WO2017183792A1 - Composite separator plate and production method therefor - Google Patents

Composite separator plate and production method therefor Download PDF

Info

Publication number
WO2017183792A1
WO2017183792A1 PCT/KR2016/014113 KR2016014113W WO2017183792A1 WO 2017183792 A1 WO2017183792 A1 WO 2017183792A1 KR 2016014113 W KR2016014113 W KR 2016014113W WO 2017183792 A1 WO2017183792 A1 WO 2017183792A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
resin
composite separator
nonwoven fabric
fiber nonwoven
Prior art date
Application number
PCT/KR2016/014113
Other languages
French (fr)
Korean (ko)
Inventor
김지연
김혜원
최성현
정승문
Original Assignee
(주)엘지하우시스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엘지하우시스 filed Critical (주)엘지하우시스
Publication of WO2017183792A1 publication Critical patent/WO2017183792A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0239Organic resins; Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a composite separator and a method for manufacturing the same, and more particularly, to a composite separator and a method for manufacturing the composite separator having excellent moldability while ensuring electrical conductivity and strength.
  • the separator which is a component of the fuel cell stack, functions as a supply passage of reaction gas (hydrogen and oxygen) and a discharge passage of water, and electrically connects the inside of the fuel cell stack.
  • reaction gas hydrogen and oxygen
  • the separator requires excellent electrical conductivity, mechanical properties, corrosion resistance and low hydrogen permeability.
  • a separator plate is also included in a hydrogen fuel cell, a redox flow battery, and the like, which have attracted much attention among large secondary batteries.
  • the hydrogen fuel cell and the redox flow battery which operate in an acidic atmosphere are required to have characteristics such as electrical conductivity, mechanical properties, corrosion resistance, chemical resistance, and electrolyte impermeability.
  • thermosetting resin In order to satisfy this, conventionally, a composite separator plate in which a carbon fiber woven fabric is impregnated with a thermosetting resin is manufactured. In order to impart electrical conductivity to the composite separator, a large amount of conductive powder having high conductivity must be mixed inside the thermosetting resin.
  • An object of the present invention is to provide a composite separation plate having excellent moldability while ensuring electrical conductivity and strength, and a method of manufacturing the same.
  • Composite separator according to an embodiment of the present invention for achieving the above object is a carbon fiber nonwoven fabric; And upper and lower conductive coating layers disposed on upper and lower surfaces of the carbon fiber nonwoven fabric, respectively, and bonded to the carbon fiber nonwoven fabric.
  • Method for producing a composite separator according to an embodiment of the present invention for achieving the above object (a) forming the upper and lower conductive coating layers on the upper and lower surfaces of the carbon fiber nonwoven fabric; And (b) forming and curing the carbon fiber nonwoven fabric and the upper and lower conductive coating layers by hot pressing to obtain a composite separator.
  • the composite separator according to the present invention and the method for manufacturing the same are advantageous for molding because the carbon fiber nonwoven fabric having a felt form in which carbon fibers cut to a certain size is bonded with a synthetic resin adhesive instead of a carbon fiber woven fabric.
  • a synthetic resin adhesive instead of a carbon fiber woven fabric.
  • the composite separator according to the present invention is formed by cutting the upper and lower conductive coating layers on both sides of the carbon fiber nonwoven fabric, thereby securing the surface electrical conductivity and strength in the x-axis and y-axis directions while cutting the carbon fiber Since the carbon fiber nonwoven fabric having a felt form combined with the synthetic resin adhesive is used, the fluidity of the carbon fibers can be increased to ensure excellent moldability.
  • the composite separator according to the present invention has a surface electrical conductivity of 100 to 200 S / cm, a contact resistance of 15 mPa / cm 2 or less, a bending strength of 60 MPa or less, and a hydrogen transmittance of 10 -7 cm 3 / sec ⁇ cm ⁇ atm or less.
  • FIG. 1 is a cross-sectional view showing a composite separator according to an embodiment of the present invention.
  • Figure 2 is a photograph showing the carbon fiber nonwoven fabric of Figure 1;
  • FIG. 3 is a cross-sectional view showing the carbon fiber nonwoven fabric of FIG.
  • Figure 4 is a process flow chart showing a method for manufacturing a composite separator according to an embodiment of the present invention.
  • 5 to 7 is a cross-sectional view showing a method for manufacturing a composite separator according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional view showing a composite separator according to an embodiment of the present invention
  • Figure 2 is a photograph showing a carbon fiber nonwoven fabric of Figure 1
  • Figure 3 is a cross-sectional view showing a carbon fiber nonwoven fabric of FIG.
  • the composite separator 100 includes a carbon fiber nonwoven fabric 110 and upper and lower conductive coating layers 120 and 130.
  • the carbon fiber nonwoven fabric 110 has a structure in which the upper and lower conductive coating layers 120 and 130 are compressed by a hot press method and are bonded to each other.
  • the carbon fiber nonwoven fabric 110 is used as a core substrate disposed in the middle of the composite separating plate 100, and serves to improve the mechanical strength of the composite separating plate 100.
  • the carbon fiber nonwoven fabric 110 preferably has a thickness of 200 ⁇ 400 ⁇ m. When the thickness of the carbon fiber nonwoven fabric 110 is less than 200 ⁇ m may be difficult to ensure the mechanical strength because the thickness is thin. On the contrary, when the thickness of the carbon fiber nonwoven fabric 110 exceeds 400 ⁇ m, the thickness of the carbon fiber nonwoven fabric 110 may be increased and the weight and volume may be increased.
  • At least one carbon fiber nonwoven fabric 110 may be stacked vertically.
  • the carbon fiber nonwoven fabric 110 is preferably used having a felt form in which carbon fibers cut to an average length of 5 to 20 mm are bonded with a synthetic resin adhesive.
  • the average length of the carbon fibers is less than 5mm there is a problem that the surface area of the carbon fibers is widened so that the impregnation of the resin is reduced, the hydrogen transmittance increases.
  • the average length of the carbon fibers exceeds 20mm, there is a problem in that the electrical conductivity and the flexural strength are lowered due to the problem that the variation in the electrical conductivity and the flexural strength is aggravated due to the aggregation phenomenon between the carbon fibers.
  • the carbon fiber woven fabric is difficult to prevent the occurrence of disconnection due to the low elongation of the carbon fiber, and the upper portion of the carbon fiber woven fabric without forming the carbon fiber in the desired flow path shape due to the high modulus of the carbon fiber
  • the lower conductive coating layers 120 and 130 are not bonded to a uniform thickness, and the thicknesses of the upper and lower conductive coating layers 120 and 130 are locally thickened.
  • the carbon fiber woven fabric has an advantage of improving the strength of the composite separator 100 because it has low Young's modulus and elongation.
  • the carbon fiber nonwoven fabric 110 instead of the carbon fiber woven fabric, in particular, by using a carbon fiber nonwoven fabric (110) having a felt form in which the carbon fibers are cut to a certain size bonded with a synthetic resin, carbon Compared to the fiber woven fabric, there is no fear of disconnection of the carbon fibers, but the flowability of the carbon fibers is improved during forming the flow path, thereby ensuring excellent moldability.
  • the upper and lower conductive coating layers 120 and 130 are disposed on the upper and lower surfaces of the carbon fiber nonwoven fabric 110, respectively, and are bonded to the carbon fiber nonwoven fabric 110.
  • the upper and lower conductive coating layers 120 and 130 are bonded to the carbon fiber nonwoven fabric 110 by a hot pressing process.
  • the upper and lower conductive coating layers 120 and 130 have a structure in which part of the upper and lower conductive coating layers 120 and 130 are impregnated with the carbon fiber nonwoven fabric 110 to be integrally connected to each other.
  • the upper and lower conductive coating layers 120 and 130 have a thickness of 5 to 100 ⁇ m, respectively.
  • the thickness of each of the upper and lower conductive coating layers 120 and 130 is less than 5 ⁇ m, the handling is difficult because the thickness is too thin, and there is a problem that the surface electrical conductivity is lowered.
  • the thickness of each of the upper and lower conductive coating layers 120 and 130 exceeds 100 ⁇ m, it may not be economical because it may act as a factor of increasing the manufacturing cost without any further effect increase.
  • the upper and lower conductive coating layers 120 and 130 include a resin layer and a conductive filler impregnated in the resin layer, respectively.
  • the resin layer serves to improve the mechanical strength.
  • the resin layer is formed of any one selected from a thermosetting resin including a phenol resin, an epoxy resin, an amino resin, a urea resin, a melamine resin, an unsaturated polyester resin, a polyurethane resin, and a polyimide resin.
  • the conductive filler is added and dispersed in the resin layer to improve the surface electrical conductivity of the x-axis and the y-axis.
  • the conductive filler is carbon nanotube, graphite powder, chopped carbon fiber, carbon black, carbon powder, graphite nanoplate ) And graphene may include one or more selected from.
  • the upper and lower conductive coating layers 120 and 130 are preferably added to the conductive filler 15 to 25% by weight of the total weight of the solid content. If the content of the conductive filler is less than 15% by weight, it may be difficult to secure the surface electrical conductivity. On the contrary, when the content of the conductive filler exceeds 25% by weight, coating failure may be caused by clogging of the nozzle.
  • the carbon fiber nonwoven fabric 110 is used instead of the carbon fiber woven fabric as the core substrate of the composite separator 100, the upper and lower conductive coating layers 120 and 130 coated on both sides of the carbon fiber nonwoven fabric 110 are conductive. Since the filler easily penetrates into the carbon fiber nonwoven fabric 110, the vertical electrical conductivity in the z-axis direction may be improved.
  • the composite separator according to the embodiment of the present invention described above uses a carbon fiber nonwoven fabric having a felt form in which carbon fibers cut to a predetermined size are bonded with a synthetic resin instead of a carbon fiber woven fabric.
  • a carbon fiber nonwoven fabric having a felt form in which carbon fibers cut to a predetermined size are bonded with a synthetic resin instead of a carbon fiber woven fabric.
  • the composite separator according to an embodiment of the present invention is cut while being able to secure the surface electrical conductivity and strength in the x-axis and y-axis directions by forming upper and lower conductive coating layers on both sides of the carbon fiber nonwoven fabric. Since a carbon fiber nonwoven fabric having a felt form in which the carbon fibers are combined with a synthetic resin adhesive is used, the fluidity of the carbon fibers may be increased to ensure excellent moldability.
  • the composite separator according to the embodiment of the present invention has a surface electrical conductivity of 100 to 200 S / cm, a contact resistance of 15 mPa / cm 2 or less, a bending strength of 60 MPa or less, and a hydrogen transmittance of 10 -7 cm 3 / sec ⁇ cm 2. has atm or less
  • Figure 4 is a process flow chart showing a composite separator according to an embodiment of the present invention
  • Figures 5 to 7 is a cross-sectional view showing a method for manufacturing a composite separator according to an embodiment of the present invention.
  • the method of manufacturing a composite separator according to an embodiment of the present invention includes forming a top and bottom conductive coating layer (S110) and a hot press step (S120).
  • the upper and lower conductive coating layers 120 and 130 are formed on the upper and lower surfaces of the carbon fiber nonwoven fabric 110 in the forming of the upper and lower conductive coating layers (S110).
  • At least one carbon fiber nonwoven fabric 110 may be vertically stacked.
  • the carbon fiber nonwoven fabric 110 is preferably used having a felt form in which carbon fibers cut to an average length of 5 to 20 mm are bonded with a synthetic resin adhesive.
  • a carbon fiber woven fabric is more expensive than a carbon fiber nonwoven fabric and has a problem in terms of forming a flow path.
  • the carbon fiber woven fabric is difficult to prevent the occurrence of disconnection due to the low elongation of the carbon fiber, and the upper portion of the carbon fiber woven fabric without forming the carbon fiber in the desired flow path shape due to the high modulus of the carbon fiber
  • the lower conductive coating layers 120 and 130 are not bonded to a uniform thickness, and the thicknesses of the upper and lower conductive coating layers 120 and 130 are locally thickened.
  • the carbon fiber woven fabric has advantages of improving the strength of the composite separator because of its low Young's modulus and elongation, but is disadvantageous in terms of flow path molding.
  • the carbon fiber nonwoven fabric 110 instead of the carbon fiber woven fabric, in particular, by using a carbon fiber nonwoven fabric (110) having a felt form in which the carbon fibers are cut to a certain size bonded with a synthetic resin, carbon Compared to the fiber woven fabric, there is no fear of disconnection of the carbon fibers, but the flowability of the carbon fibers is improved during forming the flow path, thereby ensuring excellent moldability.
  • the upper and lower conductive coating layers 120 and 130 each include a resin layer and a conductive filler impregnated in the resin layer.
  • the resin layer serves to improve the mechanical strength.
  • the resin layer is formed of any one selected from a thermosetting resin including a phenol resin, an epoxy resin, an amino resin, a urea resin, a melamine resin, an unsaturated polyester resin, a polyurethane resin, and a polyimide resin.
  • the conductive filler is added and dispersed in the resin layer to improve the surface electrical conductivity of the x-axis and the y-axis.
  • the conductive filler is carbon nanotube, graphite powder, chopped carbon fiber, carbon black, carbon powder, graphite nanoplate ) And graphene may include one or more selected from.
  • the upper and lower conductive coating layers 120 and 130 are preferably added to the conductive filler 15 to 25% by weight of the total weight of the solid content. If the content of the conductive filler is less than 15% by weight, it may be difficult to secure the surface electrical conductivity. On the contrary, when the content of the conductive filler exceeds 25% by weight, coating failure may be caused by clogging of the nozzle.
  • the upper and lower conductive coating layers 120 and 130 are formed by any one or more of knife coating, spray coating, dip coating and bar coating methods. Can be.
  • the thickness of the upper and lower conductive coating layers 120 and 130 may be adjusted by adjusting the spray time, dip coating time, knife height or bar height.
  • the carbon fiber nonwoven fabric 110 and the upper and lower conductive coating layers 120 and 130 are formed by a hot press and cured to form the composite separator 100. To obtain.
  • the height and width of the flow path may have a variety of shapes and sizes according to the design model of the composite separator (100).
  • the hot press is preferably carried out for 10 to 60 minutes at 130 ⁇ 200 °C under a pressure condition of 10 ⁇ 30MPa.
  • the hot press temperature is less than 130 ° C. or the hot press time is less than 10 minutes, there is a high possibility that sufficient curing will not occur.
  • the hot press temperature exceeds 200 ° C. or the hot press time exceeds 60 minutes, it is not economical because it may act as a factor of increasing the manufacturing cost without any further effect increase.
  • the hot press pressure when the hot press pressure is less than 10MPa, the interfacial adhesion between the carbon fiber nonwoven fabric 110 and the upper and lower conductive coating layers 120 and 130 may not be sufficient, thereby causing peeling. On the contrary, when the hot press pressure exceeds 30 MPa, damage to the carbon fiber nonwoven fabric 110 and the upper and lower conductive coating layers 120 and 130 may occur due to excessive pressure.
  • the thickness of the carbon fiber nonwoven fabric 110 and the upper and lower conductive coating layers (120, 130) by the compression is reduced.
  • the carbon fiber nonwoven fabric 110 may have a thickness of 200 ⁇ m to 400 ⁇ m, and each of the upper and lower conductive coating layers 120 and 130 may have a thickness of 5 ⁇ m to 100 ⁇ m.
  • the composite separator prepared by the above process uses a carbon fiber nonwoven fabric having a felt form in which carbon fibers cut to a predetermined size are bonded with a synthetic resin instead of a carbon fiber woven fabric, thereby increasing the fluidity of the carbon fibers. It has a structural advantage advantageous for molding.
  • the composite separator prepared by the method according to an embodiment of the present invention to secure the surface electrical conductivity and strength in the x-axis and y-axis direction by forming the upper and lower conductive coating layers on both sides of the carbon fiber nonwoven fabric
  • the fluidity of the carbon fibers is increased to ensure excellent moldability.
  • the composite separator prepared by the method according to the embodiment of the present invention has a surface electrical conductivity of 100 to 200 S / cm, contact resistance of 15 mPa / cm 2 or less, flexural strength of 60 MPa or less, and a hydrogen transmittance of 10 -7 cm 3 /. sec.cm 2 .atm or less.
  • the pressure was 150 ° C. and 20 MPa.
  • the composite separator was prepared by pressing and curing under a hot press for 30 minutes under conditions.
  • the carbon fiber cut to an average length of 10mm was bonded to a synthetic resin adhesive, and manufactured in a felt form, except that a carbon fiber nonwoven fabric having a thickness of 1 mm was used to prepare a composite separator in the same manner as in Example 1.
  • Carbon fiber cut to an average length of 15mm was manufactured in the form of felt by combining with a synthetic resin adhesive, a composite separator was prepared in the same manner as in Example 1 except that a carbon fiber nonwoven fabric having a thickness of 1mm was used.
  • a composite separator was prepared in the same manner as in Example 1, except that the mixture was pressed and cured by hot press for 40 minutes at 150 ° C. and 8 MPa.
  • Powders of 80 parts by weight of graphite mixed with 20 parts by weight of an epoxy resin were coated on the upper and lower portions of the carbon fiber woven fabric by a knife coating method, respectively, and then coated with a hot press for 30 minutes under pressure conditions of 150 ° C. and 20 MPa. Compression and hardening to prepare a composite separator.
  • Carbon fiber cut to an average length of 50mm was manufactured in a felt form by combining with a synthetic resin adhesive, and a composite separator was prepared in the same manner as in Example 1 except for using a carbon fiber nonwoven fabric having a thickness of 1mm.
  • a composite separator was prepared in the same manner as in Example 1 except that the carbon fibers cut to an average length of 3 mm were combined with a synthetic resin adhesive to prepare a felt form, and a carbon fiber nonwoven fabric having a thickness of 1 mm was used.
  • Table 1 shows the physical property evaluation results for the composite separators prepared according to Examples 1 to 3 and Comparative Examples 1 to 4. At this time, the surface electrical conductivity, contact resistance and flexural strength were measured by flat plate without flow path forming, and the hydrogen transmittance was measured after flow path forming.
  • Measuring method After laminating
  • the separator plate Insert the separator plate into the holder with O-ring and install it on the equipment so that the left and right spaces are divided by the separator plate.Then, vacuum the left and right sides, and then inject 1 atmosphere of hydrogen to one side The permeation amount of hydrogen was measured. At this time, the hydrogen permeability graph with time is shown as the corresponding value when the saturation (saturation) state at a specific point.
  • the specimen After putting the specimen into the mold to shape the flow path, it is mounted on the holder and installed so that the left and right spaces are divided, and the light is emitted from one side to observe the light leaking out to the other side.
  • the surface electrical conductivity, contact resistance and flexural strength were tested in the form of a flat plate to test the basic physical properties of the specimen. Since the hydrogen permeability and light transmittance experiments are the main characteristics that depend on the formability, the test is performed after forming the flow path. Measured.
  • the surface electrical conductivity corresponding to the target value 100 ⁇ 200S / cm, contact resistance: 15mPa / cm2 or less, bending strength: 60MPa It had a hydrogen transmittance of 10-7 cm 3 / sec ⁇ cm 2 atm or less, and it was confirmed that light was not transmitted after the flow path molding.
  • the flexural strength is reduced because the average length of the carbon fibers is too short, impregnating the resin as the surface area of the carbon fibers becomes wider. As the degree was lowered, pores were generated in the specimen, thereby increasing the hydrogen permeability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Abstract

Disclosed are: a composite separator plate which is capable of securing electrical conductivity and strength and also has excellent moldability; and a production method therefor. The composite separator plate according to the present invention comprises: a carbon fiber nonwoven fabric; and upper and lower conductive coating layers disposed respectively on the upper and lower surfaces of the carbon fiber nonwoven fabric and bonded to the carbon fiber nonwoven fabric.

Description

복합재 분리판 및 그 제조 방법Composite Separator and its Manufacturing Method
본 발명은 복합재 분리판 및 그 제조 방법에 관한 것으로, 보다 상세하게는 전기전도성 및 강도 확보가 가능하면서도 우수한 성형성을 갖는 복합재 분리판 및 그 제조 방법에 관한 것이다.The present invention relates to a composite separator and a method for manufacturing the same, and more particularly, to a composite separator and a method for manufacturing the composite separator having excellent moldability while ensuring electrical conductivity and strength.
연료전지 스택의 구성요소인 분리판은 반응 가스(수소 및 산소)의 공급과 물의 배출 통로로서의 기능을 갖고 있으며, 연료전지 스택의 내부를 전기적으로 연결시켜 준다. 이러한 기능을 위해, 분리판은 우수한 전기전도성과 기계적 물성, 내부식성 및 낮은 수소 투과율이 요구된다.The separator, which is a component of the fuel cell stack, functions as a supply passage of reaction gas (hydrogen and oxygen) and a discharge passage of water, and electrically connects the inside of the fuel cell stack. For this function, the separator requires excellent electrical conductivity, mechanical properties, corrosion resistance and low hydrogen permeability.
최근, 대형 이차전지 중에서 크게 주목을 받고 있는 수소연료전지, 레독스 흐름전지 등에서도 분리판이 포함된다. 이와 같이, 산성 분위기에서 구동하는 수소연료전지 및 레독스 흐름전지는 전기전도성과 기계적 물성, 내부식성, 내화학성 및 전해질 불침투성 등의 특성이 요구된다.Recently, a separator plate is also included in a hydrogen fuel cell, a redox flow battery, and the like, which have attracted much attention among large secondary batteries. As such, the hydrogen fuel cell and the redox flow battery which operate in an acidic atmosphere are required to have characteristics such as electrical conductivity, mechanical properties, corrosion resistance, chemical resistance, and electrolyte impermeability.
이를 만족하기 위해, 종래에는 탄소섬유 직조물에 열경화성 수지를 함침시킨 복합재 분리판을 제조하고 있다. 이러한 복합재 분리판에 전기 전도성을 부여하기 위해서는 열경화성 수지의 내부에 고전도성을 갖는 전도성 분말을 다량 혼합해야 한다.In order to satisfy this, conventionally, a composite separator plate in which a carbon fiber woven fabric is impregnated with a thermosetting resin is manufactured. In order to impart electrical conductivity to the composite separator, a large amount of conductive powder having high conductivity must be mixed inside the thermosetting resin.
그러나, 전도성 분말을 열경화성 수지에 다량 혼합할 경우 높은 강도 및 연료물질의 차단율을 확보할 수 없으며, 다량의 전도성 분말을 첨가하더라도 전기적 특성을 확보하는데 어려움이 따르고 있다.However, when a large amount of conductive powder is mixed with a thermosetting resin, high strength and a blocking rate of fuel material cannot be secured, and even when a large amount of conductive powder is added, it is difficult to secure electrical characteristics.
관련 선행 문헌으로는 대한민국 등록특허공보 제10-1316006호(2013.10.08. 공고)가 있으며, 상기 문헌에는 연료전지용 망사형 분리판 및 그 제조방법이 기재되어 있다.Related prior art documents include Republic of Korea Patent Publication No. 10-1316006 (2013.10.08. Notification), the document describes a mesh separator for a fuel cell and a method of manufacturing the same.
본 발명의 목적은 전기전도성 및 강도 확보가 가능하면서도 우수한 성형성을 갖는 복합재 분리판 및 그 제조 방법을 제공하는 것이다.SUMMARY OF THE INVENTION An object of the present invention is to provide a composite separation plate having excellent moldability while ensuring electrical conductivity and strength, and a method of manufacturing the same.
상기 목적을 달성하기 위한 본 발명의 실시예에 따른 복합재 분리판은 탄소섬유 부직포; 및 상기 탄소섬유 부직포의 상면 및 하면에 각각 배치되어, 상기 탄소섬유 부직포와 합착된 상부 및 하부 전도성 코팅층;을 포함하는 것을 특징으로 한다.Composite separator according to an embodiment of the present invention for achieving the above object is a carbon fiber nonwoven fabric; And upper and lower conductive coating layers disposed on upper and lower surfaces of the carbon fiber nonwoven fabric, respectively, and bonded to the carbon fiber nonwoven fabric.
상기 목적을 달성하기 위한 본 발명의 실시예에 따른 복합재 분리판 제조 방법은 (a) 탄소섬유 부직포의 상면 및 하면에 상부 및 하부 전도성 코팅층을 형성하는 단계; 및 (b) 상기 탄소섬유 부직포와 상부 및 하부 전도성 코팅층을 핫 프레스로 성형 및 경화하여 복합재 분리판을 수득하는 단계;를 포함하는 것을 특징으로 한다.Method for producing a composite separator according to an embodiment of the present invention for achieving the above object (a) forming the upper and lower conductive coating layers on the upper and lower surfaces of the carbon fiber nonwoven fabric; And (b) forming and curing the carbon fiber nonwoven fabric and the upper and lower conductive coating layers by hot pressing to obtain a composite separator.
본 발명에 따른 복합재 분리판 및 그 제조 방법은 탄소섬유 직조물 대신 일정한 크기로 절단된 탄소섬유들을 합성수지 접착제로 결합시킨 펠트 형태를 갖는 탄소섬유 부직포를 이용하기 때문에 탄소섬유들의 유동성이 증대되어 성형에 유리한 구조적인 이점을 갖는다.The composite separator according to the present invention and the method for manufacturing the same are advantageous for molding because the carbon fiber nonwoven fabric having a felt form in which carbon fibers cut to a certain size is bonded with a synthetic resin adhesive instead of a carbon fiber woven fabric. Has a structural advantage.
따라서, 본 발명에 따른 복합재 분리판은 탄소섬유 부직포의 양면에 상부 및 하부 전도성 코팅층을 형성하는 것에 의해, x-축 및 y-축 방향의 표면 전기전도도 및 강도를 확보할 수 있으면서도 절단된 탄소섬유들을 합성수지 접착제로 결합시킨 펠트 형태를 갖는 탄소섬유 부직포를 이용하기 때문에 탄소섬유들의 유동성이 증대되어 우수한 성형성을 확보할 수 있다.Therefore, the composite separator according to the present invention is formed by cutting the upper and lower conductive coating layers on both sides of the carbon fiber nonwoven fabric, thereby securing the surface electrical conductivity and strength in the x-axis and y-axis directions while cutting the carbon fiber Since the carbon fiber nonwoven fabric having a felt form combined with the synthetic resin adhesive is used, the fluidity of the carbon fibers can be increased to ensure excellent moldability.
이 결과, 본 발명에 따른 복합재 분리판은 표면 전기전도도 : 100 ~ 200S/cm, 접촉저항 : 15mΩ/㎠ 이하, 굴곡강도 : 60MPa 이하 및 수소투과율 : 10-7㎤/secㆍ㎠ㆍatm 이하를 갖는다.As a result, the composite separator according to the present invention has a surface electrical conductivity of 100 to 200 S / cm, a contact resistance of 15 mPa / cm 2 or less, a bending strength of 60 MPa or less, and a hydrogen transmittance of 10 -7 cm 3 / sec · cm · atm or less. Have
도 1은 본 발명의 실시예에 따른 복합재 분리판을 나타낸 단면도.1 is a cross-sectional view showing a composite separator according to an embodiment of the present invention.
도 2는 도 1의 탄소섬유 부직포를 나타낸 사진.Figure 2 is a photograph showing the carbon fiber nonwoven fabric of Figure 1;
도 3은 도 1의 탄소섬유 부직포를 나타낸 단면도.3 is a cross-sectional view showing the carbon fiber nonwoven fabric of FIG.
도 4는 본 발명의 실시예에 따른 복합재 분리판 제조 방법을 나타낸 공정 순서도.Figure 4 is a process flow chart showing a method for manufacturing a composite separator according to an embodiment of the present invention.
도 5 내지 도 7은 본 발명의 실시예에 따른 복합재 분리판 제조 방법을 나타낸 공정 단면도.5 to 7 is a cross-sectional view showing a method for manufacturing a composite separator according to an embodiment of the present invention.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다.Advantages and features of the present invention and methods for achieving them will be apparent with reference to the embodiments described below in detail with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various different forms, only the present embodiments to make the disclosure of the present invention complete, and common knowledge in the art to which the present invention pertains. It is provided to fully inform the person having the scope of the invention, which is defined only by the scope of the claims. Like reference numerals refer to like elements throughout.
이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 복합재 분리판 및 그 제조 방법에 관하여 상세히 설명하면 다음과 같다.Hereinafter, the composite separator according to a preferred embodiment of the present invention and a manufacturing method thereof with reference to the accompanying drawings in detail as follows.
도 1은 본 발명의 실시예에 따른 복합재 분리판을 나타낸 단면도이고, 도 2는 도 1의 탄소섬유 부직포를 나타낸 사진이며, 도 3은 도 1의 탄소섬유 부직포를 나타낸 단면도이다.1 is a cross-sectional view showing a composite separator according to an embodiment of the present invention, Figure 2 is a photograph showing a carbon fiber nonwoven fabric of Figure 1, Figure 3 is a cross-sectional view showing a carbon fiber nonwoven fabric of FIG.
도 1 내지 도 3을 참조하면, 본 발명의 실시예에 따른 복합재 분리판(100)은 탄소섬유 부직포(110)와 상부 및 하부 전도성 코팅층(120, 130)을 포함한다. 이때, 탄소섬유 부직포(110)는 상부 및 하부 전도성 코팅층(120, 130)과 핫 프레스(hot press) 방식에 의해 압착되어 상호 간이 접합되는 구조를 갖는다.1 to 3, the composite separator 100 according to the embodiment of the present invention includes a carbon fiber nonwoven fabric 110 and upper and lower conductive coating layers 120 and 130. At this time, the carbon fiber nonwoven fabric 110 has a structure in which the upper and lower conductive coating layers 120 and 130 are compressed by a hot press method and are bonded to each other.
탄소섬유 부직포(110)는 복합재 분리판(100)의 중간에 배치되는 코어(core) 기재로 사용되어, 복합재 분리판(100)의 기계적 강도를 향상시키는 역할을 한다. 이러한 탄소섬유 부직포(110)는 200 ~ 400㎛의 두께를 갖는 것이 바람직하다. 탄소섬유 부직포(110)의 두께가 200㎛ 미만일 경우에는 그 두께가 얇아 기계적 강도 확보에 어려움이 따를 수 있다. 반대로, 탄소섬유 부직포(110)의 두께가 400㎛를 초과할 경우에는 더 이상의 효과 상승 없이 두께 및 부피만을 증가시키는 요인으로 작용하여 경량화 및 박형화에 역행하는 결과를 초래할 수 있으므로, 바람직하지 못하다.The carbon fiber nonwoven fabric 110 is used as a core substrate disposed in the middle of the composite separating plate 100, and serves to improve the mechanical strength of the composite separating plate 100. The carbon fiber nonwoven fabric 110 preferably has a thickness of 200 ~ 400㎛. When the thickness of the carbon fiber nonwoven fabric 110 is less than 200㎛ may be difficult to ensure the mechanical strength because the thickness is thin. On the contrary, when the thickness of the carbon fiber nonwoven fabric 110 exceeds 400 μm, the thickness of the carbon fiber nonwoven fabric 110 may be increased and the weight and volume may be increased.
이러한 탄소섬유 부직포(110)는 적어도 하나 이상이 수직적으로 적층될 수 있다. 특히, 탄소섬유 부직포(110)는 평균길이가 5 ~ 20mm로 잘린 탄소섬유들을 합성수지 접착제로 결합시킨 펠트 형태를 갖는 것을 이용하는 것이 바람직하다. 탄소섬유들의 평균길이가 5mm 미만일 경우에는 탄소섬유들의 표면적이 넓어져 수지의 함침도가 떨어져 수소투과율이 증가하는 문제가 있다. 반대로, 탄소섬유들의 평균길이가 20mm를 초과할 경우에는 분산성이 떨어져 탄소섬유들 간의 뭉침 현상에 의해 전기전도도 및 굴곡강도에 편차가 심해지는 문제로 전기전도도 및 굴곡강도가 저하되는 문제가 있다.At least one carbon fiber nonwoven fabric 110 may be stacked vertically. In particular, the carbon fiber nonwoven fabric 110 is preferably used having a felt form in which carbon fibers cut to an average length of 5 to 20 mm are bonded with a synthetic resin adhesive. When the average length of the carbon fibers is less than 5mm there is a problem that the surface area of the carbon fibers is widened so that the impregnation of the resin is reduced, the hydrogen transmittance increases. On the contrary, when the average length of the carbon fibers exceeds 20mm, there is a problem in that the electrical conductivity and the flexural strength are lowered due to the problem that the variation in the electrical conductivity and the flexural strength is aggravated due to the aggregation phenomenon between the carbon fibers.
최근에는, 복합재 분리판(100)의 코어 기재로 탄소섬유 직조물을 이용하려는 시도가 진행 중에 있으나, 이러한 탄소섬유 직조물의 경우에는 탄소섬유 부직포에 비하여 가격이 비싸며, 유로 성형 측면에서 문제가 있었다.In recent years, attempts have been made to use a carbon fiber woven fabric as a core substrate of the composite separating plate 100, but such a carbon fiber woven fabric is more expensive than a carbon fiber nonwoven fabric and has a problem in terms of forming a flow path.
즉, 탄소섬유 직조물은 탄소섬유의 낮은 신율로 인해 단선이 발생하는 것을 방지하고자 하는 공정이 까다로우며, 탄소섬유의 높은 영율(modulus)로 인해 목적하는 유로 형상대로 탄소섬유가 성형되지 않으면서 상부 및 하부 전도성 코팅층(120, 130)이 균일한 두께로 합착되지 않고 국부적으로 상부 및 하부 전도성 코팅층(120, 130)의 두께가 두꺼워지는 문제가 있다. 이와 같이, 탄소섬유 직조물은 영율 및 신율이 낮은 물성을 가지므로 복합재 분리판(100)의 강도를 향상시키는 이점이 있으나 유로 성형 측면에서 불리하다.That is, the carbon fiber woven fabric is difficult to prevent the occurrence of disconnection due to the low elongation of the carbon fiber, and the upper portion of the carbon fiber woven fabric without forming the carbon fiber in the desired flow path shape due to the high modulus of the carbon fiber And the lower conductive coating layers 120 and 130 are not bonded to a uniform thickness, and the thicknesses of the upper and lower conductive coating layers 120 and 130 are locally thickened. As such, the carbon fiber woven fabric has an advantage of improving the strength of the composite separator 100 because it has low Young's modulus and elongation.
이와 달리, 본 발명에서는 탄소섬유 직조물 대신 탄소섬유 부직포(110), 특히 탄소섬유들이 일정한 크기로 절단된 탄소섬유들을 합성수지 접착제로 결합시킨 펠트 형태를 갖는 탄소섬유 부직포(110)를 이용하는 것에 의해, 탄소섬유 직조물에 비하여 가격 경쟁력이 있으면서도 탄소섬유들이 단선될 염려가 없을 뿐만 아니라 유로 성형시 탄소섬유들의 유동성이 향상되어 우수한 성형성을 확보할 수 있게 된다.In contrast, in the present invention, the carbon fiber nonwoven fabric 110, instead of the carbon fiber woven fabric, in particular, by using a carbon fiber nonwoven fabric (110) having a felt form in which the carbon fibers are cut to a certain size bonded with a synthetic resin, carbon Compared to the fiber woven fabric, there is no fear of disconnection of the carbon fibers, but the flowability of the carbon fibers is improved during forming the flow path, thereby ensuring excellent moldability.
상부 및 하부 전도성 코팅층(120, 130)은 탄소섬유 부직포(110)의 상면 및 하면에 각각 배치되어, 탄소섬유 부직포(110)와 합착된다.The upper and lower conductive coating layers 120 and 130 are disposed on the upper and lower surfaces of the carbon fiber nonwoven fabric 110, respectively, and are bonded to the carbon fiber nonwoven fabric 110.
이러한 상부 및 하부 전도성 코팅층(120, 130)은 핫 프레스 공정에 의해 탄소섬유 부직포(110)와 합착된다. 이때, 상부 및 하부 전도성 코팅층(120, 130)은 탄소섬유 부직포(110)와의 합착에 의해, 탄소섬유 부직포(110)의 내부로 일부가 함침되어 상호 간이 일체로 연결되는 구조를 갖는다.The upper and lower conductive coating layers 120 and 130 are bonded to the carbon fiber nonwoven fabric 110 by a hot pressing process. In this case, the upper and lower conductive coating layers 120 and 130 have a structure in which part of the upper and lower conductive coating layers 120 and 130 are impregnated with the carbon fiber nonwoven fabric 110 to be integrally connected to each other.
이때, 상부 및 하부 전도성 코팅층(120, 130)은 각각 5 ~ 100㎛의 두께를 갖는 것이 바람직하다. 상부 및 하부 전도성 코팅층(120, 130) 각각의 두께가 5㎛ 미만일 경우에는 그 두께가 너무 얇은 관계로 취급성이 어려우며, 표면 전기전도성이 저하되는 문제가 있다. 반대로, 상부 및 하부 전도성 코팅층(120, 130) 각각의 두께가 100㎛를 초과할 경우에는 더 이상의 효과 상승 없이 제조 비용만을 상승시키는 요인으로 작용할 수 있으므로, 경제적이지 못하다.In this case, it is preferable that the upper and lower conductive coating layers 120 and 130 have a thickness of 5 to 100 μm, respectively. When the thickness of each of the upper and lower conductive coating layers 120 and 130 is less than 5 μm, the handling is difficult because the thickness is too thin, and there is a problem that the surface electrical conductivity is lowered. On the contrary, when the thickness of each of the upper and lower conductive coating layers 120 and 130 exceeds 100 μm, it may not be economical because it may act as a factor of increasing the manufacturing cost without any further effect increase.
이러한 상부 및 하부 전도성 코팅층(120, 130)은 각각 수지층과 수지층 내에 함침된 전도성 필러를 포함한다.The upper and lower conductive coating layers 120 and 130 include a resin layer and a conductive filler impregnated in the resin layer, respectively.
수지층은 기계적 강도를 향상시키는 역할을 한다. 이러한 수지층은 페놀 수지, 에폭시 수지, 아미노 수지, 우레아 수지, 멜라민 수지, 불포화 폴리에스텔 수지, 폴리우레탄 수지 및 폴리이미드 수지를 포함하는 열경화성 수지 중 선택된 어느 하나의 재질로 형성된다.The resin layer serves to improve the mechanical strength. The resin layer is formed of any one selected from a thermosetting resin including a phenol resin, an epoxy resin, an amino resin, a urea resin, a melamine resin, an unsaturated polyester resin, a polyurethane resin, and a polyimide resin.
전도성 필러는 x-축 및 y축의 표면 전기전도성을 향상시키기 위해 수지층에 첨가되어 분산 배치된다. 이를 위해, 전도성 필러는 탄소나노튜브(carbon nanotube), 흑연분말(graphite powder), 탄소 단섬유(chopped carbon fiber), 카본블랙(carbon black), 카본분말(carbon powder), 그라파이트 나노플레이트(graphite nanoplate) 및 그래핀(graphene) 중 선택된 1종 이상을 포함할 수 있다.The conductive filler is added and dispersed in the resin layer to improve the surface electrical conductivity of the x-axis and the y-axis. To this end, the conductive filler is carbon nanotube, graphite powder, chopped carbon fiber, carbon black, carbon powder, graphite nanoplate ) And graphene may include one or more selected from.
이때, 상부 및 하부 전도성 코팅층(120, 130) 각각은 전도성 필러가 고형분 기준으로 전체 중량의 15 ~ 25 중량%로 첨가되는 것이 바람직하다. 전도성 필러의 함량이 15 중량% 미만일 경우에는 표면 전기전도성 확보에 어려움이 따를 수 있다. 반대로, 전도성 필러의 함량이 25 중량%를 초과할 경우에는 노즐 막힘에 의한 코팅 불량을 유발할 수 있다.At this time, the upper and lower conductive coating layers 120 and 130 are preferably added to the conductive filler 15 to 25% by weight of the total weight of the solid content. If the content of the conductive filler is less than 15% by weight, it may be difficult to secure the surface electrical conductivity. On the contrary, when the content of the conductive filler exceeds 25% by weight, coating failure may be caused by clogging of the nozzle.
본 발명에서는 복합재 분리판(100)의 코어 기재로 탄소섬유 직조물 대신 탄소섬유 부직포(110)를 이용하기 때문에 탄소섬유 부직포(110)의 양면에 코팅되는 상부 및 하부 전도성 코팅층(120, 130)의 전도성 필러가 탄소섬유 부직포(110)의 내부로 침투되기 용이하므로 z-축 방향의 수직 전기전도도가 좋아질 수 있다.In the present invention, since the carbon fiber nonwoven fabric 110 is used instead of the carbon fiber woven fabric as the core substrate of the composite separator 100, the upper and lower conductive coating layers 120 and 130 coated on both sides of the carbon fiber nonwoven fabric 110 are conductive. Since the filler easily penetrates into the carbon fiber nonwoven fabric 110, the vertical electrical conductivity in the z-axis direction may be improved.
전술한 본 발명의 실시예에 따른 복합재 분리판은 탄소섬유 직조물 대신 일정한 크기로 절단된 탄소섬유들을 합성수지 접착제로 결합시킨 펠트 형태를 갖는 탄소섬유 부직포를 이용하기 때문에 탄소섬유들의 유동성이 증대되어 성형에 유리한 구조적인 이점을 갖는다.The composite separator according to the embodiment of the present invention described above uses a carbon fiber nonwoven fabric having a felt form in which carbon fibers cut to a predetermined size are bonded with a synthetic resin instead of a carbon fiber woven fabric. Has advantageous structural advantages.
따라서, 본 발명의 실시예에 따른 복합재 분리판은 탄소섬유 부직포의 양면에 상부 및 하부 전도성 코팅층을 형성하는 것에 의해, x-축 및 y-축 방향의 표면 전기전도도 및 강도를 확보할 수 있으면서도 절단된 탄소섬유들을 합성수지 접착제로 결합시킨 펠트 형태를 갖는 탄소섬유 부직포를 이용하기 때문에 탄소섬유들의 유동성이 증대되어 우수한 성형성을 확보할 수 있다.Therefore, the composite separator according to an embodiment of the present invention is cut while being able to secure the surface electrical conductivity and strength in the x-axis and y-axis directions by forming upper and lower conductive coating layers on both sides of the carbon fiber nonwoven fabric. Since a carbon fiber nonwoven fabric having a felt form in which the carbon fibers are combined with a synthetic resin adhesive is used, the fluidity of the carbon fibers may be increased to ensure excellent moldability.
이 결과, 본 발명의 실시예에 따른 복합재 분리판은 표면 전기전도도 : 100 ~ 200S/cm, 접촉저항 : 15mΩ/㎠ 이하, 굴곡강도 : 60MPa 이하 및 수소투과율 : 10-7㎤/secㆍ㎠ㆍatm 이하를 갖는다.As a result, the composite separator according to the embodiment of the present invention has a surface electrical conductivity of 100 to 200 S / cm, a contact resistance of 15 mPa / cm 2 or less, a bending strength of 60 MPa or less, and a hydrogen transmittance of 10 -7 cm 3 / sec · cm 2. has atm or less
이하, 첨부된 도면을 참조하여 본 발명의 실시예에 따른 복합재 분리판의 제조 방법에 대하여 설명하도록 한다.Hereinafter, with reference to the accompanying drawings will be described for the manufacturing method of the composite separator according to an embodiment of the present invention.
도 4는 본 발명의 실시예에 따른 복합재 분리판 제조 방법을 나타낸 공정 순서도이고, 도 5 내지 도 7은 본 발명의 실시예에 따른 복합재 분리판 제조 방법을 나타낸 공정 단면도이다.Figure 4 is a process flow chart showing a composite separator according to an embodiment of the present invention, Figures 5 to 7 is a cross-sectional view showing a method for manufacturing a composite separator according to an embodiment of the present invention.
도 4에 도시된 바와 같이, 본 발명의 실시예에 따른 복합재 분리판 제조 방법은 상부 및 하부 전도성 코팅층 형성 단계(S110) 및 핫 프레스 단계(S120)를 포함한다.As shown in FIG. 4, the method of manufacturing a composite separator according to an embodiment of the present invention includes forming a top and bottom conductive coating layer (S110) and a hot press step (S120).
상부 및 하부 전도성 코팅층 형성Form upper and lower conductive coating layers
도 4 내지 도 6에 도시된 바와 같이, 상부 및 하부 전도성 코팅층 형성 단계(S110)에서는 탄소섬유 부직포(110)의 상면 및 하면에 상부 및 하부 전도성 코팅층(120, 130)을 형성한다.As shown in FIGS. 4 to 6, the upper and lower conductive coating layers 120 and 130 are formed on the upper and lower surfaces of the carbon fiber nonwoven fabric 110 in the forming of the upper and lower conductive coating layers (S110).
탄소섬유 부직포(110)는 적어도 하나 이상이 수직적으로 적층될 수 있다. 특히, 탄소섬유 부직포(110)는 평균길이가 5 ~ 20mm로 잘린 탄소섬유들을 합성수지 접착제로 결합시킨 펠트 형태를 갖는 것을 이용하는 것이 바람직하다. 최근에는, 복합재 분리판(100)의 코어 기재로 탄소섬유 직조물을 이용하려는 시도가 진행 중에 있으나, 이러한 탄소섬유 직조물의 경우에는 탄소섬유 부직포에 비하여 가격이 비싸며, 유로 성형 측면에서 문제가 있었다.At least one carbon fiber nonwoven fabric 110 may be vertically stacked. In particular, the carbon fiber nonwoven fabric 110 is preferably used having a felt form in which carbon fibers cut to an average length of 5 to 20 mm are bonded with a synthetic resin adhesive. In recent years, attempts have been made to use a carbon fiber woven fabric as a core substrate of the composite separating plate 100, but such a carbon fiber woven fabric is more expensive than a carbon fiber nonwoven fabric and has a problem in terms of forming a flow path.
즉, 탄소섬유 직조물은 탄소섬유의 낮은 신율로 인해 단선이 발생하는 것을 방지하고자 하는 공정이 까다로우며, 탄소섬유의 높은 영율(modulus)로 인해 목적하는 유로 형상대로 탄소섬유가 성형되지 않으면서 상부 및 하부 전도성 코팅층(120, 130)이 균일한 두께로 합착되지 않고 국부적으로 상부 및 하부 전도성 코팅층(120, 130)의 두께가 두꺼워지는 문제가 있다. 이와 같이, 탄소섬유 직조물은 영율 및 신율이 낮은 물성을 가지므로 복합재 분리판의 강도를 향상시키는 이점이 있으나 유로 성형 측면에서 불리하다.That is, the carbon fiber woven fabric is difficult to prevent the occurrence of disconnection due to the low elongation of the carbon fiber, and the upper portion of the carbon fiber woven fabric without forming the carbon fiber in the desired flow path shape due to the high modulus of the carbon fiber And the lower conductive coating layers 120 and 130 are not bonded to a uniform thickness, and the thicknesses of the upper and lower conductive coating layers 120 and 130 are locally thickened. As such, the carbon fiber woven fabric has advantages of improving the strength of the composite separator because of its low Young's modulus and elongation, but is disadvantageous in terms of flow path molding.
이와 달리, 본 발명에서는 탄소섬유 직조물 대신 탄소섬유 부직포(110), 특히 탄소섬유들이 일정한 크기로 절단된 탄소섬유들을 합성수지 접착제로 결합시킨 펠트 형태를 갖는 탄소섬유 부직포(110)를 이용하는 것에 의해, 탄소섬유 직조물에 비하여 가격 경쟁력이 있으면서도 탄소섬유들이 단선될 염려가 없을 뿐만 아니라 유로 성형시 탄소섬유들의 유동성이 향상되어 우수한 성형성을 확보할 수 있게 된다.In contrast, in the present invention, the carbon fiber nonwoven fabric 110, instead of the carbon fiber woven fabric, in particular, by using a carbon fiber nonwoven fabric (110) having a felt form in which the carbon fibers are cut to a certain size bonded with a synthetic resin, carbon Compared to the fiber woven fabric, there is no fear of disconnection of the carbon fibers, but the flowability of the carbon fibers is improved during forming the flow path, thereby ensuring excellent moldability.
이때, 상부 및 하부 전도성 코팅층(120, 130)은 각각 수지층과 수지층 내에 함침된 전도성 필러를 포함한다.In this case, the upper and lower conductive coating layers 120 and 130 each include a resin layer and a conductive filler impregnated in the resin layer.
수지층은 기계적 강도를 향상시키는 역할을 한다. 이러한 수지층은 페놀 수지, 에폭시 수지, 아미노 수지, 우레아 수지, 멜라민 수지, 불포화 폴리에스텔 수지, 폴리우레탄 수지 및 폴리이미드 수지를 포함하는 열경화성 수지 중 선택된 어느 하나의 재질로 형성된다.The resin layer serves to improve the mechanical strength. The resin layer is formed of any one selected from a thermosetting resin including a phenol resin, an epoxy resin, an amino resin, a urea resin, a melamine resin, an unsaturated polyester resin, a polyurethane resin, and a polyimide resin.
전도성 필러는 x-축 및 y-축의 표면 전기전도성을 향상시키기 위해 수지층에 첨가되어 분산 배치된다. 이를 위해, 전도성 필러는 탄소나노튜브(carbon nanotube), 흑연분말(graphite powder), 탄소 단섬유(chopped carbon fiber), 카본블랙(carbon black), 카본분말(carbon powder), 그라파이트 나노플레이트(graphite nanoplate) 및 그래핀(graphene) 중 선택된 1종 이상을 포함할 수 있다.The conductive filler is added and dispersed in the resin layer to improve the surface electrical conductivity of the x-axis and the y-axis. To this end, the conductive filler is carbon nanotube, graphite powder, chopped carbon fiber, carbon black, carbon powder, graphite nanoplate ) And graphene may include one or more selected from.
이때, 상부 및 하부 전도성 코팅층(120, 130) 각각은 전도성 필러가 고형분 기준으로 전체 중량의 15 ~ 25 중량%로 첨가되는 것이 바람직하다. 전도성 필러의 함량이 15 중량% 미만일 경우에는 표면 전기전도도 확보에 어려움이 따를 수 있다. 반대로, 전도성 필러의 함량이 25 중량%를 초과할 경우에는 노즐 막힘에 의한 코팅 불량을 유발할 수 있다.At this time, the upper and lower conductive coating layers 120 and 130 are preferably added to the conductive filler 15 to 25% by weight of the total weight of the solid content. If the content of the conductive filler is less than 15% by weight, it may be difficult to secure the surface electrical conductivity. On the contrary, when the content of the conductive filler exceeds 25% by weight, coating failure may be caused by clogging of the nozzle.
본 단계에서, 상부 및 하부 전도성 코팅층(120, 130)은 나이프 코팅(knife coating), 스프레이 코팅(spray coating), 딥 코팅(dip coating) 및 바 코팅(bar coating) 방법 중 어느 하나 이상에 의해 형성될 수 있다. 이때, 스프레이 시간, 딥 코팅 시간, 나이프 높이 또는 바의 높이 등을 조절하는 것에 의해 상부 및 하부 전도성 코팅층(120, 130)의 두께를 조절할 수 있게 된다.In this step, the upper and lower conductive coating layers 120 and 130 are formed by any one or more of knife coating, spray coating, dip coating and bar coating methods. Can be. At this time, the thickness of the upper and lower conductive coating layers 120 and 130 may be adjusted by adjusting the spray time, dip coating time, knife height or bar height.
핫 프레스Hot press
도 4 및 도 7에 도시된 바와 같이, 핫 프레스 단계(S120)에서는 탄소섬유 부직포(110)와 상부 및 하부 전도성 코팅층(120, 130)을 핫 프레스로 성형 및 경화하여 복합재 분리판(100)을 수득한다.As shown in FIGS. 4 and 7, in the hot pressing step S120, the carbon fiber nonwoven fabric 110 and the upper and lower conductive coating layers 120 and 130 are formed by a hot press and cured to form the composite separator 100. To obtain.
이러한 핫 프레스 시, 요철 구조를 갖는 금형을 이용한 핫 프레스 성형에 의해 일정한 형상으로 설계된 유로를 갖는 복합재 분리판(100)을 수득할 수 있다. 이때, 유로의 높이 및 폭은 복합재 분리판(100)의 설계 모델에 따라 다양한 형태 및 크기를 가질 수 있다.In this hot press, it is possible to obtain a composite separation plate 100 having a flow path designed in a constant shape by hot press molding using a mold having an uneven structure. At this time, the height and width of the flow path may have a variety of shapes and sizes according to the design model of the composite separator (100).
이때, 핫 프레스는 130 ~ 200℃에서 10 ~ 30MPa의 압력 조건으로 10 ~ 60분 동안 실시하는 것이 바람직하다. 핫 프레스 온도가 130℃ 미만이거나, 핫 프레스 시간이 10분 미만일 경우에는 충분한 경화가 이루어지지 않을 우려가 크다. 반대로, 핫 프레스 온도가 200℃를 초과하거나, 핫 프레스 시간이 60분을 초과할 경우에는 더 이상의 효과 상승 없이 제조비용만을 상승시키는 요인으로 작용할 수 있으므로, 경제적이지 못하다.At this time, the hot press is preferably carried out for 10 to 60 minutes at 130 ~ 200 ℃ under a pressure condition of 10 ~ 30MPa. When the hot press temperature is less than 130 ° C. or the hot press time is less than 10 minutes, there is a high possibility that sufficient curing will not occur. On the contrary, when the hot press temperature exceeds 200 ° C. or the hot press time exceeds 60 minutes, it is not economical because it may act as a factor of increasing the manufacturing cost without any further effect increase.
또한, 핫 프레스 압력이 10MPa 미만일 경우에는 탄소섬유 부직포(110)와 상부 및 하부 전도성 코팅층(120, 130) 간의 계면 부착력이 충분하지 못하여 박리가 일어날 수 있다. 반대로, 핫 프레스 압력이 30MPa을 초과할 경우에는 과도한 압력으로 인해 탄소섬유 부직포(110)와 상부 및 하부 전도성 코팅층(120, 130)에 크랙 등의 손상이 발생할 수 있다.In addition, when the hot press pressure is less than 10MPa, the interfacial adhesion between the carbon fiber nonwoven fabric 110 and the upper and lower conductive coating layers 120 and 130 may not be sufficient, thereby causing peeling. On the contrary, when the hot press pressure exceeds 30 MPa, damage to the carbon fiber nonwoven fabric 110 and the upper and lower conductive coating layers 120 and 130 may occur due to excessive pressure.
이러한 핫 프레스 단계(S120) 시, 압착에 의해 탄소섬유 부직포(110)와 상부 및 하부 전도성 코팅층(120, 130)의 두께가 감소하게 된다. 이러한 핫 프레스 단계(S120)를 실시한 이후, 탄소섬유 부직포(110)는 200 ~ 400㎛의 두께를 갖고, 상부 및 하부 전도성 코팅층(120, 130) 각각은 5 ~ 100㎛의 두께를 가질 수 있다.During the hot pressing step (S120), the thickness of the carbon fiber nonwoven fabric 110 and the upper and lower conductive coating layers (120, 130) by the compression is reduced. After performing the hot pressing step (S120), the carbon fiber nonwoven fabric 110 may have a thickness of 200 μm to 400 μm, and each of the upper and lower conductive coating layers 120 and 130 may have a thickness of 5 μm to 100 μm.
상기의 과정(S110 ~ S120)에 의해 제조되는 복합재 분리판은 탄소섬유 직조물 대신 일정한 크기로 절단된 탄소섬유들을 합성수지 접착제로 결합시킨 펠트 형태를 갖는 탄소섬유 부직포를 이용하기 때문에 탄소섬유들의 유동성이 증대되어 성형에 유리한 구조적인 이점을 갖는다.The composite separator prepared by the above process (S110 ~ S120) uses a carbon fiber nonwoven fabric having a felt form in which carbon fibers cut to a predetermined size are bonded with a synthetic resin instead of a carbon fiber woven fabric, thereby increasing the fluidity of the carbon fibers. It has a structural advantage advantageous for molding.
따라서, 본 발명의 실시예에 따른 방법으로 제조된 복합재 분리판은 탄소섬유 부직포의 양면에 상부 및 하부 전도성 코팅층을 형성하는 것에 의해, x-축 및 y-축 방향의 표면 전기전도도 및 강도를 확보할 수 있으면서도 절단된 탄소섬유들을 합성수지 접착제로 결합시킨 펠트 형태를 갖는 탄소섬유 부직포를 이용하기 때문에 탄소섬유들의 유동성이 증대되어 우수한 성형성을 확보할 수 있다.Therefore, the composite separator prepared by the method according to an embodiment of the present invention to secure the surface electrical conductivity and strength in the x-axis and y-axis direction by forming the upper and lower conductive coating layers on both sides of the carbon fiber nonwoven fabric Although it is possible to use a carbon fiber nonwoven fabric having a felt form in which the cut carbon fibers are bonded with a synthetic resin adhesive, the fluidity of the carbon fibers is increased to ensure excellent moldability.
이 결과, 본 발명의 실시예에 따른 방법으로 제조된 복합재 분리판은 표면 전기전도도 : 100 ~ 200S/cm, 접촉저항 : 15mΩ/㎠ 이하, 굴곡강도 : 60MPa 이하 및 수소투과율 : 10-7㎤/secㆍ㎠ㆍatm 이하를 갖는다.As a result, the composite separator prepared by the method according to the embodiment of the present invention has a surface electrical conductivity of 100 to 200 S / cm, contact resistance of 15 mPa / cm 2 or less, flexural strength of 60 MPa or less, and a hydrogen transmittance of 10 -7 cm 3 /. sec.cm 2 .atm or less.
실시예Example
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.Hereinafter, the configuration and operation of the present invention through the preferred embodiment of the present invention will be described in more detail. However, this is presented as a preferred example of the present invention and in no sense can be construed as limiting the present invention.
여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.Details that are not described herein will be omitted since those skilled in the art can sufficiently infer technically.
1. 복합재 분리판 제조1. Composite Separator Manufacturing
실시예Example 1 One
평균 길이 6mm로 절단된 탄소섬유들을 에탄올 용액 내에 분산시킨 후, 거름망을 통과시켜 부직포 형태로 제작한 후, 여기에 바인더로 에폭시 수지를 20wt%로 첨가한 용액을 스프레이 분사하고 80℃에서 1시간 동안 휘발시켜 탄소섬유가 에폭시 수지에 의해 바인딩되어 있는 1mm의 두께의 탄소섬유 부직포를 제조하였다.After dispersing the carbon fibers cut to an average length of 6mm in an ethanol solution, it was made through a strainer to form a nonwoven fabric, and then spray-sprayed a solution containing 20 wt% of epoxy resin as a binder and sprayed at 80 ° C. for 1 hour. The volatilization produced a carbon fiber nonwoven fabric having a thickness of 1 mm in which carbon fibers were bound by an epoxy resin.
다음으로, 에폭시 수지 20 중량부에 그라파이트 80 중량부를 첨가한 파우더를 탄소섬유 부직포의 상부 및 하부에 나이프 코팅 방법(Knife coating method)으로 150㎛의 두께로 각각 도포한 후, 150℃ 및 20MPa의 압력 조건으로 30분 동안 핫 프레스로 압착 및 경화하여 복합재 분리판을 제조하였다.Next, after applying the powder to which 80 parts by weight of graphite was added to 20 parts by weight of the epoxy resin was applied to the upper and lower portions of the carbon fiber nonwoven fabric with a thickness of 150 μm by the knife coating method, respectively, the pressure was 150 ° C. and 20 MPa. The composite separator was prepared by pressing and curing under a hot press for 30 minutes under conditions.
실시예Example 2  2
평균 길이 10mm로 절단된 탄소섬유들을 합성수지 접착제로 결합시켜 펠트 형태로 제조되며, 1mm의 두께를 갖는 탄소섬유 부직포를 이용한 것을 제외하고는 실시예 1과 동일한 방법으로 복합재 분리판을 제조하였다.The carbon fiber cut to an average length of 10mm was bonded to a synthetic resin adhesive, and manufactured in a felt form, except that a carbon fiber nonwoven fabric having a thickness of 1 mm was used to prepare a composite separator in the same manner as in Example 1.
실시예Example 3  3
평균 길이 15mm로 절단된 탄소섬유들을 합성수지 접착제로 결합시켜 펠트 형태로 제조되며, 1mm의 두께를 갖는 탄소섬유 부직포를 이용한 것을 제외하고는 실시예 1과 동일한 방법으로 복합재 분리판을 제조하였다.Carbon fiber cut to an average length of 15mm was manufactured in the form of felt by combining with a synthetic resin adhesive, a composite separator was prepared in the same manner as in Example 1 except that a carbon fiber nonwoven fabric having a thickness of 1mm was used.
비교예Comparative example 1  One
150℃ 및 8MPa의 조건으로 40분 동안 핫 프레스로 압착 및 경화한 것을 제외하고는 실시예 1과 동일한 방법으로 복합재 분리판을 제조하였다.A composite separator was prepared in the same manner as in Example 1, except that the mixture was pressed and cured by hot press for 40 minutes at 150 ° C. and 8 MPa.
비교예Comparative example 2 2
탄소섬유 직조물의 상부 및 하부에 에폭시 수지 20 중량부에 그라파이트 80 중량부를 혼합한 파우더를 나이프 코팅 방법으로 150㎛의 두께로 각각 코팅한 후, 150℃ 및 20MPa의 압력 조건으로 30분 동안 핫 프레스로 압착 및 경화하여 복합재 분리판을 제조하였다.Powders of 80 parts by weight of graphite mixed with 20 parts by weight of an epoxy resin were coated on the upper and lower portions of the carbon fiber woven fabric by a knife coating method, respectively, and then coated with a hot press for 30 minutes under pressure conditions of 150 ° C. and 20 MPa. Compression and hardening to prepare a composite separator.
비교예Comparative example 3  3
평균 길이 50mm로 절단된 탄소섬유들을 합성수지 접착제로 결합시켜 펠트 형태로 제조되며, 1mm의 두께를 갖는 탄소섬유 부직포를 이용한 것을 제외하고는 실시예 1과 동일한 방법으로 복합재 분리판을 제조하였다.Carbon fiber cut to an average length of 50mm was manufactured in a felt form by combining with a synthetic resin adhesive, and a composite separator was prepared in the same manner as in Example 1 except for using a carbon fiber nonwoven fabric having a thickness of 1mm.
비교예Comparative example 4  4
평균 길이 3mm로 절단된 탄소섬유들을 합성수지 접착제로 결합시켜 펠트 형태로 제조되며, 1mm의 두께를 갖는 탄소섬유 부직포를 이용한 것을 제외하고는 실시예 1과 동일한 방법으로 복합재 분리판을 제조하였다.A composite separator was prepared in the same manner as in Example 1 except that the carbon fibers cut to an average length of 3 mm were combined with a synthetic resin adhesive to prepare a felt form, and a carbon fiber nonwoven fabric having a thickness of 1 mm was used.
2. 물성 평가2. Property evaluation
표 1은 실시예 1 ~ 3 및 비교예 1 ~ 4에 따라 제조된 복합재 분리판들에 대한 물성 평가 결과를 나타낸 것이다. 이때, 표면 전기전도도, 접촉저항 및 굴곡강도는 유로 성형없이 평판으로 성능을 측정하였고, 수소투과율은 유로 성형을 실시한 후 측정하였다.Table 1 shows the physical property evaluation results for the composite separators prepared according to Examples 1 to 3 and Comparative Examples 1 to 4. At this time, the surface electrical conductivity, contact resistance and flexural strength were measured by flat plate without flow path forming, and the hydrogen transmittance was measured after flow path forming.
1) 표면 전기전도도1) Surface Conductivity
4-탐침법(4-point probe method)에 의거하여 표면 전기전도도를 측정하였다.Surface electrical conductivity was measured based on the 4-point probe method.
2) 접촉저항2) contact resistance
측정 방법 : 구리 전극 / GDL / 분리판 / GDL / 구리 전극의 순서대로 적층한 후, 양쪽의 구리 전극에 5A의 전류를 인가하면서, 구리 전극 사이에서 발생하는 전압 강하를 측정하였다. 여기서 나온 전압에 가해준 전류 값을 나누어 저항을 계산하고, 측정에 사용된 분리판의 면적을 곱해주었다. 이때, 분리판은 가로 5cm, 세로 5cm 이었다.Measuring method: After laminating | stacking in order of copper electrode / GDL / separator / GDL / copper electrode, the voltage drop which generate | occur | produces between copper electrodes was measured, applying a current of 5A to both copper electrodes. The resistance was calculated by dividing the current applied to the voltage, and multiplied by the area of the separator used for the measurement. At this time, the separator was 5 cm wide and 5 cm long.
구리 전극과 GDL 사이의 접촉 저항을 빼주기 위해, 구리 전극 / GDL / 구리 전극의 순서대로 적층한 후 저항을 측정하였고, 위의 값에서 빼주어 분리판의 접촉 저항을 계산하였다.In order to subtract the contact resistance between the copper electrode and the GDL, after stacking in order of the copper electrode / GDL / copper electrode, the resistance was measured, and subtracted from the above value to calculate the contact resistance of the separator.
3) 굴곡강도3) flexural strength
가로 1.27cm 및 세로 12.7cm로 각각 절단한 후, ASTM D790-10에 의거하여 굴곡강도를 측정하였다.After cutting to 1.27 cm and 12.7 cm, respectively, the flexural strength was measured according to ASTM D790-10.
4) 수소투과율4) Hydrogen transmittance
분리판을 오링(O-ring)이 있는 홀더에 끼워 분리판에 의해 좌우 공간이 나눠지도록 장비에 장착하고, 좌우 모두 진공상태로 만들어준 다음, 한 쪽에만 1기압의 수소를 주입하여 반대편으로 나오는 수소의 투과량을 측정하였다. 이때, 시간에 따른 수소투과율 그래프가 특정 지점에서 포화(saturation) 상태가 되었을 시의 해당 값으로 나타내었다.Insert the separator plate into the holder with O-ring and install it on the equipment so that the left and right spaces are divided by the separator plate.Then, vacuum the left and right sides, and then inject 1 atmosphere of hydrogen to one side The permeation amount of hydrogen was measured. At this time, the hydrogen permeability graph with time is shown as the corresponding value when the saturation (saturation) state at a specific point.
5) 빛 투과율5) light transmittance
시편을 금형에 넣어 유로 형태를 성형한 후, 홀더에 장착하여 좌우 공간이 나눠지도록 설치하고, 한 쪽에서 빛을 조사하여 반대편으로 빛이 새어 나오는 것을 육안으로 관찰한다.After putting the specimen into the mold to shape the flow path, it is mounted on the holder and installed so that the left and right spaces are divided, and the light is emitted from one side to observe the light leaking out to the other side.
이때, 표면 전기전도도, 접촉저항 및 굴곡강도의 경우는 시편의 기본적인 물성을 테스트하는 것으로 평판 형태로 실시하였고, 수소투과율 및 빛 투과율 실험은 성형성에 의해 좌우되는 주요한 특성이기 때문에 해당 테스트는 유로 성형 후 측정하였다.In this case, the surface electrical conductivity, contact resistance and flexural strength were tested in the form of a flat plate to test the basic physical properties of the specimen. Since the hydrogen permeability and light transmittance experiments are the main characteristics that depend on the formability, the test is performed after forming the flow path. Measured.
[표 1]TABLE 1
Figure PCTKR2016014113-appb-I000001
Figure PCTKR2016014113-appb-I000001
표 1에 도시된 바와 같이, 실시예 1 ~ 3에 따라 제조된 복합재 분리판의 경우, 목표값에 해당하는 표면 전기전도도 : 100 ~ 200S/cm, 접촉저항 : 15mΩ/㎠ 이하, 굴곡강도 : 60MPa 이하 및 수소투과율 : 10-7㎤/secㆍ㎠ㆍatm 이하를 가지며, 유로 성형후 빛이 투과되지 않는 것을 확인하였다.As shown in Table 1, in the case of the composite separator prepared according to Examples 1 to 3, the surface electrical conductivity corresponding to the target value: 100 ~ 200S / cm, contact resistance: 15mPa / ㎠ or less, bending strength: 60MPa It had a hydrogen transmittance of 10-7 cm 3 / sec · cm 2 atm or less, and it was confirmed that light was not transmitted after the flow path molding.
반면, 비교예 1에 따라 제조된 복합재 분리판의 경우에는 핫 프레스시 낮은 압력에 의해 함침도가 저하되어 전기전도도 및 굴곡강도가 저하되었으며, 수소투과율이 상승하였다.On the other hand, in the case of the composite separator prepared according to Comparative Example 1, the impregnation was lowered due to the low pressure during hot press, the electrical conductivity and flexural strength were lowered, and the hydrogen transmittance was increased.
그리고, 비교예 2에 따라 제조된 복합재 분리판의 경우에는 코어 기재로 탄소섬유 직조물을 이용하는데 기인하여 굴곡강도가 높게 측정되었으며, 기공의 발생으로 수소투과율 측정이 불가하였으며, 이 결과 유로 성형 후 빛이 투과되었다.In the case of the composite separator prepared according to Comparative Example 2, the flexural strength was measured due to the use of the carbon fiber woven fabric as the core substrate, and the hydrogen permeability could not be measured due to the generation of pores. Was transmitted.
또한, 평균 길이 50mm로 절단된 탄소섬유들을 이용한 비교예 3에 따라 제조된 복합재 분리판의 경우에는 분산성이 떨어져 탄소섬유들이 뭉치는 현상에 의해 전기전도도 및 굴곡강도의 구간별 편차가 심하여 전기전도도 및 굴곡강도의 평균값이 저하되었다.In addition, in the case of the composite separator prepared according to Comparative Example 3 using carbon fibers cut to an average length of 50mm, the electrical conductivity and bending strength were severely varied due to the dispersion of carbon fibers due to the dispersion of carbon fibers. And the average value of the bending strength was lowered.
또한, 평균 길이 3mm로 절단된 탄소섬유들을 이용한 비교예 4에 따라 제조된 복합재 분리판의 경우에는 탄소섬유들의 평균 길이가 너무 짧기 때문에 굴곡강도가 저하되며, 탄소섬유의 표면적이 넓어지면서 수지의 함침도가 저하되어 시편의 내부에 기공이 발생하여 수소투과율이 증가하였다.In addition, in the case of the composite separator prepared according to Comparative Example 4 using carbon fibers cut to an average length of 3mm, the flexural strength is reduced because the average length of the carbon fibers is too short, impregnating the resin as the surface area of the carbon fibers becomes wider. As the degree was lowered, pores were generated in the specimen, thereby increasing the hydrogen permeability.
이상에서는 본 발명의 실시예를 중심으로 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 기술자의 수준에서 다양한 변경이나 변형을 가할 수 있다. 이러한 변경과 변형은 본 발명이 제공하는 기술 사상의 범위를 벗어나지 않는 한 본 발명에 속한다고 할 수 있다. 따라서 본 발명의 권리범위는 이하에 기재되는 청구범위에 의해 판단되어야 할 것이다.Although the above has been described with reference to the embodiments of the present invention, various changes and modifications can be made at the level of those skilled in the art. Such changes and modifications can be said to belong to the present invention without departing from the scope of the technical idea provided by the present invention. Therefore, the scope of the present invention will be determined by the claims described below.

Claims (18)

  1. 탄소섬유 부직포; 및 Carbon fiber nonwovens; And
    상기 탄소섬유 부직포의 상면 및 하면에 각각 배치되어, 상기 탄소섬유 부직포와 합착된 상부 및 하부 전도성 코팅층; Upper and lower conductive coating layers disposed on upper and lower surfaces of the carbon fiber nonwoven fabric and bonded to the carbon fiber nonwoven fabric;
    을 포함하는 복합재 분리판.Composite separator comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 탄소섬유 부직포는 The carbon fiber nonwoven fabric
    5 ~ 20mm의 평균 길이로 잘린 탄소섬유들을 합성수지 접착제로 결합시킨 펠트 형태를 갖는 복합재 분리판.A composite separator having a felt form in which carbon fibers cut to an average length of 5 to 20 mm are bonded with a resin adhesive.
  3. 제1항에 있어서,The method of claim 1,
    상기 탄소섬유 부직포는 The carbon fiber nonwoven fabric
    200 ~ 400㎛의 두께를 갖는 복합재 분리판.Composite separator having a thickness of 200 ~ 400㎛.
  4. 제1항에 있어서,The method of claim 1,
    상기 탄소섬유 부직포는 The carbon fiber nonwoven fabric
    적어도 하나 이상이 수직적으로 적층된 복합재 분리판.Composite separator in which at least one is stacked vertically.
  5. 제1항에 있어서,The method of claim 1,
    상기 상부 및 하부 전도성 코팅층은 The upper and lower conductive coating layer
    상기 탄소섬유 부직포와의 합착에 의해, 상기 탄소섬유 부직포의 내부로 일부가 함침되어 상호 간이 일체로 연결된 복합재 분리판.A composite separator plate impregnated with a portion of the carbon fiber nonwoven fabric by being bonded to the carbon fiber nonwoven fabric so as to be integrally connected to each other.
  6. 제1항에 있어서,The method of claim 1,
    상기 상부 및 하부 전도성 코팅층은 각각 The upper and lower conductive coating layers are respectively
    5 ~ 100㎛의 두께를 갖는 복합재 분리판.Composite separator having a thickness of 5 ~ 100㎛.
  7. 제1항에 있어서,The method of claim 1,
    상기 상부 및 하부 전도성 코팅층은 각각 The upper and lower conductive coating layers are respectively
    수지층과, Resin layer,
    상기 수지층 내에 함침된 전도성 필러를 포함하는 복합재 분리판.Composite separator comprising a conductive filler impregnated in the resin layer.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 수지층은 The resin layer is
    페놀 수지, 에폭시 수지, 아미노 수지, 우레아 수지, 멜라민 수지, 불포화 폴리에스텔 수지, 폴리우레탄 수지 및 폴리이미드 수지를 포함하는 열경화성 수지 중 선택된 1종 이상을 포함하는 복합재 분리판.A composite separator comprising at least one selected from a thermosetting resin comprising a phenol resin, an epoxy resin, an amino resin, a urea resin, a melamine resin, an unsaturated polyester resin, a polyurethane resin, and a polyimide resin.
  9. 제7항에 있어서,The method of claim 7, wherein
    상기 상부 및 하부 전도성 코팅층은 각각 The upper and lower conductive coating layers are respectively
    상기 전도성 필러가 고형분 기준으로 전체 중량의 15 ~ 25 중량%로 첨가된 복합재 분리판.Composite conductive plate is added to the conductive filler 15 to 25% by weight of the total weight based on solids.
  10. 제7항에 있어서,The method of claim 7, wherein
    상기 전도성 필러는 The conductive filler is
    탄소나노튜브(carbon nanotube), 흑연분말(graphite powder), 탄소 단섬유(chopped carbon fiber), 카본블랙(carbon black), 카본분말(carbon powder), 그라파이트 나노플레이트(graphite nanoplate) 및 그래핀(graphene) 중 선택된 1종 이상을 포함하는 복합재 분리판.Carbon nanotube, graphite powder, chopped carbon fiber, carbon black, carbon powder, graphite nanoplate and graphene Composite separator comprising at least one selected from.
  11. (a) 탄소섬유 부직포의 상면 및 하면에 상부 및 하부 전도성 코팅층을 형성하는 단계; 및 (a) forming upper and lower conductive coating layers on upper and lower surfaces of the carbon fiber nonwoven fabric; And
    (b) 상기 탄소섬유 부직포와 상부 및 하부 전도성 코팅층을 핫 프레스로 성형 및 경화하여 복합재 분리판을 수득하는 단계; (b) molding and curing the carbon fiber nonwoven fabric and the upper and lower conductive coating layers by hot pressing to obtain a composite separator;
    를 포함하는 복합재 분리판 제조 방법.Composite separator manufacturing method comprising a.
  12. 제11항에 있어서,The method of claim 11,
    상기 탄소섬유 부직포는 The carbon fiber nonwoven fabric
    5 ~ 20mm의 평균 길이로 잘린 탄소섬유들을 합성수지 접착제로 결합시킨 펠트 형태를 갖는 복합재 분리판 제조 방법.A method for producing a composite separator having a felt form in which carbon fibers cut to an average length of 5 to 20 mm are bonded with a synthetic resin adhesive.
  13. 제11항에 있어서,The method of claim 11,
    상기 상부 및 하부 전도성 코팅층은 각각 The upper and lower conductive coating layers are respectively
    수지층과, Resin layer,
    상기 수지층 내에 함침된 전도성 필러를 포함하는 복합재 분리판 제조 방법.Method of manufacturing a composite separator comprising a conductive filler impregnated in the resin layer.
  14. 제13항에 있어서,The method of claim 13,
    상기 수지층은 The resin layer is
    페놀 수지, 에폭시 수지, 아미노 수지, 우레아 수지, 멜라민 수지, 불포화 폴리에스텔 수지, 폴리우레탄 수지 및 폴리이미드 수지를 포함하는 열경화성 수지 중 선택된 1종 이상을 포함하는 복합재 분리판 제조 방법.A method for producing a composite separator comprising at least one selected from a thermosetting resin comprising a phenol resin, an epoxy resin, an amino resin, a urea resin, a melamine resin, an unsaturated polyester resin, a polyurethane resin, and a polyimide resin.
  15. 제13항에 있어서,The method of claim 13,
    상기 전도성 필러는 The conductive filler is
    탄소나노튜브(carbon nanotube), 흑연분말(graphite powder), 탄소 단섬유(chopped carbon fiber), 카본블랙(carbon black), 카본분말(carbon powder) 및 그래핀(graphene) 중 선택된 1종 이상을 포함하는 복합재 분리판 제조 방법.Contains at least one selected from carbon nanotube, graphite powder, chopped carbon fiber, carbon black, carbon powder, and graphene Composite separator plate manufacturing method.
  16. 제11항에 있어서,The method of claim 11,
    상기 (c) 단계에서, In the step (c),
    상기 핫 프레스는 The hot press
    요철 구조의 유로를 갖는 금형 내에서 실시하는 복합재 분리판 제조 방법.A method for producing a composite separator, which is carried out in a mold having an uneven structure flow path.
  17. 제11항에 있어서,The method of claim 11,
    상기 (c) 단계에서, In the step (c),
    상기 핫 프레스는 The hot press
    130 ~ 200℃에서 10 ~ 30MPa의 압력 조건으로 10 ~ 60분 동안 실시하는 복합재 분리판 제조 방법.Method for producing a composite separator for 10 to 60 minutes at 130 ~ 200 ℃ under pressure conditions of 10 to 30MPa.
  18. 제11항에 있어서,The method of claim 11,
    상기 (c) 단계에서, In the step (c),
    상기 상부 및 하부 전도성 코팅층은 The upper and lower conductive coating layer
    상기 탄소섬유 부직포와의 합착에 의해, 상기 탄소섬유 부직포의 내부로 일부가 함침되어 상호 간이 일체로 연결되는 복합재 분리판 제조 방법.By bonding with the carbon fiber nonwoven fabric, a part of the carbon fiber nonwoven fabric is impregnated into the inside of the composite separation plate manufacturing method connected to each other integrally.
PCT/KR2016/014113 2016-04-21 2016-12-02 Composite separator plate and production method therefor WO2017183792A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160048974A KR101926458B1 (en) 2016-04-21 2016-04-21 Composite materials separator and method of manufacturing the same
KR10-2016-0048974 2016-04-21

Publications (1)

Publication Number Publication Date
WO2017183792A1 true WO2017183792A1 (en) 2017-10-26

Family

ID=60116206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/014113 WO2017183792A1 (en) 2016-04-21 2016-12-02 Composite separator plate and production method therefor

Country Status (2)

Country Link
KR (1) KR101926458B1 (en)
WO (1) WO2017183792A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117352111A (en) * 2023-12-06 2024-01-05 城资泰诺(山东)新材料科技有限公司 Composite material layering design optimization method and system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050120515A (en) * 2004-06-19 2005-12-22 한국타이어 주식회사 A carbon composite, method for preparing the same, a fuel cell separator using the carbon composites
KR20090013420A (en) * 2007-08-01 2009-02-05 한국과학기술원 Bipolar plate for fuel cell and manufacturing method thereof
KR20120114511A (en) * 2011-04-07 2012-10-17 에이스산업 주식회사 Reinforced thin fuel cell seperator containing pulverized carbon fiber and method of manufacturing the same
KR20130128493A (en) * 2012-05-16 2013-11-27 한국과학기술원 Carbon fabric bipolar plate of fuel cell and method for manufacturing the same
JP2014022096A (en) * 2012-07-13 2014-02-03 Shin Etsu Polymer Co Ltd Fuel battery separator, and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050120515A (en) * 2004-06-19 2005-12-22 한국타이어 주식회사 A carbon composite, method for preparing the same, a fuel cell separator using the carbon composites
KR20090013420A (en) * 2007-08-01 2009-02-05 한국과학기술원 Bipolar plate for fuel cell and manufacturing method thereof
KR20120114511A (en) * 2011-04-07 2012-10-17 에이스산업 주식회사 Reinforced thin fuel cell seperator containing pulverized carbon fiber and method of manufacturing the same
KR20130128493A (en) * 2012-05-16 2013-11-27 한국과학기술원 Carbon fabric bipolar plate of fuel cell and method for manufacturing the same
JP2014022096A (en) * 2012-07-13 2014-02-03 Shin Etsu Polymer Co Ltd Fuel battery separator, and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117352111A (en) * 2023-12-06 2024-01-05 城资泰诺(山东)新材料科技有限公司 Composite material layering design optimization method and system
CN117352111B (en) * 2023-12-06 2024-03-08 城资泰诺(山东)新材料科技有限公司 Composite material layering design optimization method and system

Also Published As

Publication number Publication date
KR101926458B1 (en) 2018-12-07
KR20170120453A (en) 2017-10-31

Similar Documents

Publication Publication Date Title
EP1139703B1 (en) Substrate of circuit board
WO2020116877A1 (en) Carbon substrate comprising carbon fibers unidirectionally aligned, and gas diffusion layer employing same
US6039823A (en) Composite article
WO2019240500A1 (en) Separator for electrochemical device, having a patterned electrode adhesive layer, and method for manufacturing separator
WO2003021697A3 (en) Electric separator, method for producing the same and the use thereof
KR102478772B1 (en) Bipolar plate for fuel cell, method of the same
WO2020130420A1 (en) Graphitized carbon substrate and gas diffusion layer employing same
WO2013172629A1 (en) Carbon fiber fabric separator plate for fuel cell and manufacturing method thereof
US11515547B2 (en) Fuel cell separator precursor, and fuel cell separator
WO2017048103A1 (en) Ion exchange membrane and method for manufacturing same
JPWO2003034519A1 (en) Carbon fiber fabric for fuel cell, electrode body, fuel cell, moving body, and method for producing carbon fiber fabric for fuel cell
WO2019039820A2 (en) Porous composite separator and manufacturing method therefor
WO2004031465A1 (en) Flame-resistant acrylic fiber nonwoven fabric, carbon fiber nonwoven fabric, and method for production thereof
WO2017183792A1 (en) Composite separator plate and production method therefor
CN106928705B (en) Polyimide composite material containing filler, sheet and circuit substrate containing polyimide composite material
WO2016032029A1 (en) Stacked piezoelectric ceramic element
WO2016052912A1 (en) Thermoplastic prepreg intermediate material for fuel cell separation plate and method for manufacturing thermoplastic prepreg for fuel cell separation plate by using same
WO2017099403A1 (en) Composite separator plate and method for preparing same
TWI276194B (en) Transfer member with electric conductivity and its manufacturing method
WO2017183791A1 (en) Composite separator plate and production method therefor
WO2018159969A1 (en) Electrode structure and redox flow battery comprising same
KR100978534B1 (en) Method for manufacturing polymer composite separator plates for fuel cells
WO2015012599A2 (en) Pouch for flexible battery and flexible battery using same
KR101199801B1 (en) Composition for forming fuel cell separator, fuel cell separator, method for producing fuel cell separator, and fuel cell
KR102003682B1 (en) Flow channel plate for fuel cell and method of manufacturing the same

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16899560

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16899560

Country of ref document: EP

Kind code of ref document: A1