EP1667637A2 - Composition aqueuse comprenant un polymere dentrique polyonique et un agent tensioactif ionique - Google Patents

Composition aqueuse comprenant un polymere dentrique polyonique et un agent tensioactif ionique

Info

Publication number
EP1667637A2
EP1667637A2 EP04787481A EP04787481A EP1667637A2 EP 1667637 A2 EP1667637 A2 EP 1667637A2 EP 04787481 A EP04787481 A EP 04787481A EP 04787481 A EP04787481 A EP 04787481A EP 1667637 A2 EP1667637 A2 EP 1667637A2
Authority
EP
European Patent Office
Prior art keywords
acid
water
phase
cationic
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP04787481A
Other languages
German (de)
English (en)
Inventor
Mikel Morvan
Franck Touraud
Katerina Karagianni
Jean-François BERRET
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Rhodia Chimie SAS
Original Assignee
Centre National de la Recherche Scientifique CNRS
Rhodia Chimie SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Rhodia Chimie SAS filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP1667637A2 publication Critical patent/EP1667637A2/fr
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/005Dendritic macromolecules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/44Aminocarboxylic acids or derivatives thereof, e.g. aminocarboxylic acids containing sulfur; Salts; Esters or N-acylated derivatives thereof
    • A61K8/442Aminocarboxylic acids or derivatives thereof, e.g. aminocarboxylic acids containing sulfur; Salts; Esters or N-acylated derivatives thereof substituted by amido group(s)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/46Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing sulfur
    • A61K8/463Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing sulfur containing sulfuric acid derivatives, e.g. sodium lauryl sulfate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/88Polyamides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/02Preparations for cleaning the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/12Preparations containing hair conditioners
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/002Dendritic macromolecules
    • C08G83/003Dendrimers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0008Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
    • C11D17/0017Multi-phase liquid compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3715Polyesters or polycarbonates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3719Polyamides or polyimides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3723Polyamines or polyalkyleneimines
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3757(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions
    • C11D3/3765(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions in liquid compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/54Polymers characterized by specific structures/properties

Definitions

  • Aqueous composition comprising a polyionic dendritic polymer and an ionic surfactant
  • the subject of the present invention is a composition
  • a composition comprising a single-phase aqueous phase comprising a system comprising water, a water-soluble or water-dispersible dendritic polymer (a), an ionic surfactant (b), and optionally a polycationic or polyanionic polymer (c) , different from the dendritic polymer.
  • a water-soluble or water-dispersible dendritic polymer
  • b ionic surfactant
  • c polycationic or polyanionic polymer
  • a single-phase aqueous phase comprising a system comprising: - water - a water-soluble or water-dispersible polyionic dendritic polymer (a), - at least one ionic surfactant (b), - optionally a polycationic or polyanionic polymer (c), different from the dendritic polymer, and - optionally at least one surfactant (d) amphoteric or zwitterionic or neutral, - in which: - (a) is polycationic, (b) is anionic and (c), if present is polyanionic or polycationic, or - (a) is polycationic, (b) is cationic and (c) is present and polyanionic, or - (a) is polyanionic, (b) is cationic and (c), if present is polyanionic or polycationic, or - (a) is polyanionic, (b) is anionic and (c) is present and polycationic, - the single-phase aqueous
  • the composition may be an aqueous cosmetic composition for the hair and / or the skin intended to be rinsed off. It can for example be a shampoo, a conditioner or a shower gel. According to an alternative, the composition is a conditioner intended not to be rinsed.
  • the invention also provides a method of treating a surface comprising the following steps: a) applying the composition, and b) optionally rinsing.
  • compositions according to the invention may be cosmetic compositions intended for the treatment of the skin or the hair, intended to be applied and rinsed, such as shampoos or shower gel, have advantageous properties in terms of transparency, the deposition of material (conditioning effect), and / or, more generally, to optimize cosmetic effects such as softness, suppleness, disentangling, shine, the ability to comb on dry or wet hair. They can provide protection of the hair, a luster, a repair of cracks in the cortex, a reduction in the negative effects of discoloration and perms, a repair of damaged hair, a protection of the color.
  • the composition can be used for surface treatments: it can induce a deposit of at least one of the compounds chosen from (a), (b), (c) if it is present and (e) if it is present is on the surface.
  • (a) has a particular affinity for damaged hair (discoloration, aging, etc.) or damaged areas of the hair, for example the ends.
  • the composition can also be used for surface treatments or modifications, for example for more or less lasting hydrophilizations (for example resistant to rain and / or rinsing) of textile surfaces or hard surfaces. Hydrophilization can prevent the appearance of traces on drying (traces can water droplets), and / or facilitate subsequent cleanings, and / or avoid the formation of stains and / or soiling after cleaning.
  • compositions are also easy to prepare, easy to use, and sufficiently stable.
  • the term "single-phase aqueous phase" is used as opposed to a two-phase phase, obtained from the single-phase phase, within this phase, for example by dilution.
  • the phase shift takes place in the aqueous phase
  • the phase-shifted ingredients are ingredients of the system, which were not in the single-phase aqueous phase.
  • the composition can comprise solid or liquid particles of non-water-soluble organic or inorganic compounds, dispersed in the single-phase aqueous phase, but which in the present application are not considered to be part of the single-phase or two-phase aqueous phase.
  • the biphasic phase can be signed by the appearance of macroscopic or microscopic objects, forming a macroscopic phase separation which can settle, or forming a disorder of the aqueous phase, in the form for example of complexes or colloids. This can be observed visually, and / or using a microscope, and / or by light scattering or absorption techniques.
  • dendritic polymer refers to macromolecular compounds comprising several branches. They can be regular dendrimers, or hyperbranched polymers.
  • water-soluble or “water-dispersible” are understood to mean the pH of the composition; and mean that a compound does not form a macroscopic phase separation in water at the pH of the composition at 25% C at a concentration greater than 1%.
  • the single phase aqueous phase comprises water, (a), (b), optionally (c), and optionally (d).
  • the single phase aqueous phase comprises water, (a), (b), optionally (c), and optionally (d).
  • a), (b), (c) if it is present and (d) if it is present and their quantities are such that the single-phase aqueous phase becomes two-phase by dilution with water, by example at the pH of the composition (pH of the aqueous phase) or at the pH induced by dilution.
  • a particular mode a particular mode:
  • the single-phase aqueous phase becomes two-phase by dilution with water
  • the system comprises (c) and: - (a) is polycationic, (b) is anionic and (c) is polycationic, or
  • composition can in particular comprise (by weight relative to the weight of the composition): from 0.01 to 10%, preferably from 0.1 to 5%, preferably from 0.1 to 1% of (a)
  • composition may comprise at least 90% by weight of the aqueous phase, and the aqueous phase may comprise from 5 to 40%, preferably from 10 to 20% by weight, of the system formed from (a), ( b), possibly (c) and possibly (d).
  • the aqueous phase can constitute the entire composition.
  • Dendritic polymer (a)
  • the dendritic polymer is polyionic. This means that it comprises ionic, cationic or anionic groups, at the pH of the composition. These groups can be included at the ends of polymer chains, or within macromolecular chains. Ionic groups are generally considered to be hydrophilic. It is specified that by ionic group is meant a group which has a charge at any pH, or a group which may comprise a charge at a certain pH. In the latter case, reference is sometimes made to potentially ionic groups.
  • the dendritic polymer can include hydrophobic groups and hydrophilic groups. The hydrophobic groups can be included in repeating units within the polymer.
  • They may, for example, be at least divalent alkylene groups with at least 3 consecutive carbon atoms, or at least divalent groups comprising a phenyl unit, for example the phenylene group. It is advantageously a group of formula - (CH 2 ) n - where n is greater than or equal to 3, for example 4, 5, 6, or 11, and / or a group of formula -C 6 H -.
  • the hydrophilic groups can be included in repeating units within the polymer and / or can be included at the end of the polymer chains.
  • the hydrophilic groups included in repeating units are often considered as polymerization functions. These are for example groups, or functions, of formulas -COO- (polyesters), -O- (polyethers), -CONH- (polyamide), -OCOO-
  • the dendritic polymer preferably comprises ionic or potentially ionic groups (depending for example on the pH) at the ends of the polymer chains.
  • ionic groups include: - acid groups such as sulfonic, phosphonic, carboxylic acids, and their basic forms sulfonates, phosphate, phosphonate, carboxylate (anionic groups), - amino, primary, secondary, tertiary groups, their ammonium acid forms, and quaternary ammonium groups (cationic groups). It is mentioned that the hydrophilicity and / or the ionic character of a group may depend on the pH.
  • hydrophilic, respectively ionic group denotes groups which are hydrophilic, respectively ionic, at any pH, as well as groups whose hydrophilicity, respectively the ionic character, depends on the pH (potentially hydrophilic groups).
  • dendritic polymers examples include - the polypropylene imine skeleton dendrimers, such as the Starburst® range marketed by the company DSM, - the polyamidoester (or polyesteramide) skeleton dendrimers, such as the Hybrane® range marketed by DSM, - polyamidoamine skeleton dendrimers (PAMAM) - polyether dendrimers - diaminobutane-aminopropylated DAB (PA) n polymers - hyperbranched polyesters, such as the BOLTORN® range put on the market by the company Perstorp.
  • the hyperbranched polyesters and the hyperbranched polyamides are in particular dendritic polymers which are particularly suitable for implementing the invention.
  • the dendritic polymer is a polymer capable of being obtained by a process comprising the following steps: Step a) polycondensation of at least one multifunctional monomer of formula (I), comprising at least three reactive functions of polycondensation, AR- (B) f (I) formula in which - f is an integer greater than or equal to 2, preferably goes from 2 to 10, very particularly is equal to 2 - the symbol A represents a reactive function or a group carrying a reactive function chosen from amino, carboxy, hydroxy, oxiranyl, halo, isocyanato functions, or their precursors - the symbol B represents a reactive function or a group carrying a reactive function chosen from amino, carboxy functions , hydroxy, oxiranyl, halogeno, isocyanato or their precursors, antagonist of A - the symbol R represents a linear or branched aliphatic polyvalent hydrocarbon residue, cycloa liphatic or aromatic containing from 1 to 50, preferably from 3
  • Step b) optionally, ionic, anionic or cationic functionalization, at least partial of the polymer obtained in the polycondensation step.
  • the symbol B represents a reactive function antagonistic to the reactive function A; this means that function B is likely to react with function A by condensation.
  • - of an amino function are in particular the carboxy (formation of an amide), isocyanato (formation of a urea), oxiranyl (formation of a secondary or tertiary ⁇ -hydroxylated amine) functions
  • - of a carboxy function are in particular the amino (formation of an amide), hydroxy (formation of an ester), isocyanato (formation of an amide) functions.
  • - of a hydroxy function are in particular the carboxy (formation of an ester), oxiranyl (formation of an ether), isocyanato (formation of an amide) functions
  • - of an oxiranyl function are in particular the hydroxy functions (formation of an ether), carboxy (formation of an ester), amino (formation of a secondary or tertiary amine ⁇ -hydroxylated)
  • - of a halo function are in particular the hydroxy functions.
  • amino function precursors mention may in particular be made of amine salts, such as hydrochlorides.
  • precursors of carboxy function there may be mentioned in particular esters, preferably of C1-C4, very particularly of C1-C2, acid halides, anhydrides, amides.
  • hydroxy function precursors mention may in particular be made of epoxies.
  • said polycondensation operation is also carried out in the presence of:
  • the functions A, A ', A "and B, B', B” are chosen from reactive functions or a group carrying reactive functions chosen from amino, carboxy, hydroxy, oxiranyl functions or their precursors . Even more preferably, said functions are chosen from reactive functions or a group carrying amino and carboxy reactive functions, or their precursors.
  • the molar ratio of the monomer of formula (I) to the monomer of formula (II) is advantageously greater than 0.05, preferably ranges from 0.125 to 2;
  • the molar ratio of the monomer of formula (III) to the monomer of formula (I) is advantageously less than or equal to 1, preferably less than or equal to 1/2, and even more preferably ranges from 0 to 1/3; said ratio is very particularly from 0 to 1/5; -
  • the molar ratio of the monomer of formula (IV) to the monomer of formula (I) is advantageously less than or equal to 10, preferably less than or equal to 5; said ratio goes very particularly from 0 to 2, when f is equal to 2.
  • the elementary entity considered to define the different molar ratios is the molecule.
  • reaction also includes the notion of addition reaction when one or more antagonistic functions of at least one of the monomers used is included in a cycle (lactams, lactones, epoxides for example).
  • monomer (I) there may be mentioned:
  • the bifunctional monomers of formula (11) are the monomers used for the manufacture of linear thermoplastic polyamides.
  • ⁇ -aminoalkanoic compounds comprising a hydrocarbon chain having from 4 to 12 carbon atoms, or lactams derived from these amino acids such as ⁇ -caprolactam.
  • the preferred bifunctional monomer for implementing the invention is ⁇ -caprolactam.
  • at least part of the bifunctional monomers (II) are in the form of a prepolymer.
  • monomer (III) there may be mentioned:
  • aromatic or aliphatic monoamines such as dodecylamine, octadecylamine, benzylamine ...
  • aromatic or aliphatic monoacids containing from 1 to 32 carbon atoms such as benzoic acid, acetic acid, propionic acid, saturated or unsaturated fatty acids (dodecanoic, oleic, palmitic, stearic acid, etc.) - monofunctional alcohols or epoxides, such as ethylene oxide, epichlorohydrin ...
  • - isocyanates such as phenylisocyanate ...
  • - biprimary diamines preferably saturated linear or branched aliphatic having from 6 to 36 carbon atoms such as, for example, hexamethylenediamine, trimethylhexamethylene-diamine, tetramethylenediamine, n-xylenediamine
  • - saturated aliphatic dicarboxylic acids having from 6 to 36 carbon atoms such as, for example, adipic acid, azelaic acid, sebacic acid, maleic acid or anhydride - difunctional alcohols or epoxides, such as ethylene glycol, diethylene glycol, pentanediol, glycidyl ethers of monofunctional alcohols containing from 1 to 24 carbon atoms
  • diisocyanates such as toluene diisocyanates, hexamethylene diisocyante, phenyl diisocyanate, isophorone diisocyanate - triamines, triacids or aromatic or aliphatic polyacids, triols or polyols like N, N, N-tris (amino-2 ethyl) amino, melamine ..., citric acid, 1,3,5-benzene tricarboxylic acid ..., 2,2,6,6-tetra- ( ⁇ -carboxyethyl) cyclohexanone, trimethylolpropane, glycerol, pentaerythritol, glycidyl ethers of alcohols, di-, tri- or poly-functional - polymeric compounds such as poly amino mono- or polyoxyalkylene marketed under the trademark JEFFAMINE ®,
  • amino polyorganosiloxanes such as amino polydimethylsiloxane.
  • the monomers (III), preferred "core” are: hexamethylene diamine, adipic acid, JEFFAMINE ® T403 sold by the company Huntsman acid, 1, 3,5-benzene tricarboxylic acid, 2,2,6, 6-tetra- ( ⁇ -carboxyethyl) cyclohexanone.
  • - aromatic or aliphatic monoamines such as dodecylamine, octadecylamine, benzylamine.
  • Most of these compounds are generally considered to be hydrophobic, non-ionic.
  • - aromatic or aliphatic monoacids containing from 1 to 32 carbon atoms such as benzoic acid, acetic acid, propionic acid, saturated or unsaturated fatty acids (dodecanoic, oleic, palmitic, stearic acid, etc.) .
  • Most of these compounds are generally considered to be hydrophobic, non-ionic.
  • - monofunctional alcohols or epoxides such as ethylene oxide, epichlorohydrin.
  • Most of these compounds are generally considered to be hydrophobic, non-ionic.
  • - isocyanates such as phenylisocyanate. Most of these compounds are generally considered to be hydrophobic, non-ionic.
  • - polymeric compounds such as monoamine polyoxyalkylenes, for example sold under the brand JEFFAMINE M ® , such as JEFFAMINE M 1000 ® and JEFFAMINE M 2070 ® . Most of these compounds are generally considered to be hydrophilic, nonionic. - monoamine silicone chains, such as monoamine polydimethylsiloxane. Most of these compounds are generally considered to be hydrophobic, non-ionic.
  • N- (3-amino propyl) morpholine hydrophilic or potentially hydrophilic, cationic or potentially cationic, because basic or quaternizable for example with dimethylsufate).
  • - N-Methyl N '- (Amino-3 Propyl) Piperazine hydrophilic or potentially hydrophilic, cationic or potentially cationic, because basic or quaternizable for example with dimethylsufate).
  • polymeric compounds such as monoamine polyoxyalkylenes, for example sold under the brand JEFFAMINE M ® , such as JEFFAMINE M 1000 ® and
  • JEFFAMINE M 2070 ® Most of these compounds are generally considered to be hydrophilic and non-ionic.
  • N- (3-amino propyl) morpholine hydrophilic or potentially hydrophilic, cationic or potentially cationic, because basic or quaternizable for example with dimethylsufate).
  • - N-Methyl N '(Amino-3 Propyl) Piperazine hydrophilic or potentially hydrophilic, cationic or potentially cationic, because basic or quaternizable for example with dimethylsufate).
  • the dendritic polymer carries at the ends of the polymer chains a mixture of hydrophilic groups and hydrophobic groups, and / or mixtures of ionic and nonionic groups, for example provided by monomers (IV) and / or acid-base control.
  • ionic and nonionic groups for example provided by monomers (IV) and / or acid-base control.
  • We can thus modulate the emulsifying properties, and if necessary make the action of the dendritic polymer sensitive to external conditions.
  • the dendritic polymers described above can be assimilated to tree structures provided with a focal point formed by the function A and with a periphery furnished with B terminations.
  • the fact that the periphery is furnished with B terminations does not exclude that B-terminations are present at chain ends located more at the heart of the dendritic polymer.
  • the bifunctional monomers (II) are spacers in the three-dimensional structure. They allow control of the connection density. When they are present, the monomers (III) form nuclei.
  • the monofunctional monomers (IV) "chain limiter”, are located at the periphery of the dendrimers. It is specified that the fact that the periphery is packed with monofunctional monomers (IV) does not exclude that monofunctional monomers (IV) are present at the ends of chains located more at the heart of the dendritic polymer.
  • the dendritic polymers used according to the invention are hyperbranched polyamides; they are obtained from at least one monomer of formula (I) having, as reactive polycondensation functions, amino functions, and carboxy antogonist functions, or from a monomer composition further containing at least one monomer of formula (II ) and / or (III) and / or (IV) having the same type (s) of reactive polycondensation function (s), all or part of the monomer (s) of formula (II) which can be replaced by a lactam.
  • the polycondensation / polymerization operation can be carried out in a known manner in the molten or solvent phase, the monomer of formula (II), when it is present, can favorably play the role of solvent.
  • the operation can be carried out favorably in the presence of at least one polycondensation catalyst and optionally at least one antioxidant compound.
  • Such catalysts and antioxidant compounds are known to those skilled in the art.
  • catalysts By way of example of catalysts, mention may be made of phosphorous compounds such as phosphoric acid, phosphorous acid, hypophosphorous acid, phenylphosphonic acids, such as 2- (2'-pyridyl) ethylphosphonic acid, phosphites such as tris (2,4-di-tert-butylphenyl) phosphite.
  • phosphorous compounds such as phosphoric acid, phosphorous acid, hypophosphorous acid, phenylphosphonic acids, such as 2- (2'-pyridyl) ethylphosphonic acid, phosphites such as tris (2,4-di-tert-butylphenyl) phosphite.
  • an antioxidant mention may be made of biobuttered phenolic-based antioxidants, such as N, N'-hexamethylene bis (3,5-di-tert-butyl-4-hydroxy-hydrocinnamamide), 5- tert-butyl-4-hydroxy-2-methylphen
  • Hyperbranched polyamides having nonreactive hydrophilic functionalities with the functions A, A ', A ", B, B' and B" can be obtained by using a monomer of formula (III) and / or (IV) having one or more polyoxyethylene groups (for example monomer from the family of amino polyoxyalkylenes JEFFAMINES) and / or a monomer of formula (IV) having quaternary ammonium (cationic), nitrile, sulfonate (anionic), phosphonate (anionic), phosphate ( anionic).
  • Another embodiment consists, after preparation of a hyperbranch polymer by polycondensation of nonfunctionalized monomers, in modifying the terminal functions of said hyperbranch polyamide by reaction with a compound having hydrophilic and / or ionic or potentially ionic functions. It may for example be a compound having a tertiary amino group (potentially cationic), quaternary ammonium (cationic), nitrile, sulfonate (anionic), phosphonate (anionic), phosphate (anionic) or polyoxyethylene groups.
  • the terminal functions can also be modified by simple reactions of the acid-base type, by fully or partially ionizing the groups included at the ends of the chains.
  • end groups of carboxylic acid type can be made anionic by adding a base.
  • End groups of amino type can be made cationic by adding an acid.
  • the functionalization can be total or partial. It is preferably greater than 25% by number, relative to all of the free functional groups carried (B, B ′, B ′′). It should be noted that it is not excluded to carry out a hydrophobic partial functionalization after the preparation of the dendritic polymer.
  • the molar mass by weight of said dendritic polymers, hyperbranched polyamides in particular can range from 500 to 1,000,000 g / mol, preferably from 1,000 to 500,000 g / mol, even more preferably from 3,000 to 20,000 g / mol.
  • the molar mass by weight can be measured by size exclusion chromatography. The measurement is carried out in an eluting phase composed of 70% by volume of Millipore water 18 megaohms and 30% by volume of methanol, containing 0.1 M NaN0 3 ; it is adjusted to pH 10 (1/1000 NH 4 OH 25%).
  • the molar mass by weight is established in a known manner by means of light scattering values.
  • anionic surfactant (an)
  • the anionic surfactants can in particular be chosen from the following compounds:
  • R represents an alkyl radical in C8-20- preferably in C ⁇ QC Q
  • R' an alkyl radical in C-1-C5, preferably in C-1-C3 and M an alkali cation (sodium, potassium, lithium), substituted or unsubstituted ammonium (methyl-, dimethyl-, trimethyl-, tetramethylammonium, dimethylpiperidinium ...) or derived from an alkanolamine (monoethanolamine, diethanolamine, triethanolamine ).
  • Mention may very particularly be made of methyl ester sulfonates whose radical R is C-14-C-];
  • alkyl sulphates of formula ROSO3M where R represents a C5-C24, preferably C-10-C18 'alkyl or hydroxyalkyl radical ⁇ representing a hydrogen atom or a cation of the same definition as above, as well as their ethoxylenated (OE) and / or propoxylenated (OP) derivatives, having on average from 0.5 to 30 units, preferably from 0.5 to 10 OE and / or OP units;
  • RCONHROSO3M where R represents an alkyl radical in C2-C22, preferably in C5-C20.
  • alkyl glycoside sulfates, - polyethoxycarboxylates the cation being an alkali metal (sodium, potassium, lithium), a substituted or unsubstituted ammonium residue (methyl-, dimethyl-, trimethyl-, tetramethylammonium, dimethylpiperidinium ...) or derived from an alkanolamine (monoethanolamine, diethanolamine, triethanolamine ).
  • the cationic surfactants can in particular be chosen from the salts of primary, secondary or tertiary fatty amines, optionally polyethoxylated, quaternary ammonium salts such as chlorides or bromides of tetraikylammonium, of alkylamidoalkylammonium, of trialkylbenzylammonium, of trialkylhydroxyalkylammonium, or of alkylpyridinium, imidazoline derivatives, amine oxides of a cationic nature, their mixtures or associations.
  • quaternary ammonium salts such as chlorides or bromides of tetraikylammonium, of alkylamidoalkylammonium, of trialkylbenzylammonium, of trialkylhydroxyalkylammonium, or of alkylpyridinium, imidazoline derivatives, amine oxides of a cationic nature, their mixtures or associations.
  • Surfactant (d) amphoteric or zwitterionic These surfactants (true amphoteres comprising an ionic group and a potentially ionic group of opposite charge, or zwitterionic comprising simultaneously two opposite charges) can in particular be chosen from the following surfactants:
  • betaines in general, in particular carboxybetaines, for example lauryl betaine (Mirataine BB from the company Rhodia) or octylbetaine; amidoalkylbetaines, such as cocamidopropyl betaine (CAPB) (Mirataine BDJ from the company Rhodia Chimie);
  • carboxybetaines for example lauryl betaine (Mirataine BB from the company Rhodia) or octylbetaine
  • amidoalkylbetaines such as cocamidopropyl betaine (CAPB) (Mirataine BDJ from the company Rhodia Chimie)
  • sulfo-betaines or sultaines such as cocamidopropyl hydroxy sultaine (Mirataine CBS from the company Rhodia); - alkylamphoacetates and alkylamphodiacetates, such as for example comprising a coconut or lauryl chain (Miranol C2M, C32, L32 in particular, from the company Rhodia);
  • Neutral surfactant (d) These surfactants can in particular be chosen from the following surfactants: alkoxylated fatty alcohols; alkoxylated triglycerides alkoxylated fatty acids alkoxylated sorbitan esters - fatty alkoxylated amines di (phenyl-1 ethyl) alkoxylated phenols tri (1-phenylethyl) phenols alkoxylated alkyls phenols alkoxylated products resulting from the condensation of l ' ethylene oxide with a hydrophobic compound resulting from the condensation of propylene oxide with propylene glycol, such as the Pluronic sold by BASF; the products resulting from the condensation of ethylene oxide the compound resulting from the condensation of propylene oxide with ethylenediamine, such as the Tetronic products sold by BASF; - alkylpolyglycosides such as those described in US 4,565,647; fatty acid amides, for example C8-
  • Polymer (c) polyanionic or polycationic Polymer (c) is a polymer which comprises several charge-bearing units, cationic or anionic.
  • the polymer (c) can be a synthetic polymer, or a polymer derived from a natural polymer. Such polymers are known to those skilled in the art. We also sometimes refer to "polyelectrolytes". It is noted that the polyanionic or polycationic character of a polymer can depend on the pH (the polymer can be potentially polyanionic or polycationic depending on the pH of the aqueous phase). Thus, the pH of the composition and the polymer are such that the latter is polyanionic or polycationic.
  • a polymer comprising anionic or potentially anionic units in neutral form is considered to be "polyanionic", or a polymer comprising cationic or potentially cationic units in the form of "polycationic” neutral.
  • the polymer (c) is advantageously water-soluble or water-dispersible.
  • Polymer (c) of natural origin Mention may in particular be made of cationic derivatives of cellulose and cationic derivatives of guars, optionally hydroxyalkylated.
  • cationic polymers such as in particular hydroxypropyltrimonium chloride hydroxypropyl guar (JAGUAR C162 and JAGUAR C2000, JAGUAR C1000 marketed by Rhodia) and the cationic derivatives of cellulose , as in particular the ether of poly (oxyéthanediyl-1, 2) hydroxy-2 chloride of trimethylammonium-3 propyl cellulose or polyquatemium-10 (Polymer JR400 sold by Union Carbide).
  • hydroxyalkylated derivatives such as in particular hydroxypropyltrimonium chloride hydroxypropyl guar (JAGUAR C162 and JAGUAR C2000, JAGUAR C1000 marketed by Rhodia)
  • the cationic derivatives of cellulose as in particular the ether of poly (oxyéthanediyl-1, 2) hydroxy-2 chloride of trimethylammonium-3 propyl cellulose or polyquatemium-10 (Polymer JR400 sold by Union Carbide).
  • Hydroxypropyltrimonium guar chlorides can also be used, for example Jaguar C-13S, C-14S, C-17, Excel, all marketed by Rhodia.
  • the cationicity of these polymers is variable; thus in the case of hydroxypropylated cationic guar derivatives such as JAGUARS C162 and C2000 sold by the company Rhodia, the degree of hydroxypropylation ("molar substitution” or MS) will be between 0.02 and 1.2 and the degree of cationicity (“degree of substitution” or DS) will be between 0.01 and 0.6.
  • These products can optionally be functionalized by hydrophobic groups such as alkyl chains.
  • cationic polymers can optionally be functionalized by anionic groups such as carboxymethyl, sulfate, sulfonate or phosphate groups, provided that the degree of substitution of these anionic groups is in all cases less than the degree of substitution of the cationic groups. It is also possible to use cationic cellulose derivatives such as cellulose chloride 2- (2-hydroxy-3- (trimethylammonium) propoxy) ethyl ether. Or polyquaternium- (polymer JR400 sold by Union Carbide).
  • These cationic polymers (a ′) generally have a molecular mass of at least 2000, most generally of the order of 200,000 to 3,000,000.
  • the polymer (c) can be a synthetic polymer comprising cationic units (including potentially cationic) and / or anionic units (including potentially anionic). It can be a homopolymer. It can also be a copolymer comprising at least two different units (for example cationic or anionic units and neutral units). It may be an anionized or cationized polymer or copolymer by a subsequent polymerization treatment.
  • Advantageous polymers are cationic (including potentially cationic) (co) polymers comprising units deriving from cationic monomers (including potentially cationic), optionally units deriving from anionic monomers (including potentially anionic), and optionally neutral units deriving from neutral monomers ( hydrophilic and / or hydrophobic).
  • Advantageous polymers are anionic (co) polymers (including potentially anionic) comprising units deriving from anionic monomers (including potentially anionic), optionally units deriving from cationic monomers (including potentially cationic), and optionally neutral units deriving from neutral monomers ( hydrophilic and / or hydrophobic).
  • the polymer (c) is advantageously water-soluble or water-dispersible. If it includes neutral units, these are advantageously hydrophilic. However, it is not excluded that it includes hydrophobic neutral units.
  • Such polymers, copolymers, units, monomers and methods are known to those skilled in the art. As examples of useful monomers, mention may be made of the monomers below.
  • Examples of potentially cationic monomers that may be mentioned are: -dimethylamino) ethyl-acrylamide or - methacrylamide, 3 (N, N-dimethylamino) propyl-acrylamide or -methacrylamide, 4 (N, N-dimethylamino) butyl-acrylamide or -methacrylamide
  • monoethylenically unsaturated ⁇ - ⁇ aminoesters such as 2 (dimethyl amino) ethyl acrylate (ADAM), 2 (dimethyl amino) ethyl methacrylate (DMAM), 3 (dimethyl amino) propyl methacrylate, 2 (tertiobutylamino) ethyl methacrylate, 2 (dipentylamino) ethyl methacrylate, 2 (diethylamino) ethyl methacrylate • vinylpyridines
  • ammoniumacryloyl or acryloyloxy monomers such as trimethylammoniumpropylmethacrylate chloride, trimethylammoniumethylacrylamide chloride or bromide, trimethylammoniumbutylacrylamide methyl methacrylamide, methacrylamide (3-methacrylamidopropyl) trimethylammonium (MAPTAC), (3-acrylamidopropyl) trimethylammonium chloride (APTAC), methacryloyloxyethyl trimethylammonium chloride or methyl sulfate, acryloyloxyethyl trimethylammonium chloride; 1-ethyl 2-vinylpyridinium bromide, chloride or methyl sulfate, 1-ethyl 4-vinylpyri
  • monomers having at least one carboxylic function such as ⁇ - ⁇ ethylenically unsaturated carboxylic acids or the corresponding anhydrides, such as acrylic, methacrylic, maleic acids or anhydrides, fumaric acid, itaconic acid, N-methacroyl alanine, N-acryloylglycine and their water-soluble salts
  • monomers having at least one phosphonate or phosphate function such as vinylphosphonic acid, ... the esters of ethylenically unsaturated phosphates such as the phosphates derived from hydroxyethyl methacrylate (Empicryl 6835 from RHODIA) and those derived from polyoxyalkylene methacrylates and their water-soluble salts.
  • ⁇ - ⁇ ethylenically unsaturated monomers carrying a water-soluble polyoxyalkylenated segment of the polyethylene oxide type such as the polyethylene oxide ⁇ -methacrylates (BISOMER S20W, S10W, ... from LAPORTE) or ⁇ , ⁇ -dimethacrylates, SIPOMER BEM from RHODIA (polyoxyethylene ⁇ -behenyl methacrylate), SIPOMER SEM-25 from RHODIA (polyoxyethylene ⁇ -tristyrylphenyl methacrylate) ... "ethylenically unsaturated ⁇ - ⁇ monomers precursors of hydrophilic units or segments such as' vinyl acetate which, once polymerized, can be hydrolyzed to generate vinyl alcohol units or polyvinyl alcohol segments
  • hydrophobic monomers examples include:
  • vinyl aromatic monomers such as styrene, alpha-methylstyrene, vinyltoluene ...
  • vinyl or vinylidene halides such as vinyl chloride, vinylidene chloride
  • C C ⁇ 2 alkylesters of ⁇ - ⁇ monoethylenically unsaturated acids such as methyl, ethyl, butyl acrylates and methacrylates, 2-ethylhexyl acrylate ...
  • vinyl or allyl esters of saturated carboxylic acids such as vinyl or allyl acetates, propionates, versatates, stearates ...
  • ⁇ -olefins such as ethylene
  • conjugated dienes such as butadiene, isoprene, chloroprene
  • PDMS polydimethylsiloxane chains
  • the synthetic cationic polymers usually used as conditioners in the field of cosmetics, such as polyquaternum 2, 6, 7, 11, (designation INCI), or such as polymethacrylamidopropyltrimonium chloride, for example sold by. Rhodia under the name Polycare 133), or as the copolymers of DADMAC, acrylic acid, and optionally acrylamide, sold under the Merquat range by Nalco.
  • composition may comprise solid or liquid particles of non-water-soluble organic or inorganic compounds (e).
  • emulsion can also be used.
  • Said particles can be present in said compositions in the range of 0.1 to 10% by weight, preferably in the range of 0.2 to 2% by weight. Their size can be between 0.15 and 70 microns.
  • insoluble organic compounds which may be present in the form of particles in aqueous dispersion in said compositions
  • Said organopolysiloxanes are considered to be non-water-soluble and non-volatile when their solubility in water is less than 50 g / liter and their intrinsic viscosity is at least 3000 mPa.s. at 25 ° C.
  • silicone gums such as, for example, diphenyl dimethicone gum sold by the company Rhodia, and preferably polydimethylsiloxanes having a viscosity at least equal to 600 000 mPa.s. at 25 ° C, and even more preferably, those with a viscosity greater than 2,000,000 mPa.s.
  • the non-water-soluble and non-volatile organopolysiloxane or silicone is in dispersed form within the cosmetic composition containing it. This is in the form of particles, the size of which can be chosen as a function of the nature of the cosmetic composition or of the performance sought for said composition. Generally, this size can vary from 0.02 to 70 microns. In a way preferential, this size is of the order of 1 to 80 microns, very particularly of the order of 1 to 30 microns.
  • oils which can exercise conditioning, protective or emollient functions, oils generally chosen from alkylmonoglycerides, alkyldiglycerides, triglycerides such as oils extracted from plants.
  • oils of origin animal such as oils, lanolin derivatives, mineral oils or paraffinic oils, perhydrosqualane, squalene, diols such as 1-2- dodecanediol, cetyl alcohol, stearyl alcohol, oleic alcohol, fatty esters such as isopropyl palmitate, ethyl-2-hexyl cocoate, myristyl myristate, lactic acid esters, l stea acid risk, behenic acid, isostearic acid.
  • bactericidal or fungicidal agents in order to improve the disinfection of the skin
  • anti-dandruff agents such as zinc pyrithione or octopyrox
  • insecticidal agents such as natural or synthetic pyrethroids.
  • These different organic molecules can if necessary be previously encapsulated in appropriate matrices according to methods known to those skilled in the art. Among these, mention may be made, by way of example, of the encapsulation of organic molecules in polymer latexes. It is mentioned that the solid or liquid particles can be stabilized in the composition using agents such as emulsifying agents or dispersing agents.
  • composition may include ingredients other than those mentioned above, for example in the single-phase aqueous phase. It is obviously possible to use in the composition pH regulating agents, acids or bases, for example citric acid, or sodium, potassium or ammonium hydroxide.
  • composition may include salts, for example sodium or potassium chloride.
  • the cosmetic compositions for hair and / or skin treatments can in particular comprise:
  • fixative resins for example chosen from methyl acrylate / acrylamide copolymers, polyvinylmethylether / maleic anhydride copolymers, vinyl acetate / crotonic acid copolymers, octylacrylamide / methyl acrylate / butylaminoethylmethacrylate, polyvinylpyrrolidones, polyvinylpyrrolidone copolymers, polyvinylpyrrolidone copolymers / vinyl acetate, polyvinyl alcohols, polyvinyl alcohol / crotonic acid copolymers, polyvinyl alcohol / maleic anhydride copolymers, hydroxypropyl celluloses, hydroxypropyl guars, sodium polystyrene sulfonates, polyvinylpyrrolidone / ethyl methacrylate / methacrylic acid, poly (methyl ethyl ethers) maleic acid), polyviny
  • the fixing resins are of the polyvinylpyrrolidone (PVP) type, polyvinylpyrrolidone and methyl methacrylate copolymers, polyvinylpyrrolidone and vinyl acetate (VA) copolymer, polyterephthalic ethylene glycol / polyethylene glycol copolymers, polyterephthalate copolymers ''. ethylene glycol / polyethylene glycol / sodium polyisophthalate sulfonate, and mixtures thereof.
  • PVP polyvinylpyrrolidone
  • VA vinyl acetate copolymer
  • VA vinyl acetate copolymer
  • polyterephthalic ethylene glycol / polyethylene glycol copolymers polyterephthalate copolymers ''.
  • ethylene glycol / polyethylene glycol / sodium polyisophthalate sulfonate and mixtures thereof.
  • cellulose derivatives such as cellulose hydroxyethers, methylcellulose, ethylcellulose, hydroxypropyl methylcellulose, hydroxybutyl methylcellulose or polyvinylesters grafted on polyalkylene trunks such as grafted polyvinylacetates on polyoxyethylene trunks (EP-A-219 048), or polyvinyl alcohols.
  • plasticizers for example between 0.1 to 10% of the formulation, preferably from 1 to 10%, for example adipates, phthalates, isophthalates, azelates, stearates, silicone copolyols, glycols, castor oil, or mixtures thereof.
  • metal sequestering agents more particularly those sequestering calcium such as citrate ions.
  • glycerol sorbitol
  • urea collagen, gelatin, aloe vera, hyaluronic acid.
  • water-soluble or water-dispersible polymers such as collagen or certain non-allergenic derivatives of animal or vegetable proteins (wheat protein hydrolysates for example), natural hydrocolloids (guar gum , carob, tara, ...) or from fermentation processes and derivatives of these polycarbohydrates such as modified celluloses (for example hydroxyethylcellulose, carboxymethylcellulose), guar or carob derivatives such as their non-ionic derivatives ( for example hydroxypropylguar), anionic derivatives (carboxymethylguar and carboxymethylhydroxypropylguar).
  • modified celluloses for example hydroxyethylcellulose, carboxymethylcellulose
  • guar or carob derivatives such as their non-ionic derivatives (for example hydroxypropylguar), anionic derivatives (carboxymethylguar and carboxymethylhydroxypropylguar).
  • - preservatives such as methyl, ethyl, propyl and butyl esters of p-hydroxybenzoic acid, sodium benzoate, GERMABEN (brand name) or any chemical agent preventing bacterial proliferation or molds and traditionally used cosmetic compositions are generally introduced into these compositions up to 0.01 to 3% by weight.
  • the quantity of these products is generally adjusted to avoid any proliferation of bacteria, molds or yeasts in the cosmetic compositions.
  • agents modifying the activity of water and greatly increasing the osmotic pressure such as carbohydrates or salts.
  • - viscous or gelling polymers such as crosslinked polyacrylates, cellulose derivatives such as hydroxypropylcellulose, carboxymethylcellulose, guars and their derivatives ... used alone or in combination, or the same compounds, generally in the form of water-soluble polymers modified by hydrophobic groups covalently linked to the polymer backbone as described in patent WO 92/16187 and / or water to bring the total of the constituents of the formulation to 100%.
  • agents such as: - the water-soluble salts of polycarboxylic acids of molecular mass of the order of 2000 to 100,000, obtained by polymerization or copolymerization of ethylenically unsaturated carboxylic acids such as acrylic acid, maleic acid or anhydride, fumaric acid, itaconic acid, aconitic acid, mesaconic acid, citraconic acid, methylenemalonic acid, and very particularly polyacrylates of molecular weight of the order of 2000 to 10 000 (US-A-3 308 067), the copolymers of acrylic acid and maleic anhydride of molecular weight of the order of 5000 to 75 000 (EP-A-66 915) - polyethylene glycols of molecular mass of the order of 1000 to 50,000.
  • agents such as: - the water-soluble salts of polycarboxylic acids of molecular mass of the order of 2000 to 100,000, obtained by polymerization or copolymerization of ethylenically unsaturated carboxylic
  • compositions for the treatment of hard surfaces can in particular comprise: - polymeric thickeners
  • the invention also relates to a method for treating a surface comprising the following steps: a) application of the composition, and b) optionally rinsing.
  • At least one of the compounds chosen from (a), (b), (c) if it is present and (e) if it is present is deposited on the surface.
  • the deposit can be induced by rinsing, which is a dilution, and / or by a change in pH, and / or by simple affinity.
  • the surface can be a hair and or skin.
  • the composition is in this case a cosmetic composition such as a shampoo intended to be rinsed, a shower gel intended to be rinsed, a conditioner intended to be rinsed, or a conditioner intended not to be rinsed.
  • the composition, or method can thus provide conditioning, repair, protection of the hair and / or coloring of the hair, as mentioned above.
  • the skin and / or hair may have been moistened beforehand.
  • the dilution factor of the cosmetic composition during its application can be evaluated at a value of the order of 3 to 10, considering that one gram of wet hair retains on average from 0.6 to 1 g of water, and that in a standard manner, 0.1 g of shampoo is applied per gram of hair expressed as dry, with a duration of application generally of 30 to 45 seconds. After being applied, the shampoo should then be rinsed to remove excess surfactants.
  • the composition is applied to the hair or the non-moistened skin, then the skin or the hair is moistened and finally rinsed.
  • the surface can be a hard surface.
  • the composition is in this case a composition for cleaning (detergent) and / or treating hard surfaces, preferably household surfaces (including dishes) or institutional or industrial surfaces. It is noted that the composition can be applied to the hard surface by any means, possibly after a prior dilution.
  • the composition can in particular be supported by a fibrous or porous product, such as wipes, pads, sponges, etc.
  • the composition can be:
  • composition for cleaning showers for preventing the formation of traces in showers ("shower rinse” or "daily shower")
  • a composition for cleaning cars - a composition for cleaning cars
  • the treated surface can be as follows:
  • the respective overall composition is 1/6/12/9 in BTC / AIPA / CL / APM.
  • the reaction is carried out in a 500 ml glass reactor commonly used in the laboratory for the melt phase synthesis of polyesters or polyamides.
  • a metal bath of Wood alloy is used for heating the reaction mixture.
  • 88.1 g of N- (3-amino propyl) morpholine (0.611 mol) and 92.2 g of ⁇ -caprolactam (0.815 mol) are introduced into the reactor at ambient temperature. The reactor is then heated to 100 ° C. and with mechanical stirring.
  • the reaction mass is then rapidly heated from 100 ° C to 160 ° C, in 12 min. After 120 min of an insulated plate, the temperature is increased to 200 ° C over approximately 80 min. After 60 minutes under these conditions, the temperature is again increased to 250 ° C. over approximately 10 min, then maintained under these conditions until the end of the synthesis.
  • the hyperbranch copolyamide obtained is a yellowish solid, soluble in the acidic aqueous phase.
  • the content of tertiary amine function is determined by direct potentiometric determination of a hyperbranch copolyamide solution in a 30/70 mixture by volume Chloroform / trifluoroethanol with 0.05N hydrochloric acid.
  • the content of amine groups obtained is 2187 meq / kg.
  • Example 2 synthesis of a hyperbranch copolyamide with tertiary amine terminations by copolycondensation in the molten phase of BTC, AIPA, CL and APM.
  • the respective overall composition is 1/25/50/28 in BTC / AIPA / CL / APM.
  • Example 2 The same reactor as that described in Example 1 is used. A metal bath of Wood alloy is used for heating the reaction mixture. 74.9 g of N- (3-amino-propyl) morpholine (0.519 mol), 104.9 g of ⁇ -caprolactam (0.927 mol), 84.0 g of 5-amino acid are introduced into the reactor at ambient temperature. isophthalic (0.464 mol) and 3.9 g of benzene-1, 3.5 tricarboxylic acid (0.019 mol). The reactor is then placed under mechanical stirring, under a weak stream of dry nitrogen and then heated to 100 ° C. Once the reaction mixture is homogeneous, 0.630 g of a 50% aqueous solution (w / w) of hypophosphorous acid is added.
  • Example 3 Synthesis of a Hyperbranch Copolyamide with Tertiary Amine Terminations by Copolycondensation in the Molten Phase of BTC, AIPA, CL and APM. The respective overall composition is 1/50/100/53 in BTC / AIPA / CL / APM.
  • Example 2 The same reactor as that described in Example 1 is used. A metal bath of Wood alloy is used for heating the reaction mixture. 72.5 g of N- (3-amino propyl) morpholine (0.502 mol), 107.3 g of ⁇ -caprolactam (0.948 mol), 85.9 g of 5-amino acid are introduced into the reactor at ambient temperature. isophthalic (0.474 mol) and 2.0 g of benzene-1, 3.5 tricarboxylic acid (0.009 mol). The reactor is then placed under mechanical stirring, under a weak stream of dry nitrogen and then heated to 100 ° C. Once the reaction mixture is homogeneous, 0.635 g of a 50% (w / w) aqueous solution of hypophosphorous acid are added.
  • the reaction mass is heated according to the same cycle as that described in Example 1.
  • the final cycle under reduced pressure is also reproduced.
  • the stirring is stopped and the reactor allowed to cool to room temperature under a stream of nitrogen.
  • 236.2 g of polymer are collected.
  • the hyperbranch copolyamide obtained is a yellowish solid, soluble in the acidic aqueous phase.
  • the content of amino groups determined by potentiometric determination is 1963 meq / kg.
  • Example 4 Quaternization by Dimethyl Sulphate of a Hyperbranch Copolyamide with Tertiary Amine Endings of Global Composition 1/6/12/9 respectively in BTC / AIPA / CL / APM, Synthesized in Example 1.
  • the same glass reactor as in examples 1 to 3 is used, provided with an ascending refrigerant. An oil bath is used as a means of heating the reactor.
  • 40.0 g (87.5 meq amino) of hyperbranch copolyamide obtained in Example 1 are finely ground and dispersed in 210.0 g of acetone. The mixture is stirred mechanically using an anchor and heated to reflux. 13.2 g of dimethyl sulfate (0.105 mol) are then added over 5 min. The reaction mixture is maintained under these conditions for 4 hours.
  • the hyperbranch copolyamide is in the form of a viscous gel.
  • the reaction mixture is left to settle and the supernatant acetone is removed.
  • the gel obtained is taken up in 210 g of demineralized water and heated for 30 min at 100 ° C. in order to destroy the traces of unreacted dimethyl sulfate.
  • the solution is then lyophilized.
  • the content of quaternized amine groups is determined by the potentiometric assay method described in Example 1 and is 1984 meq / kg for this composition.
  • the viscous gel obtained is then recovered after elimination of the supernatant acetone, then taken up in 250 g of demineralized water and heated 30 min at 100 ° C. in order to destroy the traces of unreacted dimethyl sulfate. The solution is then lyophilized.
  • the content of quaternized amine groups determined by potentiometric determination is 1735 meq / kg.
  • the viscous gel obtained is recovered after elimination of the supernatant acetone, then taken up in 250 g of demineralized water and heated for 30 min at 100 ° C. in order to destroy the traces of unreacted dimethyl sulfate. The solution is then lyophilized.
  • the content of quaternized amine groups determined by potentiometric determination is 1688 meq / kg.
  • compositions are prepared comprising ingredients chosen from the following:
  • Procedure 1 Mix the water and the polymer 2. Add the CAPB 3. Add the anionic surfactant 4. Adjust the pH to 6-6.5 by adding sodium hydroxide or citric acid 5. Add the salt
  • compositions are produced, the quantity by weight of each ingredient is given below:
  • the transmittance (transparency) of the compositions at 600 nm is measured using a spectrophotometer (Jasco 7800 type).
  • the compositions have a transparency of more than 90%.
  • the compositions facilitate combing on wet hair (wet combing), in comparison with compositions not comprising the polymer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dermatology (AREA)
  • Cosmetics (AREA)
  • Detergent Compositions (AREA)

Abstract

La présente invention a pour objet une composition comprenant une phase aqueuse monophasée comprenant un système comprenant de l'eau, un polymère dendritique (a) polyionique hydrosoluble ou hydrodispersable, au moins un tensioactif (b) ionique, et éventuellement un polymère (c) polycationique ou polyanionique, différent du polymère dendritique. La composition peut être utilisée pour des traitements de surface, par exemple sur les cheveux ou la peau, par exemple pour le conditionnement des cheveux.

Description

Composition aqueuse comprenant un polymère dendritique polyionique et un agent tensioactif ionique
La présente invention a pour objet une composition comprenant une phase aqueuse monophasée comprenant un système comprenant de l'eau, un polymère dendritique (a) polyionique hydrosoluble ou hydrodispersable, un tensioactif (b) ionique, et éventuellement un polymère (c) polycationique ou polyanionique, différent du polymère dendritique. Pour traiter des surfaces, par exemple pour le conditionnement des cheveux ou de la peau, il est connu d'utiliser des polymères. Par exemple on connaît l'utilisation de dérivés cationiques du guar ou de la cellulose ou l'utilisation de polymères synthétiques, dans les shampoings. Il existe un besoin pour de nouvelles compositions ou pour de nouveaux traitements pouvant apporter des propriétés intéressantes quand ils sont appliqués sur des surfaces. Il existe également des besoins en terme de propriétés des compositions en elles-mêmes, telles que l'aspect, la texture, les propriétés sensorielles ou cosmétiques, et/ou la stabilité. L'invention répond à au moins certains de ces besoins en proposant une composition comprenant:
- une phase aqueuse monophasée comprenant un système comprenant: - de l'eau - un polymère dendritique (a) polyionique hydrosoluble ou hydrodispersable, - au moins un tensioactif (b) ionique, - éventuellement un polymère (c) polycationique ou polyanionique, différent du polymère dendritique, et - éventuellement au moins un tensioactif (d) amphotère ou zwitterionique ou neutre, - dans lequel: - (a) est polycationique, (b) est anionique et (c), s'il est présent est polyanionique ou polycationique, ou - (a) est polycationique, (b) est cationique et (c) est présent et polyanionique, ou - (a) est polyanionique, (b) est cationique et (c), s'il est présent est polyanionique ou polycationique, ou - (a) est polyanionique, (b) est anionique et (c) est présent et polycationique, - la phase aqueuse monophasée devient biphasée ou reste monophasée par dilution à l'eau, et - éventuellement des particules solides ou liquides de composés organiques ou inorganiques non hydrosolubles (e).
Par exemple la composition peut être une composition cosmétique aqueuse pour le cheveu et/ou la peau destinée à être rincée. Il peut par exemple s'agir d'un shampoing, un après-shampoing ou un gel douche. Selon une alternative, la composition est un après shampoing destiné à ne pas être rincé.
L'invention propose également un procédé de traitement d'une surface comprenant les étapes suivantes: a) application de la composition, et b) éventuellement rinçage.
L'invention propose également l'utilisation de la composition ou du procédé ci- dessus, pour le conditionnement, la réparation, la protection des cheveux et/ou de la coloration des cheveux. Les compositions selon l'invention peuvent être des compositions cosmétiques destinées au traitement de la peau ou des cheveux, destinées à être appliquées et rincées, comme les shampoings ou les gel-douche, présentent des propriétés intéressantes en terme de la transparence, le dépôt de matière (effet conditionneur), et/ou, plus généralement, à optimiser des effets cosmétiques tels la douceur, la souplesse, le démêlage, la brillance, l'aptitude au coiffage sur cheveux secs ou mouillés. Elles peuvent procurer une protection du cheveu, un lustre, une réparation de fissures du cortex, une réduction des effets négatifs de la décoloration et des permanentes, une réparation du cheveu abîmé, une protection de la couleur. En outre la composition peut être utilisée pour des traitements de surface: elle peut induire un dépôt d'au moins un des composés choisis parmi (a), (b), (c) s'il est présent et (e) s'il est présent est à la surface. Par exemple (a) présente une affinité particulière pour les cheveux abîmés (décolorations, vieillissement....) ou des zones abîmées des cheveux, par exemple les pointes. La composition peut être également utilisée pour des traitements de surfaces ou des modifications, par exemple pour des hydrophilisations plus ou moins durables (par exemple résistant à la pluie et/ou à des rinçages) de surfaces textiles bu de surfaces dures. L'hydrophilisation peut prévenir l'apparition de traces au séchage (traces pouvant être laissées par les gouttes d'eau), et/ou faciliter les nettoyages suivants, et/ou éviter la formation de taches et/ou salissures après le nettoyage.
Les compositions sont en outre faciles à préparer, faciles mettre en œuvre, et suffisamment stables.
Définitions Dans la présente demande, on entend "phase aqueuse monophasée" par opposition à une phase biphasée, obtenue à partir de la phase monophasée, au sein de cette phase, par exemple par une dilution. En d'autres termes, le déphasage s'effectue dans la phase aqueuse, et les ingrédients déphasés sont des ingrédients du système, qui ne l'étaient pas dans la phase aqueuse monophasée. Ainsi, la composition peut comprendre des particules solides ou liquides de composés organiques ou inorganiques non hydrosolubles (e), dispersées dans la phase aqueuse monophasique, mais qui dans la présente demande ne sont pas considérés comme faisant partie de la phase aqueuse monophasée ou biphasée. La phase biphasée peut être signée par l'apparition d'objets macroscopiques ou microscopiques, formant une séparation macroscopique de phase qui peut décanter, ou formant un trouble de la phase aqueuse, sous forme par exemple de complexes ou de colloïdes. Ceci peut être observé visuellement, et/ou à l'aide d'un microscope, et/ou par des techniques de diffusion ou absorption de la lumière. Le terme "polymère dendritique" se réfère à des composés macromoléculaires comprenant plusieurs branchements. Il peut s'agir de dendrimères réguliers, ou de polymères hyperbranchés. Les termes "hydrosoluble" ou "hydrodispersable" s'entendent au pH de la composition; et signifient qu'un composé ne forme pas une séparation macroscopique de phase dans de l'eau au pH de la composition à 25%C à une concentration supérieure à 1 %.
Phase aqueuse monophasée et ingrédients du système La phase aqueuse monophasée comprend de l'eau, (a), (b), éventuellement (c), et éventuellement (d). Selon un mode particulier (a), (b), (c) s'il est présent et (d) s'il est présent, et leurs quantités sont tels que la phase aqueuse monophasée devient biphasée par dilution à l'eau, par exemple au pH de la composition (pH de la phase aqueuse) ou au pH induit par la dilution. Selon un mode particulier:
- la phase aqueuse monophasée devient biphasée par dilution à l'eau, et
- (a) ou (c) précipite quand la phase aqueuse devient biphasé pas dilution à l'eau. Selon un mode particulier, le système comprend (c) et: - (a) est polycationique, (b) est anionique et (c) est polycationique, ou
- (a) est polyanionique, (b) est cationique et (c) est polyanionique.
La composition peut notamment comprendre (en poids par rapport au poids de la composition): - de 0,01 à 10%, de préférence de 0,1 à 5%, de préférence de 0,1 à 1% de (a)
- de 0,1 à 40%, de préférence de 1 à 20%, de préférence de 5 à 15% de (b)
- de 0% à 20%, de préférence de 0 à 5%, de préférence de 0 à 3% de (c),
- de 0 à 20% de (d), de préférence de 0 à 5% si (d) est amphotère ou zwitterionique.
Par ailleurs, la composition, peut comprendre au moins 90% en poids de la phase aqueuse, et la phase aqueuse peut comprendre de 5 à 40%, de préférence de 10 à 20% en poids, du système formé de (a), (b), éventuellement (c) et éventuellement (d). La phase aqueuse peut constituer la totalité de la composition.
On donne ci-dessous plus de détails quant à des ingrédients (a), (b), (c), (d) du système qu'il est possible d'utiliser.
Polymère dendritique (a) Le polymère dendritique est polyionique. Cela signifie qu'il comprend des groupes ioniques, cationiques ou anioniques, au pH de la composition. Ces groupes peuvent être compris à des extrémités de chaînes polymériques, ou au sein des chaînes macromoléculaires. Les groupes ioniques sont généralement considérés comme hydrophiles. On précise que par groupe ionique, on entend un groupe qui présente une charge à tout pH, ou un groupe qui peut comprendre une charge à un certain pH. Dans ce dernier cas, on fait parfois référence à des groupes potentiellement ioniques. Le polymère dendritique peut comprendre des groupes hydrophobes et des groupes hydrophiles. Les groupes hydrophobes peuvent être compris dans des motifs de répétition au sein du polymère. Il peut s'agir par exemple de groupes au moins divalents alkylène à au moins 3 atomes de carbones consécutifs, ou de groupes au moins divalents comprenant un motif phényle, par exemple le groupe phénylène. Il s'agit avantageusement d'un groupe de formule -(CH2)n- où n est supérieur ou égal à 3, par exemple 4, 5, 6, ou 11 , et/ou d'un groupe de formule -C6H - . Les groupes hydrophiles peuvent être compris dans des motifs de répétition au sein du polymère et/ou être compris à l'extrémité des chaînes polymériques. Les groupes hydrophiles compris dans des motifs de répétition sont souvent considérés comme des fonctions de polymérisations. Il s'agit par exemple de groupes, ou fonctions, de formules -COO- (polyesters), -O- (polyethers), -CONH- (polyamide), -OCOO-
(polycarbonate), -NH-COO- (polyuréthane), -N< (polyamine), -NH-CO-NH- (urée), -CO- NH-CO- (imide). On note qu'il n'est pas exclu que des extrémités de chaînes polymériques comprennent des groupes hydrophobes, tels que des groupes alkyles. Il n'est pas exclu non plus que des extrémités de chaînes polymériques comprennent des groupes non ioniques, hydrophiles ou hydrophobes. La présence de tels groupes peut aider à moduler les propriétés du polymère dendritique. Le polymère dendritique comprend de préférence des groupes ioniques ou potentiellement ioniques (en fonction par exemple du pH) aux extrémités des chaînes polymériques. De plus la nature et les propriétés de ces groupes peuvent être plus facilement contrôlée, modifiée ou variée, soit au cours de la polymérisation, soit après, par post-fonctionnalisation. Des exemples de groupes ioniques incluent: - des groupes acides tels que des groupes sulfoniques, phosphoniques, acides carboxyliques, et leurs formes basiques sulfonates, phosphate, phosphonate, carboxylate (groupes anioniques), - des groupes aminés, primaires, secondaires, tertiaires, leurs formes acides ammonium, et les groupes ammonium quaternaires (groupes cationiques). On mentionne que l'hydrophilie et/ou le caractère ionique d'un groupe peut dépendre du pH. Dans la présente demande on désigne par groupe hydrophile, respectivement ionique, des groupes qui sont hydrophiles, respectivement ioniques, à tout pH, ainsi que des groupes dont l'hydrophilie, respectivement le caractère ionique, dépend du pH (groupes potentiellement hydrophiles). Des exemples de polymères dendritiques incluent - les dendrimères de squelette polypropylène imine, tels que la gamme Starburst® mise sur le marché par la société DSM, - les dendrimères de squelette polyamidoester (ou polyesteramide), tels que la gamme Hybrane® mise sur le marché par la société DSM, - les dendrimères de squelette polyamidoamine (PAMAM) - les dendrimères polyether - les polymères hyperbranchés diaminobutane-aminopropyles DAB(PA)n - les polyesters hyperbranchés, tels que la gamme BOLTORN® mise sur le marché par la société Perstorp. Les polyesters hyperbranchés et les polyamides hyperbranchés sont notamment des polymères dendritiques particulièrement adaptés à la mise en œuvre de l'invention.
Selon un mode de réalisation intéressant, le polymère dendritique est un polymère susceptible d'être obtenu par un procédé comprenant les étapes suivantes: Etape a) polycondensation d'au moins un monomère plurifonctionnel de formule (I), comprenant au moins trois fonctions réactives de polycondensation, A-R-(B)f (I) formule dans laquelle - f est un nombre entier supérieur ou égal à 2, de préférence va de 2 à 10, tout particulièrement est égal à 2 - le symbole A représente une fonction réactive ou un groupe porteur d'une fonction réactive choisie parmi les fonctions amino, carboxy, hydroxy, oxiranyle, halogéno, isocyanato, ou leurs précurseurs - le symbole B représente une fonction réactive ou un groupe porteur d'une fonction réactive choisie parmi les fonctions amino, carboxy, hydroxy, oxiranyle, halogéno, isocyanato ou leurs précurseurs, antagoniste de A - le symbole R représente un reste hydrocarbonné polyvalent aliphatique linéaire ou ramifié, cycloaliphatique ou aromatique contenant de 1 à 50 , de préférence de 3 à 20 atomes de carbone, éventuellement interrompu par un ou plusieurs hétéroatomes d'oxygène, d'azote, de soufre ou de phosphore, ledit reste portant éventuellement des fonctions ou des groupes fonctionnels non susceptibles de réagir avec les fonctions A et B,
Etape b) éventuellement, fonctionnalisation ionique, anionique ou cationique, au moins partielle du polymère obtenu à l'étape de polycondensation. Le symbole B représente une fonction réactive antagoniste de la fonction réactive A; cela signifie que la fonction B est susceptible de réagir avec la fonction A par condensation.
Ainsi, les fonctions antagonistes
- d'une fonction amino, sont notamment les fonctions carboxy (formation d'un amide), isocyanato (formation d'une urée), oxiranyle (formation d'une aminé secondaire ou tertiaire β-hydroxylée) - d'une fonction carboxy, sont notamment les fonctions amino (formation d'un amide), hydroxy (formation d'un ester), isocyanato (formation d'un amide). - d'un fonctione hydroxy, sont notamment les fonctions carboxy (formation d'un ester), oxiranyle (formation d'un éther), isocyanato (formation d'un amide)
- d'une fonction oxiranyle, sont notamment les fonctions hydroxy (formation d'un éther), carboxy (formation d'un ester), amino (formation d'une aminé secondaire ou tertiaire β-hydroxylée)
- d'une fonction isocyanato, sont notamment les fonctions amino, hydroxy, carboxy
- d'une fonction halogéno, sont notamment les fonctions hydroxy. Parmi les précurseurs de fonction amino, on peut citer notamment les sels d'aminé, comme les chlorhydrates. Parmi les précurseurs de fonction carboxy, on peut citer notamment les esters, de préférence en C1-C4, tout particulièrement en C1-C2, les halogenures d'acide, anhydrides, amides. Parmi les précurseurs de fonction hydroxy, on peut citer notamment les époxy. Selon une variante de réalisation ladite opération de polycondensation est réalisée en outre en présence:
• d'au moins un monomère bifonctionnel sous forme linéaire de formule (II) ou sous sous la forme cyclique correspondante, comprenant deux fonctions réactives de polycondensation/polymérisation A'-R'-B' (II) formule dans laquelle: - le symbole A', identique à ou différent de A, représente une fonction réactive choisie parmi les fonctions amino, carboxy, hydroxy, oxiranyle, halogéno, isocyanato, ou leurs précurseurs, antagoniste de B et B' - le symbole B', identique à ou différent de B, représente une fonction réactive choisie parmi les fonctions amino, carboxy, hydroxy, oxiranyle, halogéno, isocyanato, ou leurs précurseurs, antagoniste de A et A' - le symbole R', identique à ou différent de R, représente un reste hydrocarbonné polyvalent aliphatique linéaire ou ramifié, cycloaliphatique ou aromatique contenant de 1 à 50 , de préférence de 3 à 20 atomes de carbone, éventuellement interrompu par un ou plusieurs hétéroatomes d'oxygène, d'azote, de soufre ou de phosphore, ledit reste portant éventuellement des fonctions ou des groupes fonctionnels non susceptibles de réagir avec les fonctions A, A', B et B' * la fonction réactive A', étant susceptible de réagir avec la fonction B et/ou la fonction B' par condensation ; * la fonction réactive B', étant susceptible de réagir avec la fonction A et/ou la fonction A' par condensation ; • et/ou d'au moins un monomère « cœur » de formule (III), comprenant au moins une fonction susceptible de réagir par condensation avec le monomère de formule (I) et/ou le monomère de formule (II) R1-(B")n (III) formule dans laquelle - n est un nombre entier supérieur ou égal à 1 , de préférence va de 1 à 100, tout particulièrement de 1 à 20 - le symbole B" représente une fonction réactive, identique ou différente de B ou B', choisie parmi les fonctions amino, carboxy, hydroxy, oxiranyle, halogéno, isocyanato, ou leurs précurseurs, antagoniste de A et A' - le symbole R1 représente un reste hydrocarbonné polyvalent aliphatique linéaire ou ramifié, cycloaliphatique ou aromatique contenant de 1 à 50 , de préférence de 3 à 20 atomes de carbone, éventuellement interrompu par un ou plusieurs hétéroatomes d'oxygène, d'azote, de soufre ou de phosphore, ou un reste organosiloxane ou polyorganosiloxane, ledit reste R1 portant éventuellement des fonctions ou des groupes fonctionnels non susceptibles de réagir avec les fonctions A, A', B, B' et B" * la fonction réactive B", étant susceptible de réagir avec la fonction A et/ou la fonction A' par condensation ; • et/ou au moins monomère monofonctionnel « limiteur de chaîne » de formule (IV) A"-R2 (IV) formule dans laquelle - le symbole A" représente une fonction réactive, identique à ou différente de A ou A', choisie parmi les fonctions amino, carboxy, hydroxy, oxiranyle, halogéno, isocyanato, ou leurs précurseurs, antagoniste de B, B' et B" - le symbole R2 représente un reste hydrocarbonné polyvalent aliphatique linéaire ou ramifié, cycloaliphatique ou aromatique contenant de 1 à 50 , de préférence de 3 à 20 atomes de carbone, éventuellement interrompu par un ou plusieurs hétéroatomes d'oxygène, d'azote, de soufre ou de phosphore, ou un reste organosiloxane ou polyorganosiloxane, ledit reste R2 portant éventuellement des fonctions ou des groupes fonctionnels non susceptibles de réagir avec les fonctions A, A', A", B, B' et B" * la fonction réactive A", étant susceptible de réagir avec la fonction B et/ou la fonction B' et/ou la fonction B" par condensation ; • au moins une des fonctions réactives d'au moins un des monomères de formule (II), (III) ou (IV) étant susceptible de réagir avec une fonction antagoniste du monomère plurifonctionnel de formule (I) . D'une manière préférentielle, les fonctions A, A', A" et B, B', B" sont choisies parmi les fonctions réactives ou un groupes porteurs de fonctions réactives choisies parmi les fonctions amino, carboxy, hydroxy, oxiranyle ou leurs précurseurs. Encore plus préférentiellement lesdites fonctions sont choisies parmi les fonctions réactives ou un groupes porteurs de fonctions réactives amino et carboxy, ou leurs précurseurs. Pour une bonne réalisation de l'invention: - le rapport molaire du monomère de formule (I) au monomère de formule (II) est avantageusement supérieur à 0,05, de préférence va de 0,125 à 2;
- le rapport molaire du monomère de formule (III) au monomère de formule (I) est avantageusement inférieur ou égal à 1 , de préférence inférieur ou égal à 1/2, et encore plus préférentiellement va de 0 à 1/3 ; ledit rapport va tout particulièrement de 0 à 1/5 ; - le rapport molaire du monomère de formule (IV) au monomère de formule (I) est avantageusement inférieur ou égal à 10, de préférence inférieur ou égal à 5 ; ledit rapport va tout particulièrement de 0 à 2, lorsque f est égal à 2. L'entité élémentaire considérée pour définir les différents rapports molaires est la molécule. Il va de soi que l'expression « réaction de condensation » inclut également la notion de réaction d'addition lorsqu'une ou plusieurs fonctions antagonistes d'au moins un des monomères mis en œuvre est incluse dans un cycle (lactames, lactones, époxydes par exemple). A titre d'exemple de monomère (I), on peut citer :
- l'acide 5-amino-isophtalique,
- l'acide 6-amino-undécanedioïque,
- le diacide 3-aminopimélique,
- l'acide aspartique, - l'acide glutamique,
- l'acide 3,5-diaminobenzoïque,
- l'acide 3,4-diaminobenzoïque,
- la lysine,
- l'acide α,α-bis(hydroxymethyl)-propionique - l'acide α, -bis(hydroxymethyl)-butyhque
- l'acide α,α,α-tris(hydroxymethyl)-acétique - l'acide ,α-bis(hydroxymethyl)-valérique
- l'acide α,α-bis(hydroxy)-propionique
- l'acide 3,5-dihydroxybenzoïque
- ou leurs mélanges A titre d'exemple de monomère bifonctionnel de formule (II), on peut citer :
- l'ε-caprolactame
- l'acide aminocaproïque,
- l'acide para ou métaaminobenzoïque,
- l'acide amino-11-undécanoïque, - le lauryllactame
- l'acide amino-12-dodécanoïque
- l'acide hydroxyacétique (acide glycolique)
- l'acide hydroxyvalérique
- l'acide hydroxypropionique - l'acide hydroxypivalique
- le glycolide
- la δ-valérolactone
- la β-propiolactone
- l'ε-caprolactone - le lactide
- l'acide lactique
- ou leurs mélanges Plus préférentiellement, les monomères bifonctionnels de formule (11) sont les monomères utilisés pour la fabrication de polyamides thermoplastiques linéaires. Ainsi, on peut citer les composés ω-aminoalcanoïques comportant une chaîne hydrocarbonée ayant de 4 à 12 atomes de carbone, ou les lactames dérivés de ces acides aminés comme l'ε-caprolactame. Le monomère bifonctionnel préféré pour la mise en œuvre de l'invention est l'ε-caprolactame. Selon une modalité avantageuse de l'invention, au moins une partie des monomères bifonctionnels (II) se trouvent sous forme de prépolymère. A titre d'exemples de monomère (III), on peut citer :
- les monoamines aromatiques ou aliphatiques, comme la dodécylamine, l'octadécylamine, la benzylamine ...
- les monoacides aromatiques ou aliphatiques contenant de 1 à 32 atomes de carbone, comme l'acide benzoïque, l'acide acétique, l'acide propionique, les acides gras saturés ou non (acide dodécanoïque, oléïque, palmitique, stéarique ...) - les alcools ou époxydes monofonctionnels, comme l'oxyde d'éthylène , l'épichlorhydrine ...
- les isocyanates comme le phénylisocyanate ...
- les diamines biprimaires, de préférence aliphatiques saturées linéaires ou ramifiées ayant de 6 à 36 atomes de carbone telles que, par exemple, l'hexaméthylènediamine, la triméthylhexaméthylène-diamine, la tétraméthylènediamine, la n-xylènediamine
- des diacides carboxyliques aliphatiques saturés ayant de 6 à 36 atomes de carbone tels que, par exemple, l'acide adipique, l'acide azelaïque, l'acide sebacique, l'acide ou l'anhydride maleïque - les alcools ou époxydes difonctionnels, comme l'éthylèneglycol, le diéthylèneglycol, le pentanediol, les glycidyl éthers d'alcools monofonctionnels contenant de 1 à 24 atomes de carbone
- les diisocyanates, comme les toluène diisocyanates, l'hexaméthylène diisocyante, le phényl diisocyanate, l'isophorone diisocyanate - des triamines, triacides ou polyacides aromatiques ou aliphatiques, triols ou polyols commela N,N,N-tris(amino-2 éthyl) aminé, la mélamine ..., l'acide citrique, l'acide 1 ,3,5-benzène tricarboxylique ... , la 2,2,6,6-tetra-(β-carboxyéthyl)cyclohexanone, le triméthylolpropane, le glycérol, le pentaerythritol, les glycidyl éthers d'alcools di-, tri- ou poly-fonctionnels - des composés polymères tels que les polyoxyalkylènes poly- ou mono- aminés commercialisés sous la marque JEFFAMINE®,
- les polyorganosiloxanes aminés, comme les polydiméthylsiloxane aminés.
Les monomères (III), "coeur" préférés sont : Phexaméthylène-diamine, l'acide adipique, la JEFFAMINE® T403 commercialisée par la société Huntsman, l'acide 1 ,3,5-benzène tricarboxylique, la 2,2,6,6-tetra-(β-carboxyéthyl)cyclohexanone. A titre d'exemples, les monomères (IV), on peut citer:
- les monoamines aromatiques ou aliphatiques, comme la dodécylamine, l'octadécylamine, la benzylamine. La plupart de ces composés sont généralement considérés comme hydrophobes, non ioniques. - les monoacides aromatiques ou aliphatiques contenant de 1 à 32 atomes de carbone, comme l'acide benzoïque, l'acide acétique, l'acide propionique, les acides gras saturés ou non (acide dodécanoïque, oléïque, palmitique, stéarique ...). La plupart de ces composés sont généralement considérés comme hydrophobes, non ioniques. - les alcools ou époxydes monofonctionnels, comme l'oxyde d'éthylène , l'épichlorhydrine. La plupart de ces composés sont généralement considérés comme hydrophobes, non ioniques.
- les isocyanates comme le phénylisocyanate. La plupart de ces composés sont généralement considérés comme hydrophobes, non ioniques.
- des composés polymères tels que les polyoxyalkylènes monoaminés par exemple commercialisés sous la marque JEFFAMINE M®, comme les JEFFAMINE M 1000® et JEFFAMINE M 2070®. La plupart de ces composés sont généralement considérés comme hydrophiles, non ioniques. - des chaînes silicones monoaminées, comme les polydiméthylsiloxane monoaminé. La plupart de ces composés sont généralement considérés comme hydrophobes, non ioniques.
- la N,N-DiMethyl Amino Propyl A iné (hydrophile ou potentiellement hydrophile, cationique ou potentiellement cationique, car basique ou quaternisable par exemple avec du dimethylsufate).
- la N,N-DiEthyl Amino Propyl Aminé (hydrophile ou potentiellement hydrophile, cationique ou potentiellement cationique,car basique ou quaternisable par exemple avec du dimethylsufate).
- la N,N-DiButhyl Amino Propyl Aminé (hydrophile ou potentiellement hydrophile, cationique ou potentiellement cationique, car basique ou quaternisable par exemple avec du dimethylsufate).
- La N-(amino-3 propyl) morpholine (hydrophile ou potentiellement hydrophile, cationique ou potentiellement cationique, car basique ou quaternisable par exemple avec du dimethylsufate). - La N-Méthyl N'-(Amino-3 Propyl) Piperazine (hydrophile ou potentiellement hydrophile, cationique ou potentiellement cationique, car basique ou quaternisable par exemple avec du dimethylsufate).
- La N(Amino-3 Propyl) Piperidine (hydrophile ou potentiellement hydrophile, cationique ou potentiellement cationique, car basique ou quaternisable par exemple avec du dimethylsufate).
- les mélanges de ces composés. Parmi les groupes fonctionnels pouvant être présents dans les monomères (I) à
(IV), et non susceptibles de réagir avec les fonctions A, A', A", B, B' et B" , on peut mentionner notamment des fonctions susceptibles d'apporter ou d'améliorer l'hydrophilie, ou de conférer un caractère ionique à, des polymères dendritiques mis en œuvre selon l'invention. A titre d'exemple on peut mentionner les fonctions ammonium quaternaire (cationique), nitrile (anionique), sulfonate (anionique), phosphonate (anionique), phosphate (anionique), hydroxyle (non ionique), polyoxyde d'éthylène, éther (non ionique), aminé tertiaire (basique ou quaternisable, potentiellement cationique). On peut citer notamment:
- l'acide 4-amino-benzène sulfonique (anionique) et ses sels d'ammonium ou de métaux alcalin, de sodium notamment [monomère de formule (II)]
- l'acide 5-sulfo salicylique (anionique) [monomère de formule (II)]
- l'acide D ou L 2-amino 5-phosphoro valérique (anionique) [monomère de formule (II)]
- l'acide sulfobenzoïque (anionique) et ses sels d'ammonium ou de métaux alcalins [monomère de formule (III) ou (IV)]
- le chlorure d'époxypropyltriméthylammonium (cationique) [monomère de formule (III) ou (IV)] - le polyethylene glycol polytioxyle (non ionique) ;
- l'acide amino méthyl phosphonique [monomère de formule (IV)]. Les fonctions hydrophiles et/ou ioniques peuvent en particulier être portées par le monomère (IV), par exemple par un des monomères suivants:
- des composés polymères tels que les polyoxyalkylènes monoaminés par exemple commercialisés sous la marque JEFFAMINE M®, comme les JEFFAMINE M 1000® et
JEFFAMINE M 2070®. La plupart de ces composés sont généralement considérés comme hydrophiles et non ioniques.
- la N,N-DiMethyl Amino Propyl Aminé (hydrophile ou potentiellement hydrophile, cationique ou potentiellement cationique, car basique ou quaternisable par exemple avec du dimethylsufate).
- la N,N-DiEthyl Amino Propyl Aminé (hydrophile ou potentiellement hydrophile, cationique ou potentiellement cationique, car basique ou quaternisable par exemple avec du dimethylsufate).
- la N,N-DiButhyl Amino Propyl Aminé (hydrophile ou potentiellement hydrophile, cationique ou potentiellement cationique, car basique ou quaternisable par exemple avec du dimethylsufate).
- La N-(amino-3 propyl) morpholine (hydrophile ou potentiellement hydrophile, cationique ou potentiellement cationique, car basique ou quaternisable par exemple avec du dimethylsufate). - La N-Méthyl N'(Amino-3 Propyl) Piperazine (hydrophile ou potentiellement hydrophile, cationique ou potentiellement cationique, car basique ou quaternisable par exemple avec du dimethylsufate).
- La N-(Amino-3 Propyl) Piperidine (hydrophile ou potentiellement hydrophile, cationique ou potentiellement cationique, car basique ou quaternisable par exemple avec du dimethylsufate).
Enfin, il n'est pas exclu que le polymère dendritique porte aux extrémité des chaînes polymériques un mélange de groupes hydrophiles et de groupes hydrophobes, et/ou des mélanges de groupes ioniques et non ioniques, par exemple apportés par des monomères (IV) et/ou contrôle acido-basique. On peut ainsi moduler les propriétés émulsifiantes, et le cas échéant rendre l'action du polymère dendritique sensible à des conditions externes. Les polymères dendritiques décrits ci dessus, peuvent être assimilés à des structures arborescentes dotées d'un point focal formé par la fonction A et d'une périphérie garnie de terminaisons B. On précise que le fait que la périphérie soit garnie de terminaisons B n'exclut pas que des terminaison B soient présentes à des extrémités de chaînes situées plus au cœur du polymère dendritique. Par ailleurs, quand il sont présents, les monomères bifonctionnels (II) sont des éléments d'espacement dans la structure tridimensionnelle. Ils permettent un contrôle de la densité de branchement. Quand ils sont présents, les monomères (III) forment des noyaux. Les monomères monofonctionnels (IV) "limiteur de chaîne", sont situés en périphérie des dendrimères. On précise que le fait que la périphérie soit garnie de monomères monofonctionnels (IV) n'exclut pas que des monomères monofonctionnels (IV) soient présents à des extrémités de chaînes situées plus au cœur du polymère dendritique. La présence de monomères (III) et (IV) permet notamment de contrôler le poids moléculaire. D'une manière préférentielle, les polymères dendritiques mis en œuvre selon l'invention, sont des polyamides hyperbranchés; ils sont obtenus à partir d'au moins un monomère de formule (I) présentant comme fonctions réactives de polycondensation, des fonctions amino, et des fonctions antogonistes carboxy, ou d'une composition monomère contenant en outre au moins un monomère de formule (II) et/ou (III) et/ou (IV) présentant le ou les même(s) type(s) de fonction(s) réactive(s) de polycondensation, tout ou partie du ou des monomères de formule (II) pouvant être remplacé par un lactame. L'opération de polycondensation/polymérisation peut être réalisée d'une manière connue en phase fondue ou solvant, le monomère de formule (II), lorsqu'il est présent, pouvant jouer favorablement le rôle de solvant. L'opération peut être favorablement réalisée en présence d'au moins un catalyseur de polycondensation et éventuellement d'au moins un composé antioxydant. De tels catalyseurs et composés antioxydants sont connus de l'homme du métier. A titre d'exemple de catalyseurs, on peut citer les composés phosphores tels que l'acide phosphorique, l'acide phosphoreux, l'acide hypophosphoreux, les acides phenylphosphoniques, tels que l'acide 2-(2'-pyridyl) ethylphosphonique, les phosphites tels que le tris(2,4-di-tert-butylphenyl)phosphite. A titre d'exemple d'antioxydant, on peut citer les antioxydants à base phénolique bi-encombrés, tels que la N,N'-hexaméthylene bis(3,5-di-tert-butyl-4-hydroxy-hydrocinnamamide), le 5- tert-butyl-4-hydroxy-2-methylphenyl sulfure. Des polyamides hyperbranchés présentant des fonctionnalités hydrophiles nonréactives avec les fonctions A, A', A", B, B' et B" , peuvent être obtenus par mise en œuvre d'un monomère de formule (III) et/ou (IV) présentant un ou plusieurs groupes polyoxyethylène (par exemple monomère de la famille des polyoxyalkylènes aminés JEFFAMINES) et/ou un monomère de formule (IV) présentant des fonctions ammonium quaternaire (cationique), nitrile, sulfonate (anionique), phosphonate (anionique), phosphate (anionique). Un autre mode de réalisation consiste, après préparation d'un polymère hyperbranche par polycondensation de monomères non fonctionnalisés, à modifier les fonctions terminales dudit polyamide hyperbranche par réaction avec un composé présentant des fonctions hydrophiles et/ou ioniques ou potentiellement ioniques. Il peut par exemple s'agir d'un composé présentant un groupe aminé tertiaires (potentiellement cationique), ammonium quaternaire (cationique), nitrile, sulfonate (anionique), phosphonate (anionique), phosphate (anionique) ou des groupes polyoxyéthylènes. Les fonctions terminales peuvent aussi être modifiées par simple réactions de type acido-basique, en ionisant totalement ou partiellement les groupes compris en bouts de chaînes. Par exemple des groupes terminaux de type acide carboxylique (par exemple des groupes B, B', et/ou B"), peuvent être rendus anioniques par ajout d'une base. Des groupes terminaux de type aminé (par exemple des groupes B, B', et/ou B"), peuvent être rendus cationiques par ajout d'un acide. On note que la fonctionnalisation peut être totale ou partielle. Elle est de préférence supérieure à 25% en nombre, par rapport à la totalité des groupes fonctionnels libres portés (B, B', B"). On note qu'il n'est pas exclu d'effectuer un fonctionnalisation partielle hydrophobe après la préparation du polymère dendritique.
La masse molaire en poids desdits polymères dendritiques, polyamides hyperbranchés en particulier, peut aller de 500 à 1 000 000 g/mol, de préférence de 1000 à 500 000 g/mol, encore plus préférablement de 3000 à 20000 g/mol. La masse molaire en poids peut être mesurée par chromatographie par exclusion de taille. La mesure est effectuée dans une phase éluante composée de 70% en volume d'eau Millipore 18 mégaohms et de 30% en volume de méthanol, contenant 0,1 M de NaN03; elle est ajustée à pH 10 (1/1000 NH4OH 25%). La masse molaire en poids est établie de manière connue par l'intermédiaire de valeurs de diffusion de la lumière.
Tensioactif (b) anionique Les tensioactifs anioniques peuvent notamment être choisis parmi les composés suivants:
- les alkylesters sulfonates de formule R-CH(Sθ3M)-COOR', où R représente un radical alkyle en C8-20- de préférence en C<\ Q-C Q, R' un radical alkyle en C-1-C5, de préférence en C-1-C3 et M un cation alcalin (sodium, potassium, lithium), ammonium substitué ou non substitué (méthyl-, diméthyl-, triméthyl-, tetraméthylammonium, diméthylpiperidinium...) ou dérivé d'une alcanolamine (monoéthanolamine, diéthanolamine, triéthanolamine...). On peut citer tout particulièrement les méthyl ester sulfonates dont le radical R est en C-j4-C-] ;
- les alkylsulfates de formule ROSO3M, où R représente un radical alkyle ou hydroxyalkyle en C5-C24, de préférence en C-10-C18' ^ représentant un atome d'hydrogène ou un cation de même définition que ci-dessus, ainsi que leurs dérivés éthoxylénés (OE) et/ou propoxylénés (OP), présentant en moyenne de 0,5 à 30 motifs, de préférence de 0,5 à 10 motifs OE et/ou OP;
- les alkylamides sulfatés de formule RCONHROSO3M où R représente un radical alkyle en C2-C22, de préférence en C5-C20. R' un radical alkyle en C2-C3, M représentant un atome d'hydrogène ou un cation de même définition que ci-dessus, ainsi que leurs dérivés éthoxylénés (OE) et/ou propoxylénés (OP), présentant en moyenne de 0,5 à 60 motifs OE et/ou OP;
- les sels d'acides gras saturés ou insaturés en C8-C24, de préférence en C-14-C20. - les alkylbenzènesulfonates en C9-C20.
- les alkylsulfonates primaires ou secondaires en 03^22.
- les alkylglycérol sulfonates, - les acides polycarboxyliques sulfonés décrits dans GB-A-1 082 179,
- les sulfonates de paraffine,
- les N-acyl N-alkyltaurates,
- les alkylphosphates, - les iséthionates,
- les alkylsuccinamates les alkylsulfosuccinates,
- les monoesters ou diesters de sulfosuccinates,
- les N-acyl sarcosinates,
- les sulfates d'alkylglycosides, - les polyéthoxycarboxylates ; le cation étant un métal alcalin (sodium, potassium, lithium), un reste ammonium substitué ou non substitué (méthyl-, diméthyl-, triméthyl-, tetraméthylammonium, diméthylpiperidinium...) ou dérivé d'une alcanolamine (monoéthanolamine, diéthanolamine, triéthanolamine...)
- leurs mélanges ou associations.
Tensioactif (b) cationique
Les tensioactifs cationiques peuvent notamment être choisis parmi les sels d'aminés grasses primaires, secondaires ou tertiaires, éventuellement polyethoxylées, les sels d'ammonium quaternaires tels que les chlorures ou les bromures de tetraaikylammonium, d'alkylamidoalkylammonium, de trialkylbenzylammonium, de trialkylhydroxyalkylammonium, ou d'alkylpyridinium, les dérivés d'imidazoline, les oxydes d'aminés à caractère cationique, leurs mélanges ou associations.
Tensioactif (d) amphotère ou zwitterionique Ces tensioactifs (amphoteres vrais comprenant un groupe ioniques et un groupe potentiellement ionique de charge opposée, ou zwitterioniques comprenant simultanément deux charges opposées) peuvent notamment être choisis parmi les tensioactifs suivants:
- les bétaïnes de manière générale, notamment carboxybétaïnes de par exemple la lauryl bétaïne (Mirataine BB de la société Rhodia) ou l'octylbétaïne; les amidoalkylbétaïnes, comme la cocamidopropyl bétaïne (CAPB) (Mirataine BDJ de la société Rhodia Chimie) ;
- les sulfo-bétaïnes ou sultaines comme la cocamidopropyl hydroxy sultaïne (Mirataine CBS de la société Rhodia) ; - les alkylamphoacétates et alkylamphodiacétates, comme par exemple comprenant une chaîne coco ou lauryle (Miranol C2M, C32, L32 notamment, de la société Rhodia) ;
- les alkylamphopropionat.es ou les alkylamphodipropionat.es, (Miranol C2M SF) ; - les alkyl amphohydroxypropyl sultaïnes (Miranol CS),
- leurs mélanges ou associations.
Tensioactif (d) neutre Ces tensioactifs peuvent notamment être choisis parmi les tensioactifs suivants: les alcools gras alcoxylés ; les triglycérides alcoxylés les acides gras alcoxylés les esters de sorbitan alcoxylés - les aminés grasses alcoxylées les di(phényl-1 éthyl) phénols alcoxylés les tri(phényl-1 éthyl) phénols alcoxylés les alkyls phénols alcoxylés les produits résultant de la condensation de l'oxyde d'éthylène avec un composé hydrophobe résultant de la condensation de l'oxyde de propylène avec le propylène glycol, tels les Pluronic commercialisés par BASF ; les produits résultant de la condensation de l'oxyde d'éthylène le composé résultant de la condensation de l'oxyde de propylène avec l'éthylènediamine, tels les Tetronic commercialisés par BASF ; - les alkylpolyglycosides comme ceux décrits dans US 4565647 ; les amides d'acides gras par exemple en C8-C20 . leurs mélanges ou associations.
Polymère (c) polyanionique ou polycationique Le polymère (c) est un polymère qui comprend plusieurs unités portant une charge, cationiques ou anioniques. Le polymère (c ) peut être un polymère synthétique, ou un polymère dérivé d'un polymère naturel. De tels polymères sont connus de l'homme du métier. On se réfère aussi parfois à des "polyelectrolytes". On note que le caractère polyanionique ou polycationique d'un polymère peut dépendre du pH (le polymère peut être potentiellement polyanionique ou polycationique selon le pH de la phase aqueuse). Ainsi, le pH de la composition et le polymère sont tels que ce dernier est polyanionique ou polycationique. Pour simplifier, pour la description et la définition des polymères de la composition, on considère comme "polyanionique" un polymère comprenant des unités anioniques ou potentiellement anioniques sous forme neutre, ou comme "polycationique" un polymère comprenant des unités cationiques ou potentiellement cationiques sous forme neutre. Le polymère (c) est avantageusement hydrosoluble ou hydrodispersable. Polymère (c) d'origine naturelle: On peut citer notamment les dérivés cationiques de la cellulose et les dérivés cationiques des guars, éventuellement hydroxyalkylés. Parmi les polymères cationiques préférentiels, on peut mentionner les dérivés hydroxyalkylés (en C2-C22) des guars cationiques comme notamment le chlorure d'hydroxypropyltrimonium hydroxypropyl guar (JAGUAR C162 et JAGUAR C2000, JAGUAR C1000 commercialisés par Rhodia) et les dérivés cationiques de la cellulose, comme notamment l'éther de poly(oxyéthanediyl-1 ,2) hydroxy-2 chlorure de triméthylammonium-3 propyl cellulose ou polyquatemium-10 (Polymer JR400 commercialisé par Union Carbide). Les chlorures d'hydroxypropyltrimonium guar peuvent aussi être utilisés, par exemple le Jaguar C-13S, C-14S, C-17, Excel, tous commercialisés par Rhodia. La cationicité de ces polymères est variable ; ainsi dans le cas des dérivés hydroxypropylés de guar cationique comme les JAGUARS C162 et C2000 commercialisés par la société Rhodia, le degré d'hydroxypropylation ("molar substitution" ou MS) sera compris entre 0,02 et 1,2 et le degré de cationicité ("degree of substitution" ou DS) sera compris entre 0,01 et 0,6. Ces produits peuvent être éventuellement fonctionnalisés par des groupes hydrophobes comme des chaînes alkyles.
Ces polymères cationiques peuvent éventuellement être fonctionnalisés par des groupements anioniques comme des groupes carboxyméthyl, sulfate, sulfonate ou phosphate, à la condition que le degré de substitution de ces groupes anioniques soit dans tous les cas inférieur au degré de substitution des groupes cationiques. On peut également utiliser des dérivés cellulosiques cationiques comme le chlorure de cellulose 2-(2-hydroxy-3-(trimethylammonium)propoxy)ethyl ether.ou le polyquaternium- 10 (polymère JR400 commercialisé par Union Carbide).
Ces polymères cationiques (a') présentent généralement une masse moléculaire d'au moins 2000, le plus généralement de l'ordre de 200 000 à 3 000 000.
Polymère (c) synthétique Le polymère (c) peut être un polymère synthétique comprenant des unités cationiques (incluant potentiellement cationique) et/ou des unités anioniques (incluant potentiellement anionique). Il peut s'agir d'un homopolymère. Il peut également s'agir d'un copolymère comprenant au moins deux unités différentes (par exemple des unités cationiques ou anioniques et des unités neutres). Il peut s'agir d'un polymère ou copolymère anionisé ou cationisé par un traitement subséquent à polymérisation. Des polymères avantageux sont des (co)polymères cationiques (incluant potentiellement cationiques) comprenant des unités dérivant de monomères cationiques (incluant potentiellement cationiques), éventuellement des unités dérivant de monomères anioniques (incluant potentiellement anioniques), et éventuellement unités neutres dérivant de monomères neutres (hydrophiles et/ou hydrophobes). Des polymères avantageux sont des (co)polymères anioniques (incluant potentiellement anioniques) comprenant des unités dérivant de monomères anioniques (incluant potentiellement anioniques), éventuellement des unités dérivant de monomères cationiques (incluant potentiellement cationiques), et éventuellement unités neutres dérivant de monomères neutres (hydrophiles et/ou hydrophobes). Le polymère (c) est avantageusement hydrosoluble ou hydrodispersable. S'il comprend des unités neutres, celles-ci sont avantageusement hydrophiles. Il n'est toutefois pas exclu qu'il comprenne des unités neutres hydrophobes. De tels polymères, copolymères, unités, monomères et procédés sont connus de l'homme du métier. A titre d'exemples de monomères utiles, on peut citer les monomères ci-dessous.
A titre d'exemples de monomères potentiellement cationiques on peut mentionner: • les N,N(dialkylaminoωalkyl)amides d'acides carboxyliques α-β monoéthyléniquement insaturés comme le N,N-diméthylaminométhyl -acrylamide ou -méthacrylamide, le 2(N,N-diméthylamino)éthyl-acrylamide ou - méthacrylamide, le 3(N,N-diméthylamino)propyl-acrylamide ou -méthacrylamide, le 4(N,N-diméthylamino)butyl-acrylamide ou -méthacrylamide
• les aminoesters α-β monoéthyléniquement insaturés comme le 2(diméthyl amino)éthyl acrylate (ADAM), 2(diméthyl amino)éthyl méthacrylate (DMAM), le 3(diméthyl amino)propyl méthacrylate, le 2(tertiobutylamino)éthyl méthacrylate, le 2(dipentylamino)éthyl méthacrylate, le 2(diéthylamino)éthyl méthacrylate • les vinylpyridines
• la vinyl aminé
• les vinylimidazolines
• des monomères précurseurs de fonctions aminés tels que le N-vinyl formamide, le N-vinyl acétamide, ... qui engendrent des fonctions aminés primaires par simple hydrolyse acide ou basique. A titre d'exemples de monomères cationiques on peut mentionner: les monomères ammoniumacryloyles ou acryloyloxy comme le chlorure de triméthylammoniumpropylméthacrylate, le chlorure ou le bromure de triméthylammoniuméthylacrylamide ou méthacrylamide, le méthylsulfate de triméthylammoniumbutylacrylamide ou méthacrylamide, le méthylsulfate de triméthylammoniumpropylméthacrylamide (MES), le chlorure de (3-méthacrylamidopropyl)triméthylammonium (MAPTAC), le chlorure de (3-acrylamidopropyl)triméthylammonium (APTAC), le chlorure ou le méthylsulfate de méthacryloyloxyéthyl triméthylammonium, le chlorure d'acryloyloxyéthyl triméthylammonium ; le bromure, chlorure ou méthylsulfate de 1 -éthyl 2-vinylpyridinium, de 1 -éthyl 4- vinylpyridinium ; les monomères N,N-dialkyldiallylamines comme le chlorure de N,N- diméthyldiallylammonium (DADMAC) ; les monomères polyquaternaires comme le chlorure de diméthylaminopropylméthacrylamide,N-(3-chloro-2-hydroxypropyl) triméthylammonium (DIQUAT) ... A titre d'exemples de monomères anioniques ou potentiellement anioniques, dont on peut mentionner:
• des monomères possédant au moins une fonction carboxylique, comme les acides carboxyliques α-β ethyleniquement insaturés ou les anhydrides correspondants, tels que les acides ou anhydrides acrylique, méthacrylique, maleique, l'acide fumarique, l'acide itaconique, le N-méthacroyl alanine, le N-acryloylglycine et leurs sels hydrosolubles
• des monomères précurseurs de fonctions carboxylates, comme l'acrylate de tertiobutyle, qui engendrent, après polymérisation, des fonctions carboxyliques par hydrolyse. • des monomères possédant au moins une fonction sulfate ou sulfonate, comme le 2- sulfooxyethyl méthacrylate, l'acide vinylbenzène sulfonique, l'acide allyl sulfonique, le 2-acrylamido-2méthylpropane sulfonique, l'acrylate ou le méthacrylate de sulfoethyle , l'acrylate ou le méthacrylate de sulfopropyle et leurs sels hydrosolubles
• des monomères possédant au moins une fonction phosphonate ou phosphate, comme l'acide vinylphosphonique,... les esters de phosphates ethyleniquement insaturés tels que les phosphates dérivés du méthacrylate d'hydroxyéthyle (Empicryl 6835 de RHODIA) et ceux dérivés des méthacrylates de polyoxyalkylènes et leurs sels hydrosolubles.
A titre d'exemples de monomères hydrophiles neutres on peut mentionner: • les hydroxyalkylesters d'acides α-β ethyleniquement insaturés comme les acrylates et méthacrylates d'hydroxyéthyle, d'hydroxypropyle, le glycérol monométhacrylate...
• les amides α-β ethyleniquement insaturés comme l'acrylamide, le N,N-diméthyl méthacrylamide, le N-méthylolacrylamide ...
• les monomères α-β ethyleniquement insaturés portant un segment polyoxyalkyléné hydrosoluble du type polyoxyde d'éthylène, comme les polyoxyde d'éthylène α- méthacrylates (BISOMER S20W, S10W, ... de LAPORTE) ou α,ω-diméthacrylates, le SIPOMER BEM de RHODIA (méthacrylate de polyoxyéthylène ω-béhényle), le SIPOMER SEM-25 de RHODIA (méthacrylate de polyoxyéthylène ω- tristyrylphényle) ... « les monomères α-β ethyleniquement insaturés précurseurs d'unités ou de segments hydrophiles tels que l'acétate de vinyle qui, une fois polymérisés, peuvent être hydrolyses pour engendrer des unités alcool vinylique ou des segments alcool polyvinylique
• les vinylpyrrolidones • les monomères α-β ethyleniquement insaturés de type uréido et en particulier le méthacrylamido de 2-imidazolidinone éthyle (Sipomer WAM II de RHODIA)
A titre d'exemples de monomères hydrophobes on peut mentionner:
• les monomères vinylaromatiques tels que styrène, alpha-méthylstyrène, vinyltoluène...
• les halogenures de vinyle ou de vinylidene, comme le chlorure de vinyle, chlorure de vinylidene
• les C Cι2 alkylesters d'acides α-β monoéthyléniquement insaturés tels que les acrylates et méthacrylates de méthyle, éthyle, butyle, acrylate de 2-éthylhexyle ... • les esters de vinyle ou d'allyle d'acides carboxyliques saturés tels que les acétates, propionates, versatates, stéarates ... de vinyle ou d'allyle
• les nitriles α-β monoéthyléniquement insaturés contenant de 3 à 12 atomes de carbone, comme l'acrylonitrile, le methacrylonitrile ...
• les α-oléfines comme l'éthylène ... • les diènes conjugués, comme le butadiène, l'isoprène, le chloroprène,
• les monomères susceptibles de générer des chaînes polydiméthylsiloxane (PDMS). On peut citer les polymères cationiques synthétiques usuellement utilisés comme conditionneurs dans le domaines de la cosmétique, comme les polyquaternum 2, 6, 7, 11 , (dénomination INCI), ou comme le chlorure de polymethacrylamidopropyltrimonium, par exemple commercialisé par. Rhodia sous le nom Polycare 133), ou comme les copolymères de DADMAC, d'acide acrylique, et éventuellement d'acrylamide, commercialisés sous la gamme Merquat par Nalco.
Particules (e) La composition peut comprendre des particules solides ou liquides de composés organiques ou inorganiques non hydrosolubles (e). Dans le cas de particules liquides, on peut utiliser aussi le terme "émulsion".
Lesdites particules peuvent être présentes dans lesdites compositions à raison de l'ordre de 0,1 à 10% en poids, de préférence de l'ordre de 0,2 à 2% en poids. Leur taille peut être comprise entre 0, 15 et 70 microns. Parmi les composés organiques insolubles pouvant être présents sous forme de particules en dispersion aqueuse dans lesdites compositions, on peut mentionner les organopolysiloxanes non hydrosolubles et non volatils (appelés également par la suite "silicones non hydrosolubles et non volatils"), parmi lesquels on peut citer les huiles, gommes ou résines polyalkylsiloxanes, polyarylsiloxanes, polyalkylarylsiloxanes, ou leurs dérivés fonctionnalisés non hydrosolubles, ou leurs mélanges, non volatils. Lesdits organopolysiloxanes sont considérés comme non hydrosolubles et non volatils, lorsque leur solubilité dans l'eau est inférieure à 50g/litre et leur viscosité intrinsèque d'au moins 3000 mPa.s. à 25°C. A titre d'exemples plus particulier d'organopolysiloxanes ou silicones non hydrosolubles et non volatils, on peut citer des gommes silicones comme par exemple la gomme diphényl diméthicone commercialisée par la société Rhodia, et de préférence les polydiméthylsiloxanes présentant une viscosité au moins égale à 600 000 mPa.s. à 25°C, et de façon encore plus préférentielle, ceux d'une viscosité supérieure à 2 000 000 mPa.s. à 25°C, tels que la Mirasil DM 500000 commercialisée par la société Rhodia. L'organopolysiloxane ou silicone non hydrosoluble et non volatil se trouve sous forme dispersé au sein de la composition cosmétique le renfermant. Celui-ci se présente sous forme de particules dont la taille peut être choisie en fonction de la nature de la composition cosmétique ou de la performance recherchée pour ladite composition. D'une manière générale, cette taille peut varier de 0,02 à 70 microns. D'une manière préférentielle, cette taille est de l'ordre de 1 à 80 microns, tout particulièrement de l'ordre de 1 à 30 microns. On peut également mentionner comme composés organiques insolubles (e) pouvant être présents sous forme de particules, des huiles pouvant exercer des fonctions conditionnantes, protectrices, ou émollientes, huiles généralement choisies parmi les alkylmonoglycérides, les alkyldiglycérides, les triglycérides comme les huiles extraites des plantes et des végétaux (huiles de palme, de coprah, de graine de coton, de soja, de tournesol, d'olive, de pépin de raisin, de sésame, d'arachide, de ricin ...) ou les huiles d'origine animale (suif, huiles de poisson ...), des dérivés de ces huiles comme les huiles hydrogénées, les dérivés de la lanoline, les huiles minérales ou les huiles paraffiniques, le perhydrosqualane, le squalène, les diols comme le 1-2- dodécanediol, l'alcool cétylique, l'alcool stéarylique, l'alcool oléique, les esters gras comme le palmitate d'isopropyl, le cocoate d'éthyl-2-hexyl, le myristyl myristate, les esters de l'acide lactique, l'acide stéarique, l'acide béhenique, l'acide isostéarique. On peut aussi citer des particules d'agents bactéricides ou fongicides afin d'améliorer la désinfection de la peau comme par exemple le triclosan, des agents antipelliculaires comme la zinc pyrithione ou l'octopyrox, des agents insecticides comme les pyréthroides naturels ou de synthèse. Ces différentes molécules organiques peuvent le cas échéant être préalablement encapsulées dans des matrices appropriées selon des méthodes connues de l'homme de l'art. Parmi celles-ci, on peut citer à titre d'exemple, l'encapsulation de molécules organiques dans des latex de polymères. On mentionne que les particules solides ou liquides peuvent être stabilisées dans la composition à l'aide d'agents tels que des agents d'émulsification ou des agents dispersants.
Autres ingrédients La composition peut comprendre des ingrédients autres que ceux mentionnés ci- dessus, par exemple dans la phase aqueuse monophasée. On peut évidemment utiliser dans la composition des agents de régulation du pH, acides ou bases, par exemple de l'acide citrique, ou de l'hydroxyde de sodium, de potassium ou d'ammonium. La composition peut comprendre des sels, par exemple du chlorure de sodium ou de potassium. On cite par exemple les séquestrants, les adoussissants, les modificateurs de mousse, les colorants, les agents nacrant (peariizers), les agents hydratants, les agents antipelliculaires ou antiséborrhéiques, les agents de mise en suspension, les agents de mise en émulsion, les céramides, les pseudocéramides, les éléctrolytes, les acides gras, les esters d'acides gras, les hydroxyacides, les épaississants, les parfums, les conservateurs, les filtres solaires organiques ou minéraux, les protéines, les vitamines, Des polymères, des silicones. Certains de ces. composés sont détaillés ci-dessous. Les compositions cosmétiques pour les traitements de cheveux et/ou de la peau peuvent notamment comprendre:
- des résines fixatives par exemple choisies parmi les copolymères acrylate de méthyle / acrylamide, copolymères polyvinylméthyléther / anhydride maléique, copolymères acétate de vinyle / acide crotonique, copolymères octylacrylamide / acrylate de méthyle / butylaminoéthylméthacrylate, polyvinylpyrrolidones, copolymères polyvinylpyrrolidone / méthacrylate de méthyle, copolymères polyvinylpyrrolidone / acétate de vinyle, alcools polyvinyliques, copolymères alcool polyvinylique / acide crotonique, copolymères alcool polyvinylique / anhydride maléique, hydroxypropyl celluloses, hydroxypropyl guars, polystyrène sulfonates de sodium, terpolymères polyvinylpyrrolidone / éthyl méthacrylate / acide méthacrylique, monométhyl éthers de poly(méthylvinyl éther / acide maléique), polyvinylacétates greffés sur des troncs polyoxyéthylènes (EP-A-219 048), les copolyesters dérivés d'acide, anhydride ou d'un diester téréphtalique et/ou isophtalique et/ou sulfoisophtalique et d'un diol. De manière préférentielle, les résines fixatives sont du type polyvinylpyrrolidone (PVP), copolymères de polyvinylpyrrolidone et de méthyl méthacrylate, copolymère de polyvinylpyrrolidone et d'acétate de vinyle (VA), copolymères polytéréphtale d'éthylène glycol / polyéthylène glycol, copolymères polytéréphtalate d'éthylène glycol / polyéthylène glycol / polyisophtalate sulfonate de sodium, et leurs mélanges.
- des dérivés polymères exerçant une fonction protectrice, par exemple, en quantités de l'ordre de 0,01-10%, de préférence environ 0,1-5%, et tout particulièrement de l'ordre de
0,2-3% en poids, par exemple des dérivés cellulosiques tels que les hydroxyéthers de cellulose, la méthylcellulose, l'éthylcellulose, l'hydroxypropyl méthylcellulose, l'hydroxybutyl méthylcellulose ou des polyvinylesters greffés sur des troncs polyalkylènes tels que les polyvinylacétates greffés sur des troncs polyoxyéthylènes (EP-A-219 048), ou des alcools polyvinyliques.
- des d'agent plastifiants, par exemple entre 0.1 à 10% de la formulation, de préférence de 1 à 10%, par exemple les adipates, les phtalates, les isophtalates, les azélates, les stéarates, les silicones copolyols, les glycols, l'huile de ricin, ou leurs mélanges.
- des agents séquestrants des métaux, plus particulièrement ceux séquestrants du calcium comme les ions citrates.
- des agents humectants, on peut citer le glycérol, le sorbitol, l'urée, le collagène, la gélatine, l'aloe vera, l'acide hyaluronique. - pour diminuer encore l'irritation ou l'agression du cuir chevelu, des polymères hydrosolubles ou hydrodispersables comme le collagène ou certains dérivés non allergisants de protéines animales ou végétales (hydrolysats de protéines de blé par exemple), des hydrocolloïdes naturels (gomme de guar, de caroube, de tara, ...) ou issus de procédés de fermentation et les dérivés de ces polycarbohydrates comme les celluloses modifiées (par exemple hydroxyéthylcellulose, carboxyméthylcellulose), les dérivés du guar ou de la caroube comme leurs dérivés non-ioniques (par exemple hydroxypropylguar), les dérivés anioniques (carboxyméthylguar et carboxyméthylhydroxypropylguar). - des agents conservateurs comme les méthyl, éthyl, propyl et butyl esters de l'acide p-hydroxybenzoïque, le benzoate de sodium, le GERMABEN (nom de marque) ou tout agent chimique évitant la prolifération bactérienne ou des moisissures et utilisé traditionnellement des les compositions cosmétiques sont généralement introduits dans ces compositions à hauteur de 0,01 à 3% en poids. La quantité de ces produits est généralement ajustée pour éviter toute prolifération de bactéries, moisissures ou levures dans les compositions cosmétiques. des agents modifiants l'activité de l'eau et augmentant fortement la pression osmotique comme les carbohydrates ou des sels.
- des parfums, - des agents opacifiants comme des pigments.
- des polymères viscosants ou gélifiants, comme les polyacrylates réticulés, les dérivés de la cellulose comme l'hydroxypropylcellulose, la carboxyméthylcellulose, les guars et leurs dérivés .... utilisés seuls ou en association, ou les mêmes composés, généralement sous la forme de polymères hydrosolubles modifiés par des groupements hydrophobes liés de manière covalente au squelette polymère comme décrit dans le brevet WO 92/16187 et/ou de l'eau pour amener le total des constituants de la formulation à 100%.
- des agents dispersants polymériques en quantité de l'ordre de 0,1-7% en poids, pour contrôler la dureté en calcium et magnésium, agents tels que : - les sels hydrosolubles d'acides polycarboxyliques de masse moléculaire de l'ordre de 2000 à 100 000, obtenus par polymérisation ou copolymérisation d'acides carboxyliques ethyleniquement insaturés tels que acide acrylique, acide ou anhydride maléique, acide fumarique, acide itaconique, acide aconitique, acide mesaconique, acide citraconique, acide méthylènemalonique, et tout particulièrement les polyacrylates de masse moléculaire de l'ordre de 2000 à 10 000 (US-A-3 308 067), les copolymères d'acide acrylique et d'anhydride maléique de masse moléculaire de l'ordre de 5000 à 75 000 (EP-A-66 915) - les polyéthylèneglycols de masse moléculaire de l'ordre de 1000 à 50 000.
Les compositions pour les traitements des surfaces dures peuvent notamment comprendre: - des épaississants polymériques
- des polymères hydrophilisants
- des polymères anti-salissures
- des anti-mousse
- des agents moussants - des agents stabilisant les mousses ou tonifiant les mousses
- des parfumes ou fragrances
- des agents de control du pH et/ou de la dureté de l'eau
- des sels, des charges
- des chélatants - des colorants
- des coservateurs,
- des enzymes
- des inhibiteurs de corrosion
- des inhibiteurs de tartre, - des teintures,
- des azurants optiques,
- des agents ,
- des solvants
- des opacifiants.
Traitements de surfaces - Applications L'invention concerne également un procédé de traitement d'une surface comprenant les étapes suivantes: a) application de la composition, et b) éventuellement rinçage.
Au cour de ce procédé, avantageusement, au moins un des composés choisis parmi (a), (b), (c) s'il est présent et (e) s'il est présent est déposé à la surface. Sans vouloir être lié à une quelconque théorie, on pense que le dépôt peut être induit par le rinçage, qui est une dilution, et/ou par un changement de pH, et/ou par simple affinité. pour la surface. La surface peut être un cheveu et ou la peau. La composition est dans ce cas une composition cosmétique comme un shampoing destiné à être rincé, un gel-douche destiné à être rincé, un après-shampoing destiné à être rincé, ou un après-shampoing destiné à ne pas être rincé. La composition, ou le procédé peut ainsi procurer un conditionnement, une réparation, une protection des cheveux et/ou de la coloration des cheveux, comme mentionné plus haut. La peau et/ou les cheveux peuvent avoir été humidifiés au préalable. Dans le cas d'un shampooing par exemple, le facteur de dilution de la composition cosmétique lors de son application, peut être évalué à une valeur de l'ordre de 3 à 10, en considérant qu'un gramme de cheveu mouillé retient en moyenne de 0,6 à 1 g d'eau, et que d'une manière standard, 0,1 g de shampooing est appliqué par gramme de cheveu exprimé en sec, avec une durée d'application généralement de 30 à 45 secondes. Après avoir été appliquée, le shampoing doit alors être rincé pour éliminer les agents tensioactifs en excès. Selon une variante du procédé de l'invention, la composition est appliquée sur les cheveux ou la peau non humidifié, puis la peau ou les cheveux sont humidifiés et finalement rincés.
La surface peut être une surface dure. La composition est dans ce cas une composition pour le nettoyage (détergent) et/ou le traitement des surfaces dures, de préférence des surfaces domestiques (dont la vaisselle) ou des surfaces institutionnelles ou industrielles. On note que la composition peut être appliquée sur la surface dure par tout moyen, éventuellement après une dilution préalable. La composition peut notamment être supportée par un produit fibreux ou poreux, comme des lingettes, des tampons, des éponges.... Ainsi, la composition peut être:
- un liquide vaisselle, de préférence pour la vaisselle à la main,
- une composition pour le nettoyage des vitres, notamment les vitres de fenêtres et le pare-brises d'automobiles,
- une composition pour le lavage des sols, - une composition de lavage pour toute surface "universelle"
- une composition pour le nettoyage des surfaces de cuisines et/ou de salles de bain
- une composition pour le nettoyage des toilettes,
- une composition pour le nettoyage des douches, pour la prévention de la formation de traces dans les douches ("shower rinse" ou "daily shower"), - une composition pour le nettoyages des voitures,
- une composition pour le nettoyage des carrelages, ou des revêtements de sols en plastique. La surface traitée peut être ainsi:
- du verre par exemple dans les fenêtres et pare-brise,
- du carrelage, ou de la céramique, par exemple dans les cuisines, salles de bain, toilettes, douches, dans la vaisselle, dans les sols,
- du métal, par exemple sans la vaisselle, les carrosseries automobiles, des cadres de fenêtres, les sols,
- du plastic, par exemple dans la vaisselle, les automobiles, les fenêtres, les meubles, les sols,
- du ciment ou du béton, éventuellement ciré, par exemple dans les sols.
D'autres détails ou avantages de l'invention apparaîtront plus clairement au vu des exemples qui suivent, sans caractère limitatif.
EXAMPLES
Exemple 1 : synthèse d'un copolyamide hyperbranche à terminaisons aminé tertiaire par copolycondensation en phase fondue de l'acide benzène-1,3,5 tricarboxylique (noté BTC, molécule cœur de type R1-B"3, avec B" = COOH), de l'acide amino-5 isophtalique (noté AIPA, molécule de branchement de type A-R- B2, avec A = NH2 et B = COOH), de l'ε-caprolactame (noté CL, espaceur de type A'- R'-B', avec A' = NH2 et B' = COOH) et de N-(amino-3 propyle) morpholine (notée APM, bloqueur de type A"-R2, avec A" ≈ NH2). La composition globale respective est de 1/6/12/9 en BTC/AIPA/CL/APM. La réaction est effectuée dans un réacteur verre de 500ml couramment utilisé en laboratoire pour la synthèse en phase fondue de polyesters ou de polyamides. Un bain métallique d'alliage de Wood est employé pour le chauffage du mélange réactionnel. On introduit dans le réacteur 88,1 g de N-(amino-3 propyle) morpholine (0,611 mol) et 92,2 g d' ε-caprolactame (0,815 mol) à Température ambiante. Le réacteur est alors mis en chauffe à 100°C et sous agitation mécanique. Une fois la température atteinte, 73,8 g d'acide amino-5 isophtalique (0,407 mol) et 14,3 g d'acide benzène-1 ,3,5 tricarboxylique (0,068 mol) sont ajoutés. Une fois le mélange réactionnel homogène, 0,605 g d'une solution aqueuse à 50% (p/p) d'acide hypophosphoreux sont ajoutés. Un faible balayage d'azote sec est ensuite réalisé.
La masse réactionnelle est ensuite chauffée rapidement de 100°C à 160°C, en 12 min. Après 120 min de plateau isotherme, la température est augmentée à 200°C sur environ 80 min. Après 60 minutes dans ces conditions, la température est de nouveau augmentée à 250°C sur environ 10 min, puis maintenue dans ces conditions jusqu'à la fin de la synthèse.
Après 50 min de plateau, le réacteur est progressivement mis sous vide sur une période d'environ 60 min, puis maintenu sous vide maximal (24 mBar) pendant une heure supplémentaire. En fin de cycle, l'agitation est arrêtée et le réacteur laissé refroidir à température ambiante sous un courant d'azote. 236,8 g de polymère sont recueillis. Le copolyamide hyperbranche obtenu est un solide jaunâtre, soluble en phase aqueuse acide. La teneur en fonction aminé tertiaire est déterminée par dosage potentiométrique direct d'une solution de copolyamide hyperbranche dans un mélange 30/70 en volume Chloroforme/trifluoroéthanol par de l'acide chlorhydrique 0.05N. La teneur en groupements aminé obtenue est de 2187 méq/kg.
Exemple 2 : synthèse d'un copolyamide hyperbranche à terminaisons amïne tertiaire par copolycondensation en phase fondue de BTC, d'AIPA, de CL et d'APM. La composition globale respective est de 1/25/50/28 en BTC/AIPA/CL/APM.
Le même réacteur que celui décrit dans l'exemple 1 est employé. Un bain métallique d'alliage de Wood est employé pour le chauffage du mélange réactionnel. On introduit dans le réacteur à température ambiante 74,9 g de N-(amino-3 propyle) morpholine (0,519 mol), 104,9 g d' ε-caprolactame (0,927 mol), 84,0 g d'acide amino-5 isophtalique (0,464 mol) et 3,9 g d'acide benzène-1 ,3,5 tricarboxylique (0,019 mol). Le réacteur est ensuite placé sous agitation mécanique, sous faible courant d'azote sec puis chauffé à 100°C. Une fois le mélange réactionnel homogène, 0,630 g d'une solution aqueuse à 50% (p/p) d'acide hypophosphoreux sont ajoutés. La masse réactionnelle est chauffée suivant le même cycle que celui décrit dans l'exemple 1. Le cycle final sous pression réduite est également reproduit. En fin de cycle, l'agitation est arrêtée et le réacteur laissé refroidir à température ambiante sous un courant d'azote. 236,0 g de polymère sont recueillis. Le copolyamide hyperbranche obtenu est un solide jaunâtre, soluble en phase aqueuse acide. La teneur en groupements aminé déterminée par dosage potentiométrique est de 2025 méq/kg. Exemple 3 : synthèse d'un copolyamide hyperbranche à terminaisons aminé tertiaire par copolycondensation en phase fondue de BTC, d'AIPA, de CL et d'APM. La composition globale respective est de 1/50/100/53 en BTC/AIPA/CL/APM.
Le même réacteur que celui décrit dans l'exemple 1 est employé. Un bain métallique d'alliage de Wood est employé pour le chauffage du mélange réactionnel. On introduit dans le réacteur à température ambiante 72,5 g de N-(amino-3 propyle) morpholine (0,502 mol), 107,3 g d' ε-caprolactame (0,948 mol), 85,9 g d'acide amino-5 isophtalique (0,474 mol) et 2,0 g d'acide benzène-1 ,3,5 tricarboxylique (0,009 mol). Le réacteur est ensuite placé sous agitation mécanique, sous faible courant d'azote sec puis chauffé à 100°C. Une fois le mélange réactionnel homogène, 0,635 g d'une solution aqueuse à 50% (p/p) d'acide hypophosphoreux sont ajoutés. La masse réactionnelle est chauffée suivant le même cycle que celui décrit dans l'exemple 1. Le cycle final sous pression réduite est également reproduit. En fin de cycle, l'agitation est arrêtée et le réacteur laissé refroidir à température ambiante sous un courant d'azote. 236,2 g de polymère sont recueillis. Le copolyamide hyperbranche obtenu est un solide jaunâtre, soluble en phase aqueuse acide. La teneur en groupements aminé déterminée par dosage potentiométrique est de 1963 méq/kg.
Exemple 4 : Quaternisation par le diméthyle sulfate d'un copolyamide hyperbranche à terminaisons aminé tertiaire de composition globale 1/6/12/9 respectivement en BTC/AIPA/CL/APM, synthétisé dans l'exemple 1. Le même réacteur en verre que dans les exemples 1 à 3 est employé, muni d'un réfrigérant ascendant. Un bain d'huile est employé comme moyen de chauffage du réacteur. 40,0 g (87,5 méq aminé) de copolyamide hyperbranche obtenu dans l'exemple 1 sont finement broyés et dispersés dans 210,0 g d'acétone. Le mélange est mis sous agitation mécanique à l'aide d'un ancre et chauffé au reflux. 13,2 g de diméthyle sulfate (0,105 mol) sont ensuite ajoutés en 5 min. Le mélange réactionnel est maintenu dans ces conditions pendant 4 heures. En fin de réaction, le copolyamide hyperbranche se présente sous la forme d'un gel visqueux. Le mélange réactionnel est laissé à décanter et l'acétone surnageante est éliminée. Le gel obtenu est repris dans 210 g d'eau déminéralisée et chauffé 30 min à 100°C afin de détruire les traces de diméthyle sulfate n'ayant pas réagi. La solution est ensuite lyophilisée. La teneur en groupements aminé quaternisée est déterminée par la méthode de dosage potentiométrique décrite dans l'exemple 1 et est de 1984 méq/kg pour cette composition.
Exemple 5 : Quaternisation par le diméthyle sulfate d'un copolyamide hyperbranche à terminaisons aminé tertiaire de composition globale 1/25/50/28 respectivement en BTC/AIPA/CL/APM, synthétisé dans l'exemple 2. Le même montage que celui décrit dans l'exemple 4 est employé. 40,0 g (81 ,0 méq aminé) de copolyamide hyperbranche obtenu dans l'exemple 2 sont finement broyés et dispersés dans 210,0 g d'acétone. Le mélange est mis sous agitation mécanique à l'aide d'un ancre et chauffé au reflux. 12,3 g de diméthyle sulfate (0,097 mol) sont ajoutés en 5 min quand le mélange atteint 40°C. Le mélange réactionnel est ensuite maintenu au reflux d'acétone pendant 4 heures. Le gel visqueux obtenu est ensuite récupérée après élimination de l'acétone surnageante, puis repris dans 250 g d'eau déminéralisée et chauffé 30 min à 100°C afin de détruire les traces de diméthyle sulfate n'ayant pas réagi. La solution est ensuite lyophilisée. La teneur en groupements aminé quaternisée déterminée par dosage potentiométrique est de 1735 méq/kg.
Exemple 6 : Quaternisation par le diméthyle sulfate d'un copolyamide hyperbranche à terminaisons aminé tertiaire de composition globale 1/50/100/53 respectivement en BTC/AIPA/CL/APM, synthétisé dans l'exemple 3. Le même montage que celui décrit dans l'exemple 4 est employé. 40,0 g (78,5 méq aminé) de copolyamide hyperbranche obtenu dans l'exemple 3 sont finement broyés et dispersés dans 210,0 g d'acétone. Le mélange est mis sous agitation mécanique à l'aide d'un ancre et chauffé au reflux. 11 ,9 g de diméthyle sulfate (0,094 mol) sont ajoutés en 5 min quand le mélange atteint 40°C. Le mélange réactionnel est ensuite maintenu au reflux d'acétone pendant 4 heures. Le gel visqueux obtenu est récupérée après élimination de l'acétone surnageante, puis repris dans 250 g d'eau déminéralisée et chauffé 30 min à 100°C afin de détruire les traces de diméthyle sulfate n'ayant pas réagi. La solution est ensuite lyophilisée. La teneur en groupements aminé quaternisée déterminée par dosage potentiométrique est de 1688 méq/kg.
Exemples 7-9 On réalise des compositions comprenant des ingrédients choisis parmi les suivants:
Mode opératoire 1. Mélanger l'eau et le polymère 2. Ajouter le CAPB 3. Ajouter le tensioactif anionique 4. Ajuster le pH à 6-6,5 par ajout de d'hydroxyde de sodium ou d'acide citrique 5. Ajouter le sel
On réalise les compositions suivantes, dont la quantité en poids de chaque ingrédient est donnée ci dessous:
On mesure la transmittance (transparence) des compositions à 600 nm à l'aide d'un spectrophotomètre (type Jasco 7800). Les compositions présentent une transparence de plus de 90%. Les compositions facilitent le peignage sur cheveux mouillés (wet combing), en comparaison de compositions ne comprenant pas le polymère.

Claims

REVENDICATIONS
1. Composition comprenant
- une phase aqueuse monophasée comprenant un système comprenant: - de l'eau - un polymère dendritique (a) polyionique hydrosoluble ou hydrodispersable, - au moins un tensioactif (b) ionique, - éventuellement un polymère (c) polycationique ou polyanionique, différent du polymère dendritique, et - éventuellement au moins un tensioactif (d) amphotère, zwitterionique ou neutre, - dans lequel: - (a) est polycationique, (b) est anionique et (c), s'il est présent est polyanionique ou polycationique, ou - (a) est polycationique, (b) est cationique et (c) est présent et polyanionique, ou - (a) est polyanionique, (b) est cationique et (c), s'il est présent est polyanionique ou polycationique, ou - (a) est polyanionique, (b) est anionique et (c) est présent et polycationique, - la phase aqueuse monophasée devient biphasée ou reste monophasée par dilution à l'eau, et
- éventuellement des particules solides ou liquides de composés organiques ou inorganiques non hydrosolubles (e).
2. Composition selon la revendication précédente, caractérisée en ce que (a), (b), (c) s'il est présent et (d) s'il est présent, et leurs quantités sont tels que la phase aqueuse monophasée devient biphasée par dilution à l'eau.
3. Composition selon l'une des revendications précédentes, caractérisée en ce que:
- la phase aqueuse monophasée devient biphasée par dilution à l'eau, et - (a) ou (c) précipite quand la phase aqueuse devient biphasé pas dilution à l'eau.
4. Composition selon la revendication, caractérisée en ce que le système comprend (c) et en ce que
- (a) est polycationique, (b) est anionique et (c) est polycationique, ou - (a) est polyanionique, (b) est cationique et (c) est polyanionique.
5. Composition selon l'une des revendications précédentes, caractérisée en ce que c'est une composition cosmétique aqueuse pour le cheveu et/ou la peau destinée à être rincée.
6. Composition selon la revendication précédente, caractérisée en ce que c'est un shampoing, un après-shampoing ou un gel douche.
7. Composition selon l'une des revendications 1 à 4, caractérisée en ce que c'est un après shampoing destiné à ne par être rincé.
8. Composition selon l'une des revendications 1 à 4, caractérisée en ce que c'est une composition pour le nettoyage et/ou le traitement de surfaces dures.
9. Procédé de traitement d'une surface comprenant les étapes suivantes: a) application d'une composition selon l'une des revendications 1 à 8, et b) éventuellement rinçage.
10. Procédé selon la revendication précédente, caractérisé en ce que au moins un des composés choisis parmi (a), (b), (c) s'il est présent et (e) s'il est présent est déposé à la surface.
11. Procédé selon la revendication précédente, caractérisé en ce que la surface une surface de cheveu et/ou de peau.
12. Procédé selon la revendication précédente, caractérisé en ce que en ce que la surface est une surface dure.
13. Utilisation de la composition selon l'une des revendications 1 à 7 ou du procédé selon l'une des revendications 9 à 11 , pour le conditionnement, la réparation, la protection des cheveux et/ou de la coloration des cheveux.
EP04787481A 2003-09-29 2004-09-29 Composition aqueuse comprenant un polymere dentrique polyonique et un agent tensioactif ionique Ceased EP1667637A2 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US50678803P 2003-09-29 2003-09-29
US50681703P 2003-09-29 2003-09-29
PCT/FR2004/002462 WO2005032498A2 (fr) 2003-09-29 2004-09-29 Composition aqueuse comprenant un polymere dentrique polyonique et un agent tensioactif ionique

Publications (1)

Publication Number Publication Date
EP1667637A2 true EP1667637A2 (fr) 2006-06-14

Family

ID=34425976

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04787481A Ceased EP1667637A2 (fr) 2003-09-29 2004-09-29 Composition aqueuse comprenant un polymere dentrique polyonique et un agent tensioactif ionique

Country Status (3)

Country Link
US (1) US20070274942A1 (fr)
EP (1) EP1667637A2 (fr)
WO (1) WO2005032498A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009004199A2 (fr) 2007-06-29 2009-01-08 Aktiebolaget Skf Systeme de support d'arbre pour moteur electrique, moteur electrique et procede de montage

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005073260A1 (fr) * 2004-01-28 2005-08-11 Basf Aktiengesellschaft Procede pour preparer des polymeres
WO2006018063A1 (fr) 2004-08-17 2006-02-23 Unilever Plc Composition de soin capillaire contenant une macromolécule dendritique
BRPI0514363A (pt) * 2004-08-17 2008-06-10 Unilever Nv composição cosmética e de cuidado pessoal, método de tratar o cabelo, e, uso de uma macromolécula dendrìtica construìda a partir de unidades de anidrido
ES2297728T5 (es) * 2004-08-17 2013-11-04 Unilever N.V. Procedimiento de tratamiento del cabello con composiciones que comprenden un polímero dendrítico
DE102005063096A1 (de) * 2005-12-30 2007-07-05 Henkel Kgaa Pflegende Haarbehandlungssmittel mit kammartigen Polymeren I
FR2913599B1 (fr) * 2007-03-16 2013-05-17 Sofibel Composition polymere epilatoire a mise en temperature d'utilisation, controlee
GB0712191D0 (en) * 2007-06-25 2007-08-01 3M Innovative Properties Co Process for removing fluorinated compounds for an aqueous phase originating from the preparation of fluoropolymers
WO2009074430A1 (fr) * 2007-12-12 2009-06-18 Unilever Nv Composition de détergent pour lessive
US8062555B2 (en) * 2009-04-16 2011-11-22 Rhodia Operations Co-assembly method and co-assembled structures made thereby
US8722796B2 (en) * 2010-01-20 2014-05-13 Basf Se Process for preparing an aqueous polymer dispersion
EP2497857A1 (fr) * 2011-03-05 2012-09-12 Huntsman Textile Effects (Germany) GmbH Structure textile plate dotée d'un développement d'odeur réduit
US20140371126A1 (en) 2011-08-31 2014-12-18 Akzo Nobel Chemicals International B.V. Laundry detergent compositions comprising soil release agent
CN104768523B (zh) 2012-10-29 2017-08-15 宝洁公司 10℃下具有0.30或更大损耗角正切值的个人护理组合物
CN110202165A (zh) * 2019-06-16 2019-09-06 南通大学 一种对纤维具有亲和性的纳米铂金溶液及其制备方法
US11505766B2 (en) * 2020-12-15 2022-11-22 Henkel Ag & Co. Kgaa Surfactant compositions for improved transparency of DADMAC-acrylic acid co-polymers
US11560534B2 (en) 2020-12-15 2023-01-24 Henkel Ag & Co. Kgaa Surfactant compositions for improved transparency of DADMAC-acrylamide co-polymers

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4558120A (en) * 1983-01-07 1985-12-10 The Dow Chemical Company Dense star polymer
US4587329A (en) * 1984-08-17 1986-05-06 The Dow Chemical Company Dense star polymers having two dimensional molecular diameter
US5276110A (en) * 1992-08-12 1994-01-04 National Research Council Of Canada Highly regular multi-arm star polymers
US5658574A (en) * 1995-10-13 1997-08-19 Chesebrough-Pond's Usa Co., Division Of Conopco, Inc. Cleansing compositions with dendrimers as mildness agents
DE19625982A1 (de) * 1996-06-28 1998-01-02 Wella Ag Kosmetisches Mittel zur Haarbehandlung mit Dendrimeren
FR2793252B1 (fr) * 1999-05-05 2001-07-20 Rhodianyl Copolyamide hyperbranche, composition a base de ce copolyamide hyperbranche et procede d'obtention de ce dernier
US6420479B1 (en) * 2000-12-29 2002-07-16 National Starch And Chemical Investment Holding Corporation Star polymer colloidal stabilizers
AU2002366858A1 (en) * 2001-12-20 2003-07-09 Unilever N.V. Hard surface treatment method and compositions and polymeric materials for use therein
FR2840622B1 (fr) * 2002-06-11 2004-07-23 Rhodia Chimie Sa Composition pour le traitement des articles en fibres textiles comprenant un polymere dendritique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005032498A2 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009004199A2 (fr) 2007-06-29 2009-01-08 Aktiebolaget Skf Systeme de support d'arbre pour moteur electrique, moteur electrique et procede de montage

Also Published As

Publication number Publication date
WO2005032498A2 (fr) 2005-04-14
WO2005032498A3 (fr) 2005-07-21
US20070274942A1 (en) 2007-11-29

Similar Documents

Publication Publication Date Title
EP1049456B1 (fr) Utilisation, dans les compositions cosmetiques, d&#39;agents tensioactifs amphoteres pour precipiter, a la dilution, des polymeres cationiques
EP1667637A2 (fr) Composition aqueuse comprenant un polymere dentrique polyonique et un agent tensioactif ionique
EP2678376B1 (fr) Nouveaux polysiloxanes comprenant des groupes bétaïne, leur production et utilisation
JP6184484B2 (ja) 界面活性剤系のためのアルキルグリコシドベースのミセル増粘剤
TW213865B (fr)
US20230235097A1 (en) Dextran-alpha-glucan graft copolymers and derivatives thereof
FR2887450A1 (fr) Ingredient concentre pour le traitement et/ou la modification de surfaces, et son utilisation dans des compositions cosmetiques
JP2007063446A (ja) カチオン変性キサンタンガム及び該物質を含む化粧料組成物
JPH11513998A (ja) 洗浄化粧品組成物及びその使用
EP4125796A1 (fr) Formulation de soins capillaires
US20090304757A1 (en) Cosmetic Compositions Comprising A Powdered Thermoplastic
KR20170004873A (ko) 오르가노폴리실록산, 및 모발 화장료 및 그의 제조 방법
JP2006169410A (ja) カチオン変性精製グアーガム及び該物質を含む化粧料組成物
FR2889062A1 (fr) Composition cosmetique comprenant un copolymere ampholyte
JP2843101B2 (ja) 化粧料
EP1667636A2 (fr) Emulsions comprenant un polymere dendritique et utilisation d&#39;un polymere dendritique comme agent d emulsification
JP6767182B2 (ja) アミノアルキル基及びポリオキシアルキレン基含有シロキサンを含む乳化組成物
JP2010168336A (ja) 毛髪洗浄料組成物
EP1250118B1 (fr) Compositions cosmetiques comprenant un melange polymere cationique/tensioactif anionique et utilisation dudit melange comme agent structurant
FR2745175A1 (fr) Composition cosmetique capillaire et procedes de preparation
EP1559400A1 (fr) Procédé de préparation d&#39;une composition pour le traitement cosmétique des cheveux à partir de fluide sous pression et d&#39;agents de conditionnement cationiques
WO2022203862A1 (fr) Formulation de shampooing à dépôt de silicone amélioré
CN117897136A (zh) 悬浮聚合物组合物及其使用方法
FR2817477A1 (fr) Compositions cosmetiques contenant des fibres
FR2863880A1 (fr) Composition cosmetique comprenant un copolymere ampholyte

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060323

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: MORVAN, MIKEL

Inventor name: TOURAUD, FRANCK

Inventor name: KARAGIANNI, KATERINA

Inventor name: BERRET, JEAN-FRANCOIS

17Q First examination report despatched

Effective date: 20080306

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20120213