EP1658653A1 - Festoxidbrennstoffzelle und verfahren zu ihrer herstellung - Google Patents

Festoxidbrennstoffzelle und verfahren zu ihrer herstellung

Info

Publication number
EP1658653A1
EP1658653A1 EP04741994A EP04741994A EP1658653A1 EP 1658653 A1 EP1658653 A1 EP 1658653A1 EP 04741994 A EP04741994 A EP 04741994A EP 04741994 A EP04741994 A EP 04741994A EP 1658653 A1 EP1658653 A1 EP 1658653A1
Authority
EP
European Patent Office
Prior art keywords
layer
primer
fuel cell
oxide fuel
solid oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04741994A
Other languages
English (en)
French (fr)
Inventor
Thomas Hoefler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Original Assignee
Bayerische Motoren Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke AG filed Critical Bayerische Motoren Werke AG
Publication of EP1658653A1 publication Critical patent/EP1658653A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • H01M8/1226Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material characterised by the supporting layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Solid oxide fuel cell Solid oxide fuel cell and process for its manufacture
  • the invention relates to a solid oxide fuel cell according to the preamble of claim 1 and a method for its production.
  • solid oxide fuel cell or SOFC
  • SOFC solid oxide fuel cell
  • the power density of solid oxide fuel cells depends not only on the quality of the anode and cathode, but above all on the material and thickness of the electrolyte and the operating temperature. Operating temperatures of less than, in particular when the solid oxide fuel cell is used in automobiles 800 ° C preferred in order to be able to use metallic materials for the bipolar plates and other parts of the fuel cell, for example steel, which is subject to severe corrosion at higher temperatures.
  • the electrolyte layer which is made from a high-melting metal oxide, particularly yttrium-stabilized zirconium dioxide, must be absolutely gas-tight on the one hand to separate the anode compartment from the cathode compartment, and on the other hand as thin as possible to ensure rapid transport of the oxygen ions from the cathode to the anode.
  • a high-melting metal oxide particularly yttrium-stabilized zirconium dioxide
  • Such thin, gas-tight electrolyte layers can only be achieved using sintering techniques. So far, high sintering temperatures of around 1400 ° C and long sintering times have been required.
  • the sintering of the electrolyte layer takes place on the electrode layer which has been applied to the support structure, the support structure being a porous layer, via which - in the case of an anode-supported SOFC - the fuel is supplied.
  • the support structure must consist of a material that can withstand the high sintering temperature. This is the case with a support structure made of anode material made from a mixture of yttrium-stabilized Zr0 2 and Ni oxide, but not with a support structure or cathode material made of metal.
  • solid oxide fuel cells in which the electrode layer is provided on a metal support structure are preferred, especially for automotive applications, since this results in faster heating, higher redox resistance and cost savings.
  • a simpler joining technique is possible because, for example, the outer circumference of the metallic support structure can be tightly connected to the metal bipolar plate by laser welding.
  • the electrolyte layer is usually applied to a metallic support structure by thermal spraying. Since the tightness of an electrolyte layer produced by thermal spraying is significantly lower than that of an electrolyte layer produced by sintering, the electrolyte layer must, however, be made significantly thicker if it is deposited by thermal spraying. That is, in order for the electrolyte layer of a solid oxide fuel cell with a metallic supporting structure to be gas-tight, layer thicknesses of up to 60 ⁇ m are necessary, whereby experience has shown that the power density of the solid oxide fuel cell at 800 ° C. and 0.7 V is limited to a maximum of approximately 0.4 W / cm 2 . This is for automotive applications where the most compact fuel cells with high power density are required, a disadvantage.
  • the object of the invention is to provide a solid oxide fuel cell with a high power density, which has a thin electrolyte layer that can be produced without high temperature stress, so that in particular metallic support structures can also be used.
  • the electrolyte layer is applied to a porous primer, which also consists of electrolyte material. That is, a graded, asymmetrical structure of the electrolyte layer between the two electrodes is proposed.
  • the porous primer made of electrolyte material is first applied to the anode as the electrode layer, for example.
  • a thermal spraying process or a sintering process can be used, which can be carried out at a low temperature of below 1300 ° C. because the primer does not need to be tight.
  • the primer can have a thickness of 1 ⁇ m to 30 ⁇ m, for example.
  • the diameter of the pores of the primer should be less than 1 ⁇ m, preferably less than 300 nm.
  • the actual electrolyte layer is produced according to the invention from nanoparticles, ie particles with a maximum particle size of 300 nm, preferably less than 100 nm.
  • the electrode layers have a high porosity.
  • the primer essentially serves to prevent the small nanoparticles from penetrating into the comparatively large pores of the electrode layer.
  • the nanoparticles can be sintered at a low temperature of, for example, 1100 ° C. and below. In other words, with a corresponding sintering time, a very thin, gas-tight electrolyte layer can be produced from the nanoparticles. High solid densities above 1 W / cm 2 at 800 ° C. and 0.7 V can thus be achieved with the solid oxide fuel cell according to the invention.
  • the graded structure of the electrolyte material i.e. the porous primer achieves an increase in the phase interface between the electrolyte material and the electrode material, so that more active centers are available at which electrochemical reactions can take place, which in turn leads to an increase in the power density.
  • the production costs are reduced in that the electrolyte material applied as a primer is porous and therefore
  • the electrolyte material can be any metal oxide which is suitable for SOFC and is an oxygen ion conductive metal oxide, for example stabilized zirconium oxide (ZrO 2 ) or doped cerium oxide. Yttrium-stabilized zirconium oxide or zirconium oxide stabilized with calcium, scandium or magnesium oxide is preferably used.
  • Nanoparticle size electrolyte material is commercially available. Although the particle size of the electrolyte material can be up to 300 nm, an electrolyte material with a particle size of at most 100 nm is preferably used.
  • the layer thickness of the electrolyte layer should be at most 20 ⁇ m, in particular at most 10 ⁇ m.
  • the solid oxide fuel cell according to the invention preferably has a metal or a metal ceramic as the supporting structure.
  • the support structure can be formed from threads, chips or other particles made of metal or metal ceramic. It can consist, for example, of a knitted fabric, a mesh, a fleece or fine woven fabric made of metal or metal-ceramic.
  • a cover layer can be provided between the support structure and the electrode adjoining it, in order to be able to apply the electrode layer.
  • an electrode layer (anode or cathode) is applied to the support structure, which preferably consists of metal or metal ceramic.
  • the electrode layer can be driving can be used, for example, plasma spraying or flame spraying.
  • the electrode layer can also be produced by a sintering process, the sintering temperature below 1300 ° C. and the sintering time below 4 h and the sintering should preferably take place in a protective gas atmosphere when using a metallic support structure.
  • electrolyte material is applied to the electrode layer as a primer.
  • the application of the electrolyte material to form the primer can be done by thermal spraying, e.g. Plasma or flame spraying or by applying the green material and then sintering. Since the primer need not be gas-tight, similar conditions can be used when sintering the primer, in particular a sintering temperature below 1300 ° C. as when sintering the electrode layer on the supporting structure.
  • the electrode layer and the primer can also be sintered onto the support structure in a single step using a two-layer film comprising an electrode material layer and an electrolyte material layer.
  • the gas-tight electrolyte layer is then formed on the primer.
  • electrolyte material in the form of a powder of nanoparticles sintering at low temperature and having a particle size of at most 300 nm, in particular at most 100 nm, is applied to the primer.
  • precursors of the nanoparticles can also be applied to the primer, for example salts or organometallic compounds from which the nanoparticles ⁇ __ ⁇ .c J r ⁇ -, "JJ"",,”” - in particular, so-called “sol-gel” materials have also proven to be suitable, ie organometallic polymers.
  • the nanoparticles can be applied to the primer by electrophoresis, infiltration, knife coating, by pressure and / or by spraying.
  • the composite of support structure, electrode layer and primer can, for example, be introduced into a chamber in which the nanoparticles or their precursor are dispersed in an electrically charged form.
  • the metallic support structure can then be used as an electrode, for example as a cathode, so that when the nanoparticles or their precursors are positively charged, the particles dispersed on the side of the primer in the bath are deposited on the primer.
  • the charging of the nanoparticles can e.g. via the pH value or charged surfactants.
  • the nanoparticles dispersed in a liquid can be separated from the primer like a filter.
  • the liquid can be pressed or sucked through with pressure into the composite of support structure, electrode layer and primer.
  • the layer of the nanoparticles or their precursors can also be applied by knife coating on the primer or applied by a printing process, for example stamp or screen printing, or by spraying. Both the application process and the materials can be used in any combination. ⁇
  • the applied nanoparticle layer is then sintered to form the electrolyte layer.
  • the sintering can take place after the application of the nanoparticle layer.
  • the second electrode layer can be applied by thermal spraying or by sintering.
  • the material for the two electrodes can be applied, for example, as a film, by knife coating, by printing techniques or by spraying.
  • a support structure 2 made of a knitted or woven fabric, e.g. made of steel threads.
  • a porous cover layer 3 is applied to the coarse-mesh knitted fabric, on which there is a layer arrangement consisting of the anode layer 4, the primer 5, the electrolyte layer 6 and the cathode layer 7.
  • the primer 5 and the electrolyte layer 6 consist, for example, of yttrium-stabilized zirconium oxide.
  • the ano- a mixture of nickel metal or nickel oxide and yttrium-stabilized zirconium oxide.
  • the cathode layer 7 can be formed, for example, by a Persovskite oxide, such as lanthanum strontium manganite.
  • the fuel gas is supplied to the anode layer 4 via the support structure 2, while the cathode layer 7 is brought into contact with atmospheric oxygen.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

Eine Festoxidbrennstoffzelle weist eine Elektrolytschicht (6) auf einer porösen Grundierung (5) aus Elektrolytmaterial auf. Für die Elektrolytschicht (6) werden Nanopartikel verwendet, die durch Sintern bei relativ niedriger Temperatur zu einer dünnen, gasdichten Elektrolytschicht (6) führen.

Description

Festoxidbrennstoffzelle und Verfahren zu ihrer Herstellung
Die Erfindung bezieht sich auf eine Festoxidbrennstoffzelle nach dem Oberbegriff des Anspruchs 1 sowie ein Verfahren zu deren Herstellung.
Die Leistungsdichte von Festoxidbrennstoffzellen („solid oxi- de fuel cell" oder SOFC) hängt neben der Qualität von Anode und Kathode vor allem vom Material und der Dicke des Elektrolyten sowie der Betriebstemperatur ab. Dabei werden insbesondere beim automobilen Einsatz der Festoxidbrennstoffzelle Betriebstemperaturen von weniger als 800 °C bevorzugt, um für die bipolaren Platten und andere Teile der Brennstoffzelle metallische Werkstoffe einsetzen zu können, beispielsweise Stahl, der bei höheren Temperaturen einer starken Korrosion unterliegt.
Die Elektrolytschicht, die aus einem hochschmelzenden Metalloxid, insbesondere Yttrium-stabilisiertem Zirkondioxid hergestellt wird, muss einerseits absolut gasdicht sein, um den Anodenraum vom Kathodenraum zu trennen, andererseits möglichst dünn, um einen schnellen Transport der Sauerstoffionen von der Kathode zu der Anode sicherzustellen.
Derart dünne, gasdichte Elektrolytschichten lassen sich aber nur durch Sintertechniken realisieren. Dazu sind bisher hohe Sintertemperaturen von etwa 1400 °C und lange Sinterzeiten erforderlic . Das Sintern der Elektrolytschicht erfolgt auf der Elektrodenschicht, die auf die Tragstruktur aufgebracht worden ist, wobei es sich bei der Tragstruktur um eine poröse Schicht handelt, über die - im Falle einer Anoden-getragenen SOFC - der Brennstoff zugeführt wird. Demgemäß muss die Tragstruktur aus einem Material bestehen, das der hohen Sintertemperatur standhält. Dies ist zwar bei einer Tragstruktur aus Anodenmaterial aus einer Mischung aus Yttrium-stabilisiertem Zr02 und Ni-Oxid der Fall, nicht aber bei einer Tragstruktur oder Kathodenmaterial aus Metall . Gerade für automobile Anwendungen werden jedoch Festoxidbrennstoffzellen bevorzugt, bei denen die Elektrodenschicht auf einer Metalltragstruktur vorgesehen ist, denn dadurch ergibt sich eine schnellere Aufheizbarkeit, höhere Redox-Beständigkeit sowie Kostenersparnis. Zudem ist eine einfachere Fügetechnik möglich, da beispielsweise die metallische Tragstruktur mit ihrem Außenumfang durch Laserschweißen mit der bipolaren Platte aus Metall dicht verbunden werden kann.
Da sich Festoxidbrennstoffzellen mit metallischer Tragstruktur wegen der hohen Sintertemperatur sintertechnisch kaum herstellen lassen, wird die Elektrolytschicht auf eine metallische Tragstruktur meist durch thermisches Spritzen aufgebracht. Da die Dichtigkeit einer durch thermisches Spritzen hergestellten Elektrolytschicht gegenüber einer durch Sintern hergestellten Elektrolytschicht deutlich geringer ist, muss die Elektrolytschicht allerdings deutlich dicker ausgebildet werden, wenn sie durch thermisches Spritzen abgeschieden wird. D.h., damit die Elektrolytschicht einer Festoxidbrennstoffzelle mit metallischer Tragstruktur gasdicht ist, sind Schichtdicken bis zu 60 μm notwendig, wodurch die Leistungsdichte der Festoxidbrennstoffzelle erfahrungsgemäß bei 800 °C und 0,7 V auf maximal etwa 0,4 W/cm2 begrenzt wird. Dies ist für automobile Anwendungen, wo möglichst kompakte Brennstoff- zellen mit hoher Leistungsdichte benötigt werden, von Nachteil.
Aufgabe der Erfindung ist es, eine Festoxidbrennstoffzelle hoher Leistungsdichte bereitzustellen, die eine dünne Elektrolytschicht aufweist, die ohne hohe Temperaturbeanspruchung herstellbar ist, so dass insbesondere auch metallische Tragstrukturen verwendet werden können.
Dies wird mit der im Anspruch 1 gekennzeichneten Festoxidbrennstoffzelle erreicht. In den Ansprüchen 2 bis 6 sind vorteilhafte Ausgestaltungen der erfindungsgemäßen Festoxidbrennstoffzelle wiedergegeben. Der Anspruch 7 hat ein bevorzugtes Verfahren zur Herstellung der erfindungsgemäßen Festoxidbrennstoffzelle zum Gegenstand, welches durch die Ansprüche 8 bis 11 in vorteilhafter Weise ausgestaltet wird.
Nach der Erfindung wird die Elektrolytschicht auf einer porösen Grundierung aufgebracht, die ebenfalls aus Elektrolytmaterial besteht. D.h., es wird ein gradierter, asymmetrischer Aufbau der Elektrolytschicht zwischen den beiden Elektroden vorgeschlagen.
Nach der Erfindung wird also z.B. auf die Anode als Elektrodenschicht zunächst die poröse Grundierung aus Elektrolytmaterial aufgetragen. Dazu kann beispielsweise ein thermisches Spritzverfahren oder ein Sinterverfahren angewendet werden, das bei einer niedrigen Temperatur von unter 1300 °C durchgeführt werden kann, weil es auf eine hohe Dichtigkeit der Grundierung nicht ankommt. Die Grundierung kann beispielsweise eine Dicke von 1 μm bis 30 μm aufweisen. Der Durchmesser der Poren der Grundierung sollte kleiner als 1 μm sein, bevorzugt kleiner 300 nm. Die eigentliche Elektrolytschicht wird erfindungsgemäß aus Nanopartikeln hergestellt, d.h. Partikeln mit einer Teilchengröße von maximal 300 nm, bevorzugt kleiner 100 nm. Die Elektrodenschichten weisen eine hohe Porosität auf. Die Grundierung dient also im wesentlichen dazu, zu verhindern, dass die kleinen Nanopartikel in die vergleichsweise großen Poren der Elektrodenschicht eindringen können.
Die Nanopartikel sind bei einer niedrigen Temperatur von beispielsweise 1100 °C und darunter sinterbar. D.h., bei einer entsprechenden Sinterzeit kann aus den Nanopartikeln eine sehr dünne, gasdichte Elektrolytschicht hergestellt werden. Damit lassen sich mit der erfindungsgemäßen Festoxidbrennstoffzelle hohe Leistungsdichten über 1 W/cm2 bei 800 °C und 0,7 V realisieren.
Durch die niedrige Sintertemperatur der Nanopartikel kann zudem eine metallische Tragstruktur verwendet werden. D.h., es kann eine Festoxidbrennstoffzelle mit einer niedrigen Betriebstemperatur von z.B. 500 °C bis 800 °C hergestellt werden. Die dünne Elektrolytschicht erlaubt zudem eine schnellere Startzeit, weil die Brennstoffzelle bereits bei niedrigen Temperaturen Strom und Wärme erzeugt.
Außerdem wird durch den gradierten Aufbau des Elektrolytmaterials, d.h. die poröse Grundierung, eine Vergrößerung der Phasengrenzfläche zwischen Elektrolytmaterial und Elektrodenmaterial erzielt, so dass mehr aktive Zentren zur Verfügung stehen, an denen elektrochemische Umsetzungen erfolgen können, was wiederum zu einer Erhöhung der Leistungsdichte führt .
Die Produktionskosten werden dadurch verringert, dass das als Grundierung aufgebrachte Elektrolytmaterial porös und damit
J,-„„ 4-T-.~, M-k An -F4- v* rrc? *v a aufgebracht oder in kürzeren Zeiten gesintert werden kann als gasdichte Schichten.
Das Elektrolytmaterial kann irgendein für SOFC geeignetes, Sauerstoffionen leitendes Metalloxid sein, beispielsweise stabilisiertes Zirkonoxid (Zr02) oder dotiertes Ceroxid. Vorzugsweise wird Yttrium-stabilisiertes Zirkonoxid oder mit Calcium-, Scandium- oder Magnesiumoxid stabilisiertes Zirkonoxid verwendet .
Elektrolytmaterial in Nanopartikelgröße ist im Handel erhältlich. Zwar kann die Teilchengröße des Elektrolytmaterials bis 300 nm betragen, bevorzugt wird jedoch ein Elektrolytmaterial mit einer Teilchengröße von maximal 100 nm eingesetzt.
Um eine hohe Leistungsdichte zu erzielen, sollte die Schichtdicke der Elektrolytschicht höchstens 20 μm, insbesondere höchstens 10 μm betragen.
Die erfindungsgemäße Festoxidbrennstoffzelle weist als Tragstruktur vorzugsweise ein Metall oder eine Metallkeramik auf. Die Tragstruktur kann aus Fäden, Spänen oder anderen Partikeln aus Metall oder Metallkeramik gebildet sein. Sie kann beispielsweise aus einem Gestrick, einem Geflecht, einem Vlies oder Feingewebe aus Metall oder Metallkeramik bestehen. Bei einer grobmaschigen Tragstruktur, beispielsweise einem Gestrick, kann zwischen der Tragstruktur und der sich daran anschließenden Elektrode eine Deckschicht vorgesehen sein, um die Elektrodenschicht aufbringen zu können.
Zur Herstellung der erfindungsgemäßen Brennstoffzelle wird auf die Tragstruktur, die vorzugsweise aus Metall oder Metallkeramik besteht, eine Elektrodenschicht (Anode oder Kathode) aufgetragen. Die Elektrodenschicht kann durch thermi- fahren kann beispielsweise das Plasma-Spritzen oder Flammspritzen angewendet werden. Die Elektrodenschicht kann jedoch auch durch ein Sinterverfahren hergestellt werden, wobei bei Verwendung einer metallischen Tragstruktur die Sintertemperatur unter 1300 °C und die Sinterdauer unter 4 h und das Sintern vorzugsweise in einer Schutzgasatmosphäre erfolgen sollte.
Nachdem die Elektrodenschicht auf die Tragstruktur aufgebracht worden ist, wird auf die Elektrodenschicht Elektrolytmaterial als Grundierung aufgebracht. Das Aufbringen des Elektrolytmaterials zur Bildung der Grundierung kann dabei durch thermisches Spritzen, also z.B. Plasma- oder Flammspritzen oder durch Auftragung des Grünmaterials und anschließendem Sintern erfolgen. Da die Grundierung nicht gasdicht sein muss, können beim Sintern der Grundierung ähnliche Verhältnisse, insbesondere eine Sintertemperatur unter 1300 °C wie beim Sintern der Elektrodenschicht auf der Tragstruktur, verwendet werden.
Die Elektrodenschicht und die Grundierung können auch in einem einzigen Schritt unter Verwendung einer zweischichtigen Folie aus einer Elektrodenmaterialschicht und einer Elektrolytmaterialschicht auf der Tragstruktur aufgesintert werden.
Auf der Grundierung wird dann die gasdichte Elektrolytschicht gebildet. Dazu wird auf die Grundierung Elektrolytmaterial in Form eines Pulvers aus bei niedriger Temperatur sinternden Nanopartikeln mit einer Teilchengröße von höchstens 300 nm, insbesondere höchstens 100 nm, aufgebracht.
Statt eines Pulvers können auf die Grundierung auch Vorstufen der Nanopartikel aufgebracht werden, beispielsweise Salze oder metallorganische Verbindungen, aus denen die Nanoparti- ι__τ .c J r<—,„J.J „„,,„„ — bei haben sich insbesondere auch sogenannte „Sol-Gel""- Materialien als geeignet erwiesen, d.h. metallorganische Polymere.
Das Auftragen der Nanopartikel auf der Grundierung kann durch Elektrophorese, Infiltration, Rakeln, durch Druck und/oder durch Aufsprühen erfolgen.
Für die Elektrophorese kann der Verbund aus Tragstruktur, Elektrodenschicht und Grundierung beispielsweise in eine Kammer eingebracht werden, in dem die Nanopartikel oder deren Vorstufe in elektrisch geladener Form dispergiert sind. Die metallische Tragstruktur kann dann als Elektrode verwendet werden, beispielsweise als Kathode, so dass, wenn die Nanopartikel bzw. deren Vorstufen positiv geladen sind, die auf der Seite der Grundierung in dem Bad dispergierten Teilchen auf der Grundierung abgeschieden werden. Die Aufladung der Nanopartikel kann z.B. über den pH-Wert oder über geladene Tenside erfolgen.
Bei der Infiltration können die in einer Flüssigkeit dispergierten Nanopartikel wie bei einem Filter an der Grundierung abgeschieden werden. Die Flüssigkeit kann dabei mit Druck in den Verbund aus Tragstruktur, Elektrodenschicht und Grundierung gepresst oder hindurchgesaugt werden.
Statt der Elektrophorese oder Infiltration kann die Schicht aus den Nanopartikeln oder deren Vorstufen auch durch Rakeln auf der Grundierung aufgezogen oder durch ein Druckverfahren, beispielsweise Stempel- oder Siebdruck, oder durch Aufsprühen aufgetragen werden. Sowohl die Auftragsverfahren als auch die Materialien können in beliebiger Kombination angewandt werden. δ
Die aufgebrachte Nanopartikelschicht wird dann zur Elektrolytschicht gesintert. Das Sintern kann im Anschluss an das Aufbringen der Nanopartikelschicht erfolgen. Es ist jedoch auch möglich, erst die zweite Elektrodenschicht aufzutragen und diese dann gemeinsam mit der Nanopartikelschicht zu sintern. D.h., das Sintern der beiden Elektrodenschichten, der Grundierung und der Elektrolytschicht kann einzeln nach jedem Prozessschritt erfolgen, oder es können mehrere und gegebenenfalls auch alle Schichten gemeinsam gesintert werden, gegebenenfalls beim Inbetriebsetzen der Festoxidbrennstoffzelle.
Die zweite Elektrodenschicht (Kathode oder Anode) kann wie die erste Elektrodenschicht (Anode oder Kathode) durch thermisches Spritzen oder durch Sintern aufgebracht werden. Zum Sintern kann das Material für die beiden Elektroden beispielsweise als Folie, durch Rakeln, durch Drucktechniken oder Aufsprühen aufgebracht werden .
Nachstehend ist eine Ausführungsform einer Einzelzelle der erfindungsgemäßen Festoxidbrennstoffzelle beispielhaft näher erläutert, deren einzige Figur einen Querschnitt durch eine Einzelzelle zeigt.
Danach ist auf einer Bipolarplatte 1, z.B. aus Stahl, eine Tragstruktur 2 aus einem Gestrick oder Gewebe, z.B. aus Stahlfäden, angeordnet. Auf dem grobmaschigen Gestrick ist eine poröse Deckschicht 3 aufgebracht, auf der sich eine Schichtanordnung befindet, die aus der Anodenschicht 4, der Grundierung 5, der Elektrolytschicht 6 sowie der Kathodenschicht 7 besteht.
Die Grundierung 5 und die Elektrolytschicht 6 bestehen beispielsweise aus Yttrium-stabilisiertem Zirkonoxid. Die Ano- nem Gemisch aus Nickelmetall oder Nickeloxid und Yttriumstabilisiertem Zirkonoxid bestehen. Die Kathodenschicht 7 kann beispielsweise durch ein persowskitisches Oxid gebildet sein, wie Lanthan-Strontium-Manganit .
Das Brenngas wird der Anodenschicht 4 über die Tragstruktur 2 zugeführt, während die Kathodenschicht 7 mit Luftsauerstoff in Kontakt gebracht wird. Durch Aneinanderreihung mehrerer solcher Einzelzellen kann ein beliebiger Stapel von Einzelzellen aufgebaut werden, der dann insgesamt den Kernbereich einer Brennstoffzelle bildet.

Claims

Patentansprüche
1. Festoxidbrennstoffzelle, die mindestens eine Einzelzelle mit einer Tragstruktur und einer Schichtanordnung aus einer gasdichten Elektrolytschicht zwischen zwei die Anode und die Kathode bildenden Elektrodenschichten umfasst, dadurch gekennzeichnet, dass die Elektrolytschicht (6) auf einer porösen Grundierung (5) aus Elektrolytmaterial aufgebracht ist.
2. Festoxidbrennstoffzelle nach Anspruch 1, dadurch gekennzeichnet, dass die Grundierung (5) eine Schichtdicke von mindestens 1 μm aufweist.
3. Festoxidbrennstoffzelle nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Grundierung (5) eine Schichtdicke von maximal 30 μm aufweist.
4. Festoxidbrennstoffzelle nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Poren der Grundierung (5) einen Durchmesser von weniger als 1 μm aufweisen.
5. Festoxidbrennstoffzelle nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Elektrolytschicht
(6) eine Schichtdicke von höchstens 20 μm aufweist. β. Festoxidbrennstoffzelle nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Tragstruktur (2) aus Metall oder Metallkeramik besteht.
7. Verfahren zur Herstellung der Festoxidbrennstoffzelle nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass auf die Tragstruktur (2) zunächst die erste Elektrodenschicht (4) und die Grundierung (5), dann die Elektrolytschicht (6) und schließlich die zweite Elektrodenschicht (7) aufgebracht wird, wobei die Elektrolytschicht (6) aus Elektrolytmaterialteilchen mit einer Teilchengröße von weniger als 300 nm gebildet wird, die nach dem Aufbringen auf die Grundierung (5) gesintert werden.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Elektrolytmaterialteilchen durch Elektrophorese, Infiltration, Rakeln, durch Drucken und/oder durch Aufsprühen auf die Grundierung (5) aufgebracht werden.
9. Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass die Elektrodenschicht (4) und die Grundierung (5) in einem Schritt unter Verwendung einer zweischichtigen Folie aus einer Elektrodenmaterialschicht und einer Elektrolytmaterialschicht auf die Tragstruktur (2) aufgesintert werden.
10. Verfahren nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, dass das Sintern der Elektrolytschicht (6) beim Sintern einer oder beider Elektrodenschichten (4, 7) und/oder beim Sintern der Grundierung (5) und/oder bei der Inbetriebnahme der Brennstoffzelle erfolgt.
EP04741994A 2003-08-28 2004-07-15 Festoxidbrennstoffzelle und verfahren zu ihrer herstellung Withdrawn EP1658653A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10339613A DE10339613A1 (de) 2003-08-28 2003-08-28 Festoxidbrennstoffzelle und Verfahren zu ihrer Herstellung
PCT/EP2004/051501 WO2005024990A1 (de) 2003-08-28 2004-07-15 Festoxidbrennstoffzelle und verfahren zu ihrer herstellung

Publications (1)

Publication Number Publication Date
EP1658653A1 true EP1658653A1 (de) 2006-05-24

Family

ID=34223198

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04741994A Withdrawn EP1658653A1 (de) 2003-08-28 2004-07-15 Festoxidbrennstoffzelle und verfahren zu ihrer herstellung

Country Status (5)

Country Link
US (1) US20060172166A1 (de)
EP (1) EP1658653A1 (de)
JP (1) JP2007504604A (de)
DE (1) DE10339613A1 (de)
WO (1) WO2005024990A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5107509B2 (ja) * 2005-06-02 2012-12-26 日本電信電話株式会社 固体酸化物形燃料電池の製造方法
WO2007021676A2 (en) 2005-08-12 2007-02-22 Gm Global Technology Operations, Inc. Fuel cell component with coating including nanoparticles
JP5648884B2 (ja) * 2008-02-08 2015-01-07 独立行政法人産業技術総合研究所 チャンネルセル集積構造を有する固体酸化物型燃料電池スタック及びその作製方法
CN102301516B (zh) * 2008-12-17 2014-11-12 圣戈本陶瓷及塑料股份有限公司 用于固体氧化物燃料电池堆的共掺杂的ysz电解质
CN113258112A (zh) * 2021-07-16 2021-08-13 北京思伟特新能源科技有限公司 一种金属支撑固体氧化物燃料电池制备方法及燃料电池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5106706A (en) * 1990-10-18 1992-04-21 Westinghouse Electric Corp. Oxide modified air electrode surface for high temperature electrochemical cells
DE4314323C2 (de) * 1993-04-30 1998-01-22 Siemens Ag Hochtemperaturbrennstoffzelle mit verbesserter Festelektrolyt/Elektroden-Grenzfläche und Verfahren zur Herstellung eines Mehrschichtaufbaus mit verbesserter Festelektrolyt/Elektroden-Grenzfläche
US6479178B2 (en) * 1999-11-16 2002-11-12 Northwestern University Direct hydrocarbon fuel cells
US6558831B1 (en) * 2000-08-18 2003-05-06 Hybrid Power Generation Systems, Llc Integrated SOFC
US6492051B1 (en) * 2000-09-01 2002-12-10 Siemens Westinghouse Power Corporation High power density solid oxide fuel cells having improved electrode-electrolyte interface modifications
AU2002227868A1 (en) * 2000-12-21 2002-07-01 Forschungszentrum Julich Gmbh Production of an electrolytic layer
EP1455404A2 (de) * 2001-06-13 2004-09-08 Bayerische Motoren Werke Aktiengesellschaft Brennstoffzelle und Verfahren zur Herstellung einer solchen Brennstoffzelle
US6803138B2 (en) * 2001-07-02 2004-10-12 Nextech Materials, Ltd. Ceramic electrolyte coating methods
JP3997874B2 (ja) * 2002-09-25 2007-10-24 日産自動車株式会社 固体酸化物形燃料電池用単セル及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005024990A1 *

Also Published As

Publication number Publication date
US20060172166A1 (en) 2006-08-03
WO2005024990A1 (de) 2005-03-17
DE10339613A1 (de) 2005-03-31
JP2007504604A (ja) 2007-03-01

Similar Documents

Publication Publication Date Title
EP3323168B1 (de) Elektrochemisches modul
EP1343215A1 (de) Strukturierter Körper für eine in Brennstoffzellen verwendete Anode
EP2335312B1 (de) Verfahren zur herstellung eines interkonnektors für hochtemperatur-brennstoffzellen, zugehörige hochtemperatur-brennstoffzelle sowie damit aufgebaute brennstoffzellenanlage
EP3000145B1 (de) Brennstoffzelle
EP2174371A1 (de) Brennstoffzelle und verfahren zu deren herstellung
DE102008036847A1 (de) Brennstoffzelleneinheit und Verfahren zum Herstellen einer elektrisch leitfähigen Verbindung zwischen einer Elektrode und einer Bipolarplatte
WO2007095658A2 (de) Poröser körper aus einer eisen-chrom-legierung für brennstoffzellen, die mischoxide enthält
DE102015111918A1 (de) Stromkollektor, Membraneinheit, elektrochemische Zelle, Verfahren zur Herstellung eines Stromkollektor, einer Membraneinheit und einer elektrochemischen Zelle
DE102011000180A1 (de) Anoden-Gestützte Flachrohr-SOFC und deren Herstellungsverfahren
EP2619834B1 (de) Verfahren zur herstellung von festoxidbrennstoffzellen mit einer metallsubstratgetragenen kathoden-elektrolyt-anoden-einheit sowie deren verwendung
DE102007024227A1 (de) Hochtemperatur-Brennstoffzellenmodul und Verfahren zur Herstellung eines Hochtemperatur-Brennstoffzellenmoduls
DE102007024225A1 (de) Trägervorrichtung für eine elektrochemische Funktionseinrichtung, Brennstoffzellenmodul und Verfahren zur Herstellung einer Trägervorrichtung
EP2156499B1 (de) Verfahren zur herstellung einer gasdichten festelektrolytschicht und festelektrolytschicht
WO2005024990A1 (de) Festoxidbrennstoffzelle und verfahren zu ihrer herstellung
EP1563560B1 (de) Trägersubstrat für eine elektrodenschicht einer brennstoffzelle und herstellungsverfahren hierfür
DE102008006038B4 (de) Verfahren zur Herstellung einer Bipolarplatte für eine Brennstoffzelleneinheit und Bipolarplatte
WO2021198137A1 (de) Verfahren zur herstellung einer gas- und/oder elektronenleitungsstruktur und brennstoff-/elektrolysezelle
DE19620504C2 (de) Elektrode für eine Schmelzkarbonatbrennstoffzelle und Verfahren zur Herstellung einer solchen sowie deren Verwendung
EP2342777A1 (de) Tubulare hochtemperatur-brennstoffzelle, verfahren zu deren herstellung und eine solche enthaltende brennstoffzellenanlage
DE102007015358A1 (de) Schichtsystem für einen Elektrolyten einer Hochtemperatur-Brennstoffzelle sowie Verfahren zur Herstellung desselben
DE10350478B4 (de) Brennstoffzelleneinheit
DE102010028893B4 (de) Verfahren zur Herstellung eines Interkonnektors für einen Brennstoffzellenstapel
EP1790025A1 (de) Stapelbare hochtemperatur­brennstoffzelle
DE102009037207A1 (de) Verfahren zum Verbinden einer Bipolarplatte mit einer Elektrode und mit einem weiteren Bauteil eines Brennstoffzellenstacks und eine solche Bipolarplatte umfassende Baugruppe eines Brennstoffzellenstacks
DE102017218012A1 (de) Elektrolyse- und/oder Brennstoffzelle umfassend ein Elektrodenmaterial enthaltend einen metallokeramischen Verbundwerkstoff und Verfahren zur Herstellung dieser

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060117

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20070504