EP1671031B1 - Fluidpumpe, insbesondere kraftstoffhochdruckpumpe, mit druckdämpfer - Google Patents

Fluidpumpe, insbesondere kraftstoffhochdruckpumpe, mit druckdämpfer Download PDF

Info

Publication number
EP1671031B1
EP1671031B1 EP04787240A EP04787240A EP1671031B1 EP 1671031 B1 EP1671031 B1 EP 1671031B1 EP 04787240 A EP04787240 A EP 04787240A EP 04787240 A EP04787240 A EP 04787240A EP 1671031 B1 EP1671031 B1 EP 1671031B1
Authority
EP
European Patent Office
Prior art keywords
casing
fluid pump
damper
pressure
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP04787240A
Other languages
English (en)
French (fr)
Other versions
EP1671031A2 (de
Inventor
Peter Ropertz
Klaus Lang
Yasushi Ohno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to EP10176791.1A priority Critical patent/EP2273115B1/de
Publication of EP1671031A2 publication Critical patent/EP1671031A2/de
Application granted granted Critical
Publication of EP1671031B1 publication Critical patent/EP1671031B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/0011Constructional details; Manufacturing or assembly of elements of fuel systems; Materials therefor
    • F02M37/0041Means for damping pressure pulsations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/04Means for damping vibrations or pressure fluctuations in injection pump inlets or outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • F02M63/023Means for varying pressure in common rails
    • F02M63/0235Means for varying pressure in common rails by bleeding fuel pressure
    • F02M63/0245Means for varying pressure in common rails by bleeding fuel pressure between the high pressure pump and the common rail
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B11/00Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation
    • F04B11/0008Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation using accumulators
    • F04B11/0016Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation using accumulators with a fluid spring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/0047Layout or arrangement of systems for feeding fuel

Definitions

  • the invention relates to a fluid pump, in particular high-pressure fuel pump, with a housing and with at least one inlet-side low-pressure connection, an inlet valve, and a delivery chamber which is delimited by a delivery element.
  • a fluid pump of the type mentioned is from the DE 195 39 885 A1 known and used for example in internal combustion engines with direct fuel injection.
  • the fuel from the fluid pump is compressed to a high pressure and conveyed into a fuel rail. From this, the fuel passes under high pressure via fuel injectors directly into the combustion chambers of the internal combustion engine.
  • the fluid pump sucks the fuel via a low pressure port and an inlet valve into a delivery chamber. This is limited by the delivery piston.
  • Pressure damper arranged. This includes a spring-loaded piston defining a damping chamber connected to the fuel line via a bag connection.
  • Object of the present invention is to provide a fluid pump of the type mentioned in such a way that on the one hand compact builds and that on the other hand, the upstream of the low-pressure connection arranged components, such as a low-pressure fuel line, are as little as possible.
  • a fluid pump of the type mentioned above comprises a pressure damper which damps inlet-side pressure fluctuations and which comprises at least one compressible volume, which is arranged directly in the flow path between low-pressure port and inlet valve.
  • the EP 1342 911 A2 shows a fuel pump with a pump housing, a reciprocating pump piston, a low pressure port, a high pressure port and a compression chamber.
  • a pressure damper is provided between the low pressure port and the compression space.
  • the pressure damper has a damper housing with two axial end faces, towards which, starting from an axial center plane, it tapers, that at least one opening is present on both sides of the center plane, substantial advantages are obtained in the production and operation of the fluid pump.
  • the damper housing has approximately approximately discus-like shape. In it, the compressible volume can be easily absorbed and thereby have such large boundary surfaces that an effective damping of pressure pulsations is possible. At the same time it builds short in the axial direction, which benefits the dimensions of the fluid pump.
  • the openings in the wall of the damper housing ensure that the fluid flows from the low-pressure connection to the inlet valve can pass without being throttled and that on the other hand, the fluid flows around the compressible volume immediately. The thus designed pressure damper is therefore particularly effective.
  • the compressible volume is a gas volume which is delimited by at least one membrane.
  • the compressibility of gas allows a very simple construction of the corresponding pressure damper, which reduces the manufacturing cost of the fluid pump.
  • such a gas volume can be formed almost arbitrarily, so that it can be easily integrated into the area between the inlet valve and the low-pressure port of the fluid pump.
  • the compressible volume is received in an extension of the flow path, which is covered by a housing cover.
  • the housing cover can be deep-drawn, for example, and screwed or welded to a corresponding counterpart of the pump housing.
  • the radial dimensions of the fluid pump are reduced when the housing cover is arranged on an axial end face of the pump housing.
  • a further reduction of the radial dimensions of the fluid pump is achieved in that the low-pressure connection is arranged on the housing cover.
  • a connection piece is used for the low pressure connection, which is welded to the housing cover or screwed to it.
  • the nozzle can be straight or angular, so that the same fluid pump can be easily adapted to different installation situations. In principle, any exit direction is possible.
  • the installation of the pressure damper is simplified when the damper housing is jammed with its two end faces between a pump body and the housing cover. It is understood that to achieve reproducible balance of power damper housing should at least partially (for example, at least one housing half in a two-part housing) and in the clamping direction should have a certain spring elasticity.
  • the damper housing distributed over the circumference arranged and a total radially projecting centering sections which radially center the damper housing relative to the extension of the flow path.
  • the pressure damper can be used in the extension of the flow path and is then, after installation of the housing cover, automatically set in the installed position. This facilitates the assembly of the fluid pump.
  • the centering sections each have an end section extending approximately axially and somewhat beyond the median plane of the damper housing, on which the compressible volume is radially centered relative to the damper housing.
  • the centering sections are assigned a dual function: they not only serve to center the damper housing with respect to the extension of the flow path, but also for the radial centering of the compressible volume, which is accommodated in the damper housing. As a result, the assembly of the pressure damper itself is simplified.
  • a radially outer edge of the compressible volume at least partially rests against the wall of the extension of the flow path and is thus centered with respect to this.
  • the wall of the extension of the flow path for example, distributed over the circumference arranged impressions.
  • the damper housing comprises two housing halves and the compressible volume is clamped between the two housing halves. Again, this allows for easy assembly of the compressible volume within the damper housing without the need for additional fixtures. It is understood that the compressible volume is preferably clamped at its edge. Otherwise, the damper housing itself should at least partially (in a two-part housing, for example, a housing half) and in the axial direction have resilient properties, so as not to hinder the change in volume of the compressible volume.
  • a further advantageous embodiment of the fluid pump according to the invention is characterized in that the housing cover has a protuberance on which the low pressure port is arranged. By such a protuberance, the connection of a connecting piece of the low-pressure connection is facilitated. Likewise, a direct connection of the low pressure line is conceivable.
  • a fuel system carries the overall reference numeral 10. It comprises a fuel tank 12, from which a prefeed pump 14 conveys the fuel into a low-pressure line 16. This leads to a low-pressure connection 18 of a high-pressure piston pump designed as a fluid pump 20, which in FIG. 1 is indicated by a dashed line.
  • a high pressure port 22 of the high pressure piston pump 20 is connected to a fuel rail 24. This is also called “Rail”. In it, the compressed by the high-pressure piston pump 20 fuel is stored under high pressure. To the fuel manifold 24 a plurality of fuel injectors 26 are connected, which inject the fuel directly into each associated combustion chamber 28.
  • the fuel system 10 thus belongs to an internal combustion engine with direct fuel injection.
  • the inlet valve device 34 comprises on the one hand a spring-loaded check valve 40, which represents the actual inlet valve. Via an electromagnetic actuator 42, the inlet valve 40 can be forcibly brought into its open position. This is represented by the switching symbol 44.
  • a pressure damper 48 is arranged in a flow path 46. Although this is from the hydraulic diagram of the FIG. 1 does not show, the pressure damper 48 is not in a blind circuit, but arranged as a compressible volume directly in the flow path 46 between the low pressure port 18 and inlet valve means 34. This will be further detailed below with reference to FIG. 2 be explained.
  • the delivery rate of the high pressure piston pump 20 can be adjusted.
  • the inlet valve 40 is brought into its forced open position 44 during a delivery stroke of the delivery piston 30.
  • the fuel is not discharged to the fuel rail 24 but back into the low-pressure passage 16 via the flow path 46.
  • the pressure pulsations that occur, inter alia, in the flow path 46 and in the low-pressure line 16 are smoothed by the pressure damper 48.
  • the high-pressure piston pump 20 comprises a housing 50, which comprises a housing body 52, a piston bushing 53, and a housing cover 54.
  • the housing cover 54 has a cylindrical shape with a peripheral wall 56 and a base 58. The free edge of the peripheral wall 56 is welded to the housing body 52.
  • the housing cover 54 forms in FIG. 2 the upper cover of the housing 50 and is so far as seen in the longitudinal direction of the delivery piston 30 disposed on an axial end face of the pump housing 50.
  • the low-pressure connection 18 is formed by an inlet connection, which is welded centrally to the base 58 of the housing cover 54.
  • a space 62 is limited, which, as will be shown below, an expanded portion of the flow path 46 from the inlet port 18 to the inlet valve 40 back out.
  • the high-pressure port 22 is formed by an outlet, which is welded to the housing body 52.
  • the pressure damper 48 is inserted into the extension 62. It comprises a rotationally symmetrical damper housing 66. This extends from an axial center plane 68, in the region of which it has its maximum diameter, to two end faces with a smaller diameter, in each of which an opening 70 is present (it should be noted that the pressure damper 48th is formed identically on both sides of the median plane 68, so for reasons of illustration, the reference numerals are entered only for one side). Also in one of the region of the median plane 68 to the end face conically tapered wall 72 of the damper housing 66 distributed over the circumference arranged openings 74 are present.
  • a compressible gas volume 76 between two substantially and generally parallel diaphragms 78a and 78b.
  • the damper housing 66 is in two parts with a top 66a and a bottom 66b. The edges of the two membranes 78a and 78b are clamped in the region of the median plane 68 between the two parts 66a and 66b of the damper housing 66.
  • the axial longitudinal extension of the damper housing 66 is slightly larger than the height of the extension 62. This leads to that in the in FIG. 2 shown installation position, the damper housing 66 is clamped between the housing cover 54 and the housing body 52. It lies in the FIG. 2 upper opening 70 the damper housing 66 exactly in the region of the inlet nozzle 18th
  • the gas volume 76 enclosed between the two diaphragms 78a and 78b which has the actual pressure damping task, lies directly in the flow path 46 of the fuel and is flowed around directly by it. If it comes, starting from the inlet valve 40, to a pressure surge, this can be smoothed by the pressure damper 48 be before he can propagate through the inlet port 18 in the low pressure line 16.
  • FIG. 3 For example, that portion of an alternative embodiment of a high pressure piston pump 20 in which the pressure damper 48 is located is shown.
  • the same reference numerals which have equivalent functions to elements and areas of the figures described above, the same reference numerals. They are not explained again in detail. Incidentally, this also applies to all subsequent figures.
  • the damper housing 66 has a plurality of centering sections 80 distributed over the circumference and projecting radially in total.
  • the centering sections 80 are formed by a radially outwardly extending extension of the conical wall 72. They each have an end section 82 extending approximately axially relative to the respective other housing half.
  • the radially outer side of the end portions 82 abuts against the inside of the peripheral wall 56 of the housing cover 54.
  • the end portions 82 extend slightly beyond the median plane 68.
  • the radially outer edges of the membranes 78a and 78b abut the radially inner side of the end portion 82.
  • FIG. 4 in addition to the housing cover 54 distributed over the circumference several impressions 86 may be present.
  • the radially outer edges of the membranes 78a and 78b can center directly opposite the housing cover 54.
  • FIG. 5 The area of the inlet nozzle 18 and the housing cover 54 of yet another embodiment of a high-pressure piston pump 20 is in FIG. 5 shown. It can be seen that in the housing cover 54, a protuberance 84 is present, with which the inlet port 18 is welded.
  • a further modified variant shows this FIG. 6 In this, a thread 86 is rolled into the inside of the protuberance 84, into which the inlet port 18 is screwed.

Abstract

Eine Fluidpumpe (20), insbesondere eine Kraftstoff-Hochdruckpumpe, umfasst ein Gehäuse (50) und mindestens einen einlassseitigen Niederdruckanschluss (18). Ferner ist ein Einlassventil (40) und ein Förderraum (32) vorhanden, der von einem Förderelement (30) begrenzt wird. Es wird vorgeschlagen, dass die Fluidpumpe (20) einen Druckdämpfer (48) umfasst, der einlassseitige Druckschwankungen dämpft und der mindestens ein kompressibles Volumen (76) umfasst, welches unmittelbar im Strömungsweg (46) zwischen Niederdruckanschluss (18) und Einlassventil (40) angeordnet ist.

Description

    Stand der Technik
  • Die Erfindung betrifft eine Fluidpumpe, insbesondere Kraftstoff-Hochdruckpumpe, mit einem Gehäuse und mit mindestens einem einlassseitigen Niederdruckanschluss, einem Einlassventil, und einem Förderraum, der von einem Förderelement begrenzt wird.
  • Eine Fluidpumpe der eingangs genannten Art ist aus der DE 195 39 885 A1 bekannt und kommt beispielsweise bei Brennkraftmaschinen mit Kraftstoff-Direkteinspritzung zum Einsatz. Bei derartigen Brennkraftmaschinen wird der Kraftstoff von der Fluidpumpe auf einen hohen Druck komprimiert und in eine Kraftstoff-Sammelleitung ("Rail") gefördert. Von dieser gelangt der Kraftstoff unter hohem Druck über Kraftstoff-Einspritzvorrichtungen direkt in die Brennräume der Brennkraftmaschine. Die Fluidpumpe saugt den Kraftstoff über einen Niederdruckanschluss und ein Einlassventil in einen Förderraum an. Dieser wird von dem Förderkolben begrenzt. Um Druckschwankungen in einer Kraftstoffleitung auszugleichen, die mit dem Niederdruckanschluss verbunden ist, ist dort ein Druckdämpfer angeordnet. Dieser umfasst einen federbelasteten Kolben, der eine mit der Kraftstoffleitung über einen Sackanschluss verbunde Dämpfungskammer begrenzt.
  • Aufgabe der vorliegenden Erfindung ist es, eine Fluidpumpe der eingangs genannten Art so weiterzubilden, dass sie einerseits kompakt baut und dass andererseits die stromaufwärts vom Niederdruckanschluss angeordneten Komponenten, beispielsweise eine Niederdruck-Kraftstoffleitung, möglichst wenig belastet werden.
  • Diese Aufgabe wird bei einer Fluidpumpe der eingangs genannten Art dadurch gelöst, dass sie einen Druckdämpfer umfasst, der einlassseitige Druckschwankungen dämpft und der mindestens ein kompressibles Volumen umfasst, welches unmittelbar im Strömungsweg zwischen Niederdruckanschluss und Einlassventil angeordnet ist.
  • Die EP 1342 911 A2 zeigt eine Kraftstoffpumpe mit einem Pumpengehäuse, einem hin- und hergehenden Pumpenkolben, einem Niederdruckanschluss, einem Hochdruckanschluss und einem Kompressionsraum. In dem Pumpengehäuse ist zwischen dem Niederdruckanschluss und dem Kompressionsraum ein Druckdämpfer vorgesehen. Der Gegenstand des Anspruchs 1 ist in zweiteiliger Form gegenüber dieser Druckschrift abgegrenzt.
  • Vorteile der Erfindung
  • Dadurch, dass der Druckdämpfer ein Dämpfergehäuse mit zwei axialen Stirnseiten aufweist, zu denen hin es sich ausgehend von einer axialen Mittelebene, verjüngt, dass beiderseits der Mittelebene jeweils mindestens eine Öffnung vorhanden ist, erhält man wesentliche Vorteile bei der Herstellung und der Funktionsweise der Fluidpumpe. Das Dämpfergehäuse hat näherungsweise in etwa diskusartige Gestalt. In ihm kann das kompressible Volumen leicht aufgenommen werden und dabei so große Begrenzungsflächen aufweisen, dass eine wirkungsvolle Dämpfung von Druckpulsationen möglich ist. Gleichzeitig baut es in axialer Richtung kurz, was den Abmessungen der Fluidpumpe zugute kommt. Durch die Öffnungen in der Wand des Dämpfergehäuses wird einerseits sichergestellt, dass das Fluid vom Niederdruckanschluss zum Einlassventil gelangen kann, ohne gedrosselt zu werden und dass andererseits das Fluid das kompressible Volumen unmittelbar umströmt. Der so gestaltete Druckdämpfer ist daher besonders wirkungsvoll.
  • Vorteilhafte Weiterbildungen der Erfindung sind in Unteransprüchen angegeben.
  • In einer ersten Weiterbildung wird vorgeschlagen, dass das kompressible Volumen ein Gasvolumen ist, welches von mindestens einer Membran begrenzt wird. Die Kompressibilität von Gas gestattet einen sehr einfachen Aufbau des entsprechenden Druckdämpfers, was die Herstellkosten der Fluidpumpe reduziert. Darüber hinaus kann ein solches Gasvolumen beinahe beliebig geformt werden, so dass es leicht in den Bereich zwischen Einlassventil und Niederdruckanschluss der Fluidpumpe integriert werden kann. Grundsätzlich ist auch denkbar, das Gasvolumen durch eine Vielzahl einzelner kleiner gasgefüllter Kapseln zu bilden.
  • Dabei ist es besonders vorteilhaft, wenn das kompressible Volumen in einer Erweiterung des Strömungswegs aufgenommen ist, die durch einen Gehäusedeckel abgedeckt wird. Dies erleichtert die Montage der Fluidpumpe. Der Gehäusedeckel kann dabei beispielsweise tiefgezogen sein und mit einem entsprechenden Gegenstück des Pumpengehäuses verschraubt oder verschweißt werden.
  • Die radialen Abmessungen der Fluidpumpe werden reduziert, wenn der Gehäusedeckel an einer axialen Stirnseite des Pumpengehäuses angeordnet ist.
  • Eine nochmalige Reduktion der radialen Abmessungen der Fluidpumpe wird dadurch erreicht, dass der Niederdruckanschluss am Gehäusedeckel angeordnet ist. Üblicherweise wird für den Niederdruckanschluss ein Anschlussstutzen verwendet, der am Gehäusedeckel angeschweißt oder mit diesem verschraubt ist. Der Stutzen kann gerade oder winkelig sein, so dass die gleiche Fluidpumpe auch an unterschiedliche Einbausituationen leicht angepasst werden kann. Dabei ist grundsätzlich eine beliebige Abgangsrichtung möglich.
  • Durch die im Wesentlichen rotationssymmetrische Form des Dämpfergehäuses erhält man den Vorteil, dass der Druckdämpfer einschließlich dem Dämpfergehäuse sehr leicht bei wenig Materialeinsatz hergestellt werden kann.
  • Der Einbau des Druckdämpfers wird vereinfacht, wenn das Dämpfergehäuse mit seinen beiden Stirnseiten zwischen einem Pumpenkörper und dem Gehäusedeckel verklemmt ist. Dabei versteht sich, dass zum Erzielen reproduzierbarer Kräfteverhältnisse das Dämpfergehäuse mindestens bereichsweise (bei einem zweiteiligen Gehäuse beispielsweise mindestens eine Gehäusehälfte) und in Klemmrichtung eine gewisse Federelastizität aufweisen sollte.
  • In die gleiche Richtung zielt jene nochmalige Weiterbildung der erfindungsgemäßen Fluidpumpe, bei welcher das Dämpfergehäuse über den Umfang verteilt angeordnete und insgesamt radial abragende Zentrierabschnitte aufweist, welche das Dämpfergehäuse gegenüber der Erweiterung des Strömungswegs radial zentrieren. Auf diese Weise kann der Druckdämpfer in die Erweiterung des Strömungswegs eingesetzt werden und ist anschließend, nach dem Einbau des Gehäusedeckels, automatisch in Einbaulage festgelegt. Dies erleichtert die Montage der Fluidpumpe.
  • In Weiterbildung hierzu wird vorgeschlagen, dass mindestens einige der Zentrierabschnitte jeweils einen sich in etwa axial und etwas über die Mittelebene des Dämpfergehäuses hinweg erstreckenden Endabschnitt aufweisen, an denen das kompressible Volumen gegenüber dem Dämpfergehäuse radial zentriert ist. In diesem Falle wird den Zentrierabschnitten eine Doppelfunktion zugeordnet: Sie dienen nicht nur der Zentrierung des Dämpfergehäuses gegenüber der Erweiterung des Strömungswegs, sondern auch zur radialen Zentrierung des kompressiblen Volumens, welches im Dämpfergehäuse aufgenommen ist. Hierdurch wird die Montage des Druckdämpfers selbst vereinfacht.
  • Möglich ist auch, dass ein radial äußerer Rand des kompressiblen Volumens wenigstens bereichsweise an der Wand der Erweiterung des Strömungswegs anliegt und so gegenüber dieser zentriert ist. Hierzu kann die Wand der Erweiterung des Strömungswegs beispielsweise über den Umfang verteilt angeordnete Einprägungen aufweisen.
  • In eine ähnliche Richtung zielt jene Weiterbildung der erfindungsgemäßen Fluidpumpe, bei welcher das Dämpfergehäuse zwei Gehäusehälften umfasst und das kompressible Volumen zwischen den beiden Gehäusehälften verklemmt ist. Auch dies gestattet eine einfache Montage des kompressiblen Volumens innerhalb des Dämpfergehäuses, ohne dass zusätzliche Haltevorrichtungen erforderlich sind. Es versteht sich, dass das kompressible Volumen vorzugsweise an seinem Rand verklemmt ist. Andernfalls sollte das Dämpfergehäuse selbst wenigstens bereichsweise (bei einem zweiteiligen Gehäuse beispielsweise eine Gehäusehälfte) und in axialer Richtung federelastische Eigenschaften aufweisen, um die Volumenänderung des kompressiblen Volumens nicht zu behindern.
  • Eine weitere vorteilhafte Ausgestaltung der erfindungsgemäßen Fluidpumpe zeichnet sich dadurch aus, dass der Gehäusedeckel eine Ausstülpung aufweist, an der der Niederdruckanschluss angeordnet ist. Durch eine solche Ausstülpung wird die Anbindung eines Anschlussstutzens des Niederdruckanschlusses erleichtert. Ebenso ist ein direkter Anschluss der Niederdruckleitung denkbar.
  • Zeichnung Nachfolgend werden besonders bevorzugte
  • Ausführungsbeispiele der vorliegenden Erfindung unter Bezugnahme auf die beiliegende Zeichnung näher erläutert. In der Zeichnung zeigen:
  • Figur 1
    eine schematische Darstellung eines Kraftstoffsystems mit einer Fluidpumpe mit einem integrierten Druckdämpfer;
    Figur 2
    einen Teilschnitt durch die Fluidpumpe von Figur 1;
    Figur 3
    einen Schnitt durch einen Bereich einer alternativen Ausführungsform einer Fluidpumpe;
    Figur 4
    einen Schnitt durch einen Bereich einer etwas abgewandelten Ausführungsform der Fluidpumpe von Figur 3;
    Figur 5
    einen Schnitt durch einen Bereich einer nochmals alternativen Ausführungsform einer Fluidpumpe; und
    Figur 6
    einen Schnitt durch einen Bereich einer nochmals alternativen Ausführungsform einer Fluidpumpe.
    Beschreibung der Ausführungsbeispiele
  • In Figur 1 trägt ein Kraftstoffsystem insgesamt das Bezugszeichen 10. Es umfasst einen Kraftstoffbehälter 12, aus dem eine Vorförderpumpe 14 den Kraftstoff in eine Niederdruckleitung 16 fördert. Diese führt zu einem Niederdruckanschluss 18 einer als Hochdruck-Kolbenpumpe ausgebildeten Fluidpumpe 20, die in Figur 1 durch eine strichpunktierte Linie angedeutet ist.
  • Ein Hochdruckanschluss 22 der Hochdruck-Kolbenpumpe 20 ist mit einer Kraftstoff-Sammelleitung 24 verbunden. Diese wird auch als "Rail" bezeichnet. In ihr ist der von der Hochdruck-Kolbenpumpe 20 komprimierte Kraftstoff unter hohem Druck gespeichert. An die Kraftstoff-Sammelleitung 24 sind mehrere Kraftstoff-Einspritzvorrichtungen 26 angeschlossen, die den Kraftstoff in einen ihnen jeweils zugeordneten Brennraum 28 direkt einspritzen. Das Kraftstoffsystem 10 gehört also zu einer Brennkraftmaschine mit Kraftstoff-Direkteinspritzung.
  • Das in Figur 1 gezeigte hydraulische Schaltbild der Hochdruck-Kolbenpumpe 20 zeigt einige ihrer wesentlichen Komponenten:
    • Hierzu gehört ein Förderkolben 30, der beispielsweise von einer nicht gezeigten Antriebswelle in eine Hin- und
    • Herbewegung versetzt werden kann. Er begrenzt einen Förderraum 32. Dieser ist mit einer Einlassventileinrichtung 34 und einem als federbelastetes Rückschlagventil ausgebildeten Auslassventil 36 fluidisch verbunden. Durch ein Druckregelventil 38 kann der Druck stromabwärts vom Auslassventil 36 eingestellt werden.
  • Die Einlassventileinrichtung 34 umfasst zum einen ein federbelastetes Rückschlagventil 40, welches das eigentliche Einlassventil darstellt. Über eine elektromagnetische Betätigungsvorrichtung 42 kann das Einlassventil 40 zwangsweise in seine geöffnete Stellung gebracht werden. Dies ist durch das Schaltsymbol 44 dargestellt. Zwischen dem Niederdruckanschluss 18 und der Einlassventileinrichtung 34 ist in einem Strömungsweg 46 ein Druckdämpfer 48 angeordnet. Obwohl dies aus dem hydraulischen Schaltbild der Figur 1 nicht hervorgeht, ist der Druckdämpfer 48 nicht in einer Sackschaltung, sondern als kompressibles Volumen unmittelbar im Strömungsweg 46 zwischen Niederdruckanschluss 18 und Einlassventileinrichtung 34 angeordnet. Dies wird weiter unten noch genauer unter Bezugnahme auf Figur 2 erläutert werden.
  • Mittels der Einlassventileinrichtung 34 kann die Fördermenge der Hochdruck-Kolbenpumpe 20 eingestellt werden. Hierzu wird während eines Förderhubs des Förderkolbens 30 das Einlassventil 40 in seine zwangsweise geöffnete Stellung 44 gebracht. In diesem Fall wird während des Förderhubs des Förderkolbens 30 der Kraftstoff nicht zur Kraftstoff-Sammelleitung 24, sondern zurück über den Strömungsweg 46 in die Niederdruckleitung 16 ausgestoßen. Die unter anderem hierdurch im Strömungsweg 46 und in der Niederdruckleitung 16 auftretenden Druckpulsationen werden vom Druckdämpfer 48 geglättet.
  • Wie aus Figur 2 hervorgeht, umfasst die Hochdruck-Kolbenpumpe 20 ein Gehäuse 50, welches einen Gehäusekörper 52, eine Kolbenbuchse 53, und einen Gehäusedeckel 54 umfasst. Der Gehäusedeckel 54 hat zylindrische Gestalt mit einer Umfangswand 56 und einer Basis 58. Der freie Rand der Umfangswand 56 ist mit dem Gehäusekörper 52 verschweißt.
  • Der Gehäusedeckel 54 bildet in Figur 2 die obere Abdeckung des Gehäuses 50 und ist insoweit in Längsrichtung des Förderkolbens 30 gesehen an einer axialen Stirnseite des Pumpengehäuses 50 angeordnet. Der Niederdruckanschluss 18 wird durch einen Einlassstutzen gebildet, der zentrisch an der Basis 58 des Gehäusedeckels 54 verschweißt ist. Durch den Gehäusekörper 52 und den Gehäusedeckel 54 wird ein Raum 62 begrenzt, der, wie weiter unten noch dargestellt werden wird, einen erweiterten Abschnitt des Strömungswegs 46 vom Einlassstutzen 18 zum Einlassventil 40 hin darstellt. Zu diesem Zweck führt von der Erweiterung 62 ein in axialer Richtung verlaufender Kanal 63 zu dem in Figur 2 außerhalb der Bildebene liegenden und daher nicht sichtbaren Einlassventil 40. Der Hochdruckanschluss 22 wird durch einen Auslassstutzen gebildet, der mit dem Gehäusekörper 52 verschweißt ist.
  • Der Druckdämpfer 48 ist in die Erweiterung 62 eingesetzt. Er umfasst ein rotationssymmetrisches Dämpfergehäuse 66. Dieses erstreckt sich von einer axialen Mittelebene 68, in deren Bereich es seinen maximalen Durchmesser aufweist, zu zwei Stirnseiten mit kleinerem Durchmesser, in denen jeweils eine Öffnung 70 vorhanden ist (dabei sei darauf hingewiesen, dass der Druckdämpfer 48 zu beiden Seiten der Mittelebene 68 identisch ausgebildet ist; aus Darstellungsgründen sind daher nur für eine Seite die Bezugszeichen eingetragen). Auch in einer vom Bereich der Mittelebene 68 zur Stirnseite sich konisch verjüngenden Wand 72 des Dämpfergehäuses 66 sind über den Umfang verteilt angeordnete Öffnungen 74 vorhanden.
  • In dem Dämpfergehäuse 66 ist ein kompressibles Gasvolumen 76 eingeschlossen, und zwar zwischen zwei im Wesentlichen und insgesamt parallelen Membranen 78a und 78b. Das Dämpfergehäuse 66 ist zweiteilig mit einem Oberteil 66a und einem Unterteil 66b. Die Ränder der beiden Membranen 78a und 78b sind im Bereich der Mittelebene 68 zwischen den beiden Teilen 66a und 66b des Dämpfergehäuses 66 verklemmt. In einem ausgebauten Ausgangszustand ist die axiale Längserstreckung des Dämpfergehäuses 66 etwas größer als die Höhe der Erweiterung 62. Dies führt dazu, dass in der in Figur 2 gezeigten Einbaulage das Dämpfergehäuse 66 zwischen dem Gehäusedeckel 54 und dem Gehäusekörper 52 verklemmt ist. Dabei liegt die in Figur 2 obere Öffnung 70 des Dämpfergehäuses 66 genau im Bereich des Einlassstutzens 18.
  • Durch eine steife Ausgestaltung der Auflage am Gehäuse 66 wird erreicht, dass eine bei der Montage auftretende axiale Druckkraft nicht zu einer radialen Durchmesseränderung führt. Die Membranen 78a und 78b sind daher sicher gegenüber dem Gehäuse 66 zentriert.
  • Die in Figur 2 gezeigte Hochdruck-Kolbenpumpe 20 arbeitet folgendermaßen:
    • Währens eines Saugtaktes bewegt sich der Förderkolben 30 in Figur 2 nach unten. Hierdurch wird Kraftstoff über den Einlassstutzen 18, die Erweiterung 62, den Kanal 63, und
    • das Einlassventil 40 in den Förderraum 32 angesaugt. Da das Dämpfergehäuse 66 zwischen dem Gehäusedeckel 54 und dem Gehäusekörper 52 verspannt ist und hierdurch zwischen den Rändern der Öffnungen 70 und dem Gehäusedeckel 54 beziehungsweise dem Gehäusekörper 52 ein weitgehend fluiddichter Kontakt hergestellt ist, strömt der Kraftstoff vom Einlassstutzen 18 durch die in Figur 2 obere Öffnung 70 in das Innere des Dämpfergehäuses 66, umspült dort die Membran 78a, tritt aus den Öffnungen 74 aus dem Dämpfergehäuse 66 in die Erweiterung 62 aus, wo er auch die Membran 78b beaufschlagt, um dann weiter in den Kanal 63 zu strömen.
  • Man sieht, dass das zwischen den beiden Membranen 78a und 78b eingeschlossene Gasvolumen 76, welches die eigentliche Druckdämpfungsaufgabe hat, unmittelbar im Strömungsweg 46 des Kraftstoffs liegt und von diesem direkt umströmt wird. Kommt es, ausgehend vom Einlassventil 40, zu einem Druckstoß, kann dieser vom Druckdämpfer 48 geglättet werden, bevor er sich über den Einlassstutzen 18 in die Niederdruckleitung 16 fortpflanzen kann.
  • In Figur 3 ist jener Bereich einer alternativen Ausführungsform einer Hochdruck-Kolbenpumpe 20 gezeigt, in dem der Druckdämpfer 48 angeordnet ist. Dabei tragen solche Elemente und Bereiche, welche äquivalente Funktionen zu Elementen und Bereichen der zuvor beschriebenen Figuren aufweisen, die gleichen Bezugszeichen. Sie sind nicht nochmals im Detail erläutert. Dies gilt im Übrigen auch für alle nachfolgenden Figuren.
  • Man erkennt, dass der Einlassstutzen 18 im Gegensatz zu Figur 2 nicht gerade, sondern um 90° gewinkelt ausgebildet ist. Außerdem erkennt man, dass das Dämpfergehäuse 66 im Bereich seiner Mittelebene 68 mehrere über den Umfang verteilt angeordnete und insgesamt radial abragende Zentrierabschnitte 80 aufweist. Die Zentrierabschnitte 80 sind durch eine nach radial außen weisende Verlängerung der konischen Wand 72 gebildet. Sie weisen jeweils einen sich in etwa axial zur jeweils anderen Gehäusehälfte hin erstreckenden Endabschnitt 82 auf.
  • Die radial außen liegende Seite der Endabschnitte 82 liegt an der Innenseite der Umfangswand 56 des Gehäusedeckels 54 an. Hierdurch wird das Dämpfergehäuse 66 gegenüber der Erweiterung 62 beziehungsweise gegenüber dem Gehäusedeckel 54 zentriert. Die Endabschnitte 82 erstrecken sich etwas über die Mittelebene 68 hinweg. Die radial äußeren Ränder der Membranen 78a und 78b liegen an der radial innen liegenden Seite des Endabschnitts 82 an. Durch den Endabschnitt 82 werden somit auch die Membranen 78a und 78b beziehungsweise das Gasvolumen 76 gegenüber dem Dämpfergehäuse 66 radial zentriert.
  • Wie aus Figur 4 ersichtlich ist, können zusätzlich im Gehäusedeckel 54 über den Umfang verteilt mehrere Einprägungen 86 vorhanden sein. An deren Innenseite können sich die radial äußeren Ränder der Membranen 78a und 78b direkt gegenüber dem Gehäusedeckel 54 zentrieren.
  • Grundsätzlich sei darauf hingewiesen, dass durch eine Zentrierung des Dämpfergehäuses 66 mit radialer Vorspannung eine vormontierbare Baugruppe entsteht, was besonders montagefreundlich ist. Durch eine derartige Vorspannung werden ferner die radialen Toleranzen minimiert, so dass der Durchmesser und damit die Wirkung des Druckdämpfers 48 selbst maximiert werden können.
  • Der Bereich des Einlassstutzens 18 und des Gehäusedeckels 54 einer nochmals anderen Ausführungsform einer Hochdruck-Kolbenpumpe 20 ist in Figur 5 gezeigt. Man erkennt, dass im Gehäusedeckel 54 eine Ausstülpung 84 vorhanden ist, mit der der Einlassstutzen 18 verschweißt ist.
  • Eine nochmals abgeänderte Variante hierzu zeigt Figur 6: Bei dieser ist in die Innenseite der Ausstülpung 84 ein Gewinde 86 eingerollt, in welches der Einlassstutzen 18 eingeschraubt ist.

Claims (13)

  1. Fluidpumpe (20), insbesondere Kraftstoff-Hochdruckpumpe, mit einem Gehäuse (50) und mit mindestens einem einlassseitigen Niederdruckanschluss (18), einem Einlassventil (40), und einem Förderraum (32), der von einem Förderelement (30) begrenzt wird, wobei die Fluidpumpe einen Druckdämpfer (48) umfasst, der einlassseitige Druckschwankungen dämpft und der mindestens ein kompressibles Volumen (76) umfasst, welches in einer Erweiterung (62) im Strömungsweg (46) zwischen Niederdruckanschluss (18) und
    Einlassventil (40) angeordnet ist,
    dadurch gekennzeichnet, dass der Druckdämpfer (48) ein in die Erweiterung (62) eingesetztes Dämpfergehäuse (66) mit zwei axialen Stirnseiten aufweist, zu denen hin es sich ausgehend von einer axialen Mittelebene (68) verjüngt und dass in dem Dämpfergehäuse (66) beiderseits der Mittelebene (68) jeweils mindestens eine Öffnung (74) vorhanden ist.
  2. Fluidpumpe (20) nach Anspruch 1, dadurch gekennzeichnet, dass das kompressible Volumen ein Gasvolumen (76) ist, welches von mindestens einer Membran (78) begrenzt wird.
  3. Fluidpumpe (20) nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Erweiterung (62) durch einen Gehäusedeckel (54) abgedeckt wird.
  4. Fluidpumpe (20) nach Anspruch 3, dadurch gekennzeichnet, dass der Gehäusedeckel (54) an einer axialen Stirnseite des Pumpengehäuses (50) angeordnet ist.
  5. Fluidpumpe (20) nach Anspruch 4, dadurch gekennzeichnet, dass der Niederdruckanschluss (18) am Gehäusedeckel (54) angeordnet ist.
  6. Fluidpumpe (20) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Dämpfergehäuse (66) des Druckdämpfers (48) im Wesentlichen rotationssymmetrisch ist und dass es in jeder Stirnseite mindestens eine Öffnung (70) aufweist und/oder dass in den Gehäusewänden (72) zwischen den beiden Stirnseiten und der Mittelebene (68) jeweils mindestens eine Öffnung (74) vorhanden ist.
  7. Fluidpumpe (20) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Dämpfergehäuse (66) mit seinen beiden Stirnseiten zwischen einem Gehäusekörper (52) und dem Gehäusedeckel (54) verklemmt ist.
  8. Fluidpumpe (20) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Dämpfergehäuse (66) über den Umfang verteilt angeordnete und insgesamt radial abragende Zentrierabschnitte (80) aufweist, welche das Dämpfergehäuse (66) gegenüber der Erweiterung (62) des Strömungswegs (46) radial zentrieren.
  9. Fluidpumpe (20) nach Anspruch 8, dadurch gekennzeichnet, dass mindestens einige der Zentrierabschnitte (80) jeweils einen sich in etwa axial und etwas über die Mittelebene (68) des Dämpfergehäuses (66) hinweg erstreckenden Endabschnitt (82) aufweisen, an denen das kompressible Volumen (76) gegenüber dem Dämpfergehäuse (66) radial zentriert ist.
  10. Fluidpumpe nach einem der Ansprüche 8 oder 9, dadurch gekennzeichnet, dass mindestens einige der Zentrierabschnitte (80) jeweils einen sich in etwa axial und etwas über die Mittelebene (68) des Dämpfergehäuses (66) hinweg erstreckenden Endabschnitt (82) aufweisen, an denen das kompressible Volumen (76) gegenüber dem Dämpfergehäuse (66) radial zentriert ist.
  11. Fluidpumpe (20) nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass ein radial äußerer Rand des kompressiblen Volumens (76) wenigstens bereichsweise an einer Wand der Erweiterung (62) des Strömungswegs (46) anliegt und so gegenüber dieser zentriert ist.
  12. Fluidpumpe (20) nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass das Dämpfergehäuse (66) zwei Gehäusehälften (66a, 66b) umfasst und das kompressible Volumen (76) zwischen den beiden Gehäusehälften (66a, 66b) verklemmt ist.
  13. Fluidpumpe (20) nach einem der Ansprüche 3 bis 10, dadurch gekennzeichnet, dass der Gehäusedeckel (54) eine Ausstülpung (84) aufweist, an der der Niederdruckanschluss (18) angeordnet ist.
EP04787240A 2003-10-01 2004-09-29 Fluidpumpe, insbesondere kraftstoffhochdruckpumpe, mit druckdämpfer Active EP1671031B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10176791.1A EP2273115B1 (de) 2003-10-01 2004-09-29 Fluidpumpe, insbesondere Kraftstoffhochdruckpumpe, mit Druckdämpfer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10345725.9A DE10345725B4 (de) 2003-10-01 2003-10-01 Kraftstoff-Hochdruckpumpe
PCT/EP2004/052346 WO2005031161A2 (de) 2003-10-01 2004-09-29 Fluidpumpe, insbesondere kraftstoffhochdruckpumpe, mit druckdämpfer

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP10176791.1A Division EP2273115B1 (de) 2003-10-01 2004-09-29 Fluidpumpe, insbesondere Kraftstoffhochdruckpumpe, mit Druckdämpfer
EP10176791.1 Division-Into 2010-09-15

Publications (2)

Publication Number Publication Date
EP1671031A2 EP1671031A2 (de) 2006-06-21
EP1671031B1 true EP1671031B1 (de) 2011-04-06

Family

ID=34353249

Family Applications (2)

Application Number Title Priority Date Filing Date
EP04787240A Active EP1671031B1 (de) 2003-10-01 2004-09-29 Fluidpumpe, insbesondere kraftstoffhochdruckpumpe, mit druckdämpfer
EP10176791.1A Active EP2273115B1 (de) 2003-10-01 2004-09-29 Fluidpumpe, insbesondere Kraftstoffhochdruckpumpe, mit Druckdämpfer

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP10176791.1A Active EP2273115B1 (de) 2003-10-01 2004-09-29 Fluidpumpe, insbesondere Kraftstoffhochdruckpumpe, mit Druckdämpfer

Country Status (4)

Country Link
EP (2) EP1671031B1 (de)
JP (1) JP4235647B2 (de)
DE (2) DE10345725B4 (de)
WO (1) WO2005031161A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105143656A (zh) * 2013-04-24 2015-12-09 罗伯特·博世有限公司 活塞泵、特别是用于内燃机的燃料系统的高压泵
US10544768B2 (en) 2017-05-11 2020-01-28 Denso Corporation Pulsation damper and fuel pump device

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4415884B2 (ja) 2005-03-11 2010-02-17 株式会社日立製作所 電磁駆動機構,電磁弁機構及び電磁駆動機構によって操作される吸入弁を備えた高圧燃料供給ポンプ,電磁弁機構を備えた高圧燃料供給ポンプ
JP4686501B2 (ja) 2007-05-21 2011-05-25 日立オートモティブシステムズ株式会社 液体脈動ダンパ機構、および液体脈動ダンパ機構を備えた高圧燃料供給ポンプ
JP5002523B2 (ja) 2008-04-25 2012-08-15 日立オートモティブシステムズ株式会社 燃料の圧力脈動低減機構、及びそれを備えた内燃機関の高圧燃料供給ポンプ
DE102008043217A1 (de) * 2008-10-28 2010-04-29 Robert Bosch Gmbh Kraftstoff-Hochdruckpumpe für eine Brennkraftmaschine
DE102010027858A1 (de) * 2010-04-16 2011-11-24 Robert Bosch Gmbh Kraftstoff-Hochdruckpumpe für eine Brennkraftmaschine
DE102010064221A1 (de) * 2010-12-27 2012-06-28 Robert Bosch Gmbh Einspritzpumpe für ein Kraftstoffeinspritzsystem
JP5310748B2 (ja) * 2011-01-12 2013-10-09 トヨタ自動車株式会社 高圧ポンプ
US9109593B2 (en) 2011-08-23 2015-08-18 Denso Corporation High pressure pump
CN102562395A (zh) * 2011-12-30 2012-07-11 成都威特电喷有限责任公司 稳定电控高压油泵低压系统压力的电控高压油泵
DE102013218878A1 (de) * 2013-09-19 2015-03-19 Robert Bosch Gmbh Fluidfördersystem
GB201322264D0 (en) * 2013-12-17 2014-01-29 Delphi Tech Holding Sarl High Pressure Pump
JP5923549B2 (ja) * 2014-05-20 2016-05-24 日立オートモティブシステムズ株式会社 高圧燃料供給ポンプ、及び高圧燃料供給ポンプの製造方法
JP6260478B2 (ja) * 2014-07-10 2018-01-17 株式会社デンソー 高圧ポンプ
JP6361337B2 (ja) * 2014-07-10 2018-07-25 株式会社デンソー 高圧ポンプ
WO2016056333A1 (ja) 2014-10-09 2016-04-14 日立オートモティブシステムズ株式会社 高圧燃料供給ポンプ
JP2015017619A (ja) * 2014-10-27 2015-01-29 株式会社デンソー 高圧ポンプ
JP6012785B2 (ja) * 2015-01-30 2016-10-25 日立オートモティブシステムズ株式会社 燃料の圧力脈動低減機構、及びそれを備えた内燃機関の高圧燃料供給ポンプ
DE102015220870A1 (de) 2015-10-26 2017-04-27 Robert Bosch Gmbh Hochdruckpumpe
DE102016200125B4 (de) 2016-01-08 2018-05-30 Continental Automotive Gmbh Kraftstoffhochdruckpumpe
DE102016203217B4 (de) * 2016-02-29 2020-12-10 Vitesco Technologies GmbH Dämpferkapsel, Druckpulsationsdämpfer und Kraftstoffhochdruckpumpe
DE102016205428A1 (de) 2016-04-01 2017-10-05 Robert Bosch Gmbh Druckdämpfungseinrichtung für eine Fluidpumpe, insbesondere für eine Hochdruckpumpe eines Kraftstoffeinspritzsystems
DE102016205427A1 (de) 2016-04-01 2017-10-05 Robert Bosch Gmbh Druckdämpfungseinrichtung für eine Fluidpumpe, insbesondere für eine Hochdruckpumpe eines Kraftstoffeinspritzsystems
JP6310026B2 (ja) * 2016-09-20 2018-04-11 日立オートモティブシステムズ株式会社 燃料の圧力脈動低減機構、及びそれを備えた内燃機関の高圧燃料供給ポンプ
DE102017213891B3 (de) * 2017-08-09 2019-02-14 Continental Automotive Gmbh Kraftstoffhochdruckpumpe für ein Kraftstoffeinspritzsystem
WO2019111692A1 (ja) * 2017-12-05 2019-06-13 日立オートモティブシステムズ株式会社 高圧燃料供給ポンプ
KR102021892B1 (ko) * 2017-12-26 2019-09-18 (주)모토닉 엔진의 연료맥동 저감용 댐핑기구
JP6511559B2 (ja) * 2018-03-13 2019-05-15 日立オートモティブシステムズ株式会社 燃料の圧力脈動低減機構、及びそれを備えた内燃機関の高圧燃料供給ポンプ
DE102018212223A1 (de) * 2018-07-23 2020-01-23 Continental Automotive Gmbh Pumpe für ein Kraftfahrzeug
KR102417695B1 (ko) 2020-11-10 2022-07-07 주식회사 현대케피코 고압 연료펌프의 방사소음 저감을 위한 댐퍼스프링 구조

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE556124C (de) * 1930-02-07 1932-08-05 Werdohler Pumpenfabrik Paul Hi Vorrichtung zur Aufnahme der Druckschwankungen bei Foerderung viskoser Stoffe, insbesondere von Spinnfluessigkeiten
DE2823721A1 (de) * 1978-05-31 1979-12-06 Bosch Gmbh Robert Verfahren zur herstellung von gasgefuellten behaeltern zur geraeuschdaempfung bei fluessigkeitspumpen und nach dem verfahren hergestellter behaelter
JPS5822455U (ja) * 1981-08-05 1983-02-12 三菱電機株式会社 燃料ポンプの吐出圧脈動吸収装置
EP0115501A4 (de) * 1982-08-09 1985-02-28 Rast Pty Ltd W Verfahren und mechanismus zur druckstossdämpfung.
JPH0482380U (de) * 1990-11-28 1992-07-17
US5374169A (en) * 1993-09-07 1994-12-20 Walbro Corporation Fuel pump tubular pulse damper
JPH08261096A (ja) * 1995-03-23 1996-10-08 Nhk Spring Co Ltd 液圧サージ吸収装置およびそのベローズアッセンブリ
DE19539885A1 (de) * 1995-05-26 1996-11-28 Bosch Gmbh Robert Kraftstoffversorgungsanlage und Verfahren zum Betreiben einer Brennkraftmaschine
JPH11247742A (ja) * 1998-03-02 1999-09-14 Zexel:Kk プランジャポンプ
JP3235567B2 (ja) * 1998-05-27 2001-12-04 船井電機株式会社 圧縮機
US6230685B1 (en) * 1999-11-12 2001-05-15 Siemens Automotive Corporation Pressure pulsation damper containing a free floating spacer
JP3823060B2 (ja) * 2002-03-04 2006-09-20 株式会社日立製作所 高圧燃料供給ポンプ
EP1411236B1 (de) * 2002-10-19 2012-10-10 Robert Bosch Gmbh Vorrichtung zum Dämpfen von Druckpulsationen in einem Fluidsystem, insbesondere in einem Kraftstoffsystem einer Brennkraftmaschine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105143656A (zh) * 2013-04-24 2015-12-09 罗伯特·博世有限公司 活塞泵、特别是用于内燃机的燃料系统的高压泵
US10544768B2 (en) 2017-05-11 2020-01-28 Denso Corporation Pulsation damper and fuel pump device

Also Published As

Publication number Publication date
JP2006521487A (ja) 2006-09-21
DE502004012379D1 (de) 2011-05-19
EP1671031A2 (de) 2006-06-21
JP4235647B2 (ja) 2009-03-11
EP2273115B1 (de) 2014-04-16
WO2005031161A2 (de) 2005-04-07
DE10345725B4 (de) 2017-01-05
DE10345725A1 (de) 2005-04-21
EP2273115A1 (de) 2011-01-12
WO2005031161A3 (de) 2006-11-16

Similar Documents

Publication Publication Date Title
EP1671031B1 (de) Fluidpumpe, insbesondere kraftstoffhochdruckpumpe, mit druckdämpfer
EP2013469B1 (de) Kraftstoff-hochdruckpumpe
EP1411236B1 (de) Vorrichtung zum Dämpfen von Druckpulsationen in einem Fluidsystem, insbesondere in einem Kraftstoffsystem einer Brennkraftmaschine
DE102004013307B4 (de) Kraftstoffhochdruckpumpe mit einem Druckbegrenzungsventil
EP1411238B1 (de) Druckbegrenzungsventil für ein Kraftstoffeinspritzsystem
DE112011105490B4 (de) Kraftstoffpumpe
EP2278150B1 (de) Vorrichtung zum Dämpfen von Druckpulsationen in einem Fluidsystem, insbesondere in einem Kraftstoffsystem einer Brennkraftmaschine
EP2519744B1 (de) Pumpe mit einer einem ventil zugeorneten dämpfanordnung
DE102006027780A1 (de) Kraftstoffinjektor
DE102006000010A1 (de) Hochdruckpumpe mit verkleinertem Aufbau
DE102004002489B4 (de) Fluidpumpe, insbesondere Kraftstoff-Hochdruckpumpe
DE102004047601A1 (de) Fluidpumpe, insbesondere Kraftstoff-Hochdruckpumpe
DE102019217207A1 (de) Kraftstoff-Hochdruckpumpe für ein Kraftstoffsystem einer Brennkraftmaschine
EP1561028B1 (de) Kraftstoffhochdruckpumpe mit kugelventil im niederdruck-einlass
EP1395744A1 (de) Kraftstoff-einspritzvorrichtung für brennkraftmaschinen, insbesondere common-rail-injektor, sowie kraftstoffsystem und brennkraftmaschine
EP2406488A1 (de) Saugventil für eine kraftstoffhochdruckpumpe
EP1403509A2 (de) Druckbegrenzungseinrichtung sowie Kraftstoffsystem mit einer solchen Druckbegrenzungseinrichtung
EP3894687B1 (de) Kraftstoff-hochdruckpumpe
DE112020000261T5 (de) Metalldämpfer mit Metallmembran und damit versehene Kraftstoffpumpe
EP1135606A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP2867520A1 (de) Kraftstoffhochdruck-kolbenpumpe
DE102004064240B3 (de) Fluidpumpe mit integriertem Druckdämpfer
DE102008041393A1 (de) Kraftstoffsystem für eine Brennkraftmaschine
DE102018209264A1 (de) Kraftstoff-Hochdruckpumpe
DE102017210313A1 (de) Kraftstoff-Hochdruckpumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

PUAK Availability of information related to the publication of the international search report

Free format text: ORIGINAL CODE: 0009015

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR IT

RIC1 Information provided on ipc code assigned before grant

Ipc: F02M 37/00 20060101AFI20070104BHEP

17P Request for examination filed

Effective date: 20070516

RBV Designated contracting states (corrected)

Designated state(s): DE FR IT

17Q First examination report despatched

Effective date: 20080818

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

REF Corresponds to:

Ref document number: 502004012379

Country of ref document: DE

Date of ref document: 20110519

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004012379

Country of ref document: DE

Effective date: 20110519

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110406

26N No opposition filed

Effective date: 20120110

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004012379

Country of ref document: DE

Effective date: 20120110

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190923

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20221125

Year of fee payment: 19