EP1660813A1 - Durchlaufdampferzeuger in liegender bauweise und verfahren zum betreiben des durchlaufdampferzeugers - Google Patents

Durchlaufdampferzeuger in liegender bauweise und verfahren zum betreiben des durchlaufdampferzeugers

Info

Publication number
EP1660813A1
EP1660813A1 EP04763713A EP04763713A EP1660813A1 EP 1660813 A1 EP1660813 A1 EP 1660813A1 EP 04763713 A EP04763713 A EP 04763713A EP 04763713 A EP04763713 A EP 04763713A EP 1660813 A1 EP1660813 A1 EP 1660813A1
Authority
EP
European Patent Office
Prior art keywords
flow
steam generator
heating surface
heating
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04763713A
Other languages
English (en)
French (fr)
Inventor
Joachim Franke
Rudolf Kral
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP04763713A priority Critical patent/EP1660813A1/de
Publication of EP1660813A1 publication Critical patent/EP1660813A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1807Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines
    • F22B1/1815Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines using the exhaust gases of gas-turbines

Definitions

  • the invention relates to a once-through steam generator, in which an evaporator once-through heating surface is arranged in a hot gas channel through which an approximately horizontal heating gas direction can flow and which comprises a number of steam tubes connected in parallel to the throughflow of a flow medium.
  • the heat contained in the relaxed working fluid or heating gas from the gas turbine is used to generate steam for the steam turbine.
  • the heat transfer takes place in a waste heat steam generator downstream of the gas turbine, in which a number of heating surfaces are usually arranged for water preheating, steam generation and steam superheating.
  • the heating surfaces are connected to the water-steam cycle of the steam turbine.
  • the water-steam cycle usually comprises several, e.g. B. three, pressure levels, each pressure level can have an evaporator heating surface.
  • a continuous steam generator In contrast to a natural or forced circulation steam generator, a continuous steam generator is not subject to any pressure limitation, so that live steam pressures well above the critical pressure of water (P ⁇ r i «221 bar) - where there are only slight differences in density between liquid-like and steam-like medium - are possible.
  • a high live steam pressure favors a high thermal efficiency and thus low CO 2 emissions from a fossil-fired power plant.
  • a continuous steam generator has a simple design in comparison to a circulation steam generator and can therefore be produced with particularly little effort.
  • the use of a Steam generator designed according to the continuous flow principle as waste heat steam generator of a gas and steam turbine system is therefore particularly favorable for achieving a high overall efficiency of the gas and steam turbine system with a simple construction.
  • a heat recovery steam generator in a horizontal design offers particular advantages in terms of manufacturing effort, but also with regard to required maintenance work, in which the heating medium or heating gas, i.e. the exhaust gas from the gas turbine, is guided through the steam generator in an approximately horizontal flow direction.
  • the heating medium or heating gas i.e. the exhaust gas from the gas turbine
  • the steam generator pipes of a heating surface can, however, be exposed to a very different heating depending on their positioning.
  • different heating of individual steam generator tubes can lead to a merging of steam streams with widely differing steam parameters and thus to undesired losses in efficiency, in particular to a comparatively reduced effectiveness of the heating surface concerned and a reduced steam generation as a result. to lead.
  • a steam generator is known from EP 0 944 801 B1, which is suitable for a horizontal design and which also has the advantages mentioned of a continuous steam generator.
  • the known steam generator is designed with regard to its evaporator flow heating surface in such a way that a steam generator tube which is more heated in comparison to a further steam generator tube of the same evaporator flow heating surface has a higher throughput of the flow medium compared to the further steam generator pipe.
  • the continuous flow evaporator heating surface of the known steam generator thus shows, in the manner of the flow characteristic of a natural circulation evaporator heating surface (natural circulation characteristic), with different heating of individual steam generator pipes, a self-stabilizing behavior which, without the need for external influence, leads to an adaptation of the outlet-side temperatures even to differently heated steam generator pipes connected in parallel on the flow medium side.
  • this design concept means that the known steam generator is intended for feeding with flow medium with a comparatively low mass flow density.
  • the invention is therefore based on the object of specifying a once-through steam generator of the type mentioned above, which ensures particularly high operational safety even when it is supplied with flow medium with comparatively large mass flow densities. Furthermore, a particularly suitable method for operating the steam generator of the type mentioned above is to be specified.
  • the once-through steam generator this object is achieved according to the invention in that it comprises a heating surface segment through which the flow medium flows in countercurrent to the heating gas channel, the outlet of which on the side of the flow medium is positioned such that the pressure-dependent saturated steam temperature that occurs at the outlet of the evaporator once-through heating surface during operation deviates less than a predetermined maximum deviation from the heating gas temperature prevailing at the position of the outlet of the heating surface segment in the operating case.
  • the invention is based on the consideration that when the evaporator flow heating surface is fed with comparatively large mass flow densities, locally different heating of individual pipes could influence the flow conditions in such a way that more heated pipes are flowed through by less and less heated pipes by more flow medium.
  • multi-heated pipes would be cooled less well than lower-heated pipes, so that the temperature differences that occurred would be amplified automatically.
  • the system should be suitably designed for a general and global limitation of possible temperature differences.
  • the knowledge that the flow medium at the outlet from the evaporator continuous heating surface must have at least the saturated steam temperature essentially given by the pressure in the steam generator tube can be used for this purpose.
  • the flow medium can, however, have a maximum of the temperature that the heating gas exits the flow medium from the evaporator.
  • the maximum possible temperature imbalances can thus be suitably limited by a suitable coordination of these two limit temperatures that limit the possible temperature interval at all.
  • a suitable coordination of these two limit temperatures that limit the possible temperature interval at all.
  • the positioning of the outlet of the evaporator once-through heating surface in relation to the temperature profile of the heating gas in the gas flue is advantageously selected such that a maximum deviation of approximately 50 ° C. is maintained, so that a particularly high level of operational safety is ensured with regard to available materials and further design parameters is.
  • a particularly simple and thus also robust construction can be achieved by making the heating surface particularly simple, particularly with regard to the collection and distribution of the flow medium.
  • the heating surface is designed to carry out all process stages of complete evaporation, that is to say preheating, evaporation and at least partial overheating, in only one stage, that is to say without intermediate components for collecting and / or distributing the flow medium ,
  • a number of the damper pipes each include a plurality of riser pipe sections and down pipe sections alternately connected in series on the flow medium side.
  • Heating takes place in both the riser and downpipe sections.
  • a circuit of the steam generator tubes in which there is also heating of tube sections through which downward flow takes place, bears a fundamental risk of the occurrence of flow instabilities.
  • one of these possible causes can be seen to be the occurrence of steam bubbles in steam generator tubes with a downward flow. If If steam bubbles should form in a steam generator tube with a downward flow, these could rise in the water column located in the steam generator tube and thus perform a movement against the direction of flow of the flow medium.
  • a suitable specification of the operating parameters should ensure that the steam bubbles are entrained in the actual flow direction of the flow medium. This can be achieved by feeding the evaporator continuous heating surface in such a way that the flow velocity of the flow medium in the steam generator tubes has the desired entrainment effect on the steam which may be present.
  • a comparatively high flow rate even in the first steam generator tube through which flow flows downward can be achieved in a particularly simple manner by a comparatively strong heating of the steam generator tubes at the inlet on the flow medium side and the resulting rapid increase in the steam content in the flow medium.
  • the inlet of the evaporator flow heating surface on the flow medium side is advantageously designed as a riser pipe section and is arranged so close to the inlet of the evaporator flow heating surface on the hot gas side that during operation the flow medium flowing through the steam generator pipes has a flow rate of more than one at the entry of the first down pipe section predetermined minimum speed.
  • the first riser and downpipe pieces preferably form a further heating surface segment arranged in a DC circuit, hereinafter also referred to as a DC segment, which is advantageously connected upstream of the heating medium segment arranged in a counterflow circuit, hereinafter also referred to as a countercurrent segment.
  • a DC segment which is advantageously connected upstream of the heating medium segment arranged in a counterflow circuit, hereinafter also referred to as a countercurrent segment.
  • the further heating surface segment can also be connected in countercurrent to the heating gas direction.
  • the steam generator is expediently used as a waste heat steam generator in a gas and steam turbine plant.
  • the steam generator is advantageously connected downstream of a gas turbine on the hot gas side. In this circuit, additional firing for increasing the heating gas temperature can expediently be arranged behind the gas turbine.
  • the stated object is achieved in that the flow medium, viewed in the direction of the heating gas, is discharged from the evaporator flow-through heating surface at a position at which the heating gas temperature prevailing in operation is less than a predetermined maximum deviation from that in operation due to the pressure loss in the evaporator - Continuous heating surface deviates from saturated steam temperature.
  • the flow medium is guided in countercurrent to the heating gas before it emerges from the evaporator once-through heating surface, with a dimensional deviation of approximately 50 ° C. being specified in an additional or alternative advantageous embodiment.
  • the flow medium is advantageously already subjected to such a strong heating upon or immediately after entering the evaporator once-through heating surface that there is a flow velocity in a first piece of downpipe of the respective steam generator tube of more than a predetermined minimum speed.
  • the minimum speed generated for taking along in the respective first downpipe piece Vapor bubbles required flow rate specified.
  • the evaporator continuous heating surface is thus supplied in such a way that the comparatively high flow velocity already in the first steam generator tube through which it flows down causes the desired entrainment effect on the steam bubbles which may be present. Flow instabilities due to a movement of rising vapor bubbles against the flow direction of the flow medium can thus be reliably avoided.
  • the positioning of the outlet of the evaporator flow heating surface on the flow medium side, adapted to the temperature profile of the heating gas in the gas flue provides the total temperature interval between the saturated steam temperature of the flow medium and the heating gas temperature that can be achieved during the evaporation of the flow medium the outlet point is comparatively narrowly defined, so that only small outlet-side temperature differences are possible regardless of the flow conditions. This ensures a sufficient adjustment of the temperatures of the flow medium in every operating state. In addition, however, it is also ensured that the possible outlet temperatures are limited in terms of their absolute level, so that the permissible limit temperatures specified by the material properties remain safely below.
  • FIG shows a simplified representation in longitudinal section of a continuous steam generator in a horizontal construction.
  • the continuous steam generator 1 according to the FIG is connected in the manner of a heat recovery steam generator downstream of a gas turbine, not shown.
  • the continuous steam generator 1 has a surrounding wall 2 which forms a heating gas channel 6 for the exhaust gas from the gas turbine, through which the heating gas direction x can flow, in an approximately horizontal direction indicated by the arrows 4.
  • a number of heating surfaces designed according to the continuous flow principle also referred to as evaporator continuous heating surface 8 is arranged.
  • Only one evaporator continuous heating surface 8 is shown, but a larger number of evaporator continuous heating surfaces can also be provided.
  • the evaporator system formed from the evaporator once-through heating surface 8 can be acted upon with flow medium W, which evaporates in a single pass through the evaporator once-through heating surface 8 and is discharged as steam D after exiting the evaporator once-through heating surface 8 and is usually supplied to further superheating heating surfaces.
  • the evaporator system formed from the evaporator continuous heating surface 8 is connected to the water-steam circuit of a steam turbine, not shown in any more detail.
  • a number of further heating surfaces are connected in the water-steam circuit of the steam turbine.
  • the heating surfaces can be, for example, superheaters, medium pressure evaporators, low pressure evaporators and / or preheaters.
  • the evaporator once-through heating surface 8 of the once-through steam generator 1 comprises, in the manner of a tube bundle, a plurality of steam generator tubes 12 connected in parallel to the flow through the flow medium W, in each case a plurality of steam generator tubes 12 are arranged next to one another as seen in the heating gas direction x. In this case, only one of the steam generator tubes 12 arranged next to one another is in each case visible.
  • the steam generator tubes 12, which are arranged next to one another in this way, are each followed by a common inlet header 14 upstream and after their outlet 16 from the heating gas channel 6, a common outlet header 18, downstream of their entry 13 into the heating gas channel 6.
  • Steam generator tubes 12 comprise a number of riser pipe sections 20 through which the flow medium W flows in the upward direction and downflow pipe sections 22 through which the flow flows in the downward direction, each of which is connected to one another by overflow pieces 24 through which flow flows in the horizontal direction.
  • the continuous steam generator 1 is designed for particularly high operational safety and for the consistent suppression of significant temperature differences at the outlet 16 between adjacent steam generator pipes 12, also referred to as temperature imbalance, even when fed with comparatively high mass flow densities.
  • the evaporator continuous heating surface 8 comprises a heating surface segment 26 in its rear region, as seen on the flow medium side, which is connected in counterflow to the heating gas direction x.
  • a number of riser pipe pieces 20 and downpipe pieces 22, each connected by overflow pieces 24, also form a further heating surface segment 28 connected in direct current to the heating gas direction x, which is connected upstream of the heating surface segment 26. With this circuit, the positioning of the outlet 16 in the heating gas direction x can be selected.
  • This positioning is selected in the continuous steam generator 1 in such a way that the pressure-dependent saturated steam temperature of the flow medium W which arises in the evaporator continuous heating surface 8 by less than a predetermined maximum deviation of approximately 50 ° C. from that in the operating case at the position or at the height of the outlet 16 of the heating surface segment 26 prevailing heating gas temperature. Since the temperature of the flow medium W at the outlet 16 must always be at least equal to the saturated steam temperature, but on the other hand cannot be higher than the heating gas temperature prevailing at this point, the possible temperatures temperature differences between differently heated pipes are limited to the specified maximum deviation of about 50 ° C without any further countermeasures.
  • the heating surface segment 28 which is arranged far ahead in the heating gas channel 6 in the heating gas direction 6, is thus followed by the heating surface segment 26 and the downpipe pieces 20 and downpipe sections 22, which are also connected to one another by overflow pieces 24 and flow through in countercurrent to the heating gas direction x and on the flow medium side.
  • a particularly simple and thus also robust construction of the once-through steam generator 1 can be achieved by making the evaporator once-through heating surface 8 particularly simple, particularly with regard to the collection and distribution of the flow medium W, and without additional components such as, for example, unheated collecting lines.
  • the steam generator tubes 12 each comprise a plurality of alternately connected in series on the flow medium side Riser pipe pieces 20 and downpipe pieces 22 which are laid within the heating gas channel 6, that is to say are exposed to heating by the heating gas.
  • the inlet 13 is arranged at the gas-side inlet of the evaporator continuous heating surface 8, that is to say in the heating gas direction x far forward in the heating gas channel 6.
  • the arrangement of the inlet 13 in the area of the heating gas channel 6, in which the heating gas has the highest temperature, results in very rapid heating and thus also evaporation of the flow medium W in the steam generator tubes 12. Since the flow rate of a water-steam mixture with the same mass throughput is higher, the greater the proportion of steam and thus the specific volume of the mixture, the flow medium W reaches a high flow rate comparatively quickly with this arrangement of the inlet header 14.
  • this value is at least as high as the speed required for entraining vapor bubbles swept along with the current and an ascent against the current direction safely prevented.
  • the positioning of the inlet 13 at the inlet on the hot gas side and the resulting high velocity of the flow medium W already in the first downpipe section 22 ensure the desired entrainment effect for vapor bubbles which are formed, while at the same time requiring little construction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Ein Durchlaufdampferzeuger (1), bei dem in einem in einer annähernd horizontalen Heizgasrichtung (x) durchströmbaren Heizgaskanal (6) eine Verdampfer-Durchlaufheizfläche (8) angeordnet ist, die eine Anzahl von zur Durchströmung eines Strömungsmediums (W) parallel geschalteten Dampferzeugerrohren (12) umfasst, soll bei besonders geringem konstruktiven Aufwand ein hohes Maß an betrieblicher Sicherheit sowie eine hohe Effizienz aufweisen. Dazu umfasst die Verdampfer-Durchlaufheizfläche (8) erfindungsgemäß ein vom Strömungsmedium (W) im Gegenstrom zum Heizgaskanal (6) durchströmbares Heizflächensegment (26) umfasst, dessen strömungsmediumseitiger Austritt (16) in Heizgasrichtung (x) gesehen derart positioniert ist, dass die sich im Betriebsfall am Austritt der Verdampfer-Durchlaufheizfläche (8) einstellende Sattdampftemperatur um weniger als eine vorgegebene Maximalabweichung von der im Betriebsfall an der Position des Austritts (16) des Heizflächensegments herrschenden Heizgastemperatur abweicht. Dazu ist bzw. sind der oder die Eintrittssammler (14) derart nah am gasseitigen Eintritt der Verdampfer-Durchlaufheizfläche (8) angeordnet, dass das Strömungsmedium (W) im ersten Fallrohrstück (22) eine Strömungsgeschwindigkeit von mehr als der zur Mitnahme entstehender Dampfblasen erforderlichen Mindestgeschwindigkeit aufweist.

Description

Beschreibung
Durchlaufdampferzeuger in liegender Bauweise und Verfahren zum Betreiben des Durchlaufdampferzeugers
Die Erfindung betrifft einen Durchlaufdampferzeuger, bei dem in einem in einer annähernd horizontalen Heizgasrichtung durchströmbarem Heizgaskanal eine Verdampfer-Durchlaufheizfläche angeordnet ist, die eine Anzahl von zur Durchströmung eines Strömungsmediums parallel geschalteten Dampfe zeuger- rohren umfasst.
Bei einer Gas- und Dampfturbinenanlage wird die im entspannten Arbeitsmittel oder Heizgas aus der Gasturbine enthaltene Wärme zur Erzeugung von Dampf für die Dampfturbine genutzt. Die Wärmeübertragung erfolgt in einem der Gasturbine nachgeschalteten Abhitzedampferzeuger, in dem üblicherweise eine Anzahl von Heizflächen zur Wasservorwär ung, zur DampferZeugung und zur Dampfüberhitzung angeordnet sind. Die Heizflä- chen sind in den Wasser-Dampf-Kreislauf der Dampfturbine geschaltet. Der Wasser-Dampf-Kreislauf umfasst üblicherweise mehrere, z. B. drei, Druckstufen, wobei jede Druckstufe eine Verdampferheizfläche aufweisen kann.
Für den der Gasturbine als Abhitzedampferzeuger heizgasseitig nachgeschalteten Dampferzeuger kommen mehrere alternative Auslegungskonzepte, nämlich die Auslegung als Durchlaufdampferzeuger oder die Auslegung als Umlaufdampferzeuger, in Betracht. Bei einem Durchlaufdampferzeuger führt die Beheizung von als Verdampferrohren vorgesehenen Dampferzeugerrohren zu einer Verdampfung des Strömungsmediums in den Dampferzeugerrohren in einem einmaligen Durchlauf. Im Gegensatz dazu wird bei einem Natur- oder Zwangumlaufdampferzeuger das im Umlauf geführte Wasser bei einem Durchlauf durch die Verdampferröhre nur teilweise verdampft. Das dabei nicht verdampfte Wasser wird nach einer Abtrennung des erzeugten Dampfes für eine weitere Verdampfung den selben Verdampferrohren erneut zugeführt.
Ein Durchlaufdampferzeuger unterliegt im Gegensatz zu einem Natur- oder Zwangumlaufdampferzeuger keiner Druckbegrenzung, so dass Frischdampfdrücke weit über dem kritischen Druck von Wasser (Pκri « 221 bar) - wo es nur noch geringe Dichteunterschiede gibt zwischen flüssigkeitsähnlichem und dampfähnlichem Medium - möglich sind. Ein hoher Frischdampfdruck begün- s"tigt einen hohen thermischen Wirkungsgrad und somit niedrige C02-Emissionen eines fossilbeheizten Kraftwerks. Zudem weist ein Durchlaufdampferzeuger im Vergleich zu einem Umlaufdampf- exzeuger eine einfache Bauweise auf und ist somit mit besonders geringem Aufwand herstellbar. Die Verwendung eines nach dem Durchlaufprinzip ausgelegten Dampferzeugers als Abhitzedampferzeuger einer Gas- und Dampfturbinenanlage ist daher zur Erzielung eines hohen Gesamtwirkungsgrades der Gas- und Dampfturbinenanlage bei einfacher Bauweise besonders günstig.
Besondere Vorteile hinsichtlich des Herstellungsaufwands, aber auch hinsichtlich erforderlicher Wartungsarbeiten, bietet ein Abhitzedampferzeuger in liegender Bauweise, bei dem das beheizende Medium oder Heizgas, also das Abgas aus der Gasturbine, in annähernd horizontaler Strömungsrichtung durch den Dampferzeuger geführt ist. Bei einem Durchlaufdampferzeuger in liegender Bauweise können die Dampferzeugerrohre einer Heizfläche jedoch je nach ihrer Positionierung einer stark unterschiedlichen Beheizung ausgesetzt sein. Insbesondere bei ansgangsseitig mit einem gemeinsamen Sammler verbundenen Daitipferzeugerrohren kann eine unterschiedliche Beheizung einzelner Dampferzeugerrohre zu einer Zusammenführung von Dampfströmen mit stark voneinander abweichenden Dampfparametern und somit zu unerwünschten Wirkungsgradverlusten, insbesondere zu einer vergleichsweise verringerten Effektivität der be- troffenen Heizfläche und einer dadurch reduzierten Dampfer- zeυgung, führen. Eine unterschiedliche Beheizung benachbarter Dampferzeugerrohre kann zudem, insbesondere im Einmündungsbe- reich von Sammlern, zu Schäden an den Dampferzeugerrohren oder dem Sammler führen. Die an sich wünschenswerte Verwendung eines in liegender Bauweise ausgeführten Durchlaufdampferzeugers als Abhitzedampferzeuger für eine Gasturbine kann somit erhebliche Probleme hinsichtlich einer ausreichend stabilisierten Strömungsführung mit sich bringen.
Aus der EP 0 944 801 Bl ist ein Dampferzeuger bekannt, der für eine Auslegung in liegender Bauweise geeignet ist und zu- dem die genannten Vorteile eines Durchlaufdampferzeugers aufweist. Dazu ist der bekannte Dampferzeuger hinsichtlich seiner Verdampfer-Durchlaufheizfläche derart ausgelegt, dass ein im Vergleich zu einem weiteren Dampferzeugerrohr derselben Verdampfer-Durchlaufheizfläche mehrbeheiztes Dampferzeuger- röhr einen im Vergleich zum weiteren Dampferzeugerrohr höheren Durchsatz des Strömungsmediums aufweist. Die Verdampfer- Durchlaufheizfläche des bekannten Dampferzeugers zeigt somit in der Art der Strömungscharakteristik einer Naturumlaufverdampferheizfläche (Naturumlaufcharakteristik) bei auftreten- der unterschiedlicher Beheizung einzelner Dampferzeugerrohre ein selbststabilisierendes Verhalten, das ohne das Erfordernis äußerer Einflussnahme zu einer Angleichung der austritts- seitigen Temperaturen auch an unterschiedlich beheizten, strömungsmediumseitig parallel geschalteten Dampferzeugerroh- ren führt. Allerdings bedingt dieses Auslegungskonzept, dass der bekannte Dampferzeuger für eine Bespeisung mit Strömungsmedium mit vergleichsweise geringer Massenstromdichte vorgesehen ist.
Der Erfindung liegt daher die Aufgabe zugrunde, einen Durchlaufdampferzeuger der oben genannten Art anzugeben, der auch bei einer Bespeisung mit Strömungsmedium mit vergleichsweise großen Massenstromdichten eine besonders hohe betriebliche Sicherheit gewährleistet. Des Weiteren soll ein besonders ge- eignetes Verfahren zum Betreiben des Dampferzeugers der oben genannten Art angegeben werden. Bezüglich des Durchlaufdampferzeugers wird diese Aufgabe erfindungsgemäß gelöst, indem die ein vom Strömungsmedium im Gegenstrom zum Heizgaskanal durchströmbares Heizflächenseg- rαent umfasst, dessen Strömungsmediumseitiger Austritt in Heizgasrichtung gesehen derart positioniert ist, dass die sich im Betriebsfall am Austritt der Verdampfer-Durchlaufheizfläche einstellende, druckabhängige Sattdampftemperatur um weniger als eine vorgegebene Maximalabweichung von der im Betriebsfall an der Position des Austritts des Heizflächen- segments herrschenden Heizgastemperatur abweicht.
Die Erfindung geht dabei von der Überlegung aus, dass bei der Bespeisung der Verdampfer-Durchlaufheizfläche mit vergleichsweise großen Massenstromdichten eine lokal unterschiedliche Beheizung einzelner Rohre die Strömungsverhältnisse derart beeinflussen könnte, dass mehrbeheizte Rohre von weniger und weniger beheizte Rohre von mehr Strömungsmedium durchströmt werden. Mehrbeheizte Rohre würden in diesem Fall schlechter gekühlt als minderbeheizte Rohre, so dass die auftretenden Temperaturdifferenzen selbsttätig verstärkt würden. Um diesem Fall auch ohne aktive Beeinflussung der Strömungsverhältnisse wirksam begegnen zu können, sollte das System für eine grundsätzliche und globale Begrenzung möglicher Temperaturunterschiede geeignet ausgelegt sein. Dazu ist die Erkenntnis nutzbar, dass am Austritt aus der Verdampfer-Durchlaufheizfläche das Strömungsmedium zumindest die im Wesentlichen durch den Druck im Dampferzeugerrohr gegebene Sattdampftemperatur aufweisen muss. Andererseits kann das Strömungsmedium aber maximal die Temperatur aufweisen, die das Heizgas an der Austrittsstelle des Strömungsmediums aus der Verdampfer-
Du chlaufheizflache hat. Durch eine geeignete Abstimmung dieser beiden das mögliche Temperaturintervall überhaupt eingrenzenden Grenztemperaturen aufeinander können somit auch die maximal möglichen Temperaturschieflagen geeignet begrenzt we-trden. Durch die Aufteilung der Verdampfer-Durchlaufheizfläche in ein austrittsseitiges Gegenstromsegment und ein diesem heizgas- und medienseitig vorgeschaltetes weiteres Segment ist der Austritt in Heizgasrichtung frei positionierbar, so dass ein zusätzlicher Auslegungsparameter verfügbar ist. Ein besonders geeignetes Mittel zur Abstimmung der beiden Grenztemperaturen aufeinander ist dabei die gezielte Positionie- rung des Austritts der Verdampfer-Durchlaufheizfläche in Strömungsrichtung des Heizgases gesehen.
Vorteilhafterweise ist die Positionierung des Austritts der Verdampfer-Durchlaufheizfläche in Relation zum Temperaturpro- fil des Heizgases im Gaszug derart gewählt, dass eine Maximalabweichung von etwa 50 °C eingehalten ist, so dass im Hinblick auf verfügbare Materialien und weitere Auslegungsparameter eine besonders hohe betriebliche Sicherheit gewährleistet ist.
Eine besonders einfache und somit auch robuste Bauweise ist erreichbar, indem die Heizfläche besonders im Hinblick auf Sammlung und Verteilung des Strömungsmediums besonders einfach ausgeführt ist. Dabei ist die Heizfläche für die Durch- führung von allen Prozessabschnitten der vollständigen Verdampfung, also von Vorwärmung, Verdampfung und zumindest teilweiser Überhitzung, in lediglich einer einzigen Stufe, also ohne zwischen geschaltete Komponenten zum Sammeln und/oder Verteilen des Strömungsmediums, geeignet ausgebil- det. Vorteilhafterweise umfasst daher eine Anzahl der Damperzeugerrohre jeweils eine Mehrzahl von strömungsmediumsei- tig alternierend hintereinandergeschalteten Steigrohrstücken und Fallrohrstücken.
Eine Beheizung findet dabei sowohl in den Steigrohr- als auch in den Fallrohrstücken statt. Eine solche Schaltung der Dampferzeugerrohre, bei der auch eine Beheizung von abwärts durchströmten Rohrstücken stattfindet, birgt jedoch grundsätzlich ein Risiko für das Auftreten von Strömungsinstabili- täten. Wie sich herausgestellt hat, kann als eine dieser möglichen Ursachen ein Auftreten von Dampfblasen in abwärts durchströmten Dampferzeugerrohren angesehen werden. Falls sich nämlich in einem abwärts durchströmten Dampferzeugerrohr Dampfblasen bilden sollten, so könnten diese in der sich im Dampferzeugerrohr befindlichen Wassersäule aufsteigen und somit eine Bewegung entgegen der Strömungsrichtung des Strö- mungsmediums vollführen. Um eine derartige, der Strömungsrichtung des Strömungsmediums entgegen gerichtete Bewegung von möglicherweise vorhandenen Dampfblasen konsequent zu unterbinden, sollte durch eine geeignete Vorgabe der Betriebsparameter eine erzwungene Mitnahme der Dampfblasen in der ei- gentlichen Strömungsrichtung des Strömungsmediums sichergestellt werden. Dies ist erreichbar, indem die Bespeisung der Verdampfer-Durchlaufheizfläche derart erfolgt, dass die Strömungsgeschwindigkeit des Strömungsmediums in den Dampferzeugerrohren den gewünschten Mitnahmeeffekt auf die möglicher- weise vorhandenen Dampf lasen bewirkt. Eine vergleichsweise hohe Strömungsgeschwindigkeit schon im ersten abwärts durchströmten Dampferzeugerrohr lässt sich auf besonders einfache Weise durch eine vergleichsweise starke Beheizung der Dampferzeugerrohre am strömungsmediumseitigen Eintritt und die da- durch bedingte rasche Erhöhung des Dampfgehaltes im Strömungsmedium erzielen. Dazu ist vorteilhafterweise der strö- mungsmediumseitige Eintritt der Verdampfer-Durchlaufheizfläche als Steigrohrstück ausgeführt und derart nah am heizgas- seitigen Eintritt der Verdampfer-Durchlaufheizfläche angeord- net, dass im Betriebsfall das die Dampferzeugerrohre durchströmende Strömungsmedium am Eintritt des ersten Fallrohrstücks eine Strömungsgeschwindigkeit von mehr als einer vorgegebenen Mindestgeschwindigkeit aufweist.
Die ersten Steigrohr- und Fallrohrstücke bilden vorzugsweise ein in Gleichstromschaltung angeordnetes weiteres Heizflächensegment, im Folgenden auch Gleichstromsegment genannt, das vorteilhafterweise dem in Gegenstromschaltung angeordneten Heizflächensegment, im Folgenden auch Gegenstromsegment genannt, strömungsmediumseitig vorgeschaltet ist. Durch eine solche Anordnung der Segmente im Heizgaskanal wird weitgehend der Vorteil einer reinen Gegenstromschaltung erhalten, die Wärme des Abgases effektiv auf das Strömungsmedium zu übertragen, und gleichzeitig eine hohe, inhärente Sicherheit gegen schädliche Temperaturdifferenzen am strömungsmediumseiti- gen Austritt erzielt.
In alternativer vorteilhafter Ausgestaltung kann das weitere Heizflächensegment aber auch im Gegenstrom zur Heizgasrichtung geschaltet sein.
Zweckmäßigerweise wird der Dampferzeuger als Abhitzedampferzeuger einer Gas- und Dampfturbinenanlage verwendet. Dabei ist der Dampferzeuger vorteilhafterweise heizgasseitig einer Gasturbine nachgeschaltet. Bei dieser Schaltung kann zweckmäßigerweise hinter der Gasturbine eine Zusatzfeuerung zur Er- höhung der Heizgastemperatur angeordnet sein.
Bezüglich des Verfahrens wird die genannte Aufgabe gelöst, indem das Strömungsmedium in Heizgasrichtung gesehen an einer Position aus der Verdampfer-Durchlaufheizfläche abgeführt wird, an der die im Betriebsfall herrschende Heizgastemperatur um weniger als eine vorgegebene Maximalabweichung von der sich im Betriebsfall infolge des Druckverlusts in der Verdampfer-Durchlaufheizfläche einstellenden Sattdampftemperatur abweicht.
Vorteilhafterweise wird das Strömungsmedium vor seinem Austritt aus der Verdampfer-Durchlaufheizfläche im Gegenstrom zum Heizgas geführt, wobei in zusätzlicher oder alternativer vorteilhafter Ausgestaltung eine Ma imalabweichung von etwa 50 °C vorgegeben wird.
Um die Entstehung möglicher Strömungsinstabilitäten konsequent zu unterbinden, wird das Strömungsmedium vorteilhafterweise bereits beim oder unmittelbar nach dem Eintritt in die Verdampfer-Durchlaufheizfläche einer derartig starken Beheizung ausgesetzt, dass es in einem ersten Fallrohrstück des j eweiligen Dampf erzeugerrohres eine Strömungsgeschwindigkeit von mehr als einer vorgegebenen Mindestgeschwindigkeit aufweist.
Vorteilhafterweise wird dabei als Mindestgeschwindigkeit die zur Mitnahme von im jeweiligen ersten Fallrohrstück erzeugten. Dampfblasen erforderliche Strömungsgeschwindigkeit vorgegeben. Die Bespeisung der Verdampfer-Durchlaufheizfläche erfolgt somit derart, dass die vergleichsweise hohe Strömungsgeschwindigkeit schon im ersten abwärts durchströmten Dampf- erzeugerrohr den gewünschten Mitnahmeeffekt auf die möglicherweise vorhandenen Dampfblasen bewirkt. Strömungsinstabilitäten aufgrund einer Bewegung von aufsteigenden Dampfblasen entgegen der Strömungsrichtung des Strömungsmediums können somit sicher vermieden werden.
Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, dass durch die nunmehr vorgesehene, an das Temperaturprofil des Heizgases im Gaszug angepasste Positionierung des strömungsmediumseitigen Austritts der Verdampfer-Durch- laufheizflache das insgesamt bei der Verdampfung des Strömungsmediums erreichbare Temperaturintervall zwischen Sattdampftemperatur des Strömungsmediums und Heizgastemperatur an der Austrittsstelle vergleichsweise eng eingegrenzt wird, so dass unabhängig von den Strömungsverhältnissen nur geringe austrittsseitige Temperaturdifferenzen möglich sind. Dadurch kann eine ausreichende Angleichung der Temperaturen des Strömungsmediums in jedem Betriebszustand sichergestellt werden. Darüber hinaus ist aber auch sichergestellt, dass die möglichen Austrittstemperaturen in ihrer absoluten Höhe begrenzt sind, so dass die durch die Materialeigenschaften vorgegebenen zulässigen Grenztemperaturen sicher unterschritten bleiben.
Ein Ausführungsbeispiel der Erfindung wird anhand einer Zeichnung näher erläutert. Darin zeigt die FIG in vereinfachter Darstellung im Längsschnitt einen Durchlaufdampferzeuger in liegender Bauweise. Der Durchlaufdampferzeuger 1 gemäß der FIG ist in der Art eines Abhitzedampferzeugers einer nicht näher dargestellten Gasturbine abgasseitig nachgeschaltet. Der Durchlaufdampfer- zeuger 1 weist eine Umfassungswand 2 auf, die einen in einer annähernd horizontalen, durch die Pfeile 4 angedeuteten Heizgasrichtung x durchströmbaren Heizgaskanal 6 für das Abgas aus der Gasturbine bildet. Im Heizgaskanal 6 ist jeweils eine Anzahl von nach dem Durchlaufprinzip ausgelegten Heizflächen, auch als Verdampfer-Durchlaufheizfläche 8 bezeichnet, angeordnet. Im Ausführungsbeispiel gemäß der FIG ist lediglich eine Verdampfer-Durchlaufheizfläche 8 gezeigt, es kann aber auch eine größere Anzahl von Verdampfer-Durchlaufheizflächen vorgesehen sein.
Das aus der Verdampfer-Durchlaufheizfläche 8 gebildete Verdampfersystem ist mit Strömungsmedium W beaufschlagbar, das bei einmaligem Durchlauf durch die Verdampfer-Durchlaufheizfläche 8 verdampft und nach dem Austritt aus der Verdampfer- Durchlaufheiz fläche 8 als Dampf D abgeführt und üblicherweise zur weiteren Überhitzung Überhitzerheizflächen zugeführt wird. Das aus der Verdampfer-Durchlaufheizfläche 8 gebildete Verdampfersystem ist in den nicht näher dargestellten Wasser- Dampf-Kreislauf einer Dampfturbine geschaltet . Zusätzlich zu dem Verdampfersystem sind in den Wasser-Dampf-Kreislauf der Dampfturbine eine Anzahl weiterer, in der FIG nicht näher dargestellter Heizflächen geschaltet . Bei den Heizflächen kann es sich beispielsweise um Überhitzer, Mitteldruckverdampfer, Niederdruckverdampfer und/oder um Vorwärmer handeln.
Die Verdampfer-Durchlaufheizfläche 8 des Durchlaufdampferzeugers 1 nach der FIG umfasst in der Art eines Rohrbündels eine Mehrzahl von zur Durchströmung des Strömungsmediums W parallel geschalteten Dampferzeugerrohren 12. Dabei ist jeweils eine Mehrzahl von Dampferzeugerrohren 12 in Heizgasrichtung x gesehen nebeneinander angeordnet. Dabei ist jeweils lediglich eines der so nebeneinander angeordneten Dampferzeugerrohre 12 sichtbar. Den so nebeneinander angeordneten Dampferzeugerrohren 12 ist dabei strömungsmediumseitig vor ihrem Eintritt 13 in den Heizgaskanal 6 jeweils ein gemeinsamer Eintrittssammler 14 vor- und nach ihrem Austritt 16 aus dem Heizgaskanal 6 ein gemeinsamer Austrittssammler 18 nachgeschaltet. Die
Dampferzeugerrohre 12 umfassen eine Anzahl von vom Strömungsmedium W in Aufwärtsrichtung durchströmten Steigrohrstücken 20 und in Abwärtsrichtung durchströmten Fallrohrstücken 22, die jeweils durch in waagerechter Richtung durchströmte Über- strömstücke 24 miteinander verbunden sind.
Der Durchlaufdampferzeuger 1 ist für eine besonders hohe betriebliche Sicherheit und zur konsequenten Unterdrückung von auch als Temperaturschieflage bezeichneten signifikanten Tem- peraturunterschieden am Austritt 16 zwischen benachbarten Dampferzeugerrohren 12 selbst bei einer Bespeisung mit vergleichsweise hohen Massenstro dichten ausgelegt. Dazu umfasst die Verdampfer-Durchlaufheizfläche 8 in ihrem strömungsmediumseitig gesehen hinteren Bereich ein Heizflächensegment 26, das im Gegenstrom zur Heizgasrichtung x geschaltet ist. Eine Anzahl von jeweils durch Überströmstücke 24 miteinander verbundenen Steigrohrstücken 20 und Fallrohrstücken 22 bilden zudem ein weiteres, im Gleichstrom zur Heizgasrichtung x geschaltetes Heizflächensegment 28, das dem Heizflächensegment 26 vorgeschaltet ist. Durch diese Schaltung ist die Positionierung des Austritts 16 in Heizgasrichtung x gesehen wählbar. Diese Positionierung ist beim Durchlaufdampferzeuger 1 derart gewählt, dass die sich im Betriebsfall in der Verdampfer-Durchlaufheizfläche 8 einstellende druckabhängige Satt- dampftemperatur des Strömungsmediums W um weniger als eine vorgegebene Maximalabweichung von etwa 50 °C von der im Betriebsfall an der Position oder auf der Höhe des Austritts 16 des Heizflächensegments 26 herrschenden Heizgastemperatur abweicht. Da die Temperatur des Strömungsmediums W am Austritt 16 immer mindestens gleich der Sattdampftemperatur sein muss, andererseits aber nicht höher als die an dieser Stelle herrschende Heizgastemperatur sein kann, sind die möglichen Tem- peraturdifferenzen zwischen unterschiedlich beheizten Rohren auch ohne weitere Gegenmaßnahmen auf die vorgegebene Maximalabweichung von etwa 50 °C begrenzt.
Dem in Heizgasrichtung x weit vorn im Heizgaskanal 6 angeordneten weiteren Heizflächensegment 28 ist somit heizgasseitig und strömungsmediumseitig das ebenfalls von einer Anzahl von jeweils durch Überströmstücke 24 miteinander verbundenen, im Gegenstrom zur Heizgasrichtung x durchströmten Steigrohrstü- cken 20 und Fallrohrstücken 22 gebildete Heizflächensegment 26 nachgeschaltet.
Eine Anordnung von in Abwärtsrichtung durchströmten Rohrstücken wie den Fallrohrstücken 22 innerhalb des Heizgaskanals 6 ist grundsätzlich nur dann möglich, wenn durch geeignete Maßnahmen die Stabilität der Strömung innerhalb der Dampferzeugerrohre 12 sichergestellt wird. Eine Beheizung von in Abwärtsrichtung durchströmten Rohrstücken kann nämlich im Allgemeinen zur Bildung von Dampfblasen im Strömungsmedium W führen, die, wenn sie aufgrund ihres geringen spezifischen
Gewichtes entgegen der Strömungsrichtung des Strömungsmediums W aufsteigen, die Stabilität der Strömung und somit die betriebliche Sicherheit des Durchlaufdampferzeugers 1 beeinträchtigen könnten. Andererseits ist eine Schaltung der Dampferzeugerrohre 12, bei der lediglich eine Beheizung der in Aufwärtsrichtung durchströmten Rohrstücke, also der Steigrohrstücke 20, stattfindet, mit einem hohen konstruktiven Aufwand verbunden.
Eine besonders einfache und somit auch robuste Bauweise des Durchlaufdampferzeugers 1 ist erreichbar, indem die Verdampfer-Durchlaufheizfläche 8 besonders im Hinblick auf Sammlung und Verteilung des Strömungsmediums W besonders einfach ausgeführt ist und auf zusätzliche Komponenten wie beispielswei- se unbeheizte Sammelleitungen verzichtet wird. Stattdessen umfassen die Dampferzeugerrohre 12 jeweils eine Mehrzahl von strömungsmediumseitig alternierend hintereinandergeschalteten Steigrohrstücken 20 und Fallrohrstücken 22, die innerhalb des Heizgaskanals 6 verlegt, also einer Beheizung durch das Heizgas ausgesetzt sind.
Der Eintritt 13 ist am gasseitigen Eintritt der Verdampfer- Durchlaufheizfläche 8, also in Heizgasrichtung x weit vorne im Heizgaskanal 6, angeordnet. Durch die Anordnung des Eintritts 13 in dem Bereich des Heizgaskanals 6, in dem das Heizgas die höchste Temperatur aufweist, wird eine sehr ra- sehe Aufheizung und somit auch Verdampfung des Strömungsmediums W in den Dampferzeugerrohren 12 erzielt. Da die Strömungsgeschwindigkeit eines Wasser-Dampf-Gemisches bei gleichem Massendurchsatz umso höher ist, je größer der Dampfan- teil und damit das spezifische Volumen des Gemisches ist, er- reicht das Strömungsmedium W bei dieser Anordnung des Eintrittssammlers 14 vergleichsweise schnell eine hohe Strömungsgeschwindigkeit .
Diese ist besonders günstig, um die Stabilität der in den Dampferzeugerrohren 12 stattfindenden Strömung zu gewährleisten. Ein wichtiger, die Stabilität der Strömung in entscheidendem Maße beeinträchtigender Faktor ist nämlich das Auftreten von Dampfblasen in den Dampferzeugerrohren 12. Aufgrund ihres niedrigen spezifischen Gewichtes können in den Dampfer- zeugerrohren 12 sich bildende Dampfblasen nach oben aufsteigen und damit in den abwärts durchströmten Fallrohrstücken 22 eine Bewegung entgegen der Strömungsrichtung vollführen. Da eine solche Bewegung die Stabilität der Strömung entscheidend beeinträchtigen würde, muss das Aufsteigen sich bildender Dampfblasen in den Dampferzeugerrohren 12 konsequent verhindert werden. Ein wichtiges Kriterium für die Stabilität der Strömung ist die Strömungsgeschwindigkeit des Strömungsmediums W. Weist sie bereits im ersten abwärts durchströmten Rohrstück, also im ersten Fallrohrstück 22, einen Wert auf, der mindestens so hoch ist wie die zur Mitnahme von Dampfblasen erforderliche Geschwindigkeit, so werden diese mit der Strömung mitgerissen und ein Aufsteigen entgegen der Strö- mungsrichtung sicher verhindert. Durch die Positionierung des Eintritts 13 am heizgasseitigen Eintritt und die dadurch bedingte hohe Geschwindigkeit des Strömungsmediums W bereits im ersten Fallrohrstück 22 ist der gewünschte Mitnahmeeffekt für sich bildende Dampfblasen bei gleichzeitig geringem konstruktiven Aufwand sichergestellt.

Claims

Patentansprüche
1. Durchlaufdampferzeuger (1), bei dem in einem in einer annähernd horizontalen Heizgasrichtung (x) durchströmbaren Heizgaskanal (6) eine Verdampfer-Durchlaufheizfläche (8) angeordnet ist, die eine Anzahl von zur Durchströmung eines Strömungsmediums (W) parallel geschalteten Dampferzeugerrohren (12) umfasst, und die ein vom Strömungsmedium (W) im Gegenstrom zum Heizgaskanal (6) durchströmbares Heizflächenseg- ment(26) umfasst, dessen strömungsmediumseitiger Austritt (16) in Heizgasrichtung (x) gesehen derart positioniert ist, dass die sich im Betriebsfall am Austritt der Verdampfer- Durchlaufheizfläche (8) einstellende Sattdampftemperatur um weniger als eine vorgegebene Maximalabweichung von der im Be- triebsfall an der Position des Austritts (16) des Heizflächensegments herrschenden Heizgastemperatur abweicht.
2. Durchlaufdampferzeuger (1) nach Anspruch 1, bei dem eine Maximalabweichung von höchstens 70 °C vorgegeben ist.
3. Durchlaufdampferzeuger (1) nach Anspruch 1 oder 2, bei dem eine Anzahl der Dampferzeugerrohre (12) jeweils eine Mehrzahl von strömungsmediumseitig alternierend hintereinan- dergeschalteten Steigrohr- (20) und Fallrohrstücken (22) um- fasst.
4. Durchlaufdampferzeuger (1) nach einem der Ansprüche 1 bis 3, bei dem der strömungsmediumseitige Eintritt (13) der Verdampfer-Durchlaufheizfläche (8) derart nah am heizgasseitigen Eintritt der Verdampfer-Durchlaufheizfläche (8) angeordnet ist, dass im Betriebsfall das die Dampferzeugerrohre (12) durchströmende Strömungsmedium (W) eine Strömungsgeschwindigkeit von mehr als einer vorgegebenen Mindestgeschwindigkeit aufweist.
5. Durchlaufdampferzeuger (1) nach einem der Ansprüche 1 bis 4, dessen Verdampfer-Durchlaufheizfläche (8) ein weiteres, dem Heizflächensegment (20) strömungsmediumseitig vorgeschaltetes Heizflächensegment (22) umfasst.
6. Durchlaufdampferzeuger (1) nach Anspruch 5, bei dem das weitere Heizflächensegment (22) im Gegenstrom zur Heizgasrichtung (x) geschaltet ist.
7. Durchlaufdampferzeuger (1) nach Anspruch 5, bei dem das weitere Heizflächensegment (22) im Gleichstrom zur Heizgas- richtung (x) geschaltet ist.
8. Durchlaufdampferzeuger (1) nach einem der Ansprüche 1 bis 7, dem heizgasseitig eine Gasturbine vorgeschaltet ist.
9. Verfahren zum Betreiben eines Durchlaufdampferzeugers (1) mit einer in einem in einer annähernd horizontalen Heizgasrichtung (x) durchströmbaren Heizgaskanal (6) mit einer Verdampfer-Durchlaufheizfläche (8), die eine Anzahl von zur Durchströmung eines Strömungsmediums (W) parallel geschalte- ten Dampferzeugerrohren (12) umfasst, wobei das Strömungsmedium (W) in Heizgasrichtung (x) gesehen an einer Position aus der Verdampfer-Durchlaufheizfläche (8) abgeführt wird, an der die im Betriebsfall herrschende Heizgastemperatur um weniger als eine vorgegebene Maximalabweichung von der sich im Be- triebsfall am Austritt der Verdampfer-Durchlaufheizfläche (8) einstellenden Sattdampftemperatur abweicht.
10. Verfahren nach Anspruch 9, bei dem das Strömungsmedium (W) vor seinem Austritt aus der Verdampfer-Durchlaufheizflä- ehe (8) im Gegenstrom zum Heizgas geführt wird.
11. Verfahren nach Anspruch 9 oder 10, bei dem eine Maximalabweichung von höchstens 70 °C vorgegeben wird.
12. Verfahren nach einem der Ansprüche 9 bis 11, bei dem das Strömungsmedium (W) bereits beim oder unmittelbar nach dem Eintritt in die Dampferzeugerrohre (12) einer derartig star- ken Beheizung ausgesetzt wird, dass es in einem ersten Fallrohrstück (24) des jeweiligen Dampferzeugerrohrs (12) eine Strömungsgeschwindigkeit von mehr als einer vorgegebenen Mindestgeschwindigkeit aufweist.
13. Verfahren nach Anspruch 12, bei dem als Mindestgeschwindigkeit die zur Mitnahme von im jeweiligen ersten Fallrohrstück (22) erzeugten Dampfblasen erforderliche Strömungsgeschwindigkeit vorgegeben wird.
14. Verfahren nach einem der Ansprüche 9 bis 13, bei dem das Strömungsmedium (W) nach seinem Eintritt in die Verdampfer- Durchlaufheizfläche (8) im Gegenstrom zum Heizgas geführt wird.
15. Verfahren nach einem der Ansprüche 9 bis 13, bei dem das Strömungsmedium (W) nach seinem Eintritt in die Verdampfer- Durchlaufheizfläche (8) im Gleichstrom zum Heizgas geführt wird.
EP04763713A 2003-09-03 2004-08-02 Durchlaufdampferzeuger in liegender bauweise und verfahren zum betreiben des durchlaufdampferzeugers Withdrawn EP1660813A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP04763713A EP1660813A1 (de) 2003-09-03 2004-08-02 Durchlaufdampferzeuger in liegender bauweise und verfahren zum betreiben des durchlaufdampferzeugers

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP03020022A EP1512906A1 (de) 2003-09-03 2003-09-03 Durchlaufdampferzeuger in liegender Bauweise und Verfahren zum Betreiben des Durchlaufdampferzeugers
EP04763713A EP1660813A1 (de) 2003-09-03 2004-08-02 Durchlaufdampferzeuger in liegender bauweise und verfahren zum betreiben des durchlaufdampferzeugers
PCT/EP2004/008644 WO2005028956A1 (de) 2003-09-03 2004-08-02 Durchlaufdampferzeuger in liegender bauweise und verfahren zum betreiben des durchlaufdampferzeugers

Publications (1)

Publication Number Publication Date
EP1660813A1 true EP1660813A1 (de) 2006-05-31

Family

ID=34130123

Family Applications (2)

Application Number Title Priority Date Filing Date
EP03020022A Withdrawn EP1512906A1 (de) 2003-09-03 2003-09-03 Durchlaufdampferzeuger in liegender Bauweise und Verfahren zum Betreiben des Durchlaufdampferzeugers
EP04763713A Withdrawn EP1660813A1 (de) 2003-09-03 2004-08-02 Durchlaufdampferzeuger in liegender bauweise und verfahren zum betreiben des durchlaufdampferzeugers

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP03020022A Withdrawn EP1512906A1 (de) 2003-09-03 2003-09-03 Durchlaufdampferzeuger in liegender Bauweise und Verfahren zum Betreiben des Durchlaufdampferzeugers

Country Status (12)

Country Link
US (1) US7406928B2 (de)
EP (2) EP1512906A1 (de)
JP (1) JP4489775B2 (de)
CN (1) CN100420899C (de)
AU (1) AU2004274585B2 (de)
BR (1) BRPI0413203A (de)
CA (1) CA2537466C (de)
RU (1) RU2351844C2 (de)
TW (1) TWI267610B (de)
UA (1) UA87279C2 (de)
WO (1) WO2005028956A1 (de)
ZA (1) ZA200601456B (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2065641A3 (de) * 2007-11-28 2010-06-09 Siemens Aktiengesellschaft Verfahren zum Betrieben eines Durchlaufdampferzeugers sowie Zwangdurchlaufdampferzeuger
EP2194320A1 (de) * 2008-06-12 2010-06-09 Siemens Aktiengesellschaft Verfahren zum Betreiben eines Durchlaufdampferzeugers sowie Zwangdurchlaufdampferzeuger
DE102009012321A1 (de) * 2009-03-09 2010-09-16 Siemens Aktiengesellschaft Durchlaufverdampfer
IT1395108B1 (it) 2009-07-28 2012-09-05 Itea Spa Caldaia
IT1397145B1 (it) * 2009-11-30 2013-01-04 Nuovo Pignone Spa Sistema evaporatore diretto e metodo per sistemi a ciclo rankine organico.
WO2014108980A1 (ja) * 2013-01-10 2014-07-17 パナソニック株式会社 ランキンサイクル装置及び熱電併給システム
EP2770171A1 (de) 2013-02-22 2014-08-27 Alstom Technology Ltd Verfahren zur Bereitstellung einer Frequenzreaktion für ein kombiniertes Zykluskraftwerk

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1286048B (de) * 1964-09-28 1969-01-02 Buckau Wolf Maschf R Zwanglaufdampferzeuger
JPS6017967B2 (ja) * 1978-01-18 1985-05-08 株式会社日立製作所 排熱回収ボイラ装置
JPH0718525B2 (ja) * 1987-05-06 1995-03-06 株式会社日立製作所 排ガスボイラ
DE58909259D1 (de) * 1989-10-30 1995-06-29 Siemens Ag Durchlaufdampferzeuger.
DE4303613C2 (de) * 1993-02-09 1998-12-17 Steinmueller Gmbh L & C Verfahren zur Erzeugung von Dampf in einem Zwangsdurchlaufdampferzeuger
AT410695B (de) * 1996-03-08 2003-06-25 Beckmann Georg Dr Vorrichtung und verfahren zur energieerzeugung
DE19700350A1 (de) * 1997-01-08 1998-07-16 Steinmueller Gmbh L & C Durchlaufdampferzeuger mit einem Gaszug zum Anschließen an eine Heißgas abgebende Vorrichtung
US5924389A (en) * 1998-04-03 1999-07-20 Combustion Engineering, Inc. Heat recovery steam generator
US6092490A (en) * 1998-04-03 2000-07-25 Combustion Engineering, Inc. Heat recovery steam generator
US6019070A (en) * 1998-12-03 2000-02-01 Duffy; Thomas E. Circuit assembly for once-through steam generators
DE10127830B4 (de) * 2001-06-08 2007-01-11 Siemens Ag Dampferzeuger
US6557500B1 (en) * 2001-12-05 2003-05-06 Nooter/Eriksen, Inc. Evaporator and evaporative process for generating saturated steam
US6508206B1 (en) * 2002-01-17 2003-01-21 Nooter/Eriksen, Inc. Feed water heater
EP1443268A1 (de) * 2003-01-31 2004-08-04 Siemens Aktiengesellschaft Dampferzeuger

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005028956A1 *

Also Published As

Publication number Publication date
JP4489775B2 (ja) 2010-06-23
BRPI0413203A (pt) 2006-10-03
AU2004274585A1 (en) 2005-03-31
CN1853071A (zh) 2006-10-25
RU2351844C2 (ru) 2009-04-10
TW200523505A (en) 2005-07-16
AU2004274585B2 (en) 2009-05-14
US7406928B2 (en) 2008-08-05
UA87279C2 (ru) 2009-07-10
EP1512906A1 (de) 2005-03-09
TWI267610B (en) 2006-12-01
CA2537466A1 (en) 2005-03-31
ZA200601456B (en) 2007-04-25
CN100420899C (zh) 2008-09-24
JP2007504431A (ja) 2007-03-01
WO2005028956A1 (de) 2005-03-31
US20060288962A1 (en) 2006-12-28
RU2006110528A (ru) 2007-10-10
CA2537466C (en) 2012-10-02

Similar Documents

Publication Publication Date Title
EP0944801B1 (de) Dampferzeuger
EP1848925B1 (de) Dampferzeuger in liegender bauweise
DE10127830B4 (de) Dampferzeuger
EP1588095B1 (de) Dampferzeuger
WO2005028957A1 (de) Verfahren zum anfahren eines durchlaufdampferzeugers und durchlaufdampferzeuger zur durchführung des verfahrens
EP2324285B1 (de) Abhitzedampferzeuger
DE102009012322B4 (de) Durchlaufverdampfer
EP1660812B1 (de) Durchlaufdampferzeuger sowie verfahren zum betreiben des durchlaufdampferzeugers
DE19901656A1 (de) Verfahren und Vorrichtung zur Regelung der Temperatur am Austritt eines Dampfüberhitzers
DE19533987A1 (de) Verfahren und Vorrichtung zur Rückgewinnung von Wärme aus den Abgasen von Feuerungsanlagen
EP1660813A1 (de) Durchlaufdampferzeuger in liegender bauweise und verfahren zum betreiben des durchlaufdampferzeugers
EP1554522B1 (de) Verfahren zum betreiben eines dampferzeugers in liegender bauweise
EP1537358B1 (de) Dampferzeuger in liegender bauweise
EP2409078B1 (de) Verfahren zur Auslegung eines Durchlaufverdampfers
DE1965078B2 (de) Verfahren zum gleitdruckbetrieb eines zwanglaufdampferzeu gers
DE2515623A1 (de) Dampferzeuger mit u-foermig gekruemmten rohren
DE102011004270A1 (de) Durchlaufdampferzeuger für die indirekte Verdampfung insbesondere in einem Solarturm-Kraftwerk
DE3148132A1 (de) Waermetauscher, insbesondere stehender speisewasservorwaermer mit dampfnaesseabscheider
DE2826048B2 (de) Anordnung zur Rauchgasführung und Rauchgasentnahme bei einem Wärmekessel
CH642142A5 (en) Method for preventing the overcooling of condensate in the pipes of a reheater
DE102011004272A1 (de) Durchlaufverdampfer
DEP0009257DA (de) Strahlungsdampferzeuger
DE1014270B (de) Schmelzkammerfeuerung mit zwei Brennkammern

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060217

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130201

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130612