel battery
JP2019139993A (en) Fuel cell module and manufacturing method thereof
US20190097197A1 (en) Manufacturing method for fuel cell separator
KR101692859B1 (en) Forming method of stack type seperator for fuel cell and seperator for fuel cell and fuel sell manufactured using the same
CN112086653B (en) Graphite felt structure for flow battery and flow battery using same
KR101759715B1 (en) Fuel Cell Bipolar Plate and Fuel Cell System using the Same
WO2014088114A1 (en) Method for forming covering layer on surface of metal substrate
JP2010205525A (en) Gasket for fuel cell, fuel cell, and fuel cell system
JP4792446B2 (en) Fuel cell separator

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180102

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190107

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20200106

Year of fee payment: 6