EP1658371A2 - Promotoren zur expression von genen in tagetes - Google Patents
Promotoren zur expression von genen in tagetesInfo
- Publication number
- EP1658371A2 EP1658371A2 EP04763695A EP04763695A EP1658371A2 EP 1658371 A2 EP1658371 A2 EP 1658371A2 EP 04763695 A EP04763695 A EP 04763695A EP 04763695 A EP04763695 A EP 04763695A EP 1658371 A2 EP1658371 A2 EP 1658371A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- nucleic acids
- acids encoding
- nucleic acid
- protein
- promoter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Definitions
- the present invention relates to the use of promoters for expression, preferably for the flower-specific expression of genes in plants of the genus Tagetes, the genetically modified plants of the genus Tagetes and a method for producing biosynthetic products by cultivating the genetically modified plants.
- biosynthetic products such as fine chemicals, such as amino acids, vitamins, carotenoids, but also proteins, are produced in cells via natural metabolic processes and are used in many industries, including food, animal feed, cosmetics, feed, and food and pharmaceutical industry. , .
- These substances which are referred to collectively as fine chemicals / proteins, include, inter alia, organic acids, both proteinogenic and non-proteinogenic amino acids, nucleotides and nucleosides, lipids and fatty acids, diols, carbohydrates, aromatic compounds, vitamins, carotenoids and cofactors, and proteins and enzymes.
- organic acids both proteinogenic and non-proteinogenic amino acids
- nucleotides and nucleosides include, inter alia, organic acids, both proteinogenic and non-proteinogenic amino acids, nucleotides and nucleosides, lipids and fatty acids, diols, carbohydrates, aromatic compounds, vitamins, carotenoids and cofactors, and proteins and enzymes.
- Their large-scale production takes place partly by means of biotechnological processes using microorganisms that have been developed to produce and secrete large quantities of the desired substance.
- Carotenoids are synthesized de novo in bacteria, algae, fungi and plants. In recent years, attempts have increasingly been made to use plants as production organisms for fine chemicals, in particular for vitamins and carotenoids.
- a natural mixture of the carotenoids lutein and zeaxanthin is extracted, for example, from the flowers of Marigold plants (Tagetes plants) as so-called oleoresin. This oleoresin is used both as an ingredient in food supplements and in the feed area.
- Lycopene from tomatoes is also used as a food supplement, while phytoene is mainly used in the cosmetic sector.
- Ketocarotenoids ie carotenoids, which contain at least one keto group, such as astaxanthin, canthaxanthin, echinenone, 3-hydroxyechinenone, 3'-hydroxyechinenone, adonirubin and adonixanthin are natural antioxidants and Pigments that are produced by some algae, plants and microorganisms as secondary metabolites.
- ketocarotenoids and in particular astaxanthin are used as pigmenting aids in animal nutrition, especially in trout, salmon and shrimp farming.
- WO 0032788 describes some carotenoid biosynthesis genes from plants of the genus Tagetes and discloses how genetically modified plants of the genus Tagetes could be produced in order to obtain different carotenoid profiles in the petals and thus to produce certain carotenoids in a targeted manner. To do this, it is necessary to overexpress some biosynthetic genes and suppress others.
- the invention was therefore based on the object of providing further promoters which enable the expression of genes in plants of the genus Tagetes.
- the invention therefore relates to the use of a promoter selected from the group
- genes in plants of the genus Tagetes for the expression of genes in plants of the genus Tagetes, with the proviso that genes from plants of the genus Tagetes which are expressed in wild-type plants of the genus Tagetes by the respective promoter are excluded.
- Benfey et al. (Plant Cell Volume 2, pp. 849-856) describe the EPSPS promoter from Petunia as a petal-specific promoter for the expression of genes in Petunia hybrida.
- Ronen et al. (PNAS Volume 97, Number 20, 11102-11107 describe the B-GENE promoter from tomato as a flower-specific promoter for the expression of genes in tomatoes.
- Corona et al. (Plant Journal Volume 9 Number 4 pp. 505-512), Mann et al. (Nature Biotechnology Volume 18 pp. 888-892) and Rosati et al. (Plant Journal Volume 24 Number 3 413-419) describe the PDS promoter from tomato as a fruit and flower-specific promoter for the expression of genes in tomatoes and tobacco.
- a promoter is understood to mean a nucleic acid with expression activity, that is to say a nucleic acid which, in functional connection with a nucleic acid to be expressed, hereinafter also referred to as a gene, regulates the expression, that is to say the transcription and translation, of this nucleic acid or of this gene.
- transcription means the process by means of which a complementary RNA molecule is produced starting from a DNA template. Proteins such as RNA polymerase, so-called sigma factors and transcriptional regulatory proteins are involved in this process. The synthesized RNA then serves as a template in the translation process, which then leads to the biosynthetically active protein.
- a “functional link” is understood to mean, for example, the sequential arrangement of one of the promoters according to the invention and a nucleic acid sequence to be expressed and, if appropriate, further regulatory elements such as, for example, a terminator such that each of the regulatory elements fulfill its function in the expression of the nucleic acid sequence This does not necessarily require a direct link in the chemical sense
- Control sequences can also perform their function on the target sequence from more distant positions or even from other DNA molecules.
- Arrangements are preferred in which the nucleic acid sequence to be expressed or the gene to be expressed is positioned behind (i.e. at the 3 'end) the promoter sequence according to the invention, so that both sequences are covalently linked to one another.
- the distance between the promoter sequence and the nucleic acid sequence to be expressed is preferably less than 200 base pairs, particularly preferably less than 100 base pairs, very particularly preferably less than 50 base pairs.
- expression activity means the amount of protein formed by the promoter in a certain time, that is to say the expression rate.
- specific expression activity means the amount of protein per promoter formed by the promoter in a certain time.
- the amount of protein formed is thus increased in a certain time compared to the wild type.
- the rate of formation at which a biosynthetically active protein is produced is a product of the rate of transcription and translation. Both rates can be influenced according to the invention and thus influence the rate of product formation in a microorganism.
- EPSPS promoter from plants of the genus Tagetes is not suitable for the expression of EPSPS genes Plants of the genus Tagetes are used.
- the EPSPS gene from plants of the genus Tagetes can be expressed according to the invention by a B-gene promoter, PDS promoter or CHRC promoter from plants of the genus Tagetes.
- plant can be understood to mean the starting plant (wild type) or a genetically modified plant according to the invention of the genus Tagetes or both.
- Wild type is preferably understood to mean the plant Tagetes erecta, in particular the plant Tagetes erecta Hybrid 50011 (WO 02012438), as reference organism for increasing or causing the expression activity or expression rate and for increasing the content of biosynthetic products.
- EPSPS promoter is understood to mean promoters which naturally regulate the gene expression of a nucleic acid encoding a 5-enolpyruvylshikimate-3-phosphate synthase in organisms, preferably in plants, and of these promoter sequences by substitution, insertion or deletion of nucleotides or nucleic acid sequences which can be derived by fragmentation of these promoter sequences and which still have this expression activity and thus represent functional equivalents.
- EPSPS promoter sequences from other organisms, in particular plants, than the promoter sequences given below can be compared in particular by homology comparisons in databases or hybridization studies with DNA libraries of different organisms using the EPSPS promoter sequences described below or the nucleic acids encoding a 5-enolpyruvylshikimate-3-phosphate synthase find.
- nucleic acids encoding a 5-enolpyruvylshikimate-3-phosphate synthase are preferably used for this purpose, since conserved regions in the coding sequence are more frequent than in the promoter sequence.
- a 5-enolpyruvylshikimate-3-phosphate synthase is understood to mean a protein which has the enzymatic activity to convert shikimate-3-phosphate into 5-enolpyruvylshikimate-3-phosphate.
- the nucleic acid sequence SEQ. ID. NO. 1 represents a promoter sequence of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) from Petunia hybrida (AAH 19653).
- EPSPS 5-enolpyruvylshikimate-3-phosphate synthase
- the nucleic acid sequence SEQ. ID. NO. 2 represents a promoter sequence of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) from Petunia hybrida (M37029).
- EPSPS 5-enolpyruvylshikimate-3-phosphate synthase
- the nucleic acid sequence SEQ. ID. NO. 3 represents a further promoter sequence of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) from Petunia hybrida.
- EPSPS 5-enolpyruvylshikimate-3-phosphate synthase
- the invention further relates to EPSPS promoters containing a sequence derived from these sequences (SEQ. ID. NO. 1, 2 or 3) by substitution, insertion or deletion of nucleotides, which have an identity of at least 60% at the nucleic acid level with the respective SEQ sequence. ID. NO. 1, 2 or 3.
- EPSPS promoters can easily be found, for example, from different organisms, the genomic sequence of which is known, by comparing the identity of the nucleic acid sequences from databases with the sequences SEQ ID NO: 1, 2 or 3 described above.
- EPSPS promoter sequences according to the invention can be easily found starting from the sequences SEQ ID NO: 1, 2 or 3 by artificial variation and mutation, for example by substitution, insertion or deletion of nucleotides.
- substitution means the exchange of one or more nucleotides by one or more nucleotides.
- “Deletion” is the replacement of a nucleotide by a direct binding. Inserts are insertions of nucleotides into the nucleic acid sequence, whereby a direct binding is formally replaced by one or more nucleotides.
- Identity between two nucleic acids is understood to mean the identity of the nucleotides over the respective total nucleic acid length, in particular the identity which is obtained by comparison using the Vector NTI Suite 7.1 software from Informax (USA) using the Clustal method (Higgins DG, Sharp PM.Fast and sensitive multiple sequence alignments on a microcomputer. Comput Appl. Biosci. 1989 Apr; 5 (2): 151-1) is calculated using the following parameters:
- Gap Separation penalty off% identity for alignment delay 40 Residue specific gaps off Hydrophilic residue gap off Transition weighing 0
- Pairwise alignment parameter FAST algorithm on K-tuplesize 1 Gap penalty 3 Window size 5 Number of best diagonals 5
- a nucleic acid sequence which has an identity of at least 60% with the sequence SEQ ID NO: 1 is accordingly understood to mean a nucleic acid sequence which, when comparing its sequence with the sequence SEQ ID NO: 1, in particular according to the program logarithm above above parameter set has an identity of at least 60%.
- a nucleic acid sequence which has an identity of at least 60% with the sequence SEQ ID NO: 2 is accordingly understood to mean a nucleic acid sequence which, when comparing its sequence with the sequence SEQ ID NO: 2, in particular according to the above program logarithm above parameter set has an identity of at least 60%.
- a nucleic acid sequence which has an identity of at least 60% with the sequence SEQ ID NO: 3 is accordingly understood to mean a nucleic acid sequence which, when comparing its sequence with the sequence SEQ ID NO: 3, in particular according to the above program logarithm above parameter set has an identity of at least 60%.
- EPSPS promoters have SEQ with the respective nucleic acid sequence.
- ID. NO. 1, 2 or 3 have an identity of at least 70%, more preferably at least 80%, at least 90%, at least 92%, at least 95%, at least 96%, at least 97%, at least 98%, particularly preferably at least 99%.
- EPSPS promoters can also easily be obtained from the nucleic acid sequences described above, in particular from the sequences SEQ ID NO: 1, 2 or 3, from different organisms, the genomic sequence of which is not known, by hybridization techniques in a manner known per se find.
- Another object of the invention therefore relates to EPSPS promoters containing a nucleic acid sequence which is identical to the nucleic acid sequence SEQ. ID. No. 1, 2 or 3 hybridized under stringent conditions.
- This nucleic acid sequence comprises at least 10, more preferably more than 12, 15, 30, 50 or particularly preferably more than 150 nucleotides.
- Hybridizing means the ability of a poly- or oligonucleotide to bind to an almost complementary sequence under stringent conditions, while under these conditions there are no unspecific bindings between non-complementary partners.
- the sequences should preferably be 90-100% complementary.
- the property of complementary sequences of being able to specifically bind to one another is exploited, for example, in Northern or Southern blot technology or in primer binding in PCR or RT-PCR.
- the hybridization takes place under stringent conditions.
- Hybridization conditions are described, for example, by Sambrook, J., Fritsch, EF, Manatis, T., in: Molecular Cloning (A Laboratory Manual), 2nd edition, Cold Spring Harbor Laboratory Press, 1989, pages 9.31-9.57 or in Current Protocols in Molecular Biology, John Wiley & Sons, NY (1989), 6.3.1-6.3.6:
- Stringent hybridization conditions are understood to mean in particular: The overnight incubation at 42 ° C. in a solution consisting of 50% formamide, 5 ⁇ SSC (750 mM NaCl, 75 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6) ), 5x Denhardt's solution, 10% dextran sulfate and 20 g / ml denatured, sheared salmon sperm DNA, followed by washing the filter with 0.1x SSC at 65 ° C.
- a “functionally equivalent fragment” is understood to mean fragments which have essentially the same promoter activity as the starting sequence.
- “Essentially the same” is understood to mean a specific expression activity which has at least 50%, preferably 60%, more preferably 70%, more preferably 80%, more preferably 90%, particularly preferably 95% of the specific expression activity of the starting sequence.
- “Fragments” are partial sequences of the EPSPS promoters described by embodiment A1), A2) or A3). These fragments preferably have more than 10, but more preferably more than 12, 15, 30, 50 or particularly preferably more than 150 contiguous nucleotides of the Nucleic acid sequence SEQ. ID. NO. 1, 2 or 3.
- nucleic acid sequence SEQ is particularly preferred. ID. NO. 1, 2 or 3 as an EPSPS promoter, i.e. for the expression of genes in plants of the genus Tagetes.
- All of the EPSPS promoters mentioned above can also be produced in a manner known per se by chemical synthesis from the nucleotide building blocks, for example by fragment condensation of individual overlapping, complementary nucleic acid building blocks of the double helix.
- the chemical synthesis of oligonucleotides can be carried out, for example, in a known manner using the phosphoamidite method (Voet, Voet, 2nd edition, Wiley Press New York, pp. 896-897).
- the attachment of synthetic oligonucleotides and the filling of gaps using the Klenow fragment of DNA polymerase and ligation reactions as well as general cloning methods are described in Sambrook et al. (1989) Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press.
- a “B gene promoter” is understood to mean promoters which naturally regulate the gene expression of a nucleic acid encoding a lycopene- ⁇ -cyclase, in particular a chromoplast-specific lycopene- ⁇ -cyclase, in organisms, preferably in plants, and of these Promoter sequences by substitution, insertion or deletion of nucleotides or by fragmentation of these promoter sequences derivable nucleic acid sequences which still have this expression activity and thus represent functional equivalents.
- B-gene promoter sequences from other organisms, in particular plants, than the promoter sequences given below can be compared in particular by homology comparisons in databases or hybridization studies with DNA libraries of different organisms using the B-gene promoter sequences described below or the nucleic acids encoding a lycopene - Find ⁇ -cyclase.
- nucleic acids encoding a lycopene- ⁇ -cyclase are preferably used for this purpose, since conserved regions in the coding sequence are more common than in the promoter sequence.
- a lycopene- ⁇ -cyclase is understood to mean a protein which has the enzymatic activity to convert lycopene into ⁇ -carotene and / or ß-carotene.
- Preferred B gene promoters contain
- B1 the nucleic acid sequence SEQ. ID. NO. 4, 5 or 6 or B2) a sequence derived from these sequences by substitution, insertion or deletion of nucleotides, which has an identity of at least 60% at the nucleic acid level with the respective sequence SEQ. ID. NO. 4, 5 or 6 or B3) a nucleic acid sequence which is identical to the nucleic acid sequence SEQ. ID. NO. 4, 5 or 6 hybridized under stringent conditions or B4) functionally equivalent fragments of the sequences under B1), B2) or B3)
- the nucleic acid sequence SEQ. ID. NO. 4 shows a promoter sequence of the chromoplast-specific lycopene- ⁇ -cyclase (B gene) from Lycopersicon esculentum (AAZ51517).
- the nucleic acid sequence SEQ. ID. NO. 5 shows a promoter sequence of the chromoplast-specific lycopene- ⁇ -cyclase (B gene) from Lycopersicon esculentum (AAZ51521).
- the nucleic acid sequence SEQ. ID. NO. 6 shows a further promoter sequence of the chromoplast-specific lycopene- ⁇ -cyclase (B gene) from Lycopersicon esculentum.
- the invention further relates to B-gene promoters, containing a sequence derived from these sequences (SEQ. ID. NO. 4, 5 or 6) by substitution, insertion or deletion of nucleotides, which has an identity of at least 60% at the nucleic acid level of the respective sequence SEQ. ID. NO. 4, 5 or 6.
- B gene promoters according to the invention can easily be found, for example, from different organisms whose genomic sequence is known by comparing the identity of the nucleic acid sequences from databases with the sequences SEQ ID NO: 4, 5 or 6 described above.
- a nucleic acid sequence which has at least 60% identity with the sequence SEQ ID NO: 4 is accordingly understood to mean a nucleic acid sequence which, when comparing its sequence with the sequence SEQ ID NO: 4, in particular according to the above program logarithm with the above parameter set Identity of at least 60%.
- a nucleic acid sequence which has an identity of at least 60% with the sequence SEQ ID NO: 5 is accordingly understood to mean a nucleic acid sequence which, when comparing its sequence with the sequence SEQ ID NO: 5, in particular according to the above program logarithm with the above Parameter set has an identity of at least 60%.
- a nucleic acid sequence which has an identity of at least 60% with the sequence SEQ ID NO: 6 is accordingly understood to mean a nucleic acid sequence which, when comparing its sequence with the sequence SEQ ID NO: 6, in particular according to the above program logarithm with the above Parameter set has an identity of at least 60%.
- Particularly preferred B gene promoters have SEQ with the respective nucleic acid sequence.
- ID. NO. 4, 5 or 6 have an identity of at least 70%, more preferably at least 80%, at least 90%, at least 92%, at least 95%, at least 96%, at least 97%, at least 98%, particularly preferably at least 99%.
- B gene promoters can also be derived from the nucleic acid sequences described above, in particular from the sequences SEQ ID NO: 4, 5 or 6 from different organisms, the genomic sequence of which is not known, by hybridization techniques in a manner known per se easy to find.
- Another object of the invention therefore relates to B-gene promoters containing a nucleic acid sequence that matches the nucleic acid sequence SEQ. ID. No. 4, 5 or 6 hybridized under stringent conditions.
- This nucleic acid sequence comprises at least 10, more preferably more than 12, 15, 30, 50 or particularly preferably more than 150 nucleotides.
- a “functionally equivalent fragment” for promoters is understood to mean fragments which have essentially the same promoter activity as the transition sequence.
- “Essentially the same” is understood to mean a specific expression activity which has at least 50%, preferably 60%, more preferably 70%, more preferably 80%, more preferably 90%, particularly preferably 95% of the specific expression activity of the starting sequence.
- “Fragments” are to be understood as partial sequences of the B gene promoters described by embodiment B1), B2) or B3). These fragments preferably have more than 10, but more preferably more than 12, 15, 30, 50 or particularly preferably more than 150 contiguous nucleotides of the nucleic acid sequence SEQ ID NO.4, 5 or 6.
- nucleic acid sequence SEQ is particularly preferred. ID. NO. 4, 5 or 6 as a B gene promoter, i.e. for the expression of genes in plants of the genus Tagetes.
- All of the above-mentioned B gene promoters can also be produced in a manner known per se by chemical synthesis from the nucleotide building blocks, such as, for example, by fragment condensation of individual overlapping, complementary nucleic acid building blocks of the double helix.
- the chemical synthesis of oligonucleotides can be carried out, for example, in a known manner using the phosphoamidite method (Voet, Voet, 2nd edition, Wiley Press New York, pp. 896-897).
- the attachment of synthetic oligonucleotides and the filling of gaps using the Klenow fragment of DNA polymerase and ligation reactions as well as general cloning methods are described in Sambrook et al. (1989) Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press.
- a “PDS promoter” is understood to mean promoters which naturally regulate the gene expression of a nucleic acid encoding a phytoendesaturase in organisms, preferably in plants, and nucleic acid sequences which can be derived from these promoter sequences by substitution, insertion or deletion of nucleotides or by fragmentation of these promoter sequences. which still have this expression activity and thus represent functional equivalents.
- PDS promoter sequences from organisms, in particular plants, other than the promoter sequences given below can be compared in particular by homology comparisons in databases or hybridization studies with DNA libraries of different organisms using the PDS promoter sequences described below or the nucleic acids encoding a phyto-end saturase.
- nucleic acids encoding a phytoendesaturase are preferably used for this purpose, since conserved regions in the coding sequence are more frequent than in the promoter sequence.
- a phytoendesaturase is preferably understood to mean a protein which has the enzymatic activity to convert phytoene into phytofluene.
- C1 the nucleic acid sequence SEQ. ID. NO. 7, 8, 9 or 10 or C2) a sequence derived from these sequences by substitution, insertion or deletion of nucleotides, which has an identity of at least 60% at the nucleic acid level with the respective sequence SEQ. ID. NO. 7, 8, 9 or 10 or C3) a nucleic acid sequence which is identical to the nucleic acid sequence SEQ. ID. NO. 7, 8, 9 or 10 hybridized under stringent conditions or C4) functionally equivalent fragments of the sequences under C1), C2) or C3)
- the nucleic acid sequence SEQ. ID. NO. 7 shows a promoter sequence of phytoendesaturase (PDS) from Lycopersicon esculentum (U46919).
- the nucleic acid sequence SEQ. ID. NO. 8 shows a promoter sequence of phytoendesaturase (PDS) from Lycopersicon esculentum (X78271).
- the nucleic acid sequence SEQ. ID. NO. 9 shows a promoter sequence of phytoendesaturase (PDS) from Lycopersicon esculentum (X171023).
- the nucleic acid sequence SEQ. ID. NO. 10 represents a further promoter sequence of the Phytoendesaturase (PDS) from Lycopersicon esculentum.
- PDS Phytoendesaturase
- the invention further relates to PDS promoters containing a sequence derived from these sequences (SEQ. ID. NO. 7, 8, 9 or 10) by substitution, insertion or deletion of nucleotides, which have an identity of at least 60% at the nucleic acid level with the respective SEQ sequence. ID. NO. 7, 8, 9 or 10.
- PDS promoters according to the invention can be obtained, for example, from different organisms whose genomic sequence is known by comparing the identity of the nucleic acid sequences from data. easily find databases with the sequences SEQ ID NO: 7, 8, 9 or 10 described above.
- a nucleic acid sequence which has an identity of at least 60% with the sequence SEQ ID NO: 7 is accordingly understood to mean a nucleic acid sequence which, when comparing its sequence with the sequence SEQ ID NO: 7, in particular according to the above program logarithm above parameter set has an identity of at least 60%.
- a nucleic acid sequence which has an identity of at least 60% with the sequence SEQ ID NO: 8 is accordingly understood to mean a nucleic acid sequence which, when comparing its sequence with the sequence SEQ ID NO: 8, in particular according to the above program logarithm, with the above parameter set has an identity of at least 60%.
- a nucleic acid sequence which has an identity of at least 60% with the sequence SEQ ID NO: 9 is accordingly understood to mean a nucleic acid sequence which, when comparing its sequence with the sequence SEQ ID NO: 9, in particular according to the above program logarithm, with the above parameter set has an identity of at least 60%.
- a nucleic acid sequence which has an identity of at least 60% with the sequence SEQ ID NO: 10 is accordingly understood to mean a nucleic acid sequence which, when comparing its sequence with the sequence SEQ ID NO: 10, in particular according to the above program logarithm, with the above parameter set has an identity of at least 60%.
- Particularly preferred PDS promoters have SEQ with the respective nucleic acid sequence.
- ID. NO. 7, 8, 9 or 10 have an identity of at least 70%, more preferably at least 80%, at least 90%, at least 92%, at least 95%, at least 96%, at least 97%, at least 98%, particularly preferably at least 99%.
- PDS promoters can furthermore be derived from the nucleic acid sequences described above, in particular from the sequences SEQ ID NO: 7, 8, 9 or 10 from various organisms whose genomic sequence is not known, can easily be found by hybridization techniques in a manner known per se.
- Another object of the invention therefore relates to PDS promoters containing a nucleic acid sequence which is identical to the nucleic acid sequence SEQ. ID. No. 7, 8, 9 or 10 hybridized under stringent conditions.
- This nucleic acid sequence comprises at least 10, more preferably more than 12, 15, 30, 50 or particularly preferably more than 150 nucleotides.
- a “functionally equivalent fragment” for promoters means fragments which have essentially the same promoter activity as the starting sequence.
- “Essentially the same” means a specific expression activity which has at least 50%, preferably 60%, more preferably 70%, more preferably 80%, more preferably 90%, particularly preferably 95% of the specific expression activity of the starting sequence.
- “Fragments” mean partial sequences of the PDS promoters described by embodiment C1), C2) or C3). These fragments preferably have more than 10, but more preferably more than 12, 15, 30, 50 or particularly preferably more than 150 contiguous nucleotides of the Nucleic acid sequence SEQ ID NO 7, 8, 9 or 10.
- nucleic acid sequence SEQ is particularly preferred. ID. NO. 7, 8, 9 or 10 as a PDS promoter, i.e. for the expression of genes in plants of the genus Tagetes.
- All of the PDS promoters mentioned above can also be produced in a manner known per se by chemical synthesis from the nucleotide building blocks, for example by fragment condensation of individual overlapping, complementary nucleic acid building blocks of the double helix.
- the chemical synthesis of oligonucleotides can be carried out, for example, in a known manner using the phosphoamidite method (Voet, Voet, 2nd edition, Wiley Press New York, pp. 896-897).
- the attachment of synthetic oligonucleotides and the filling of gaps using the Klenow fragment of DNA polymerase and ligation reactions as well as general cloning methods are described in Sambrook et al. (1989) Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press.
- CHRC promoter is understood to mean promoters which naturally regulate the gene expression of a nucleic acid encoding a chromoplast-associated protein C in organisms, preferably in plants, and of these promoter sequences by substitution, insertion or deletion of nucleotides or by fragmentation of these promoter sequences derivable nucleic acid sequences that still have this expression activity and thus represent functional equivalents.
- CHRC promoter sequences from organisms, in particular plants, other than the promoter sequences given below can be found in particular by comparing homology in databases or hybridization studies with DNA libraries of different organisms using the CHRC promoter sequences described below or the nucleic acids encoding a chromoplast-associated protein C ,
- nucleic acids encoding a chromoplast-associated protein C are preferably used, since conserved regions in the coding sequence are more common than in the promoter sequence.
- D1 the nucleic acid sequence SEQ. ID. NO. 11, 12, 13 or 14 or D2) a sequence derived from these sequences by substitution, insertion or deletion of nucleotides, which has an identity of at least 60% at the nucleic acid level with the respective sequence SEQ. ID. NO. 11, 12, 13 or 14 or, D3) a nucleic acid sequence which is identical to the nucleic acid sequence SEQ. ID. NO. 11, 12, 13 or 14 hybridized under stringent conditions or D4) functionally equivalent fragments of the sequences under D1), D2) or D3)
- the nucleic acid sequence SEQ. ID. NO. 11 represents a promoter sequence of the chromoplast-associated protein C (CHRC) from cucumber (AAV36416).
- the nucleic acid sequence SEQ. ID. NO. 12 represents another promoter sequence of the chromoplast-associated protein C (CHRC) from cucumber.
- CHRC chromoplast-associated protein C
- the nucleic acid sequence SEQ. ID. NO. 13 represents another promoter sequence of the chromoplast-associated protein C (CHRC) from cucumber.
- the nucleic acid sequence SEQ. ID. NO. 14 represents another promoter sequence of the chromoplast-associated protein C (CHRC) from cucumber.
- the invention further relates to CHRC promoters containing a sequence derived from these sequences (SEQ. ID. NO. 11, 12, 13 or 14) by substitution, insertion or deletion of nucleotides, which have an identity of at least 60% on nuc - linseic acid level with the respective sequence SEQ. ID. NO. 11, 12, 13, or 14.
- CHRC promoters can easily be found, for example, from various organisms whose genomic sequence is known by comparing the identity of the nucleic acid sequences from databases with the sequences SEQ ID NO: 11, 12, 13 or 14 described above.
- a nucleic acid sequence which has an identity of at least 60% with the sequence SEQ ID NO: 11 is accordingly understood to mean a nucleic acid sequence which, when comparing its sequence with the sequence SEQ ID NO: 11, in particular according to the above program logarithm with the above parameter set Identity of at least 60%.
- a nucleic acid sequence which has an identity of at least 60% with the sequence SEQ ID NO: 12 is accordingly understood to mean a nucleic acid sequence which, when comparing its sequence with the sequence SEQ ID NO: 12, in particular according to the above program logarithm with the above parameter set Identity of at least 60%.
- a nucleic acid sequence which has an identity of at least 60% with the sequence SEQ ID NO: 13 is accordingly understood to mean a nucleic acid sequence which, when comparing its sequence with the sequence SEQ ID NO: 13, in particular according to the above program logarithm with the above parameter set Identity of at least 60%.
- CHRC promoters have SEQ with the respective nucleic acid sequence. ID. NO. 11, 12, 13 or 14 have an identity of at least 70%, more preferably at least 80%, at least 90%, at least 92%, at least 95%, at least 96%, at least 97%, at least 98%, particularly preferably at least 99% ,
- CHRC promoters can also be derived from the nucleic acid sequences described above, in particular from the sequences SEQ ID NO: 11, 12, 13 or 14 from different organisms, the genomic sequence of which is not known, by hybridization techniques in a manner known per se Easy to find.
- Another object of the invention therefore relates to CHCRC promoters containing a nucleic acid sequence which is identical to the nucleic acid sequence SEQ. ID. No. 11, 12, 13, or 14 hybridized under stringent conditions.
- This nucleic acid sequence comprises at least 10, more preferably more than 12, 15, 30, 50 or particularly preferably more than 150 nucleotides.
- a “functionally equivalent fragment” means fragments which have essentially the same promoter activity as the starting sequence.
- “Substantially the same” means a specific expression activity which has at least 50%, preferably 60%, more preferably 70%, more preferably 80%, more preferably 90%, particularly preferably 95% of the specific expression activity of the starting sequence.
- “Fragments” are partial sequences of the CHRC promoters described by embodiment D1), D2) or D3). These fragments preferably have more than 10, but more preferably more than 12, 15, 30, 50 or particularly preferably more than 150 contiguous Nucleotides of the nucleic acid sequence SEQ.ID.NO.11, 12, 13, or 14.
- nucleic acid sequence SEQ is particularly preferred. ID. NO. 11, 12, 13, or 14 as a CHRC promoter, ie for the expression of genes in plants of the Genus Tagetes.
- CHRC promoters mentioned above can also be produced in a manner known per se by chemical synthesis from the nucleotide building blocks, for example by fragment condensation of individual overlapping, complementary nucleic acid building blocks of the double helix.
- the chemical synthesis of oligonucleotides can be carried out, for example, in a known manner using the phosphoamidite method (Voet, Voet, 2nd edition, Wiley Press New York, pp. 896-897).
- the attachment of synthetic oligonucleotides and the filling of gaps using the Klenow fragment of DNA polymerase and ligation reactions as well as general cloning methods are described in Sambrook et al. (1989) Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press.
- the promoters according to the invention can be used to express any gene, that is to say any nucleic acid, encoding a protein, in plants of the genus Tagetes, in particular to express it in a flower-specific manner, particularly preferably in a petal-specific manner.
- Preferred effect genes are, for example, genes from the biosynthetic pathway of odorous substances and flower colors, their expression or increased expression in plants. of the genus Tagetes leads to a change in the smell and / or the flower color of flowers of the plants of the genus Tagetes.
- Volatile odor components will be formed within the monoterpene and phenylpropane metabolism, for example. In the first case it is linalool;
- the phenylpropanes are derived from methyleneugenol, benzyl acetate, methylbenzoate and methyl salicate.
- Preferred genes for the biosynthesis of linalool, (ISo) methyleigenol, benzyl acetate and methyl salicinate are selected from the group nucleic acids encoding a linoleic synthase (LIS), nucleic acids encoding an S-adenosyl-L-Met: (iso) -eugenol- O-methyl transferase (IEMT), nucleic acids encoding an acetyl-CoA-benzyl alcohol acetyl transferase and nucleic acids encoding an S-adenosyl-L-Met: salicylic acid methyl transferase (SAMT).
- LIS linoleic synthase
- IEMT iso) -eugenol- O-methyl transferase
- SAMT salicylic acid methyl transferase
- Particularly preferred effect genes are genes from biosynthetic pathways of biosynthetic products which are naturally found in plants of the genus Tagetes, i.e. can be produced in the wild type or by genetic modification of the wild type, in particular can be produced in flowers, particularly preferably can be produced in petals.
- Preferred biosynthetic products are fine chemicals.
- fine chemical is known in the art and includes compounds produced by an organism and used in various industries, such as, but not limited to, the pharmaceutical, agricultural, cosmetic, food and feed industries. These compounds include organic acids such as tartaric acid, itaconic acid and diaminopimelic acid, both proteinogenic and non-proteinogenic amino acids, purine and pyrimidine bases, nucleosides and nucleotides (as described, for example, in Kuninaka, A. (1996) Nucleotides and related compounds , Pp. 561-612, in Biotechnology Vol. 6, Rehm et al., Ed. VCH: Weinheim and the citations contained therein), lipids, saturated and unsaturated fatty acids (e.g.
- arachidonic acid arachidonic acid
- diols e.g. propanediol and Butanediol
- carbohydrates e.g. hyaluronic acid and trehalose
- aromatic compounds e.g. aromatic amines, vanillin and indigo
- vitamins, carotenoids and cofactors as described in Ullmann's Encyclopedia of Industrial Chemistry, Vol. A27, "Vitamins", p 443-613 (1996) VCH: Weinheim and the citations contained therein; and Ong, AS, Niki, E. and Packer, L.
- amino acids comprise the basic structural units of all proteins and are therefore essential for normal cell functions.
- amino acid is known in the art.
- the proteinogenic amino acids of which there are 20 types, serve as structural units for proteins in which they are linked to one another via peptide bonds. which are linked, whereas the non-proteinogenic amino acids (of which hundreds are known) are usually not found in proteins (see Ullmann's Encyclopedia of Industrial Chemistry, Vol. A2, pp. 57-97 VCH: Weinheim (1985)).
- the amino acids can be in the D or L configuration, although L-amino acids are usually the only type found in naturally occurring proteins.
- Biosynthetic and degradation pathways of each of the 20 proteinogenic amino acids are well characterized in both prokaryotic and eukaryotic cells (see, for example, Stryer, L. Biochemistry, 3rd edition, pp. 578-590 (1988)).
- the "essential" amino acids histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan and valine
- amino acids histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan and valine
- nonessential amino acids alanine, arginine, asparagine, aspartate, cysteine, glutamate, glutamine, glycine, proline, serine and tyrosine
- Higher animals have the ability to synthesize some of these amino acids, but the essential amino acids have to be ingested in order for normal protein synthesis to take place.
- Lysine is not only an important amino acid for human nutrition, but also for monogastric animals such as poultry and pigs.
- Glutamate is most commonly used as a flavor additive (monosodium glutamate, MSG) and is widely used in the food industry, as is aspartate, phenylalanine, glycine and cysteine.
- Glycine, L-methionine and tryptophan are all used in the pharmaceutical industry.
- Glutamine, valine, leucine, isoleucine, histidine, arginine, proline, serine and alanine are used in the pharmaceutical and cosmetic industries. Threonine, tryptophan and D- / L-methionine are widespread feed additives (Leuchtenberger, W. (1996) Amino acids - technical production and use, pp. 466-502 in Rehm et al., (Ed.) Biotechnology Vol. 6, chapter 14a, VCH: Weinheim).
- amino acids can also be used as precursors for the synthesis of synthetic amino acids and proteins such as N-acetylcysteine, S-carboxymethyl-L-cysteine, (S) -5-hydroxytryptophan and others, in Ullmann's Encyclopedia of Industrial Chemistry, Vol. A2, pp. 57-97, VCH, Weinheim, 1985 are suitable substances.
- Cysteine and glycine are each produced from serine, the former by condensation of homocysteine with serine, and the latter by transferring the side chain ⁇ -carbon atom to tetrahydrofolate, in a reaction catalyzed by serine transhydroxymethylase.
- Phenylalanine and tyrosine are synthesized from the precursors of the glycolysis and pentosephosphate pathways, erythrose-4-phosphate and phosphoenolpyruvate in a 9-step biosynthetic pathway that differs only in the last two steps after the synthesis of prephenate. Tryptophan is also produced from these two starting molecules, but its synthesis takes place in an 11-step way.
- Tyrosine can also be produced from phenylalanine in a reaction catalyzed by phenylalanine hydroxylase.
- Alanine, valine and leucine are each biosynthetic products from pyruvate, the end product of glycolysis.
- Aspartate is made from oxaloacetate, an intermediate of the citrate cycle.
- Asparagine, methionine, threonine and lysine are each produced by converting aspartate.
- Isoleucine is made from threonine.
- histidine is formed from 5-phosphoribosyl-1-pyrophosphate, an activated sugar.
- Amino acids the amount of which exceeds the protein biosynthesis requirement of the cell, cannot be stored and are instead broken down, so that intermediates are provided for the main metabolic pathways of the cell (for an overview see Stryer, L., Biochemistry, 3rd ed. Chap. 21 "Amino Acid Degradation and the Urea Cycle”; S 495-516 (1988)).
- the cell is able to convert unwanted amino acids into useful metabolic intermediates, amino acid production is expensive in terms of energy, precursor molecules and the enzymes required for their synthesis.
- amino acid biosynthesis is regulated by feedback inhibition, the presence of a particular amino acid slowing down or completely stopping its own production (for an overview of the feedback mechanism in amino acid biosynthetic pathways, see Stryer, L., Biochemistry, 3rd Edition, Chapter 24, "Biosynthesis of Amino Acids and Heme", pp. 575-600 (1988)).
- the output of a certain amino acid is therefore restricted by the amount of this amino acid in the cell.
- Vitamins, carotenoids, cofactors and nutraceutical metabolism and uses Vitamins, carotenoids, cofactors and nutraceuticals comprise another group of molecules. Higher animals have lost the ability to synthesize them and must therefore absorb them, although they are easily synthesized by other organisms such as bacteria. These molecules are either biologically active molecules per se or precursors of biologically active substances that serve as electron carriers or intermediates in a number of metabolic pathways. In addition to their nutritional value, these compounds also have a significant industrial value as dyes, antioxidants and catalysts or other processing aids. (For an overview of the structure, activity and the industrial applications of these compounds, see, for example, Ullmann's Encyclopedia of Industrial Chemistry, "Vitamins", Vol. A27, pp.
- vitamin is known in the art and encompasses nutrients which are required by an organism for normal function, but which cannot be synthesized by this organism itself.
- the group of vitamins can include cofactors and nutraceutical compounds.
- cofactor includes non-proteinaceous compounds that are necessary for normal enzyme activity to occur. These compounds can be organic or inorganic; the cofactor molecules according to the invention are preferably organic.
- nutraceutical encompasses food additives which are beneficial to plants and animals, in particular humans. Examples of such molecules are vitamins, antioxidants and also certain lipids (eg polyunsaturated fatty acids).
- Preferred fine chemicals or biosynthetic products which can be produced in plants of the genus Tagetes, in particular in petals of the flowers of the plants of the genus Tagetes, are carotenoids, such as, for example, phytoene, lycopene, lutein, zeaxanthin, astaxanthin, canthaxanthin, echinenone, 3-hydroxyechinenone, 3'-hydroxyechinenone, adonirubin, violaxanthin and adonixanthin.
- carotenoids such as, for example, phytoene, lycopene, lutein, zeaxanthin, astaxanthin, canthaxanthin, echinenone, 3-hydroxyechinenone, 3'-hydroxyechinenone, adonirubin, violaxanthin and adonixanthin.
- ketocarotenoids such as, for example, astaxanthine, canthaxanthin, echinenone, 3-hydroxyechinenone, 3'-hydroxyechinenone, adonirubin, violaxanthin and adonixanthin.
- Thiamine (vitamin Bi) is formed by chemical coupling of pyrimidine and thiazole units.
- Riboflavin (vitamin B 2 ) is synthesized from guanosine 5'-triphosphate (GTP) and ribose 5'-phosphate. Riboflavin in turn is used to synthesize flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD).
- the family of compounds commonly referred to as "Vitamin B6" e.g. pyridoxine, pyridoxamine, pyridoxal-5'-phosphate and the commercially used pyridoxine hydrochloride are all derivatives of the common structural unit 5-hydroxy-6-methylpyridine.
- Panthothenate (pantothenic acid, R - (+) - N- (2,4-dihydroxy-3,3-dimethyl-1-oxobutyl) -ß-alanine) can be produced either by chemical synthesis or by fermentation.
- the final steps in Pantothenate biosynthesis consists of the ATP-driven condensation of ß-alanine and pantoic acid.
- the enzymes responsible for the biosynthetic steps for the conversion into pantoic acid, into ß-alanine and for the condensation into pantothenic acid are known.
- the metabolically active form of pantothenate is coenzyme A, whose biosynthesis takes place over 5 enzymatic steps.
- Pantothenate pyridoxal-5'-phosphate, cysteine and ATP are the precursors of coenzyme A. These enzymes not only catalyze the formation of pantothenate, but also the production of (R) -pantoic acid, (R) -pantolactone, (R) - Panthenol (provitamin B 5 ), pantethein (and its derivatives) and coenzyme A.
- Lipoic acid is derived from octanoic acid and serves as a coenzyme in energy metabolism, where it becomes part of the pyruvate dehydrogenase complex and the ⁇ -ketoglutarate dehydrogenase complex.
- Folate is a group of substances that are all derived from folic acid, which in turn are derived from L-. Glutamic acid, p-aminobenzoic acid and 6-methylpterine is derived.
- guanosine 5'-triphosphate GTP
- L-glutamic acid L-glutamic acid
- p-aminobenzoic acid The biosynthesis of folic acid and its derivatives, starting from the metabolic intermediates guanosine 5'-triphosphate (GTP), L-glutamic acid and p-aminobenzoic acid, has been extensively investigated in certain microorganisms.
- Corrinoids like the cobalamines and especially vitamin B ⁇ 2
- the porphyrins belong to a group of chemicals that are characterized by a tetrapyrrole ring system.
- the biosynthesis of vitamin B 12 is sufficiently complex that it has not yet been fully characterized, but a large part of the enzymes and substrates involved is now known.
- Nicotinic acid (nicotinate) and nicotinamide are pyridine derivatives, which are also called “niacin”.
- Niacin is the precursor to important coenzymes NAD (nicotinamide adenine dinucleotide) and NADP (nicotinamide adenine dinucleotide phosphate) and their reduced forms.
- nucleotide includes the basic structural units of the nucleic acid molecules, which comprise a nitrogen-containing base, a pentose sugar (for RNA, the sugar is ribose, for DNA, the sugar is D-deoxyribose) and phosphoric acid.
- nucleoside encompasses molecules which serve as precursors of nucleotides, but which, in contrast to the nucleotides, have no phosphoric acid unit.
- nucleotides that do not form nucleic acid molecules, but serve as energy stores (i.e. AMP) or as coenzymes (i.e. FAD and NAD).
- Fine chemicals e.g. thiamine, S-adenosyl methionine, folate or riboflavin
- Kalien e.g. thiamine, S-adenosyl-methionine, folate or riboflavin
- an energy source for the cell e.g. ATP or GTP
- flavor enhancers e.g. IMP or GMP
- Enzymes which are based on purine, Pyrimidine, nucleoside or nucleotide metabolism are also increasingly becoming targets against which crop protection chemicals, including fungicides, herbicides and insecticides, are being developed.
- the purine nucleotides are synthesized from ribose 5-phosphate via a series of steps via the intermediate compound innosine 5'-phosphate (IMP), which leads to the production of guanosine 5'-monophosphate (GMP) or adenosine 5'-monophosphate (AMP ) leads from which the triphosphate forms used as nucleotides can be easily produced. These compounds are also used as energy stores so that their degradation provides energy for many different biochemical processes in the cell. Pyrimidine biosynthesis takes place via the formation of uridine 5'-monophosphate (UMP) from ribose 5-phosphate. UMP in turn is converted to cytidine 5'-triphosphate (CTP).
- IMP intermediate compound innosine 5'-phosphate
- GMP guanosine 5'-monophosphate
- AMP adenosine 5'-monophosphate
- Pyrimidine biosynthesis takes place via the formation of uridine 5'-monophosphate (UMP
- the deoxy forms of all nucleotides are produced in a one-step reduction reaction from the diphosphate ribose form of the nucleotide to the diphosphate deoxyribose form of the nucleotide. After phosphorylation, these molecules can participate in DNA synthesis.
- Trehalose consists of two glucose molecules that are linked by an ⁇ , ⁇ -1,1 bond. It is commonly used in the food industry as a sweetener, as an additive for dried or frozen foods, and in beverages. However, it is also used in the pharmaceutical, cosmetic, and biotechnology industries (see, e.g., Nishimoto et al., (1998) U.S. Patent No. 5,759,610; Singer, MA and Lindquist, S. Trends Biotech. 16 (1998) 460-467; Paiva, CLA and Panek, AD Biotech Ann. Rev. 2 (1996) 293-314; and Shiosaka, MJ Japan 172 (1997) 97-102). Trehalose is produced by enzymes from many microorganisms and released naturally into the surrounding medium from which it can be obtained by methods known in the art.
- biosynthetic products are selected from the group consisting of organic acids, proteins, nucleotides and nucleosides, both proteinogenic and non-proteinogenic amino acids, lipids and fatty acids, diols, carbohydrates, aromatic compounds, vitamins and cofactors, enzymes and proteins.
- Preferred organic acids are tartaric acid, itaconic acid and diaminopimelic acid
- nucleosides and nucleotides are described, for example, in Kuninaka, A. (1996) Nucleotides and related compounds, pp. 561-612, in Biotechnology Vol. 6, Rehm et al., Ed. VCH: Weinheim and the citations contained therein.
- Preferred biosynthetic products are also lipids, saturated and unsaturated fatty acids such as arachidonic acid, diols such as propanediol and butanediol, carbohydrates such as hyaluronic acid and trehalose, aromatic compounds such as aromatic amines, vanillin and indigo, vitamins and cofactors as described for example in Ullmann's Encyclopedia of Industrial Chemistry, Vol. A27, "Vitamins", pp. 443-613 (1996) VCH: Weinheim and the citations contained therein; and Ong, AS, Niki, E. and Packer, L.
- genes which are expressed with the promoters according to the invention in plants of the genus Tagetes are therefore selected from the group nucleic acids encoding a protein from the biosynthetic pathway of proteinogenic and non-proteinogenic amino acids, nucleic acids encoding a protein from the biosynthetic pathway of Nucleotides and nucleosides, nucleic acids encoding a protein from the biosynthetic pathway of organic acids, nucleic acids encoding a protein from the biosynthetic pathway of lipids and fatty acids, nucleic acids encoding a protein from the biosynthetic pathway of diols, nucleic acids encoding a protein from the biosynthetic pathway of cave hydrates, nucleic acids Protein from the biosynthetic pathway of aromatic compounds, nucleic acids encoding a protein from the biosynthetic pathway of vitamins, nucleic acids encoding a protein from the biosynthetic pathway of carotenoids, in particular ketocaro
- Preferred fine chemicals or biosynthetic products which can be produced in plants of the genus Tagetes, in particular in petals of the flowers of the plants of the genus Tagetes, are carotenoids, such as, for example, phytoene, lycopene, lutein, zeaxanthin, astaxanthin, canthaxanthin, echinenone, 3- Hydroxyechinenone, 3'-hydroxyechinenone, adonirubin, violaxanthin and adonixanthin.
- carotenoids such as, for example, phytoene, lycopene, lutein, zeaxanthin, astaxanthin, canthaxanthin, echinenone, 3- Hydroxyechinenone, 3'-hydroxyechinenone, adonirubin, violaxanthin and adonixanthin.
- ketocarotenoids such as astaxanthin, canthaxanthin, echinenone, 3-hydroxyechinenone, 3'-hydroxyechinenone, adonirubin, violaxanthin and adonixanthin.
- Very, particularly preferred genes which are expressed in plants of the genus Tagetes with the promoters according to the invention are accordingly genes which encode proteins from the biosynthetic pathway of carotenoids.
- Genes are particularly preferably selected from the group nucleic acids encoding a ketolase, nucleic acids encoding a ⁇ -hydroxylase, nucleic acids encoding a ⁇ -cyclase, nucleic acids encoding an ⁇ -cyclase, nucleic acids encoding an epoxidase, nucleic acids encoding an HMG-CoA reductase, Nucleic acids encoding an (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductase, nucleic acids encoding a 1-deoxy-D-xylose-5-phosphate synthase, nucleic acids encoding a 1-deoxy-D-xyiosis -5-phosphate reductoisomerase, nucleic acids encoding an isopentenyl diphosphate ⁇ isomerase, nucleic acids encoding a geranyl diphosphate synthase, nucleic acids encoding a famesy
- a ketolase is understood to mean a protein which has the enzymatic activity a ' to introduce a keto group on the optionally substituted ⁇ -ionone ring of carotenoids.
- a ketolase is understood to be a protein which has the enzymatic activity to convert ⁇ -carotene into canthaxanthin.
- nucleic acids encoding a ketolase and the corresponding ketolases are, for example, sequences from
- Haematoccus pluvialis especially from Haematoccus pluvialis Flotow em. Wille (Accession NO: X86782; nucleic acid: SEQ ID NO: 15, protein SEQ ID NO: 16),
- Agrobacterium aurantiacum (Accession NO: D58420; nucleic acid: SEQ ID NO: 19, protein SEQ ID NO: 20),
- Paracoccus marcusii (Accession NO: Y15112; nucleic acid: SEQ ID NO: 23, protein SEQ ID NO: 24).
- Synechocystis sp. Strain PC6803 (Accession NO: NP442491; nucleic acid: SEQ ID NO: 25, protein SEQ ID NO: 26).
- Bradyrhizobium sp. (Accession NO: AF218415; nucleic acid: SEQ ID NO: 27, protein SEQ ID NO: 28).
- Nodularia spumigena NSOR10 (Accession NO: AY210783, AAO64399; nucleic acid: SEQ ID NO: 37, protein: SEQ ID NO: 38)
- Nostoc punctifor e ATCC 29133 (Accession NO: NZ_AABC01000195, ZP_00111258; nucleic acid: SEQ ID NO: 39, protein: SEQ ID NO: 40)
- Nucleic acid Acc.-No. NZ_AABD01000001, base pair 1,354,725-1, 355,528 (SEQ ID NO: 75), protein: Acc.-No. ZP_00115639 (SEQ ID NO: 76) (annotated as putative protein),
- a ß-cyclase is understood to be a protein which has the enzymatic activity to convert a terminal, linear residue of lycopene into a ß-ionone ring.
- a ⁇ -cyclase is understood to be a protein which has the enzymatic activity to convert ⁇ -carotene into ⁇ -carotene.
- ⁇ -cyclase genes are nucleic acids encoding a ⁇ -cyclase from tomato (Accession X86452) (nucleic acid: SEQ.ID NO: 45, protein: SEQ ID NO: 46), and ⁇ -cyclases of the following accession numbers:
- ZP_001046 hypothetical protein [Prochlorococcus marinus subsp. pastoris str. CCMP1378]
- ZP_001134 hypothetical protein [Prochlorococcus marinus str. MIT9313]
- ZP_001150 hypothetical protein [Synechococcus sp. WH 8102]
- AAF10377 lycopene cyclase [Deinococcus radiodurans] BAA29250 393aa long hypothetical protein [Pyrococcus horikoshii] BAC77673-lycopene beta-monocyclase [marine bacterium P99-3]
- ZP_000190 hypothetical protein [Chloroflexus aurantiacus]
- ZP_000941 hypothetical protein [Novosphingobium aromaticivorans]
- AAF78200 lycopene cyclase [Bradyrhizobium sp. ORS278]
- BAB79602 crtY [Pantoea agglomerans pv.
- MBIC1143 ZP_000941 hypothetical protein [Novosphingobium aromaticivorans] CAB56061 lycopene beta-cyclase [Paracoccus marcusii] BAA20275 lycopene cyclase [Erythrobacter longus] ZP_000570 hypothetical protein [Thermobifida fusca] ZP_000190 hypothetical protein [chloroflexus aurantiacus] AAK07430 lycopene beta-cyclase [Adonis palaestina] CAA67331 lycopene cyclase [Narcissus pseudonarcissus] AAB53337 Lycopene beta cyclase BAC77673 lycopene beta-m ⁇ nocyclase [marine bacterium P99-3] A particularly preferred ⁇ -cyclase is also the chromoplast-specific ⁇ -cyclase from tomato (AAG21133) (nucleic acid: SEQ.
- a hydroxylase is understood to mean a protein which has the enzymatic activity of introducing a hydroxyl group on the optionally substituted ⁇ -ionone ring of carotenoids.
- a hydroxylase is understood to mean a protein which has the enzymatic activity to convert ⁇ -carotene into zeaxanthin or canthaxanthin into astaxanthin.
- hydroxylase gene examples include:
- nucleic acid encoding a hydroxylase from Haematococcus pluvialis, Accession AX038729, WO 0061764); (Nucleic acid: SEQ ID NO: 49, protein: SEQ ID NO: 50),
- a particularly preferred hydroxylase is also the hydroxylase from tomato
- HMG-CoA reductase is understood to be a protein which has the enzymatic activity to convert 3-hydroxy-3-methyl-glutaryl-coenzyme-A into mevalonate.
- An (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductase means a protein which has the enzymatic activity
- a 1-deoxy-D-xylose-5-phosphate synthase is understood to mean a protein which has the enzymatic activity to convert hydroxyethyl-ThPP and glyceraldehyde-3-phosphate into 1-deoxy-D-xylose-5-phosphate.
- a 1-deoxy-D-xylose-5-phosphate reductoisomerase is understood to mean a protein which has the enzymatic activity, 1-deoxy-D-xylose-5-phosphate in 2-C-methyl-D-erythritol 4-phosphate convert
- An isopentenyl diphosphate ⁇ isomerase is understood to mean a protein which has the enzymatic activity to convert isopentenyl diphosphate to dimethylallyl phosphate.
- a geranyl diphosphate synthase is understood to mean a protein which has the enzymatic activity to convert isopentenyl diphosphate and dimethylallyl phosphate to geranyl diphosphate.
- a famesyl diphosphate synthase is understood to mean a protein which has the enzymatic activity to sequentially convert 2 molecular sopentenyl diphosphate with dimethyl allyl diphosphate and the resulting geranyl diphosphate into famesyl diphosphate
- a geranyl-geranyl diphosphate synthase is understood to be a protein which has the enzymatic activity to convert famesyl diphosphate and isopentenyl diphosphate into geranyl-geranyl diphosphate.
- a phytoene synthase is understood to mean a protein which has the enzymatic activity to convert geranyl-geranyl diphosphate into phytoene.
- a phytoene desaturase is understood to mean a protein which has the enzymatic activity to convert phytoene into phytofluene and / or phytofluene into ⁇ -carotene (zeta-carotene).
- a zeta-carotene desaturase is understood to mean a protein which has the enzymatic activity to convert ⁇ -carotene into neurosporin and / or neurosporin into lycopene.
- a crtlSO protein is understood to mean a protein which has the enzymatic activity of converting 7,9,7 ', 9'-tetra-cis-lycopene into all-trans-lycopene.
- An FtsZ protein is understood to be a protein which has a cell division and plastid division promoting effect and which has homologies to tubulin proteins.
- a MinD protein is understood to be a protein that has a multifunctional role in cell division. It is a membrane-associated ATPase and can show an oscillating movement from pole to pole within the cell.
- HMG-CoA reductase genes are:
- HMG-CoA reductase genes as well as other HMG-CoA reductase genes from other organisms with the following accession numbers:
- Examples of 1-deoxy-D-xylose-5-phosphate synthase genes are:
- nucleic acid encoding a 1-deoxy-D-xylose-5-phosphate synthase from Lycopersicon esculentum, ACCESSION # AF143812 (nucleic acid: SEQ ID NO: 57, protein: SEQ ID NO: 58),
- Examples of 1-deoxy-D-xylose-5-phosphate reductoisomerase genes are:
- nucleic acid encoding a 1-deoxy-D-xylose-5-phosphate reductoisomerase from Arabidopsis thaliana, ACCESSION # AF148852, (nucleic acid: SEQ ID NO: 59, protein: SEQ ID NO: 60),
- isopentenyl diphosphate ⁇ isomerase genes are:
- geranyl diphosphate synthase genes are:
- Examples of farnesyl diphosphate synthase genes are:
- Arabidopsis thaliana contains two differentially expressed famesyl-diphosphate synthase genes, J. Biol. Chem. 271 (13), 7774-7780 (1996)., (Nucleic acid: SEQ ID NO: 65, Protein: SEQ ID NO: 66), as well as other farnesyl diphosphate synthase genes from other organisms with the following accession numbers:
- geranyl-geranyl diphosphate synthase genes are:
- phytoene synthase genes examples include:
- phytoene desaturase genes are:
- zeta-carotene desaturase genes are:
- crtlSO genes are:
- nucleic acid encoding a crtlSO from Lycopersicon esculentum ACCESSION # AF416727, published by Isaacson.T., Ronen, G., Zamir.D. and Hirschberg, J .: Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of beta-carotene and xanthophylls in plants; Plant Cell 14 (2), 333-342 (2002), (nucleic acid: SEQ ID NO: 75, protein: SEQ ID NO: 76),
- FtsZ genes are:
- MinD genes are:
- the invention further relates to a genetically modified plant of the genus Tagetes, the genetic change leading to an increase or causation of the expression rate of at least one gene compared to the wild type and being caused by the regulation of the expression of this gene in the plant by the promoters according to the invention.
- expression activity means the amount of protein formed by the promoter in a certain time, that is to say the expression rate.
- specific expression activity means the amount of protein per promoter formed by the promoter in a certain time.
- wild-type plants of the genus Tagetes have no ketolase gene.
- the regulation of the expression of the ketolase gene in the plant by the promoters according to the invention thus causes the expression rate.
- wild-type plants of the genus Tagetes have a hydroxylase gene.
- the regulation of the expression of the hydroxylase gene in the plant by the promoters according to the invention thus leads to an increase in the expression rate.
- nucleic acid constructs containing at least one promoter according to the invention and functionally linked introduces one or more genes to be expressed into the plant.
- nucleic acid constructs containing at least one promoter according to the invention and functionally linked one or more genes to be expressed are introduced into the plant in accordance with feature c).
- the nucleic acid constructs can be integrated intrachromosomally or extrachromosomally in the plant of the genus Tagetes.
- the transformation can take place individually or through multiple constructs.
- the transgenic plants are preferably produced by transforming the starting plants, using a nucleic acid construct which contains at least one of the above-described promoters according to the invention which are functionally linked to an effect gene to be expressed and, if appropriate, further regulation signals.
- nucleic acid constructs in which the promoters and effect genes according to the invention are functionally linked, are also called expression cassettes below.
- the expression cassettes can contain further regulatory signals, that is to say regulatory nucleic acid sequences which control the expression of the effect genes in the host cell.
- an expression cassette upstream ie at the 5 'end of the coding sequence, comprises at least one promoter according to the invention and downstream, ie at the 3' end, a polyadenylation signal and, if appropriate, further regulatory elements which match the coding sequence of the Effect gene for at least one of the genes described above are operatively linked.
- An operative link is understood to mean the sequential arrangement of promoter, coding sequence, terminator and, if appropriate, further regulatory elements in such a way that each of the regulatory elements can fulfill its function as intended when expressing the coding sequence.
- sequences which are preferred but not limited to for operative linking are targeting sequences to ensure subcellular localization in the apoplast, in the vacuole, in plastids, in the mitochondrion, in the endoplasmic reticulum (ER), in the cell nucleus, in oil corpuscles or others Compartments and translation enhancers such as the 5 'leader sequence from the tobacco mosaic virus (Gallie et al., Nucl. Acids Res. 15 (1987), 8693-8711).
- An expression cassette is preferably produced by fusing at least one promoter according to the invention with at least one gene, preferably with one of the effect genes described above, and preferably a nucleic acid inserted between promoter and nucleic acid sequence, which codes for a plastid-specific transit peptide, and a polyadenylation signal common recombination and cloning techniques, as described, for example, in T. Maniatis, EF Fritsch and J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989) and in TJ.
- nucleic acids encoding a plastid transit peptide ensure localization in plastids and in particular in chromoplasts.
- Expression cassettes the nucleic acid sequence of which codes for an effect gene-product fusion protein, can also be used, part of the fusion protein being a transit peptide which controls the translocation of the polypeptide.
- Preferred transit peptides are preferred for the chromoplasts, which are split off enzymatically from the effect gene product part after translocation of the effect genes into the chromoplasts.
- the transit peptide derived from the Nicotiana tabacum transketolase or another transit peptide e.g. the Rubisco small subunit transit peptide (rbcS) or the ferredoxin NADP oxidoreductase as well as the isopentenyl pyrophosphate isomerase-2 or its functional equivalent.
- rbcS Rubisco small subunit transit peptide
- ferredoxin NADP oxidoreductase as well as the isopentenyl pyrophosphate isomerase-2 or its functional equivalent.
- Nucleic acid sequences of three cassettes of the plastid transit peptide of plastid transketolase from tobacco in three reading frames are particularly preferred as Kpnl / BamHI fragments with an ATG codon in the Ncol interface:
- a plastid transit peptide examples include the transit peptide of the plastid isopentenyl pyrophosphate isomerase-2 (IPP-2) from Arabisopsis thaliana and the transit peptide of the small subunit of ribulose bisphosphate carboxylase (rbcS) from pea (Guerineau, F, Woolston, S, Brook L, Mullineaux, P (1988) An expression cassette for targeting fpreign proteins into the chloroplasts. Nucl. Acids Res. 16: 11380).
- IPP-2 plastid isopentenyl pyrophosphate isomerase-2
- rbcS ribulose bisphosphate carboxylase
- nucleic acids according to the invention can be produced synthetically or obtained naturally or contain a mixture of synthetic and natural nucleic acid constituents, and can consist of different heterologous gene segments from different organisms.
- various DNA fragments can be manipulated in order to obtain a nucleotide sequence which expediently reads in the correct direction and which is equipped with a correct reading frame.
- adapters or linkers can be attached to the fragments.
- the promoter and terminator regions can expediently be provided in the transcription direction with a linker or polylinker which contains one or more restriction sites for the insertion of this sequence.
- the linker has 1 to 10, usually 1 to 8, preferably 2 to 6, restriction sites.
- the linker has a size of less than 100 bp, often less than 60 bp, but at least 5 bp within the regulatory ranges.
- the promoter can be native or homologous as well as foreign or heterologous to the host plant.
- the expression cassette preferably contains in the 5'-3 'transcription direction the promoter, a coding nucleic acid sequence or a nucleic acid construct and a region for the transcriptional termination. Different termination areas are interchangeable.
- Examples of a terminator are the 35S terminator (Guerineau et al. (1988) Nucl Acids Res. 16: 11380), the nos terminator (Depicker A, Stachel S; Dhaese P, Zambryski P, Goodman HM. Nopaline synthase: transcript mapping and DNA sequence. J Mol Appl Genet.
- Manipulations which provide suitable restriction sites or which remove superfluous DNA or restriction sites can also be used. Where insertions, deletions or substitutions such as Transitions and transversions can be used in w / ro mutagenesis, "primer repair", restriction or ligation.
- Preferred polyadenylation signals are plant polyadenylation signals, preferably those which essentially correspond to T-DNA polyadenylation signals from Agrobacterium tumefaciens, in particular gene 3 of T-DNA (octopine synthase) of the ti plasmid pTiACH5 (Gielen et al., EMBO J. 3 ( 1984), 835 ff) or functional equivalents.
- transformation The transfer of foreign genes into the genome of a plant is called transformation.
- Suitable methods for the transformation of plants are the protoplast transformation by polyethylene glycol-induced DNA uptake, the biolistic method with the gene cannon - the so-called "particle bombardment” method, the electroporation, the incubation of dry embryos in DNA-containing solution, the Microinjection and the Agrobacterium-mediated gene transfer described above.
- the methods mentioned are published, for example, in B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization SD Kung and R. Wu, Academic Press (1993), 128-143 and in Potrykus, Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991), 205-225).
- the construct to be expressed is preferably cloned into a vector which is suitable for transforming Agrobacterium tumefaciens, for example pBin19 (Bevan et al., Nucl. Acids Res. 12 (1984), 8711) or particularly preferably pSUN2, pSUN3, pSUN4 or pSUN5 (WO 02/00900).
- Agrobacteria transformed with an expression plasmid can be used in a known manner to transform plants, e.g. by bathing wounded leaves or leaf pieces in an agrobacterial solution and then cultivating them in suitable media.
- the fused expression cassette is cloned into a vector, for example pBin19 or in particular pSUN5 and pSUN3, which is suitable for being transformed into Agrobacterium tumefaciens.
- Agrobacteria transformed with such a vector can then be used in a known manner for the transformation of plants, in particular crop plants, for example by bathing wounded leaves or leaf pieces in an agrobacterial solution and then cultivating them in suitable media.
- Transgenic plants which contain one or more genes integrated into the expression cassette can be regenerated in a known manner from the transformed cells of the wounded leaves or leaf pieces.
- an expression cassette is inserted as an insert into a recombinant vector whose vector DNA contains additional functional regulation signals, for example sequences for replication or integration.
- additional functional regulation signals for example sequences for replication or integration.
- Suitable vectors are inter alia in "Methods in Plant Molecular Biology and Biotechnology” (CRC Press), Chap. 6/7, pp. 71-119 (1993).
- the expression cassettes can be cloned into suitable vectors that allow their proliferation, for example in E. coli.
- suitable cloning vectors include pJIT117 (Guerineau et al. (1988) Nucl. Acids Res. 16: 11380), pBR332, pUC series, M13mp series and pACYC184.
- Binary vectors which can replicate both in £ coli and in agrobacteria are particularly suitable.
- the invention therefore further relates to a genetically modified plant of the genus Tagetes, containing a promoter according to the invention and functionally linked to a gene to be expressed, with the proviso that genes from plants of the genus Tagetes which are expressed in wild-type plants of the genus Tagetes by the respective promoter, with exception of.
- Effect genes are particularly preferably selected from the group nucleic acids encoding a ketolase, nucleic acids encoding a ⁇ -hydroxylase, nucleic acids encoding a ⁇ -cyclase, nucleic acids encoding an ⁇ -cyclase, nucleic acids encoding an epoxidase, nucleic acids encoding an HMG-CoA Reductase, nucleic acids encoding an (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductase, nucleic acids encoding a 1-deoxy-D-xylose-5-phosphate synthase, nucleic acids encoding a 1-deoxy-D -Xylose-5-phosphate reductoisomerase, nucleic acids encoding an isopentenyl diphosphate ⁇ -
- nucleic acids encoding a geranyl diphosphate synthase nucleic acids encoding a famesyl diphosphate synthase, nucleic acids encoding a geranyl geranyl diphosphate synthase, nucleic acids encoding a phytoene synthase, nucleic acids encoding a phytoenic acid desodase Prephytoene synthase, nucleic acids encoding a zeta-carotene desaturase, nucleic acids encoding a crtlSO protein, nucleic acids encoding an FtsZ protein and nucleic acids encoding a MinD protein.
- Preferred, genetically modified plants of the genus Tagetes are Marigold, Tagetes erecta, Tagetes patula, Tagetes lucida, Tagetes pringlei, Tagetes palmeri, Tagetes minuta or Tagetes campanulata.
- the promoters according to the invention make it possible, with the aid of the methods according to the invention described above, to regulate the metabolic pathways to specific biosynthetic products in the genetically modified plants of the genus Tagetes described above.
- metabolic pathways which lead to a specific biosynthetic product are enhanced by causing or increasing the transcription rate or expression rate of genes of this biosynthetic pathway by increasing the Amount of protein leads to an increased overall activity of these proteins of the desired biosynthetic pathway and thus leads to the desired biosynthetic product through an increased metabolic flow.
- the transcription rate or expression rate of different genes must be increased or reduced.
- At least one increased or caused expression rate of a gene can be attributed to a promoter according to the invention.
- the invention therefore relates to a method for producing biosynthetic products by cultivating genetically modified plants of the genus Tagetes according to the invention.
- the invention relates in particular to a method for producing carotenoids by cultivating genetically modified plants of the genus Tagetes, characterized in that the genes to be expressed are selected from the group nucleic acids encoding a ketolase, nucleic acids encoding a ⁇ -hydroxylase, encoding nucleic acids ⁇ -cyclase, nucleic acids encoding an ⁇ -cyclase, nucleic acids encoding an epoxidase, nucleic acids encoding an HMG-CoA reductase, nucleic acids encoding an (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductase, Nucleic acids encoding a 1-deoxy-D-xylose-5-phosphate synthase, nucleic acids encoding a 1-deoxy-D-xylose-5-phosphate reductoisomerase, nucleic acids encoding an isopentenyl diphosphate ⁇ isomerase, nucleic acids
- the carotenoids are preferably selected from the group phytoene, phytofluene, lycopene, lutein, zeaxanthin, astaxanthin, canthaxanthin, echinenone, 3-hydroxyechinenone, 3'-hydroxyechinenone, adonirubin, violaxanthin and adonixanthin.
- the invention further relates to a method for producing ketocarotenoids by cultivating genetically modified plants of the genus Tagetes according to the invention, characterized in that the genes to be expressed are selected from the group nucleic acids encoding a ketolase,
- ketocarotenoids are preferably selected from the group of astaxanthin, canthaxanthin, echinenone, 3-hydroxyechinenone, 3'-hydroxyechinenone, adonirubin, violaxanthin and adonixanthin.
- the cultivation step of the genetically modified plants is preferably carried out by harvesting the plants and isolating the biosynthetic products, in particular carotenoids, preferably ketocarotenoids from the plants, preferably from the petals of the plants, connected.
- the genetically modified plants of the genus Tagetes are grown in a manner known per se on nutrient media and harvested accordingly.
- Ketocarotenoids are isolated from the harvested petals, for example, in a manner known per se, for example by drying and closing extraction and optionally further chemical or physical purification processes, such as precipitation methods, crystallography, thermal separation processes, such as rectification processes or physical separation processes, such as chromatography. Ketocarotenoids are isolated from the petals, for example, preferably by organic solvents such as acetone, hexane, heptane, ether or tert-methylbutyl ether.
- ketocarotenoids in particular from petals, are described, for example, in Egger and Kleinig (Phytochemistry (1967) 6, 437-440) and Egger (Phytochemistry (1965) 4, 609-618).
- ketocarotenoid is astaxanthin.
- the ketocarotenoids are obtained in petals in the form of their mono- or diesters with fatty acids.
- Some proven fatty acids are e.g. Myristic acid, palmitic acid, stearic acid, oleic acid, linolenic acid, and lauric acid (Kamata and Simpson (1987) Comp. Biochem. Physiol. Vol. 86B (3), 587-591).
- Genetically modified plants or parts of plants according to the invention which can be consumed by humans and animals such as, in particular, petals with an increased content of biosynthetic products, in particular carotenoids, in particular ketocarotenoids, in particular astaxanthin, can also be used, for example, directly or after processing known per se as food or feed or as feed. and food supplements can be used.
- the genetically modified plants can be used for the production of extracts containing biosynthetic products, in particular carotenoids, in particular ketocarotenoids, in particular astaxanthin, and / or for the production of feed and food supplements, and of cosmetics and pharmaceuticals.
- biosynthetic products in particular carotenoids, in particular ketocarotenoids, in particular astaxanthin, and / or for the production of feed and food supplements, and of cosmetics and pharmaceuticals.
- the genetically modified plants of the genus Tagetes have an increased content of the desired biosynthetic products, in particular carotenoids, in particular ketocarotenoids, in particular astaxanthin.
- an increased content is also understood to mean a caused content of ketocarotenoids or astaxanthin.
- the sequencing of recombinant DNA molecules was carried out using a laser fluorescence DNA sequencer from Licor (sold by MWG Biotech, Ebersbach) according to the method of Sanger (Sanger et al., Proc. Natl. Acad. Sci. USA 74 (1977), 5463-5467).
- the DNA required for the NOST ketolase from Nostoc sp. PCC 7120 coded was by means of PCR from Nostoc sp. PCC 7120 (strain of the "Pasteur Culture Collection of Cyanobacterium”) amplified.
- the bacterial cells were pelleted from a 10 ml liquid culture by centrifugation at 8,000 rpm for 10 minutes. The bacterial cells were then crushed and ground in liquid nitrogen using a mortar. The cell material was resuspended in 1 ml of 10 mM Tris HCl (pH 7.5) and transferred to an Eppendorf reaction vessel (2 ml volume). After adding 100 ⁇ l Proteinase K (concentration: 20 mg / ml), the cell suspension was incubated for 3 hours at 37 ° C. The suspension was then extracted with 500 ⁇ l of phenol. After centrifugation at 13,000 rpm for ⁇ minutes, the upper, aqueous phase was transferred to a new 2 ml Eppendorf reaction vessel.
- the extraction with phenol was repeated 3 times.
- the DNA was precipitated by adding 1/10 volume of 3 M sodium acetate (pH 5.2) and 0.6 volume of isopropanol and then washed with 70% ethanol.
- the DNA pellet was dried at room temperature, taken up in 25 ⁇ l of water and heated to 65 ° C. solved.
- the nucleic acid encoding a ketolase from Nostoc PCC 7120 was determined by means of a "polymerase chain reaction” (PCR) from Nostoc sp.
- PCC 7120 was amplified using a sense-specific primer (NOSTF, SEQ ID No. 79) and an antisense-specific primer (NOSTG SEQ ID No. 80).
- the PCR conditions were as follows:
- the PCR for the amplification of the DNA which codes for a ketolase protein consisting of the entire primary sequence, was carried out in a 50 ⁇ l reaction mixture which contained:
- the PCR was carried out under the following cycle conditions:
- PCR amplification with SEQ ID No. 79 and SEQ ID No. 80 resulted in an 805 bp fragment which codes for a protein consisting of the entire primary sequence (SEQ ID No. 81).
- the amplificate was cloned into the PCR cloning vector pGEM-T (Promega) and the clone pNOSTF-G was obtained.
- the DNA which codes for the NP196 ketolase from Nostoc punctiform ATCC 29133 was amplified by means of PCR from Nostoc punctiform ATCC 29133 (strain of the "American Type Culture Collection").
- the bacterial cells were pelleted from a 10 ml liquid culture by centrifugation at 8000 rpm for 10 minutes. The bacterial cells were then crushed and ground in liquid nitrogen using a mortar. The cell material was resuspended in 1 ml of 10 mM Tris-HCl (pH 7.5) and transferred into an Eppendorf reaction vessel (2 ml volume). After adding 100 ⁇ l Proteinase K (concentration: 20 mg / ml), the cell suspension was incubated for 3 hours at 37 ° C. The suspension was then extracted with 500 ⁇ l of phenol. After centrifugation at 13,000 rpm for ⁇ minutes, the upper, aqueous phase was transferred to a new 2 ml Eppendorf reaction vessel.
- the extraction with phenol was repeated 3 times.
- the DNA was precipitated by adding 1/10 volume of 3 M sodium acetate (pH 5.2) and 0.6 volume of isopropanol and then washed with 70% ethanol.
- the DNA pellet was dried at room temperature, taken up in 25 ⁇ l of water and dissolved with heating to 65 ° C.
- the nucleic acid encoding a ketolase from Nostoc punctiform ATCC 29133 was determined by means of "polymerase chain reaction” (PCR) from Nostoc punctiform ATCC 29133 using a sense-specific primer (NP196-1, SEQ ID No. 82) and of an antisense-specific primer (NP196-2 SEQ ID No. 83).
- PCR polymerase chain reaction
- the PCR conditions were as follows:
- the PCR for the amplification of the DNA which codes for a ketolase protein consisting of the entire primary sequence, was carried out in a 50 ⁇ l reaction mixture which contained:
- the PCR was carried out under the following cycle conditions:.
- PCR amplification with SEQ ID No. 82 and SEQ ID No. 83 resulted in a 792 bp fragment which codes for a protein consisting of the entire primary sequence (NP196, SEQ ID No. 84).
- the amplicon was cloned into the PCR cloning vector pCR 2.1 (Invitrogen) using standard methods and the clone pNP196 was obtained.
- This clone pNP196 was therefore used for the cloning into the expression vector pJIT117 (Guerineau et al. 1988, Nucl. Acids Res. 16: 11380).
- pJIT117 was modified by the 35S terminator through the OCS terminator (octopine synthase) of the Ti plasmid pTi15955 from Agrobacterium tumefaciens (database entry X00493 from position 12.541-12.350, Gielen et al. (1984) EMBO J. 3 835- 846) was replaced.
- the DNA fragment containing the OCS terminator region was PCR-isolated using the plasmid pHELLSGATE (database entry AJ311874, Wesley et al. (2001) Plant J. 27 581-590, isolated from E. coli by standard methods) and the primer OCS-1 (SEQ ID No. 85) and OCS-2 (SEQ ID No. 86).
- the PCR conditions were as follows:
- the PCR for the amplification of the DNA which contains the octopine synthase (OCS) terminator region (SEQ ID No. 87), was carried out in a 50 ⁇ l reaction mixture, which contained:
- the PCR was carried out under the following cycle conditions:
- the 210 bp amplificate was cloned into the PCR cloning vector pCR 2.1 (Invitrogen) using standard methods and the plasmid pOCS was obtained.
- Sequencing of the clone pOCS confirmed a sequence which corresponds to a sequence section on the Ti plasmid pTi15955 from Agrobacterium tumefaciens (database entry X00493) from positions 12,541 to 12,350.
- the cloning was carried out by isolating the 210 bp Sall-Xhol fragment from pOCS and ligation into the Sall-Xhol cut vector pJIT117. This clone is called pJO and was therefore used for the cloning into the expression vector pJONP196.
- the cloning was carried out by isolating the 782 bp Sphl fragment from pNP196 and ligating into the Sphl cut vector pJO.
- the clone that contains the NP196 ketolase from Nostoc punctiforme in the correct orientation as an N-terminal translational fusion with the rbcS transit peptide is called pJONP 96.
- Example S Production of expression vectors for the flower-specific expression of the NP196 ketolase from Nostoc punctiforme ATCC 29133 in Tagetes erecta
- the NP196 ketolase from Nostoc punctiforme in Tagetes erecta was expressed using the transit peptide rbcS from pea (Anderson et al. 1986, Biochem J. 240: 709-715). The expression was carried out under the control of the flower-specific promoter EPSPS from Petunia hybrida (database entry M37029: nucleotide region 7-1787; Benfey et al. (1990) Plant Cell 2: 849-856).
- the DNA fragment that contains the EPSPS promoter region (SEQ ID No. 88) from Petunia hybrida was PCR-analyzed using genomic DNA (isolated from Petunia hybrida according to standard methods) and the primers EPSPS-1 (SEQ ID No. 89) and EPSPS -2 (SEQ ID No. 90).
- the PCR conditions were as follows:
- the PCR for the amplification of the DNA which contains the EPSPS promoter fragment (database entry M37029: nucleotide region 7-1787), was carried out in a 50 ⁇ l reaction mixture which contained:
- the 1773 bp amplificate was cloned into the PCR cloning vector pCR 2.1 (Invitrogen) using standard methods and the plasmid pEPSPS was obtained.
- Sequencing of the clone pEPSPS confirmed a sequence consisting only of two deletions (bases ctaagtttcagga in position 46-58 of sequence M37029; bases aaaaatat in positions 1422-1429 of sequence M37029) and the base changes (T instead of G in position 1447 of sequence M37029 ; A instead of C in position 1525 of sequence M37029; A instead of G in position 1627 of sequence M37029) differs from the published EPSPS sequence (database entry M37029: nucleotide region 7-1787).
- the two deletions and the two base changes at positions 1447 and 1627 of sequence M37029 were reproduced in an independent amplification experiment and thus represent the actual nucleotide sequence in the Petunia hybrida plants used.
- the clone pEPSPS was therefore used for the cloning into the expression vector pJONP196.
- the cloning was carried out by isolating the 1763 bp SacI-HindIII fragment from pEPSPS and ligation into the SacI-HindIII cut vector pJ0NP196.
- the clone that contains the promoter EPSPS instead of the original promoter d35S is called pJOESP: NP196.
- This expression cassette contains the fragment NP196 in the correct orientation as an N-terminal fusion with the rbcS transit peptide.
- MSP107 To produce the expression vector MSP107, the 2,961 KB bp Sacl-Xhol fragment from pJOESP: NP196 was ligated with the Sacl-Xhol cut vector pSUN3.
- MSP 107 contains fragment EPSPS the EPSPS promoter (1761 bp), fragment rbcS TP FRAGMENT the rbcS transit peptide from pea ( 194 bp), fragment NP196 KETO CDS (761 bp), coding for the Nostoc punctiform NP 96 ketolase, fragment OCS terminator (192 bp) the polyadenylation signal of octopine synthase.
- An expression vector for the Agrobacterium -mediated transformation of the EPSPS-controlled NP196 ketolase from Nostoc punctiforme in Tagetes erecta was produced using the binary vector pSUN5 (WO02 / 00900).
- MSP108 To produce the expression vector MSP108, the 2,961 KB bp Sacl-Xhol fragment from pJOESP: NP196 was ligated to the Sacl-Xhol cut vector pSUN5.
- MSP 108 contains fragment EPSPS the EPSPS promoter (1761 bp), fragment rbcS TP FRAGMENT the rbcS transit peptide from pea (194 bp), fragment NP196 KETO CDS (761 bp), coding for the nostoc punctiform NP196 ketolase, fragment OCS terminator (192 bp) the polyadenylation signal of octopine synthase.
- the DNA encoding the NP195 ketolase from Nostoc punctiform ATCC 29133 was amplified by PCR from Nostoc punctiform ATCC 29133 (strain of the "American Type Culture Collection"). The preparation of genomic DNA from a suspension culture of Nostoc punctiforme ATCC 29133 was described in Example 19.
- the nucleic acid encoding a ketolase from Nostoc punctiform ATCC 29133 was determined by means of a "polymerase chain reaction” (PCR) from Nostoc punctiform ATCC 29133 using a sense-specific primer (NP195-1, SEQ ID No. 91) and an antisense-specific Primers (NP195-2 SEQ ID No. 92) amplified.
- PCR polymerase chain reaction
- the PCR conditions were as follows:
- the PCR for the amplification of the DNA which codes for a ketolase protein consisting of the entire primary sequence, was carried out in a 50 ⁇ l reaction mixture, which contained:
- PCR amplification with SEQ ID No. 91 and SEQ ID No. 92 resulted in an 819 bp fragment which codes for a protein consisting of the entire primary sequence (NP195, SEQ ID No. 93).
- the amplicon was cloned into the PCR cloning vector pCR 2.1 (Invitrogen) using standard methods and the clone pNP195 was obtained.
- Sequencing of clone pNP195 with the M13F and M13R primers confirmed a sequence that is identical to the DNA sequence of 55.604-56.392 of database entry NZ_AABC010001965, except that T in position 55.604 was replaced by A by a standard -To generate start codon ATG. This ! Nucleotide sequence would be reproduced in an independent amplification experiment and thus represents the nucleotide sequence in the Nostoc punctiforme ATCC 29133 used.
- This clone pNP195 was therefore used for the cloning into the expression vector pJO (described in Example 6).
- the cloning was carried out by isolating the 809 bp Sphl fragment from pNP195 and ligation into the Sphl cut vector pJO.
- the clone that contains the NP195 ketolase from Nostoc punctiforme in the correct orientation as an N-terminal translational fusion with the rbcS transit peptide is called pJONP195.
- Example 5 Amplification of a DNA encoding the entire primary sequence of the NODK ketolase from Nodularia spumignea NSOR10.
- the DNA encoding the ketolase from Nodularia spumignea NSOR10 was amplified by PCR from Nodularia spumignea NSOR10.
- the bacterial cells were pelleted from a 10 ml liquid culture by centrifugation at 8000 rpm for 10 minutes. The bacterial cells were then crushed and ground in liquid nitrogen using a mortar. The cell material was resuspended in 1 ml 10mM TrisJHCI (pH 7.5) and transferred to an Eppendorf reaction vessel (2ml volume). After adding
- the cell suspension was incubated for 3 hours at 37 ° C. in 100 ⁇ l proteinase K (concentration: 20 mg / ml). The suspension was then extracted with 500 ⁇ l of phenol. After centrifugation at 13,000 rpm for ⁇ minutes, the upper, aqueous phase was transferred to a new 2 ml Eppendorf reaction vessel. The extraction with phenol was repeated 3 times. The DNA was precipitated by adding 1/10 volume of 3 M sodium acetate (pH 5.2) and 0.6 volume of isopropanol and then washed with 70% ethanol. The DNA pellet was dried at room temperature, taken up in 25 ⁇ l of water and dissolved with heating to 65 ° C.
- the nucleic acid encoding a ketolase from Nodularia spumignea NSOR10 was determined by means of a "polymerase chain reaction” (PCR) from Nodularia spumignea NSOR10 using a sense-specific primer (NODK-1, SEQ ID No. 94) and an antisense-specific primer ( NODK-2 SEQ ID No. 95).
- PCR polymerase chain reaction
- the PCR conditions were as follows:
- the PCR for the amplification of the DNA which codes for a ketolase protein consisting of the entire primary sequence, was carried out in a 50 ⁇ l reaction mixture which contained:
- PCR amplification with SEQ ID No. 94 and SEQ ID No. 95 resulted in a 720 bp fragment coding for a protein consisting of the entire primary sequence (NODK, SEQ ID No. 96).
- the standard was cloned into the PCR cloning vector pCR 2.1 (Invitrogen) using standard methods and the clone pNODK was obtained.
- This clone pNODK was therefore used for the cloning into the expression vector pJO (described in Example 6).
- the cloning was carried out by isolating the 710 bp Sphl fragment from pNODK and ligation into the Sphl cut vector pJO.
- the clone that contains the NODKia ketolase from Nodularia spumignea in the correct orientation as an N-terminal translational fusion with the rbcS transit peptide is called pJONODK.
- the NODK ketolase from Nodularia spumignea NSOR10 was expressed in L. esculentum and Tagetes erecta with the transit peptide rbcS from pea (Anderson et al. 1986, Biochem J. 240: 709-715). The expression was carried out under the control of the flower-specific promoter EPSPS from Petunia hybrida (database entry M37029: nucleotide region 7-1787; Benfey et al. (1990) Plant Cell 2: 849-856). The clone pEPSPS (described in Example 8) was therefore used for the cloning into the expression vector pJONODK (described in Example 12).
- the cloning was carried out by isolating the 1763 bp SacI-HindIII fragment from pEPSPS and ligating into the SacI-HindIII cut vector pJONODK.
- the clone that contains the promoter EPSPS instead of the original promoter d35S is called pJOESP: NODK.
- This expression cassette contains the fragment NODK in the correct orientation as an N-terminal fusion with the rbcS transit peptide.
- MSP115 contains fragment EPSPS the EPSPS promoter (1761 bp), fragment rbcS TP FRAGMENT the rbcS transit peptide from pea (194 bp), fragment NODK KETO CDS (690 bp), coding for the Nodularia spumignea NSOR10 NODK ketolase, fragment OCS terminator ( 192 bp) the polyadenylation signal of octopine synthase.
- An expression vector for the Agrobacterium -mediated transformation of the EPSPS-controlled NODK ketolase from Nodularia spumignea NSOR10 in Tagetes erecta was produced using the binary vector pSUN5 (WO02 / 00900).
- MSP116 contains fragment EPSPS the EPSPS promoter (1761 bp), fragment rbcS TP FRAGMENT the rbcS transit peptide from pea (194 bp), fragment NODK KETO CDS (690 bp), coding for the Nodularia spumignea NSOR10 NODK ketolase, fragment OCS terminator ( 192 bp) the polyadenylation signal of octopine synthase.
- the DNA fragment which contains the PDS promoter region (SEQ ID No. 100) from Lycopersicon esculentum, was PCR-analyzed using genomic DNA (isolated from Lycopersicon esculentum by standard methods) as well as the primers PDS-1 (SEQ ID No. 98) and PDS -2 (SEQ ID No. 99).
- the PCR conditions were as follows:
- the PCR for the amplification of the DNA which contains the PDS promoter fragment, was carried out in a 50 ⁇ l reaction mixture, which contained:
- the PCR was carried out under the following cycle conditions:
- the 2096 bp amplificate was determined using standard methods in the PCR
- Cloning vector pCR 2.1 (Invitrogen) cloned and the plasmid pPDS obtained.
- the clone pPDS was therefore used for the cloning into the expression vector pJOEPS: NP196 (described in Example 3).
- the cloning was carried out by isolating the 2094 bp Ecl136ll-Smal fragment from pPDS and ligation in the Ecl136ll-Hindlll cut vector pJOEPS: NP196.
- the Hindi II interface of the vector was previously treated with the Klenow Enzyme is transferred into a "blunt-end" interface.
- the clone which contains the promoter PDS instead of the original promoter EPSPS is called pJOPDS: NP196.
- This expression cassette contains the fragment NP196 in the correct orientation as an N-terminal fusion with the rbcS- transit peptide.
- An expression vector for the Agrobacterium -mediated transformation of the PDS-controlled NP196 ketolase from Nostoc punctiforme in L. esculentum was produced using the binary vector pSUN3 (WO02 / 00900).
- MSP117 To produce the expression vector MSP117, the 3.3 KB Ecl136ll-Xhol fragment from pJOPDS: NP196 was ligated with the Ecl136ll-Xhol cut vector pSUN3.
- MSP 117 contains fragment PDS the PDS promoter, fragment rbcS TP FRAGMENT the rbcS transit peptide from pea (194 bp), fragment NP196 KETO CDS (761 bp), coding for the Nostoc punctiform NP196 ketolase, fragment OCS terminator (192 bp) the polyadenylation signal of octopine synthase.
- An expression vector for the Agrobacterium -mediated transformation of the PDS-controlled NP196 ketolase from Nostoc punctiforme in Tagetes e-recta was produced using the binary vector pSUN5 (WO02 / 00900).
- MSP118 To produce the expression vector MSP118, the 3.3 KB bp Ecl136ll-Xhol fragment from pJOPDS: NP196 was ligated with the Ecl136ll-Xhol cut vector pSUN5.
- MSP 118 contains fragment PDS the PDS promoter, fragment rbcS TP FRAGMENT the rbcS transit peptide from pea (194 bp), fragment NP196 KETO CDS (761 bp), coding for the Nostoc punctiform NP196 ketolase, fragment OCS terminator (192 bp) the polyadenylation signal of octopine synthase.
- the NP196 ketolase from Nostoc punctiforme in Tagetes erecta was expressed using the transit peptide rbcS from pea (Anderson et al. 1986, Biochem J. 240: 709-715). The expression was carried out under the control of the bio-specific promoter B-GENE (chromoplast-specific lycopene B-cyclase) from Lycopersicon esculentum (database entry AAZ51517).
- the DNA fragment which contains the B-GENE promoter region (SEQ ID No. 103) from Lycoper-sicon esculentum, was analyzed by PCR using genomic DNA (isolated from Lycopersicon esculentum using standard methods) and the primers BGEN-1 (SEQ ID No. 101) and BGEN-2 (SEQ ID No. 102).
- the PCR conditions were as follows:
- the PCR for the amplification of the DNA which contains the B-GENE promoter fragment, was carried out in a 50 ⁇ l reaction mixture, which contained:
- the PCR was carried out under the following cycle conditions:
- the 1222 bp amplificate was cloned into the PCR cloning vector pCR 2.1 (Invitrogen) using standard methods and the plasmid pB-GENE was obtained.
- the clone pB-GENE was therefore used for the cloning into the expression vector pJOEPS: NP196 (described in Example 3).
- the cloning was carried out by isolating the 1222 bp SacI-HindIII fragment from pB-GENE and ligating it into the SacI-HindIII cut vector pJOEPS: NP196.
- the clone that contains the promoter B-GENE instead of the original promoter EPSPS is called pJOBGEN: NP196.
- This expression cassette contains the fragment NP196 in the correct orientation as an N-terminal fusion with the rbcS transit peptide.
- MSP 119 contains fragment B-GENE the B-GENE promoter, fragment rbcS TP FRAGMENT the rbcS transit peptide from pea (194 bp), fragment NP196 KETO CDS (761 bp), coding for the nostoc punctiform NP196 ketolase, fragment OCS terminator (192 bp) the polyadenylation signal of octopine synthase.
- An expression vector for the Agrobacterium -mediated transformation of the PDS-controlled NP196 ketolase from Nostoc punctiforme in Tagetes e-recta was produced using the binary vector pSUN5 (WO02 / 00900).
- MSP 120 contains fragment B-GENE the B-GENE promoter, fragment rbcS TP FRAGMENT the rbcS transit peptide from pea (194 bp), fragment NP196 KETO CDS (761 bp), coding for the nostoc punctiform NP196 ketolase, fragment OCS terminator (192 bp) the polyadenylation signal of octopine synthase.
- the NP196 ketolase from Nostoc punctiforme in Tagetes erecta was expressed using the transit peptide rbcS from pea (Anderson et al. 1986, Biochem J. 240: 709-715). The expression was carried out under the control of the flower-specific promoter CHRC (chromoplast-specific carotenoid-associated protein) from Cucumis sativa (database entry AF099501).
- CHRC chromoplast-specific carotenoid-associated protein
- the DNA fragment which contains the CHRC promoter region (SEQ ID No. 106) from Lycopersicon esculentum, was PCR-analyzed using genomic DNA (isolated from Lycopersicon esculentum according to standard methods) as well as the primers CHRC-1 (SEQ ID No. 104) and CHRC -2 (SEQ ID No. 105).
- the PCR conditions were as follows:
- the PCR for the amplification of the DNA which contains the CHRC promoter fragment, was carried out in a 50 ⁇ l reaction mixture, which contained: 100 ng of genomic DNA from Lycopersicon esculentum 0.25 mM dNTPs 0.2 mM CHRC-1 (SEQ ID No. 101) 0.2 M CHRC-2 (SEQ ID No. 102) 5 ul 10X PCR buffer (Stratagene) 0.25 ul Pfu polymerase (Stratagene) 28.8 ul Aq. Least.
- the PCR was carried out under the following cycle conditions
- the 1222 bp amplificate was cloned into the PCR cloning vector pCR 2.1 (Invitrogen) using standard methods and the plasmid pCHRC was obtained.
- the clone pB-GENE was therefore used for the cloning into the expression vector pJOEPS: NP196 (described in Example 2).
- the cloning was carried out by isolating the 1540 bp SacI-HindIII fragment from pCHRC and ligating into the SacI-HindIII cut vector pJOEPS: NP196.
- the clone that contains the CHRC promoter instead of the original EPSPS promoter is called pJOCHRC: NP196.
- This expression cassette contains the fragment NP196 in the correct orientation as an N-terminal fusion with the rbcS transit peptide.
- the expression vector for the Agrobacterium -mediated transformation of the PDS-controlled NP196 ketolase from Nostoc punctiforme in L. esculentum was produced using the binary vector pSUN3 (WO02 / 00900).
- MSP121 To produce the expression vector MSP121, the 2.6 KB SacI-Xhol fragment from pJOCHRC: NP196 was ligated with the SacI-Xhol cut vector pSUN3.
- MSP 121 contains fragment CHRC the CHRC promoter, fragment rbcS TP FRAGMENT the rbcS transit peptide from pea (194 bp), fragment NP196 KETO CDS (761 bp), coding for the Nostoc punctiform NP196 ketolase, fragment OCS terminator (192 bp) the polyadenylation signal of octopine synthase.
- An expression vector for the Agrobacterium -mediated transformation of the PDS-controlled NP196 ketolase from Nostoc punctiforme in Tagetes e-recta was produced using the binary vector pSUN5 (WO02 / 00900).
- MSP122 To produce the expression vector MSP122, the 2.6 KB bp Sacl-Xhol fragment from pJOCHRC: NP196 was ligated with the Sacl-Xhol cut vector pSUN5.
- MSP 122 contains fragment CHRC the CHRC promoter, fragment rbcS TP FRAGMENT the rbcS transit peptide from pea (194 bp), fragment NP196 KETO CDS (761 bp), coding for the Nostoc punctiform NP196 ketolase, fragment OCS terminator (192 bp) the polyadenylation signal of octopine synthase.
- germination medium MS medium; Murashige and Skoog, Physiol. Plant. 15 (1962), 473-497) pH 5.8, 2% sucrose.
- Germination takes place in a temperature / light / time interval of 18-28 ° C / 20-200 ⁇ E / 3-16 weeks, but preferably at 21 ° C, 20-70 ⁇ E, for 4-8 weeks.
- a selection marker gene preferably bar or pat
- the bacterial strain can be grown as follows: A single colony of the corresponding strain is in YEB (0.1% yeast extract, 0.5% beef extract, 0.5% peptone, 0.5% sucrose, 0.5% magnesium sulfate x 7 H) 2 0) inoculated with 25 mg / l kanamycin and dressed at 28 ° C for 16 to 20 h. The bacterial suspension is then harvested by centrifugation at 6000 g for 10 min and resuspended in liquid MS medium in such a way that an OD 600 of approximately 0.1 to 0.8 is formed. This suspension is used for C cultivation with the leaf material used.
- the MS medium in which the leaves have been kept is replaced by the bacterial suspension. Incubation of the leaf The agrobacterial suspension was carried out for 30 min with gentle shaking at room temperature. The infected explants are then placed on an MS medium solidified with agar (for example 0.8% Plant Agar (Duchefa, NL) with growth regulators, such as 3 mg / 1 benzylaminopurine (BAP) and 1 mg / l indolylacetic acid (IAA).
- agar for example 0.8% Plant Agar (Duchefa, NL) with growth regulators, such as 3 mg / 1 benzylaminopurine (BAP) and 1 mg / l indolylacetic acid (IAA).
- the orientation of the leaves on the medium is insignificant, and the explants are cultivated for 1 to 8 days, but preferably for 6 days, the following conditions being able to be used: light intensity: 30-80 ⁇ mol / m 2 ⁇ sec, temperature: 22 - 24 ° C, light / dark change of 16/8 hours, then the co-cultivated explants are transferred to fresh MS medium, preferably with the same growth regulators, this second medium additionally containing an antibiotic to suppress bacterial growth
- a concentration of 200 to 500 mg / l is very suitable for this purpose, and the second selective component used is one for the selection of the transformation success Osphinothricin in a concentration of 1 to 5 mg / l selects very efficiently, but other selective components according to the method to be used are also conceivable.
- the explants are transferred to fresh medium until shoot buds and small shoots develop, which are then on the same basal medium including timentin and PPT or alternative components with growth regulators, namely, for example, 0.5 mg / l indolylbutyric acid (IBA) and 0.5 mg / l gibberillic acid GA 3 , are transferred for rooting. Rooted shoots can be transferred to the greenhouse.
- IBA 0.5 mg / l indolylbutyric acid
- GA 3 gibberillic acid
- the explants Before the explants are infected with the bacteria, they can be pre-incubated for 1 to 12 days, preferably 3-4, on the medium described above for the co-culture. The infection, co-culture and selective regeneration then take place as described above.
- the pH for regeneration (usually 5.8) can be lowered to pH 5.2. This improves the control of agrobacterial growth.
- AgNO 3 (3 - 10 mg / l)
- the addition of AgNO 3 (3 - 10 mg / l) to the regeneration medium improves the condition of the culture including the regeneration itself.
- Components that reduce phenol formation and are known to the person skilled in the art such as, for example, citric acid, ascorbic acid, PVP and many others, have a positive effect on the culture.
- Liquid culture medium can also be used for the entire process.
- the culture can also be incubated on commercially available carriers which are positioned on the liquid medium.
- pS5FNR NOST was obtained for example: MSP102-1, MSP102-2, MSP102-3,
- pS5AP3 NOST was obtained for example: MSP104-1, MSP104-2, MSP104-3
- NP196 was obtained: MSP106-1, MSP106-2, MSP106-3
- M t pS5EPS MSP108-1, MSP108-2, MSP108-3
- NP195 was obtained: MSP112-1, MSP112-2, MSP112-3
- NP196 was obtained: MSP118-1, MSP118-2, MSP118-3
- M t pS3CHRC MSP119-1, MSP119-2, MSP119-3
- NP196 was obtained: MSP120-1, MSP120-2, MSP120-3
- NP196 was obtained: MSP122-1, MSP122-2, MSP122-3
- Mortar plant material eg petal material (30-100 mg fresh weight) is extracted with 100% acetone (three times 500 ⁇ l; shake for about 15 minutes each). The solvent is evaporated. Carotenoids are then taken up in 495 ⁇ l of acetone, 4.95 ml of potassium phosphate buffer (100, pH 7.4) are added and mixed well. Then about 17 mg of Bile salts (Sigma) and 149 ⁇ l of a NaCl / CaCl 2 solution (3M NaCl and 75 mM CaCl 2 ) are added. The suspension is incubated at 37 ° C for 30 minutes.
- a NaCl / CaCl 2 solution 3M NaCl and 75 mM CaCl 2
- a lipase solution 50 mg / ml lipase type 7 from Candida rugosa (Sigma)
- 595 ⁇ l of lipase solution 50 mg / ml lipase type 7 from Candida rugosa (Sigma)
- 595 ⁇ l of lipase was added again and incubation was continued for at least 5 hours at 37 ° C.
- 700 mg Na 2 SO 4 are dissolved in the solution.
- the carotenoids are extracted into the organic phase by vigorous mixing. This shaking is repeated until the organic phase remains colorless.
- the petroleum ether fractions are combined and the petroleum ether evaporated. Free carotenoids are taken up in 100-120 ⁇ l acetone. Free carotenoids can be identified on the basis of retention time and UV-VIS spectra using HPLC and C30 reverse phase columns.
- the Bile salts or bile acid salts used are 1: 1 mixtures of cholate and deoxycholate.
- the hydrolysis of the carotenoid esters by lipase from Candida rugosa can be achieved after separation by means of thin layer chromatography. For this, 50-100mg of plant material are extracted three times with about 750 ⁇ l acetone. The solvent extract is rotated in a vacuum (elevated temperatures of 40-50 ° C are tolerable). Then add 300 ⁇ l petroleum ether: acetone (ratio 5: 1) and mix well. Suspended matter is sedimented by centrifugation (1-2 minutes). The upper phase is transferred to a new reaction vessel. The remaining residue is extracted again with 200 ⁇ l of petroleum ether: acetone (ratio 5: 1) and suspended matter is removed by centrifugation.
- the two extracts are combined (volume 500 ⁇ l) and the solvents evaporated.
- the residue is resuspended in 30 ⁇ l of petroleum ether: acetone (ratio 5: 1) and applied to a thin-layer plate (silica gel 60, Merck). If more than one application is required for preparative-analytical purposes, several aliquots, each with a fresh weight of 50-100 mg, should be used be prepared for the thin-layer chromatographic separation described.
- the thin-layer plate is developed in petroleum acetone (ratio 5: 1). Carotenoid bands can be identified visually based on their color. Individual carotenoid bands are scraped out and can be pooled for preparative-analytical purposes.
- the carotenoids are eluted from the silica material with acetone; the solvent is evaporated in vacuo.
- the residue is dissolved in 495 ⁇ l acetone, 17 mg Bile salts (Sigma), 4.95 ml 0.1M potassium phosphate buffer (pH 7.4) and 149 ⁇ l (3M NaCl, 75mM CaCl 2 ) are added. After thorough mixing, equilibrate at 37 ° C for 30 minutes.
- Candida rugosa lipase Sigma, stock solution of 50 mg / ml in 5 mM CaCl 2 . Incubation with lipase takes place overnight with shaking at 37 ° C. After about 21 hours, the same amount of lipase is added again; Incubate again at 37 ° C with shaking for at least 5 hours. Then 700 mg Na 2 SO (anhydrous) are added; with 1800 ⁇ l of petroleum ether is shaken for about 1 minute and the mixture is centrifuged at 3500 revolutions / minute for 5 minutes. The upper phase is transferred to a new reaction vessel and the shaking is repeated until the upper phase is colorless.
- Candida rugosa lipase Sigma, stock solution of 50 mg / ml in 5 mM CaCl 2 .
- Example 15 The analysis of the samples obtained according to the working instructions in Example 15 is carried out under the following conditions:
- Some typical retention times for carotenoids formed according to the invention are, for example, violaxanthin 11.7 minutes, astaxanthin 17.7 minutes, adonixanthin 19 minutes, adonirubin 19.9 minutes and zeaxanthin 21 minutes.
Landscapes
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Die vorliegende Erfindung betrifft die Verwendung von Promotoren zur Expression, vorzugsweise zur blütenspezifischen Expression von Genen in Pflanzen der Gattung Tagetes, die genetisch veränderten Pflanzen der Gattung Tagetes sowie ein Verfahren zur Herstellung von biosynthetischen Produkten durch Kultivierung der genetisch ver- änderten Pflanzen.
Description
Promotoren zur Expression von Genen in Tagetes
Beschreibung
Die vorliegende Erfindung betrifft die Verwendung von Promotoren zur Expression, vorzugsweise zur blütenspezifischen Expression von Genen in Pflanzen der Gattung Tagetes, die genetisch veränderten Pflanzen der Gattung Tagetes sowie ein Verfahren zur Herstellung von biosynthetischen Produkten durch Kultivierung der genetisch veränderten Pflanzen.
Verschiedene biosynthetische Produkte, wie beispielsweise Feinchemikalien, wie unter anderem Aminosäuren, Vitamine, Carotinoide, aber auch Proteine werden über natürliche Stoffwechselprozesse in Zellen hergestellt und werden in vielen Industriezweigen verwendet, einschließlich der Nahrungsmittel-, Futtermittel-, Kosmetik-, Feed-, Food- und pharmazeutischen Industrie. . ,
Diese Substanzen, die zusammen als Feinchemikalien/Proteine bezeichnet werden, umfassen unter anderem organische Säuren, sowohl proteinogene als auch nicht- proteinogene Aminosäuren, Nukleotide und Nukleoside, Lipide und Fettsäuren, Diole, Kohlenhydrate, aromatische Verbindungen, Vitamine, Carotinoide und Cofaktoren, sowie Proteine und Enzyme. Ihre Produktion im Großmaßstab erfolgt zum Teil mittels biotechnologischer Verfahren unter Verwendung von Mikroorganismen, die entwickelt wurden, um große Mengen der jeweils gewünschten Substanz zu produzieren und sezemieren.
Carotinoide werden de novo in Bakterien, Algen, Pilzen und Pflanzen synthetisiert. In den letzten Jahren wird zunehmend versucht, auch Pflanzen als Produktionsorganismen für Feinchemikalien, insbesondere für Vitamine und Carotinoide zu nutzen.
Ein natürliches Gemisch aus den Carotinoiden Lutein und Zeaxanthin wird beispielsweise aus den Blüten von Marigold Pflanzen (Tagetes Pflanzen) als sogenanntes Ole- oresin extrahiert. Diese Oleoresin findet Anwendung sowohl als Inhaltsstoff von Nah- rungsergänzungsmitteln als auch im Feed-Bereich.
Lycopin aus Tomaten findet ebenso Anwendung als Nahrungsergänzungsmit- tel.während Phytoen überwiegend im kosmetischen Bereich verwendet wird.
Ketocarotinoide, also Carotinoide, die mindestens eine Keto-Gruppe enthalten, wie beispielsweise Astaxanthin, Canthaxanthin, Echinenon, 3-Hydroxyechinenon, 3'- Hydroxyechinenon, Adonirubin und Adonixanthin sind natürliche Antioxidantien und
Pigmente, die von einigen Algen, Pflanzen und Mikroorganismen als Sekundärmetabo- lite produziert werden.
Aufgrund ihrer farbgebenden Eigenschaften werden die Ketocarotinoide und insbeson- dere Astaxanthin als Pigmentierhilfsstoffe in der Tierernährung, insbesondere in der Forellen-, Lachs- und Shrimpszucht verwendet.
Ein wirtschaftliches biotechnologisches Verfahren zur Herstellung von natürlichen, biosynthetischen Produkten und insbesondere Carotinoiden ist daher von großer Bedeu- tung.
WO 0032788 beschreibt einige Carotinoid Biosynthesegene aus Pflanzen der Gattung Tagetes und offenbart, wie genetisch veränderte Pflanzen der Gattung Tagetes hergestellt werden könnten, um in den Petalen verschiedene Carotinoidprofile zu erhalten und damit gezielt bestimmte Carotinoide herzustellen. Dazu ist es nötig, einige Biosynthesegene überzuexprimieren und andere zu unterdrücken.
Zur Überexpression der neu gefundenen Carotinoid-Biosynthesgene in Pflanzen der Gattung Tagetes wird in WO 0032788 der petalenspezifische Promotor der Ketolase aus Adonis vernalis postuliert.
Aufgrund einer Vielzahl möglicher Schwierigkeiten bei der Überexpression bestimmter Gene besteht ein ständiges Bedürfnis, weitere Promotoren zur Verfügung zu stellen, die eine Expression von Genen in Pflanzen der Gattung Tagetes ermöglichen.
Der Erfindung lag daher die Aufgabe zu Grunde, weitere Promotoren zur Verfügung zu stellen, die die Expression von Genen in Pflanzen der Gattung Tagetes ermöglichen.
Demgemäß wurde gefunden, dass sich die Promotoren, ausgewählt aus der Gruppe
A) EPSPS Promotor
B) B-Gene Promotor
C) PDS Promotor und
D) CHRC Promotor
sehr gut zur Expression von Genen in Pflanzen der Gattung Tagetes eignen, mit der Maßgabe, dass Gene aus Pflanzen der Gattung Tagetes, die in Wildtyppflanzen der Gattung Tagetes von dem jeweiligen Promotor exprimiert werden, ausgenommen sind.
Die Erfindung betrifft daher die Verwendung eines Promotors, ausgewählt aus der Gruppe
A) EPSPS Promotor B) B-Gene Promotor
C) PDS Promotor und
D) CHRC Promotor
zur Expression von Genen in Pflanzen der Gattung Tagetes, mit der Maßgabe, dass Gene aus Pflanzen der Gattung Tagetes, die in Wildtyppflanzen der Gattung Tagetes von dem jeweiligen Promotor exprimiert werden, ausgenommen sind.
Benfey et al. (Plant Cell Volume 2, pp. 849-856) beschreiben den EPSPS Promotor aus Petunia als petalenspezifischen Promotor zur Expression von Genen in Petunia hybrida.
Ronen et al. (PNAS Volume 97, Number 20, 11102-11107 beschreiben den B-GENE Promotor aus Tomate als blütenspezifischen Promotor zur Expression von Genen in Tomaten. ,
Corona et al. (Plant Journal Volume 9 Number 4 pp. 505-512), Mann et al. (Nature Bio- technology Volume 18 pp. 888-892) und Rosati et al. (Plant Journal Volume 24 Number 3 413-419) beschreiben den PDS Promotor aus Tomate als frucht- und blütenspe- zifischen Promotor zur Expression von Genen in Tomaten und Tabak.
Vishnevetsky et al. (Plant Journal Volume 20 Number 4 pp. 423-431) beschreiben den CHRC Promotor aus Gurke als blütenspezifischen Promotor zur Expression von Genen in Gurke, und weiteren Pflanzen wie z.B. Nelke, Sonnenblume, Tabak.
Es sind weiterhin zahlreiche blütenspezifische Promotoren aus verschiedenen Organismen in der Literatur bekannt. Dabei wurde überraschend festgestellt, dass viele dieser Promotoren in Pflanzen der Gattung Tagetes nicht zur Expression, insbesondere nicht zur blütenspezifischen oder petalenspezifischen Expression von Genen führen.
Es war daher überraschend, dass sich die Promotoren, ausgewählt aus der Gruppe
A) EPSPS Promotor
B) B-Gene Promotor
C) PDS Promotor und
D) CHRC Promotor
sehr gut zur Expression, insbesondere zur blütenspezifischen und besonderes bevor- zugt zur petalenspezifischen Expression von Genen in Pflanzen der Gattung Tagetes eignen.
Unter einem Promotor wird erfindungsgemäß eine Nukleinsäure mit Expressionsaktivität verstanden, also eine Nukleinsäure verstanden, die in funktioneller Verknüpfung mit einer zu exprimierenden Nukleinsäure, im folgenden auch Gen bezeichnet, die Expression, also die Transkription und die Translation dieser Nukleinsäure oder dieses Gens reguliert.
Unter „Transkription" wird erfindungsgemäß der Prozess verstanden, durch den aus- gehend von einer DNA-Matrize ein komplementäres RNA-Molekül hergestellt wird. An diesem Prozess sind Proteine wie die RNA-Polymerase, sogenannte Sigma-Faktoren und transkriptionelle Regulatorproteine beteiligt. Die synthetisierte RNA dient dann als Matrize im Prozess der Translation, der dann zum biosynthetisch aktiven Protein führt.
Unter einer „funktioneilen Verknüpfung" versteht man in diesem Zusammenhang beispielsweise die sequentielle Anordnung einer der erfindungsgemäßen Promotoren und einer zu exprimierenden Nukleinsäuresequenz und ggf. weiterer regulativer Elemente wie zum Beispiel einem Terminator derart, dass jedes der regulativen Elemente seine Funktion bei der Expression der Nukleinsäuresequenz erfüllen kann. Dazu ist nicht unbedingt eine direkte Verknüpfung im chemischen Sinne erforderlich. Genetische
Kontrollsequenzen, wie zum Beispiel Enhancer-Sequenzen, können ihre Funktion auch von weiter entfernten Positionen oder gar von anderen DNA-Molekülen aus auf die Zielsequenz ausüben. Bevorzugt sind Anordnungen, in denen die zu exprimierende Nukleinsäuresequenz oder das zu exprimierende Gen hinter (d.h. am 3'-Ende) der er- findungsgemäßen Promotorsequenz positioniert wird, so dass beide Sequenzen kova- lent miteinander verbunden sind. Bevorzugt ist dabei der Abstand zwischen der Promotorsequenz und der zu exprimierende Nukleinsäuresequenz geringer als 200 Basenpaare, besonders bevorzugt kleiner als 100 Basenpaare, ganz besonders bevorzugt kleiner als 50 Basenpaare.
Unter „Expressionsaktivität" wird erfindungsgemäß die in einer bestimmten Zeit durch den Promotor gebildete Menge Protein, also die Expressionsrate, verstanden.
Unter „spezifischer Expressionsaktivität" wird erfindungsgemäß die in einer bestimmten Zeit durch den Promotor gebildete Menge Protein pro Promotor verstanden.
Bei einer „verursachten Expressionsaktivität" oder „verursachten Expressionsrate" im Bezug auf ein Gen im Vergleich zum Wildtyp wird somit im Vergleich zum Wildtyp die Bildung eines Proteins verursacht, das im Wildtyp so nicht vorhanden war.
Bei einer „erhöhten Expressionsaktivität" oder „erhöhten Expressionsrate" im Bezug auf ein Gen im Vergleich zum Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit die gebildete Menge des Proteins erhöht.
Die Bildungsrate, mit der ein biosynthetsich aktives Protein hergestellt wird, ist ein Produkt aus der Rate der Transkription und der Translation. Beide Raten können erfindungsgemäß beeinflusst werden und damit die Rate der Bildung von Produkten in ei- nem Mikroorganismus beeinflussen.
Die Bezeichnung „dass Gene aus Pflanzen der Gattung Tagetes, die in Wildtyppflanzen der Gattung Tagetes von dem „jeweiligen" Promotor exprimiert werden, ausgenommen sind", bedeutet, dass beispielsweise der EPSPS Promotor aus Pflanzen der Gattuung Tagetes nicht zur Expression von EPSPS-Genen aus Pflanzen der Gattuung Tagetes verwendet wird. Dahingegen kann das EPSPS-Gen aus Pflanzen der Gattung Tagetes erfindungsgemäß durch einen B-Gene Promotor, PDS Promotor oder CHRC Promotor aus Pflanzen der Gattung Tagetes eprimiert werden.
Unter dem Begriff "Wildtyp" oder „Wildtyppflanze" wird erfindungsgemäß die entsprechende Ausgangspflanze der Gattung Tagetes verstanden.
Je nach Zusammenhang kann unter dem Begriff "Pflanze" die Ausgangspflanze (Wildtyp) oder eine erfindungsgemäße, genetisch veränderte Pflanze der Gattung Tagetes oder beides verstanden werden.
Vorzugsweise wird unter "Wildtyp" für die Erhöhung oder Verursachung der Expressionsaktivität oder Expressionsrate und für die Erhöhung des Gehalts an biosynthetischen Produkten die Pflanze Tagetes erecta, insbesondere die Pflanze Tagetes erecta Hybrid 50011 (WO 02012438) als Referenzorganismus verstanden.
Unter einem „EPSPS Promotor" werden Promotoren verstanden, die natürlicherweise in Organismen, vorzugsweise in Pflanzen, die Genexpression einer Nukleinsäure, kodierend eine 5-Enolpyruvylshikimat-3-phosphatsynthase, regulieren, sowie von diesen Promotorsequenzen durch Substitution, Insertion oder Deletion von Nukleotiden oder
durch Fragmentierung dieser Promotorsequenzen ableitbare Nukleinsäuresequenzen, die noch diese Expressionsaktivität aufweisen und somit funktionelle Äquivalente darstellen.
Diese EPSPS Promotorsequenzen aus anderen Organismen, insbesondere Pflanzen, als den nachstehend angegebenen Promotorsequenzen lassen sich insbesondere durch Homologievergleiche in Datenbanken oder Hybridisierungsstudien mit DNA- Bibliotheken verschiedener Organismen unter Verwendung der nachstehend beschriebenen EPSPS Promotorsequenzen oder den Nukleinsäuren, kodierend eine 5- Enolpyruvylshikimat-3-phosphatsynthase, auffinden.
Vorzugsweise werden dazu die Nukleinsäuren, kodierend eine 5-Enolpyruvylshikimat- 3-phosphatsynthase, verwendet, da in der kodierenden Sequenz konservierte Bereiche häufiger sind als in der Promotorsequenz.
Unter einer 5-Enolpyruvylshikimat-3-phosphatsynthase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, Shikimat-3-Phosphat in 5-Enolpyruvylshikimat- 3-Phosphat umzuwandeln.
Bevorzugte EPSPS Promotoren enthalten
A1) die Nukleinsäuresequenz SEQ. ID. NO. 1, 2 oder 3 oder A2) eine von diesen Sequenzen durch Substitution, Insertion oder Deletion von Nukleotiden abgeleitete Sequenz, die eine Identität von mindestens 60 % auf Nukleinsäureebene mit der jeweiligen Sequenz SEQ. ID. NO. 1 , 2 oder 3 aufweist oder A3) eine Nukleinsäuresequenz, die mit der Nukleinsäuresequenz SEQ. ID. NO. 1 , 2 oder 3 unter stringenten Bedingungen hybridisiert oder A4) funktioneil äquivalente Fragmente der Sequenzen unter A1), A2) oder A3)
Die Nukleinsäuresequenz SEQ. ID. NO. 1 stellt eine Promotorsequenz der 5- Enolpyruvylshikimat-3-phosphatsynthase (EPSPS) aus Petunia hybrida (AAH 19653) dar.
Die Nukleinsäuresequenz SEQ. ID. NO. 2 stellt eine Promotorsequenz der 5- Enolpyruvylshikimat-3-phosphatsynthase (EPSPS) aus Petunia hybrida (M37029) dar.
Die Nukleinsäuresequenz SEQ. ID. NO. 3 stellt eine weitere Promotorsequenz der 5- Enolpyruvylshikimat-3-phόsphatsynthase (EPSPS) aus Petunia hybrida dar.
Die Erfindung betrifft weiterhin EPSPS Promotoren, enthaltend eine von diesen Sequenzen (SEQ. ID. NO. 1 , 2 oder 3) durch Substitution, Insertion oder Deletion von Nukleotiden abgeleitete Sequenz, die eine Identität von mindestens 60 % auf Nuklein- säureebene mit der jeweiligen Sequenz SEQ. ID. NO. 1 ,2 oder 3 aufweist.
Weitere natürliche erfindungsgemäße Beispiele für erfindungsgemäße EPSPS Promotoren lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, durch Identitätsvergleiche der Nukleinsäuresequenzen aus Datenbanken mit den vorstehend beschriebenen Sequenzen SEQ ID NO: 1 , 2 oder 3 leicht auffinden.
Künstliche erfindungsgemäße EPSPS Promotor-Sequenzen lassen sich ausgehend von den Sequenzen SEQ ID NO: 1 , 2 oder 3 durch künstliche Variation und Mutation, beispielsweise durch Substitution, Insertion oder Deletion von Nukleotiden leicht auffinden.
Die folgenden Definition und Bedingungen der Identitätsvergleiche und Hybridisie- rungsbedingungen gelten für alle Nukleinsäuren, also alle Promotoren und Gene der Beschreibung.
Unter dem Begriff "Substitution" ist der Austausch einer oder mehrerer Nukleotide durch ein oder mehrere Nukleotide zu verstehen. „Deletion" ist das Ersetzen eines Nukleotides durch eine direkte Bindung. Insertionen sind Einfügungen von Nukleotiden in die Nukleinsäuresequenz, wobei formal eine direkte Bindung durch ein oder mehrere Nukleotide ersetzt wird.
Unter Identität zwischen zwei Nukleinsäuren wird die Identität der Nukleotide über die jeweils gesamte Nukleinsäurelänge verstanden, insbesondere die Identität die durch Vergleich mit Hilfe der Vector NTI Suite 7.1 Software der Firma Informax (USA) unter Anwendung der Clustal Methode (Higgins DG, Sharp PM. Fast and sensitive multiple sequence alignments on a microcomputer. Comput Appl. Biosci. 1989 Apr;5(2):151-1) unter Einstellung folgender Parameter berechnet wird:
Multiple alignment parameter:
Gap opening penalty 10
Gap extension penalty 10
Gap Separation penalty ränge 8
Gap Separation penalty off % identity for alignment delay 40
Residue specific gaps off Hydrophilic residue gap off Transition weighing 0
Pairwise alignment parameter: FAST algorithm on K-tuplesize 1 Gap penalty 3 Window size 5 Number of best diagonals 5
Unter einer Nukleinsäuresequenz, die eine Identität von mindestens 60 % mit der Sequenz SEQ ID NO: 1 aufweist, wird dementsprechend eine Nukleinsäuresequenz verstanden, die bei einem Vergleich seiner Sequenz mit der Sequenz SEQ ID NO: 1, ins- besondere nach obigen Programmlogarithmus, mit obigem Parametersatz eine Identität von mindestens 60 % aufweist.
Unter einer Nukleinsäuresequenz, die eine Identität von mindestens 60 % mit der Sequenz SEQ ID NO: 2 aufweist, wird dementsprechend eine Nukleinsäuresequenz ver- standen, die bei einem Vergleich seiner Sequenz mit der Sequenz SEQ ID NO: 2, insbesondere nach obigen Programmlogarithmus, mit obigem Parametersatz eine Identität von mindestens 60 % aufweist.
Unter einer Nukleinsäuresequenz, die eine Identität von mindestens 60 % mit der Se- quenz SEQ ID NO: 3 aufweist, wird dementsprechend eine Nukleinsäuresequenz verstanden, die bei einem Vergleich seiner Sequenz mit der Sequenz SEQ ID NO: 3, insbesondere nach obigen Programmlogarithmus, mit obigem Parametersatz eine Identität von mindestens 60 % aufweist.
Besonders bevorzugte EPSPS Promotoren weisen mit der jeweiligen Nukleinsäuresequenz SEQ. ID. NO. 1, 2 oder 3 eine Identität von mindestens 70%, bevorzugter mindestens 80%, mindestens 90%, mindestens 92%, mindestens 95%, mindestens 96%, mindestens 97%, mindestens 98%, besonders bevorzugt mindestens 99% auf.
Weitere natürliche Beispiele für EPSPS Promotoren lassen sich weiterhin ausgehend von den vorstehend beschriebenen Nukleinsäuresequenzen, insbesondere ausgehend von den Sequenzen SEQ ID NO: 1, 2 oder 3, aus verschiedenen Organismen, deren genomische Sequenz nicht bekannt ist, durch Hybridisierungstechniken in an sich bekannter Weise leicht auffinden.
Ein weiterer Gegenstand der Erfindung betrifft daher EPSPS Promotoren, enthaltend eine Nukleinsäuresequenz, die mit der Nukleinsäuresequenz SEQ. ID. No. 1, 2 oder 3 unter stringenten Bedingungen hybridisiert. Diese Nukleinsäuresequenz umfasst mindestens 10, bevorzugter mehr als 12,15,30,50 oder besonders bevorzugt mehr als 150 Nukleotide.
Unter "hybridisieren" versteht man die Fähigkeit eines Poly- oder Oligonukleotids, unter stringenten Bedingungen an eine nahezu komplementäre Sequenz zu binden, während unter diesen Bedingungen unspezifische Bindungen zwischen nicht-komplementären Partnern unterbleiben. Dazu sollten die Sequenzen vorzugsweise zu 90-100% komplementär sein. Die Eigenschaft komplementärer Sequenzen, spezifisch aneinander binden zu können, macht man sich beispielsweise in der Northern- oder Southern-Blot- Technik oder bei der Primerbindung in PCR oder RT-PCR zunutze.
Die Hybridisierung erfolgt erfinungsgemäß unter stringenten Bedingungen. Solche
Hybridisierungsbedingungen sind beispielsweise bei Sambrook, J., Fritsch, E.F., Mani- atis, T., in: Molecular Cloning (A Laboratory Manual), 2. Auflage, Cold Spring Harbor Laboratory Press, 1989, Seiten 9.31-9.57 oder in Current Protocols in Molecular Biolo- gy, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6 beschrieben:
Unter stringenten Hybridisierungs-Bedingungen werden insbesondere verstanden: Die über Nacht Inkubation bei 42°C in einer Lösung bestehend aus 50 % Formamid, 5 x SSC (750 mM NaCI, 75 mM Tri-Natrium Citrat), 50 mM Natrium Phosphat (ph7,6), 5x Denhardt Lösung, 10% Dextransulfat und 20 g/ml denaturierte, gescheerte Lachsspermien-DNA, gefolgt von einem Waschen der Filter mit 0,1x SSC bei 65°C.
Unter einem „funktionell äquivalenten Fragment" werden für Promotoren Fragmente verstanden die im wesentlichen die gleiche Promotoraktivität aufweisen wie die Ausgangssequenz.
Unter „im wesentlichen gleich" wird eine spezifische Expressionsaktivität verstanden die mindestens 50%, vorzugsweise 60%, bevorzugter 70%, bevorzugter 80%, bevorzugter 90%, besonders bevorzugt 95% der spezifischen Expressionsaktivität der Ausgangssequenz aufweist.
Unter „Fragmente" werden Teilsequenzen der durch Ausführungsform A1), A2) oder A3) beschriebenen EPSPS Promotoren verstanden. Vorzusgweise weisen diese Fragmente mehr als 10, bevorzugter aber mehr als 12,15, 30, 50 oder besonders bevorzugt mehr als 150 zusammenhängende Nukleotide der Nukleinsäuresequenz SEQ.
ID. NO. 1 , 2 oder 3 auf.
Besonders bevorzugt ist die Verwendung der Nukleinsäuresequenz SEQ. ID. NO. 1 , 2 oder 3 als EPSPS Promotor, d.h. zur Expression von Genen in Pflanzen der Gattung Tagetes.
Alle vorstehend erwähnten EPSPS Promotoren sind weiterhin in an sich bekannter Weise durch chemische Synthese aus den Nukleotidbausteinen wie beispielsweise durch Fragmentkondensation einzelner überlappender, komplementärer Nukleinsäure- bausteine der Doppelhelix herstellbar. Die chemische Synthese von Oligonukleotiden kann beispielsweise, in bekannter Weise, nach der Phosphoamiditmethode (Voet, Voet, 2. Auflage, Wiley Press New York, S. 896-897) erfolgen. Die Anlagerung synthetischer Oligonukleotide und Auffüllen von Lücken mithilfe des Klenow-Fragmentes der DNA-Polymerase und Ligationsreaktionen sowie allgemeine Klonierungsverfahren werden in Sambrook et al. (1989), Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press, beschrieben.
Unter einem „B-Gene Promotor" werden Promotoren verstanden, die natürlicherweise in Organismen, vorzugsweise in Pflanzen, die Genexpression einer Nukleinsäure, ko- dierend eine Lycopin-ß-Cyclase, insbesondere eine chromoplastenspezifische Lycopin- ß-Cyclase, regulieren, sowie von diesen Promotorsequenzen durch Substitution, Insertion oder Deletion von Nukleotiden oder durch Fragmentierung dieser Promotorsequenzen ableitbare Nukleinsäuresequenzen, die noch diese Expressionsaktivität aufweisen und somit funktionelle Äquivalente darstellen.
Diese B-Gene Promotorsequenzen aus anderen Organismen, insbesondere Pflanzen, als den nachstehend angegebenen Promotorsequenzen lassen sich insbesondere durch Homologievergleiche in Datenbanken oder Hybridisierungsstudien mit DNA- Bibliotheken verschiedener Organismen unter Verwendung der nachstehend beschrie- benen B-Gene Promotorsequenzen oder den Nukleinsäuren, kodierend eine Lycopin- ß-Cyclase, auffinden.
Vorzugsweise werden dazu die Nukleinsäuren, kodierend eine Lycopin-ß-Cyclase, verwendet, da in der kodierenden Sequenz konservierte Bereiche häufiger sind als in der Promotorsequenz.
Unter einer Lycopin-ß-Cyclase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, Lycopin in γ-Carotin und/oder ß-Carotin umzuwandeln.
Bevorzugte B-Gene Promotoren enthalten
B1) die Nukleinsäuresequenz SEQ. ID. NO. 4, 5 oder 6 oder B2) eine von diesen Sequenzen durch Substitution, Insertion oder Deletion von Nukleotiden abgeleitete Sequenz, die eine Identität von mindestens 60 % auf Nukleinsäureebene mit der jeweiligen Sequenz SEQ. ID. NO. 4, 5 oder 6 aufweist oder B3) eine Nukleinsäuresequenz, die mit der Nukleinsäuresequenz SEQ. ID. NO. 4, 5 oder 6 unter stringenten Bedingungen hybridisiert oder B4) funktioneil äquivalente Fragmente der Sequenzen unter B1), B2) oder B3)
Die Nukleinsäuresequenz SEQ. ID. NO. 4 stellt eine Promotorsequenz der chro- moplastenspezifischen Lycopin-ß-Cyclase (B-Gene) aus Lycopersicon esculentum (AAZ51517) dar.
Die Nukleinsäuresequenz SEQ. ID. NO. 5 stellt eine Promotorsequenz der chro- moplastenspezifischen Lycopin-ß-Cyclase (B-Gene) aus Lycopersicon esculentum (AAZ51521) dar.
Die Nukleinsäuresequenz SEQ. ID. NO. 6 stellt eine weitere Promotorsequenz der chromoplastenspezifischen Lycopin-ß-Cyclase (B-Gene) aus Lycopersicon esculentum dar.
Die Erfindung betrifft weiterhin B-Gene Promotoren, enthaltend eine von diesen Se- quenzen (SEQ. ID. NO. 4, 5 oder 6) durch Substitution, Insertion oder Deletion von Nukleotiden abgeleitete Sequenz, die eine Identität von mindestens 60 % auf Nukleinsäureebene mit der jeweiligen Sequenz SEQ. ID. NO. 4, 5 oder 6 aufweist.
Weitere natürliche erfindungsgemäße Beispiele für erfindungsgemäße B-Gene Promotoren lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, durch Identitätsvergleiche der Nukleinsäuresequenzen aus Datenbanken mit den vorstehend beschriebenen Sequenzen SEQ ID NO: 4, 5 oder 6 leicht auffinden.
Künstliche erfindungsgemäße B-Gene Promotor-Sequenzen lassen sich ausgehend von den Sequenzen SEQ ID NO: 4, 5 oder 6 durch künstliche Variation und Mutation, beispielsweise durch Substitution, Insertion oder Deletion von Nukleotiden leicht auffinden.
Unter einer Nukleinsäuresequenz, die eine Identität von mindestens 60 % mit der Sequenz SEQ ID NO: 4 aufweist, wird dementsprechend eine Nukleinsäuresequenz verstanden, die bei einem Vergleich seiner Sequenz mit der Sequenz SEQ ID NO: 4, insbesondere nach obigen Programmlogarithmus mit obigem Parametersatz eine Identität von mindestens 60 % aufweist.
Unter einer Nukleinsäuresequenz, die eine Identität von mindestens 60 % mit der Sequenz SEQ ID NO: 5 aufweist, wird dementsprechend eine Nukleinsäuresequenz verstanden, die bei einem Vergleich seiner Sequenz mit der Sequenz SEQ ID NO: 5, ins- besondere nach obigen Programmlogarithmus mit obigem Parametersatz eine Identität von mindestens 60 % aufweist.
Unter einer Nukleinsäuresequenz, die eine Identität von mindestens 60 % mit der Sequenz SEQ ID NO: 6 aufweist, wird dementsprechend eine Nukleinsäuresequenz ver- standen, die bei einem Vergleich seiner Sequenz mit der Sequenz SEQ ID NO: 6, insbesondere nach obigen Programmlogarithmus mit obigem Parametersatz eine Identität von mindestens 60 % aufweist.
Besonders bevorzugte B-Gene Promotoren weisen mit der jeweiligen Nukleinsäurese- quenz SEQ. ID. NO. 4, 5 oder 6 eine Identität von mindestens 70%, bevorzugter mindestens 80%, mindestens 90%, mindestens 92%, mindestens 95%, mindestens 96%, mindestens 97%, mindestens 98%, besonders bevorzugt mindestens 99% auf.
Weitere natürliche Beispiele für B-Gene Promotoren lassen sich weiterhin ausgehend von den vorstehend beschriebenen Nukleinsäuresequenzen, insbesondere ausgehend von den Sequenzen SEQ ID NO: 4, 5 oder 6 aus verschiedenen Organismen, deren genomische Sequenz nicht bekannt ist, durch Hybridisierungstechniken in an sich bekannter Weise leicht auffinden.
Ein weiterer Gegenstand der Erfindung betrifft daher B-Gene Promotoren, enthaltend eine Nukleinsäuresequenz, die mit der Nukleinsäuresequenz SEQ. ID. No. 4, 5 oder 6 unter stringenten Bedingungen hybridisiert. Diese Nukleinsäuresequenz umfasst mindestens 10, bevorzugter mehr als 12,15,30,50 oder besonders bevorzugt mehr als 150 Nukleotide.
Die Hybridisierungbedingungen sind vorstehend beschrieben.
Unter einem „funktioneil äquivalenten Fragment" werden für Promotoren Fragmente verstanden, die im wesentlichen die gleiche Promotoraktivität aufweisen wie die Aus-
gangssequenz.
Unter „im wesentlichen gleich" wird eine spezifische Expressionsaktivität verstanden, die mindestens 50%, vorzugsweise 60%, bevorzugter 70%, bevorzugter 80%, be- vorzugter 90%, besonders bevorzugt 95% der spezifischen Expressionsaktivität der Ausgangssequenz aufweist.
Unter „Fragmente" werden Teilsequenzen der durch Ausführungsform B1), B2) oder B3) beschriebenen B-Gene Promotoren verstanden. Vorzusgweise weisen diese Fragmente mehr als 10, bevorzugter aber mehr als 12,15, 30, 50 oder besonders be- vorzugts mehr als 150 zusammenhängende Nukleotide der Nukleinsäuresequenz SEQ. ID. NO. 4, 5 oder 6 auf.
Besonders bevorzugt ist die Verwendung der Nukleinsäuresequenz SEQ. ID. NO. 4, 5 oder 6 als B-Gene Promotor, d.h. zur Expression von Genen in Pflanzen der Gattung Tagetes.
Alle vorstehend erwähnten B-Gene Promotoren sind weiterhin in an sich bekannter Weise durch chemische Synthese aus den Nukleotidbausteinen wie beispielsweise durch Fragmentkondensation einzelner überlappender, komplementärer Nukleinsäure- bausteine der Doppelhelix herstellbar. Die chemische Synthese von Oligonukleotiden kann beispielsweise, in bekannter Weise, nach der Phosphoamiditmethode (Voet, Voet, 2. Auflage, Wiley Press New York, S. 896-897) erfolgen. Die Anlagerung synthetischer Oligonukleotide und Auffüllen von Lücken mithilfe des Klenow-Fragmentes der DNA-Polymerase und Ligationsreaktionen sowie allgemeine Klonierungsverfahren werden in Sambrook et al. (1989), Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press, beschrieben.
Unter einem „PDS Promotor" werden Promotoren verstanden, die natürlicherweise in Organismen, vorzugsweise in Pflanzen, die Genexpression einer Nukleinsäure, kodierend eine Phytoendesaturase, regulieren, sowie von diesen Promotorsequenzen durch Substitution, Insertion oder Deletion von Nukleotiden oder durch Fragmentierung dieser Promotorsequenzen ableitbare Nukleinsäuresequenzen, die noch diese Expressionsaktivität aufweisen und somit funktionelle Äquivalente darstellen.
Diese PDS Promotorsequenzen aus anderen Organismen, insbesondere Pflanzen, als den nachstehend angegebenen Promotorsequenzen lassen sich insbesondere durch Homologievergleiche in Datenbanken oder Hybridisierungsstudien mit DNA- Bibliotheken verschiedener Organismen unter Verwendung der nachstehend beschrie- benen PDS Promotorseqüenzen oder den Nukleinsäuren, kodierend eine Phytoende-
saturase, auffinden.
Vorzugsweise werden dazu die Nukleinsäuren, kodierend eine Phytoendesaturase, verwendet, da in der kodierenden Sequenz konservierte Bereiche häufiger sind als in der Promotorsequenz.
Unter einer Phytoendesaturase wird vorzugsweise ein Protein verstanden, das die enzymatische Aktivität aufweist, Phytoen in Phytofluen umzuwandeln.
Bevorzugte PDS Promotoren enthalten
C1) die Nukleinsäuresequenz SEQ. ID. NO. 7, 8, 9 oder 10 oder C2) eine von diesen Sequenzen durch Substitution, Insertion oder Deletion von Nukleotiden abgeleitete Sequenz, die eine Identität von mindestens 60 % auf Nukleinsäureebene mit der jeweiligen Sequenz SEQ. ID. NO. 7, 8, 9 oder 10 aufweist oder C3) eine Nukleinsäuresequenz, die mit der Nukleinsäuresequenz SEQ. ID. NO. 7, 8, 9 oder 10 unter stringenten Bedingungen hybridisiert oder C4) funktionell äquivalente Fragmente der Sequenzen unter C1), C2) oder C3)
Die Nukleinsäuresequenz SEQ. ID. NO. 7 stellt eine Promotorsequenz der Phytoendesaturase (PDS) aus Lycopersicon esculentum (U46919) dar.
Die Nukleinsäuresequenz SEQ. ID. NO. 8 stellt eine Promotorsequenz der Phytoende- saturase (PDS) aus Lycopersicon esculentum (X78271) dar.
Die Nukleinsäuresequenz SEQ. ID. NO. 9 stellt eine Promotorsequenz der Phytoendesaturase (PDS) aus Lycopersicon esculentum (X171023) dar.
Die Nukleinsäuresequenz SEQ. ID. NO. 10 stellt eine weitere Promotorsequenz der Phytoendesaturase (PDS) aus Lycopersicon esculentum dar.
Die Erfindung betrifft weiterhin PDS Promotoren, enthaltend eine von diesen Sequenzen (SEQ. ID. NO. 7, 8, 9 oder 10) durch Substitution, Insertion oder Deletion von Nukleotiden abgeleitete Sequenz, die eine Identität von mindestens 60 % auf Nukleinsäureebene mit der jeweiligen Sequenz SEQ. ID. NO. 7, 8, 9 oder 10 aufweist.
Weitere natürliche erfindungsgemäße Beispiele für erfindungsgemäße PDS Promotoren lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, durch Identitätsvergleiche der Nukleinsäuresequenzen aus Da-
tenbanken mit den vorstehend beschriebenen Sequenzen SEQ ID NO: 7, 8, 9 oder 10 leicht auffinden.
Künstliche erfindungsgemäße PDS Promotor-Sequenzen lassen sich ausgehend von den Sequenzen SEQ ID NO: 7, 8, 9 oder 10 durch künstliche Variation und Mutation, beispielsweise durch Substitution, Insertion oder Deletion von Nukleotiden leicht auffinden.
Unter einer Nukleinsäuresequenz, die eine Identität von mindestens 60 % mit der Se- quenz SEQ ID NO: 7 aufweist, wird dementsprechend eine Nukleinsäuresequenz verstanden, die bei einem Vergleich seiner Sequenz mit der Sequenz SEQ ID NO: 7, insbesondere nach obigen Programmlogarithmus, mit obigem Parametersatz eine Identität von mindestens 60 % aufweist.
Unter einer Nukleinsäuresequenz, die eine Identität von mindestens 60 % mit der Sequenz SEQ ID NO: 8 aufweist, wird dementsprechend eine Nukleinsäuresequenz verstanden, die bei einem Vergleich seiner Sequenz mit der Sequenz SEQ ID NO: 8, insbesondere nach obigen Programmlogarithmus, mit obigem Parametersatz eine Identität von mindestens 60 % aufweist.
Unter einer Nukleinsäuresequenz, die eine Identität von mindestens 60 % mit der Sequenz SEQ ID NO: 9 aufweist, wird dementsprechend eine Nukleinsäuresequenz verstanden, die bei einem Vergleich seiner Sequenz mit der Sequenz SEQ ID NO: 9, insbesondere nach obigen Programmlogarithmus, mit obigem Parametersatz eine Identi- tat von mindestens 60 % aufweist.
Unter einer Nukleinsäuresequenz, die eine Identität von mindestens 60 % mit der Sequenz SEQ ID NO: 10 aufweist, wird dementsprechend eine Nukleinsäuresequenz verstanden, die bei einem Vergleich seiner Sequenz mit der Sequenz SEQ ID NO: 10, insbesondere nach obigen Programmlogarithmus, mit obigem Parametersatz eine I- dentität von mindestens 60 % aufweist.
Besonders bevorzugte PDS Promotoren weisen mit der jeweiligen Nukleinsäuresequenz SEQ. ID. NO. 7, 8, 9 oder 10 eine Identität von mindestens 70%, bevorzugter mindestens 80%, mindestens 90%, mindestens 92%, mindestens 95%, mindestens 96%, mindestens 97%, mindestens 98%, besonders bevorzugt mindestens 99% auf.
Weitere natürliche Beispiele für PDS Promotoren lassen sich weiterhin ausgehend von den vorstehend beschriebenen Nukleinsäuresequenzen, insbesondere ausgehend von den Sequenzen SEQ ID NO: 7, 8, 9 oder 10 aus verschiedenen Organismen, deren
genomische Sequenz nicht bekannt ist, durch Hybridisierungstechniken in an sich bekannter Weise leicht auffinden.
Ein weiterer Gegenstand der Erfindung betrifft daher PDS Promotoren, enthaltend eine Nukleinsäuresequenz, die mit der Nukleinsäuresequenz SEQ. ID. No. 7, 8, 9 oder 10 unter stringenten Bedingungen hybridisiert. Diese Nukleinsäuresequenz umfasst mindestens 10, bevorzugter mehr als 12,15,30,50 oder besonders bevorzugt mehr als 150 Nukleotide.
Dje Hybridisierungbedingungen sind vorstehend beschrieben.
Unter einem „funktioneil äquivalenten Fragment" werden für Promotoren Fragmente verstanden, die im wesentlichen die gleiche Promotoraktivität aufweisen wie die Ausgangssequenz.
Unter „im wesentlichen gleich" wird eine spezifische Expressionsaktivität verstanden, die mindestens 50%, vorzugsweise 60%, bevorzugter 70%, bevorzugter 80%, bevorzugter 90%, besonders bevorzugt 95% der spezifischen Expressionsaktivität der Ausgangssequenz aufweist.
Unter „Fragmente" werden Teilsequenzen der durch Ausführungsform C1), C2) oder C3) beschriebenen PDS Promotoren verstanden. Vorzusgweise weisen diese Fragmente mehr als 10, bevorzugter aber mehr als 12,15, 30, 50 oder besonders bevorzugte mehr als 150 zusammenhängende Nukleotide der Nukleinsäuresequenz SEQ. ID. NO. 7, 8, 9 oder 10 auf.
Besonders bevorzugt ist die Verwendung der Nukleinsäuresequenz SEQ. ID. NO. 7, 8, 9 oder 10 als PDS Promotor, d.h. zur Expression von Genen in Pflanzen der Gattung Tagetes.
Alle vorstehend erwähnten PDS Promotoren sind weiterhin in an sich bekannter Weise durch chemische Synthese aus den Nukleotidbausteinen wie beispielsweise durch Fragmentkondensation einzelner überlappender, komplementärer Nukleinsäurebau- steine der Doppelhelix herstellbar. Die chemische Synthese von Oligonukleotiden kann beispielsweise, in bekannter Weise, nach der Phosphoamiditmethode (Voet, Voet, 2. Auflage, Wiley Press New York, S. 896-897) erfolgen. Die Anlagerung synthetischer Oligonukleotide und Auffüllen von Lücken mithilfe des Klenow-Fragmentes der DNA- Polymerase und Ligationsreaktionen sowie allgemeine Klonierungsverfahren werden in Sambrook et al. (1989), Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press, beschrieben.
Unter einem „CHRC Promotor" werden Promotoren verstanden, die natürlicherweise in Organismen, vorzugsweise in Pflanzen, die Genexpression einer Nukleinsäure, kodierend ein Chromoplasten-assoziiertes Protein C regulieren, sowie von diesen Promotor- Sequenzen durch Substitution, Insertion oder Deletion von Nukleotiden oder durch Fragmentierung dieser Promotorsequenzen ableitbare Nukleinsäuresequenzen, die noch diese Expressionsaktivität aufweisen und somit funktionelle Äquivalente darstellen.
Diese CHRC Promotorsequenzen aus anderen Organismen, insbesondere Pflanzen, als den nachstehend angegebenen Promotorsequenzen lassen sich insbesondere durch Homologievergleiche in Datenbanken oder Hybridisierungsstudien mit DNA- Bibliotheken verschiedener Organismen unter Verwendung der nachstehend beschriebenen CHRC Promotorsequenzen oder den Nukleinsäuren kodierend ein Chro- moplasten-assoziiertes Protein C auffinden.
Vorzugsweise werden dazu die Nukleinsäuren kodierend ein Chromoplasten- assoziiertes Protein C verwendet, da in der kodierenden Sequenz konservierte Bereiche häufiger sind als in der Promotorsequenz.
Bevorzugte CHRC Promotoren enthalten
D1) die Nukleinsäuresequenz SEQ. ID. NO. 11, 12, 13 öder 14 oder D2) eine von diesen Sequenzen durch Substitution, Insertion oder Deletion von Nukleotiden abgeleitete Sequenz, die eine Identität von mindestens 60 % auf Nukleinsäureebene mit der jeweiligen Sequenz SEQ. ID. NO. 11, 12, 13 oder 14 aufweist oder , D3) eine Nukleinsäuresequenz, die mit der Nukleinsäuresequenz SEQ. ID. NO. 11, 12, 13 oder 14 unter stringenten Bedingungen hybridisiert oder D4) funktioneil äquivalente Fragmente der Sequenzen unter D1), D2) oder D3)
Die Nukleinsäuresequenz SEQ. ID. NO. 11 stellt eine Promotorsequenz des Chromoplasten-assoziiertes Protein C (CHRC) aus Gurke (AAV36416) dar.
Die Nukleinsäuresequenz SEQ. ID. NO. 12 stellt eine weitere Promotorsequenz des Chromoplasten-assoziiertes Protein C (CHRC) aus Gurke dar.
Die Nukleinsäuresequenz SEQ. ID. NO. 13 stellt eine weitere Promotorsequenz des Chromoplasten-assoziiertes Protein C (CHRC) aus Gurke dar.
Die Nukleinsäuresequenz SEQ. ID. NO. 14 stellt eine weitere Promotorsequenz des chromoplasten assoziiertes Protein C (CHRC) aus Gurke dar.
Die Erfindung betrifft weiterhin CHRC Promotoren, enthaltend eine von diesen Se- quenzen (SEQ. ID. NO. 11, 12, 13, oder 14) durch Substitution, Insertion oder Deletion von Nukleotiden abgeleitete Sequenz, die eine Identität von mindestens 60 % auf Nuk- leinsäureebene mit der jeweiligen Sequenz SEQ. ID. NO. 11, 12, 13, oder 14 aufweist.
Weitere natürliche erfindungsgemäße Beispiele für erfindungsgemäße CHRC Promoto- ren lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, durch Identitätsvergleiche der Nukleinsäuresequenzen aus Datenbanken mit den vorstehend beschriebenen Sequenzen SEQ ID NO: 11, 12, 13, oder 14 leicht auffinden.
Künstliche erfindungsgemäße CHRC Promotor-Sequenzen lassen sich ausgehend von den Sequenzen SEQ ID NO: 11 , 12, 13, oder 14 durch künstliche Variation und Mutation, beispielsweise durch Substitution, Insertion oder Deletion von Nukleotiden leicht auffinden.
Unter einer Nukleinsäuresequenz, die eine Identität von mindestens 60 % mit der Sequenz SEQ ID NO: 11 aufweist, wird dementsprechend eine Nukleinsäuresequenz verstanden, die bei einem Vergleich seiner Sequenz mit der Sequenz SEQ ID NO: 11 , insbesondere nach obigen Programmlogarithmus mit obigem Parametersatz eine Identität von mindestens 60 % aufweist.
Unter einer Nukleinsäuresequenz, die eine Identität von mindestens 60 % mit der Sequenz SEQ ID NO: 12 aufweist, wird dementsprechend eine Nukleinsäuresequenz verstanden, die bei einem Vergleich seiner Sequenz mit der Sequenz SEQ ID NO: 12, insbesondere nach obigen Programmlogarithmus mit obigem Parametersatz eine Iden- tität von mindestens 60 % aufweist.
Unter einer Nukleinsäuresequenz, die eine Identität von mindestens 60 % mit der Sequenz SEQ ID NO: 13 aufweist, wird dementsprechend eine Nukleinsäuresequenz verstanden, die bei einem Vergleich seiner Sequenz mit der Sequenz SEQ ID NO: 13, insbesondere nach obigen Programmlogarithmus mit obigem Parametersatz eine Identität von mindestens 60 % aufweist.
Unter einer Nukleinsäuresequenz, die eine Identität von mindestens 60 % mit der Sequenz SEQ ID NO: 14 aufweist, wird dementsprechend eine Nukleinsäuresequenz verstanden, die bei einem' Vergleich seiner Sequenz mit der Sequenz SEQ ID NO: 14,
insbesondere nach obigen Programmlogarithmus, mit obigem Parametersatz eine I- dentität von mindestens 60 % aufweist.
Besonders bevorzugte CHRC Promotoren weisen mit der jeweiligen Nukleinsäurese- quenz SEQ. ID. NO. 11, 12, 13, oder 14 eine Identität von mindestens 70%, bevorzugter mindestens 80%, mindestens 90%, mindestens 92%, mindestens 95%, mindestens 96%, mindestens 97%, mindestens 98%, besonders bevorzugt mindestens 99% auf.
Weitere natürliche Beispiele für CHRC Promotoren lassen sich weiterhin ausgehend von den vorstehend beschriebenen Nukleinsäuresequenzen, insbesondere ausgehend von den Sequenzen SEQ ID NO: 11 , 12, 13, oder 14 aus verschiedenen Organismen, deren genomische Sequenz nicht bekannt ist, durch Hybridisierungstechniken in an sich bekannter Weise leicht auffinden.
Ein weiterer Gegenstand der Erfindung betrifft daher CHCRC Promotoren, enthaltend eine Nukleinsäuresequenz, die mit der Nukleinsäuresequenz SEQ. ID. No. 11 , 12, 13, oder 14 unter stringenten Bedingungen hybridisiert. Diese Nukleinsäuresequenz um- fasst mindestens 10, bevorzugter mehr als 12,15,30,50 oder besonders bevorzugt mehr als 150 Nukleotide.
Die Hybridisierungbedingungen sind vorstehend beschrieben.
Unter einem „funktionell äquivalenten Fragment" werden für Promotoren Fragmente verstanden, die im wesentlichen die gleiche Promotoraktivität aufweisen wie die Aus- gangssequenz.
Unter „im wesentlichen gleich" wird eine spezifische Expressionsäktivität verstanden, die mindestens 50%, vorzugsweise 60%, bevorzugter 70%, bevorzugter 80%, bevorzugter 90%, besonders bevorzugt 95% der spezifischen Expressionsaktivität der Aus- gangssequenz aufweist.
Unter „Fragmente" werden Teilsequenzen der durch Ausführungsform D1), D2) oder D3) beschriebenen CHRC Promotoren verstanden. Vorzusgweise weisen diese Fragmente mehr als 10, bevorzugter aber mehr als 12,15, 30, 50 oder besonders bevor- zugts mehr als 150 zusammenhängende Nukleotide der Nukleinsäuresequenz SEQ. ID. NO. 11 , 12, 13, oder 14 auf.
Besonders bevorzugt ist die Verwendung der Nukleinsäuresequenz SEQ. ID. NO. 11 , 12, 13, oder 14 als CHRC Promotor, d.h. zur Expression von Genen in Pflanzen der
Gattung Tagetes.
Alle vorstehend erwähnten CHRC Promotoren sind weiterhin in an sich bekannter Weise durch chemische Synthese aus den Nukleotidbausteinen wie beispielsweise durch Fragmentkondensation einzelner überlappender, komplementärer Nukleinsäurebau- steine der Doppelhelix herstellbar. Die chemische Synthese von Oligonukleotiden kann beispielsweise, in bekannter Weise, nach der Phosphoamiditmethode (Voet, Voet, 2. Auflage, Wiley Press New York, S. 896-897) erfolgen. Die Anlagerung synthetischer Oligonukleotide und Auffüllen von Lücken mithilfe des Klenow-Fragmentes der DNA- Polymerase und Ligationsreaktionen sowie allgemeine Klonierungsverfahren werden in Sambrook et al. (1989), Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press, beschrieben.
Mit den erfindungsgemäßen Promotoren lässt sich prinzipiell jedes Gen, also jede Nuk- leinsäure, kodierend ein Protein, in Pflanzen der Gattung Tagetes exprimieren, insbesondere blütenspezifisch exprimieren, besonders bevorzugt petalenspezifisch expri- mieren.
Diese in Pflanzen der Gattung Tagetes zu exprimierenden Gene werden im folgenden auch „Effektgene" genannt.
Bevorzugte Effektgene sind beispielsweise Gene aus dem Biosynthesweg von Geruchsstoffen und Blütenfarben, deren Expression oder erhöhte Expression in Pflanzen . der Gattung Tagetes zu einer Veärnderung der Geruchs und/oder der Blütenfarbe von Blüten der Pflanzen der Gattung Tagetes führt.
Die Biosynthese von flüchtigen Geruchskomponenten, speziell in Blüten, wurde in den letzten Jahren an verschiedenen Modellorganismen wie Clarkia breweri und Antirhinum majus L. studiert, Flüchtige Geruchskomponenten werden beispielsweise innerhalb des Monoterpen- und Phenylpropan-Stoffwechsels gebildet werden. Im ersten Fall handelt es sich um Linalool; von den Phenylpropanen sind Methyleneugenol, Benzylacetat, Methylbenzoat und Methylsalicat abgeleitet.
Für die Biosynthese von Linalool, (ISo)Methyleigenol, Benzylacetat und Methylsalicinat sind bevorzugte Gene ausgewählz aus der Gruppe Nukleinsäuren kodierend eine Lina- lool-Synthase (LIS), Nukleinsäuren kodierend eine S-Adenosyl-L-Met:(iso)-Eugenol-O- Methyltransferase (IEMT), Nukleinsäuren kodierend eine Acetyl-CoA-Benzylalkohol- Acetyltransferase und Nukleinsäuren kodierend eine S-Adenosyl-L-Met:Salicylsäure- Methyltransferase (SAMT). Nukleinsäurensequenzen und Proteinsequenzen zu den genannten enzymatischeri Aktivitäten sind in Dudareva et al. Plant Gell 8 (1996), 1137-
1148; Wang et al. Plant Physiol. 114 (1997), 213-221 und Dudareva et al. Plant J. 14 (1998) 297-304) beschrieben.
Besonders bevorzugte Effektgene sind Gene aus Biosyntheswegen von biosyntheti- sehen Produkten die in Pflanzen der Gattung Tagetes natürlicherweise, d.h. im Wildtyp oder durch genetische Veränderung des Wildtyps hergestellt werden können, insbesondere in Blüten hergestellt werden können, besonders bevorzugt in Petalen hergestellt werden können.
Bevorzugte biosynthetische Produkte sind Feinchemikalien.
Der Begriff "Feinchemikalie" ist im Fachgebiet bekannt und beinhaltet Verbidnungen, die von einem Organismus produziert werden und in verschiedenen Industriezweigen Anwendungen finden, wie bspw., jedoch nicht beschränkt auf die pharmazeutische Industrie, die Landwirtschafts-, Kosmetik , Food und Feed-Industrie. Diese Verbindungen umfassen organische Säuren, wie beispielsweise Weinsäure, Itaconsäure und Diaminopimelinsäure, sowohl proteinogene als auch nicht-proteinogene Aminosäuren, Purin- und Pyrimidinbasen, Nukleoside und Nukleotide (wie bspw. beschrieben in Ku- ninaka, A. (1996) Nucleotides and related compounds, S. 561-612, in Biotechnology Bd. 6, Rehm et al., Hrsg. VCH: Weinheim und den darin enthaltenen Zitaten), Lipide, gesättigte und ungesättigte Fettsäuren (bspw. Arachidonsäure), Diole (bspw. Propan- diol und Butandiol), Kohlenhydrate (bspw. Hyaluronsäure und Trehalose), aromatische Verbindungen (bspw. aromatische Amine, Vanillin und Indigo), Vitamine, Carotinoide und Cofaktoren (wie beschrieben in Ullmann's Encyclopedia of Industrial C emistry, Bd. A27, "Vitamins", S. 443-613 (1996) VCH: Weinheim und den darin enthaltenen Zitaten; und Ong, A.S., Niki, E. und Packer, L. (1995) "Nutrition, Lipids, Health and Disease" Proceedings of the UNESCO/Confederation of Scientific and Technological Associations in Malaysia and the Society for Free Radical Research - Asien, abgehalten am 1.-3. Sept. 1994 in Penang, Malysia, AOCS Press (1995)), Enzyme und sämtliche anderen von Gutcho (1983) in Chemicals by Fermentation, Noyes Data Corporation, ISBN: 0818805086 und den darin angegebenen Literaturstellen, beschriebenen Chemikalien). Der Metabolismus und die Verwendungen bestimmter Feinchemikalien sind nachstehend weiter erläutert.
I. Aminosäure-Metabolismus und Verwendungen
Die Aminosäuren umfassen die grundlegenden Struktureinheiten sämtlicher Proteine und sind somit für die normalen Zellfunktionen essentiell. Der Begriff "Aminosäure" ist im Fachgebiet bekannt. Die proteinogenen Aminosäuren, von denen es 20 Arten gibt, dienen als Struktureinheiten für Proteine, in denen sie über Peptidbindungen miteinan-
der verknüpft sind, wohingegen die nicht-proteinogenen Aminosäuren (von denen Hunderte bekannt sind) gewöhnlich nicht in Proteinen vorkommen (siehe Ullmann's Encyclopedia of Industrial Chemistry, Bd. A2, S. 57-97 VCH: Weinheim (1985)). Die Aminosäuren können in der D- oder L-Konfiguration vorliegen, obwohl L-Aminosäuren gewöhnlich der einzige Typ sind, den man in natürlich vorkommenden Proteinen vorfindet. Biosynthese- und Abbauwege von jeder der 20 proteinogenen Aminosäuren sind sowohl bei prokaryotischen als auch eukaryotischen Zellen gut charakterisiert (siehe bspw. Stryer, L. Biochemistry, 3. Auflage, S. 578-590 (1988)). Die "essentiellen" Aminosäuren (Histidin, Isoleucin, Leucin, Lysin, Methionin, Phenylalanin, Threonin, Tryptophan und Valin), so bezeichnet, da sie aufgrund der Komplexität ihrer Biosynthese mit der Ernährung aufgenommen werden müssen, werden durch einfache Biosyntheseswege in die übrigen 11 "nichtessentiellen" Aminosäuren (Alanin, Arginin, Asparagin, Aspartat, Cystein, Glutamat, Glutamin, Glycin, Prolin, Serin und Tyrosin) umgewandelt. Höhere Tiere besitzen die Fähigkeit, einige dieser Aminosäuren zu syn- thetisieren, jedoch müssen die essentiellen Aminosäuren mit der Nahrung aufgenommen werden, damit eine normale Proteinsynthese stattfindet.
Abgesehen von ihrer Funktion bei der Proteinbiosynthese sind diese Aminosäuren interessante Chemikalien an sich, und man hat entdeckt, daß viele bei verschiedenen An- Wendungen in der Nahrungsmittel-, Futter-, Chemie-, Kosmetik-, Landwirtschafts- und pharmazeutischen Industrie zum Einsatz kommen. Lysin ist nicht nur für die Ernährung des Menschen eine wichtige Aminosäure, sondern auch für monogastrische Tiere, wie Geflügel und Schweine. Glutamat wird am häufigsten als Geschmacksadditiv (Mono- natriumglutamat, MSG) sowie weithin in der Nahrungsmittelindustrie verwendet, wie auch Aspartat, Phenylalanin, Glycin und Cystein. Glycin, L-Methionin und Tryptophan werden sämtlich in der pharmazeutischen Industrie verwendet. Glutamin, Valin, Leucin, Isoleucin, Histidin, Arginin, Prolin, Serin und Alanin werden in der pharmazeutischen Industrie und der Kosmetikindustrie verwendet. Threonin, Tryptophan und D-/L- Methionin sind weitverbreitete Futtermittelzusätze (Leuchtenberger, W. (1996) Amino acids - technical production and use, S. 466-502 in Rehm et al., (Hrsg.) Biotechnology Bd. 6, Kapitel 14a, VCH: Weinheim). Man hat entdeckt, daß sich diese Aminosäuren außerdem als Vorstufen für die Synthese von synthetischen Aminosäuren und Proteinen, wie N-Acetylcystein, S-Carboxymethyl-L-cystein, (S)-5-Hydroxytryptophan und anderen, in Ullmann's Encyclopedia of Industrial Chemistry, Bd. A2, S. 57-97, VCH, Weinheim, 1985 beschriebenen Substanzen eignen.
Die Biosynthese dieser natürlichen Aminosäuren in Organismen, die sie produzieren können, bspw. Bakterien, ist gut charakterisiert worden (für einen Überblick der bakteriellen Aminosäure-Biosynthese und ihrer Regulation, s. Umbarger, H.E. (1978) Ann. Rev. Biochem. 47: 533 - 606). Glutamat wird durch reduktive Aminierung von α-
Ketoglutarat, einem Zwischenprodukt im Citronensäure-Zyklus, synthetisiert. Glutamin, Prolin und Arginin werden jeweils nacheinander aus Glutamat erzeugt. Die Biosynthese von Serin erfolgt in einem Dreischritt-Verfahren und beginnt mit 3-Phosphoglycerat (einem Zwischenprodukt bei der Glykolyse), und ergibt nach Oxidations-, Transaminie- rungs- und Hydrolyseschritten diese Aminosäure. Cystein und Glycin werden jeweils aus Serin produziert, und zwar die erstere durch Kondensation von Homocystein mit Serin, und die letztere durch Übertragung des Seitenketten-ß-Kohlenstoffatoms auf Tetrahydrofolat, in einer durch Serintranshydroxymethylase katalysierten Reaktion. Phenylalanin und Tyrosin werden aus den Vorstufen des Glycolyse- und Pento- sephosphatweges, Erythrose-4-phosphat und Phosphoenolpyruvat in einem 9-Schritt- Biosyntheseweg synthetisiert, der sich nur in den letzten beiden Schritten nach der Synthese von Prephenat unterscheidet. Tryptophan wird ebenfalls aus diesen beiden Ausgangsmolekülen produziert, jedoch erfolgt dessen Synthese in einem 11 -Schritt- Weg. Tyrosin läßt sich in einer durch Phenylalaninhydroxylase katalysierten Reaktion auch aus Phenylalanin herstellen. Alanin, Valin und Leucin sind jeweils Biosyntheseprodukte aus Pyruvat, dem Endprodukt der Glykolyse. Aspartat wird aus Oxalacetat, einem Zwischenprodukt des Citratzyklus, gebildet. Asparagin, Methionin, Threonin und Lysin werden jeweils durch Umwandlung von Aspartat produziert. Isoleucin wird aus Threonin gebildet. In einem komplexen 9-Schritt-Weg erfolgt die Bildung von Histidin aus 5-Phosphoribosyl-1-pyrophosphat, einem aktivierten Zucker.
Aminosäuren, deren Menge den Proteinbiosynthesebedarf der Zelle übersteigt, können nicht gespeichert werden, und werden stattdessen abgebaut, so daß Zwischenprodukte für die Haupt-Stoffwechselwege der Zelle bereitgestellt werden (für einen Überblick siehe Stryer, L., Biochemistry, 3. Aufl. Kap. 21 "Amino Acid Degradation and the Urea Cycle"; S 495-516 (1988)). Die Zelle ist zwar in der Lage, ungewünschte Aminosäuren in nützliche Stoffwechsel-Zwischenprodukte umzuwandeln, jedoch ist die Aminosäureproduktion hinsichtlich der Energie, der Vorstufenmoleküle und der für ihre Synthese nötigen Enzyme aufwendig. Es überrascht daher nicht, daß die Aminosäure- Biosynthese durch Feedback-Hemmung reguliert wird, wobei das Voriiegen einer bestimmten Aminosäure ihre eigene Produktion verlangsamt oder ganz beendet (für einen Überblick über den Rückkopplungs-Mechanismus bei Aminosäure- Biosynthesewegen, siehe Stryer, L., Biochemistry, 3. Aufl., Kap. 24, "Biosynthesis of Amino Acids and Heme", S. 575-600 (1988)). Der Ausstoß einer bestimmten Amino- säure wird daher durch die Menge dieser Aminosäure in der Zelle eingeschränkt.
II. Vitamine, Carotinoide, Cofaktoren und Nutrazeutika-Metabolismus sowie Verwendungen
Vitamine, Carotinoide, Cofaktoren und Nutrazeutika umfassen eine weitere Gruppe von Molekülen. Höhere Tiere haben die Fähigkeit verloren, diese zu synthetisieren und müssen sie somit aufnehmen, obwohl sie leicht durch andere Organismen, wie Bakterien, synthetisiert werden. Diese Moleküle sind entweder biologisch aktive Moleküle an sich oder Vorstufen von biologisch aktiven Substanzen, die als Elektronenträger oder Zwischenprodukte bei einer Reihe von Stoffwechselwegen dienen. Diese Verbindungen haben neben ihrem Nährwert auch einen signifikanten industriellen Wert als Farbstoffe, Antioxidantien und Katalysatoren oder andere Verarbeitungs-Hilfsstoffe. (Für einen Überblick über die Struktur, Aktivität und die industriellen Anwendungen dieser Verbindungen siehe bspw. Ullmann's Encyclopedia of Industrial Chemistry, "Vitamins", Bd. A27, S. 443-613, VCH: Weinheim, 1996). Der Begriff "Vitamin" ist im Fachgebiet bekannt und umfaßt Nährstoffe, die von einem Organismus für eine normale Funktion benötigt werden, jedoch nicht von diesem Organismus selbst synthetisiert werden können. Die Gruppe der Vitamine kann Cofaktoren und nutrazeutische Verbindungen um- fassen. Der Begriff "Cofaktor" umfaßt nicht-proteinartige Verbindungen, die für das Auftreten einer normalen Enzymaktivität nötig sind. Diese Verbindungen können organisch oder anorganisch sein; die erfindungsgemäßen Cofaktor-Moleküle sind vorzugsweise organisch. Der Begriff "Nutrazeutikum" umfaßt Nahrungsmittelzusätze, die bei Pflanzen und Tieren, insbesondere dem Menschen, gesundheitsfördernd sind. Beispiele solcher Moleküle sind Vitamine, Antioxidantien und ebenfalls bestimmte Lipide (z.B. mehrfach ungesättigte Fettsäuren).
Bevorzugte Feinchemikalien oder biosynthetische Produkte, die in Pflanzen der Gattung Tagetes, insbesondere in Petalen der Blüten der Pflanzen der Gattung Tagetes hergestellt werden können, sind Carotinoide, wie beispielsweise Phytoen, Lycopin, Lutein, Zeaxanthin, Astaxanthin, Canthaxanthin, Echinenon, 3-Hydroxyechinenon, 3'- Hydroxyechinenon, Adonirubin, Violaxanthin und Adonixanthin.
Besonders bevorzugte Carotinoide sind Ketocarotinoide, wie beispielsweise Asta- xanthin, Canthaxanthin, Echinenon, 3-Hydroxyechinenon, 3'-Hydroxyechinenon, Adonirubin, Violaxanthin und Adonixanthin.
Die Biosynthese dieser Moleküle in Organismen, die zu ihrer Produktion befähigt sind, wie Bakterien, ist umfassend charakterisiert worden (Ullmann's Encyclopedia of Indus- trial Chemistry, "Vitamins", Bd. A27, S. 443-613, VCH: Weinheim, 1996, Michal, G. (1999) Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, John Wiley & Sons; Ong, A.S., Niki, E. und Packer, L (1995) "Nutrition, Lipids, Health and Disease" Proceedings of the UNESCO/Confederation of Scientific and Technological Associations in Malaysia and the Society for free Radical Research - Asien, abgehalten
am 1.-3. Sept. 1994 in Penang, Malaysia, AOCS Press, Champaign, IL X, 374 S).
Thiamin (Vitamin B-i) wird durch chemisches Kuppeln von Pyrimidin und Thiazol- Einheiten gebildet. Riboflavin (Vitamin B2) wird aus Guanosin-5'-triphosphat (GTP) und Ribose-5'-phosphat synthetisiert. Riboflavin wiederum wird zur Synthese von Flavin- mononukleotid (FMN) und Flavinadenindinukleotid (FAD) eingesetzt. Die Familie von Verbindungen, die gemeinsam als "Vitamin B6" bezeichnet werden (bspw. Pyridoxin, Pyridoxamin, Pyridoxal-5'-phosphat und das kommerziell verwendete Pyridoxin- hydrochlorid), sind alle Derivate der gemeinsamen Struktureinheit 5-Hydroxy-6- methylpyridin. Panthothenat (Pantothensäure, R-(+)-N-(2,4-Dihydroxy-3,3-dimethyl-1- oxobutyl)-ß-alanin) kann entweder durch chemische Synthese oder durch Fermentation hergestellt werden.. Die letzten Schritte bei der Pantothenat-Biosynthese bestehen aus der ATP-getriebenen Kondensation von ß-Alanin und Pantoinsäure. Die für die Biosyntheseschritte für die Umwandlung in Pantoinsäure, in ß-Alanin und zur Kondensation in Pantothensäure verantwortlichen Enzyme sind bekannt. Die metabolisch aktive Form von Pantothenat ist Coenzym A, dessen Biosynthese über 5 enzymatische Schritte verläuft. Pantothenat, Pyridoxal-5'-phosphat, Cystein und ATP sind die Vorstufen von Coenzym A. Diese Enzyme katalysieren nicht nur die Bildung von Pantothenat, sondern auch die Produktion von (R)-Pantoinsäure, (R)-Pantolacton, (R)-Panthenol (Provi- tamin B5), Pantethein (und seinen Derivaten) und Coenzym A.
Die Biosynthese von Biotin aus dem Vorstufenmolekül Pimeloyl-CoA in Mikroorganismen ist ausführlich untersucht worden, und man hat mehrere der beteiligten Gene i- dentifiziert. Es hat sich herausgestellt, daß viele der entsprechenden Proteine an der Fe-Cluster-Synthese beteiligt sind und zu der Klasse der nifS-Proteine gehören. Die Liponsäure wird von der Octanonsäure abgeleitet und dient als Coenzym beim Energie-Metabolismus, wo sie Bestandteil des Pyruvatdehydrogenasekomplexes und des α-Ketoglutaratdehydrogenasekomplexes wird. Die Folate sincf eine Gruppe von Substanzen, die alle von der Folsäure abgeleitet werden, die wiederum von L- . Glutaminsäure, p-Aminobenzoesäure und 6-Methylpterin hergeleitet ist. Die Biosynthese der Folsäure und ihrer Derivate, ausgehend von den metabolischen Stoffwechselzwischenprodukten Guanosin-5'-triphosphat (GTP), L-Glutaminsäure und p- Aminobenzoesäure ist in bestimmten Mikroorganismen eingehend untersucht worden.
Corrinoide (wie die Cobalamine und insbesondere Vitamin Bι2) und die Porphyrine gehören zu einer Gruppe von Chemikalien, die sich durch ein Tetrapyrrol-Ringsystem auszeichnen. Die Biosynthese von Vitamin B12 ist hinreichend komplex, daß sie noch nicht vollständig charakterisiert worden -ist, jedoch ist inzwischen ein Großteil der beteiligten Enzyme und Substrate bekannt. Nikotinsäure (Nikotinat) und Nikotinamid sind Pyridin-Derivate, die auch als "Niacin" bezeichnet werden. Niacin ist die Vorstufe der
wichtigen Coenzyme NAD (Nikotinamidadenindinukleotid) und NADP (Nikotinamidade- nindinukleotidphosphat) und ihrer reduzierten Formen.
Die Produktion dieser Verbindungen im Großmaßstab beruht größtenteils auf zellfreien chemischen Synthesen, obwohl einige dieser Chemikalien ebenfalls durch großangelegte Anzucht von Mikroorganismen produziert worden sind, wie Riboflavin, Vitamin B6, Pantothenat und Biotin. Nur Vitamin B12 wird aufgrund der Komplexität seiner Synthese lediglich durch Fermentation produziert. In-vitro- Verfahren erfordern einen erheblichen Aufwand an Materialien und Zeit und häufig an hohen Kosten.
III. Purin-, Pyrimidin-, Nukleosid- und Nukleotid-Metabolismus und Verwendungen
Gene für den Purin- und Pyrimidin-Stoffwechsel und ihre entsprechenden Proteine sind wichtige Ziele für die Therapie von Tumorerkrankungen und Virusinfektionen. Der Beg- riff "Purin" oder "Pyrimidin" umfaßt stickstoffhaltige Basen, die Bestandteil der Nukleinsäuren, Coenzyme und Nukleotide sind. Der Begriff "Nukleotid" beinhaltet die grundlegenden Struktureinheiten der Nukleinsäuremoieküle, die eine stickstoffhaltige Base, einen Pentose-Zucker (bei RNA ist der Zucker Ribose, bei DNA ist der Zucker D- Desoxyribose) und Phosphorsäure umfassen. Der Begriff "Nukleosid" umfaßt Moleküle, die als Vorstufen von Nukleotiden dienen, die aber im Gegensatz zu den Nukleotiden keine Phosphorsäureeinheit aufweisen. Durch Hemmen der Biosynthese dieser Moleküle oder ihrer Mobilisation zur Bildung von Nukleinsäuremolekülen ist es möglich, die RNA- und DNA-Synthese zu hemmen; wird diese Aktivität zielgerichtet bei kanzerogenen Zellen gehemmt, läßt sich die Teilungs- und Replikations-Fähigkeit von Tumorzel- len hemmen.
Es gibt zudem Nukleotide, die keine Nukleinsäuremoieküle bilden, jedoch als Energiespeicher (d.h. AMP) oder als Coenzyme (d.h. FAD und NAD) dienen.
Mehrere Veröffentlichungen haben die Verwendung dieser Chemikalien für diese medizinischen Indikationen beschrieben, wobei der Purin- und/oder Pyrimidin- Metabolismus beeinflußt wird (bspw. Christopherson, R.l. und Lyons, S.D. (1990) "Potent inhibitors of de novo pyrimidine and purine biosynthesis as chemotherapeutic a- gents", Med. Res. Reviews 10: 505-548). Untersuchungen an Enzymen, die am Purin- und Pyrimidin-Metabolismus beteiligt sind, haben sich auf die Entwicklung neuer Medikamente konzentriert, die bspw. als Immunsuppressionsmittel oder Antiproliferantien verwendet werden können (Smith, J.L. "Enzymes in Nucleotide Synthesis" Curr. Opin. Struct. Biol. 5 (1995) 752-757; Biochem. Soc. Transact. 23 (1995) 877-902). Die Purin- und Pyrimidinbasen, Nukleoside und Nukleotide haben jedoch auch andere Einsatz- möglichkeiten: als Zwischenprodukte bei der Biosysnthese verschiedener
Feinchemikalien (z.B. Thiamin, S-Adenosyl-methionin, Folate oder Riboflavin), als
kalien (z.B. Thiamin, S-Adenosyl-methionin, Folate oder Riboflavin), als Energieträger für die Zelle (bspw. ATP oder GTP) und für Chemikalien selbst, werden gewöhnlich als Geschmacksverstärker verwendet (bspw. IMP oder GMP) oder für viele medizinische Anwendungen (siehe bspw. Kuninaka, A., (1996) "Nucleotides and Related Com- pounds in Biotechnology Bd. 6, Rehm et al., Hrsg. VCH: Weinheim, S. 561-612). Enzyme, die am Purin-, Pyrimidin-, Nukleosid- oder Nukleotid-Metabolismus beteiligt sind, dienen auch immer stärker als Ziele, gegen die Chemikalien für den Pflanzenschutz, einschließlich Fungiziden, Herbiziden und Insektiziden entwickelt werden.
Der Metabolismus dieser Verbindungen in Bakterien ist charakterisiert worden (für Ü- bersichten siehe bspw. Zalkin, H. und Dixon, J.E. (1992) "De novo purin nucleotide biosynthesis" in Progress in Nucleic Acids Research and Molecular biology, Bd. 42, Academic Press, S. 259-287; und Michal, G. (1999) "Nucleotides and Nucleosides"; Kap. 8 in : Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, Wiley, New York). Der Purin-Metabolismus, das Objekt intesiver Forschung, ist für das normale Funktionieren der Zelle essentiell. Ein gestörter Purin-Metabolismus in höheren Tieren kann schwere Erkrankungen verursachen, bspw. Gicht. Die Purinnukleotide werden über eine Reihe von Schritten über die Zwischenverbindung lnosin-5'-phosphat (IMP) aus Ribose-5-phosphat synthetisiert, was zur Produktion von Guanosin-5'- monöphosphat (GMP) oder Adenosin-5'-monophosphat (AMP) führt, aus denen sich die als Nukleotide verwendeten Triphosphatformen leicht herstellen lassen. Diese Verbindungen werden auch als Energiespeicher verwendet, so daß ihr Abbau Energie für viele verschiedene biochemische Prozesse in der Zelle liefert. Die Pyrimidinbiosynthe- se erfolgt über die Bildung von Uridin-5'-monophosphat (UMP) aus Ribose-5-phosphat. UMP wiederum wird in Cytidin-5'-triphosphat (CTP) umgewandelt. Die Desoxyformen sämtlicher Nukleotide werden in einer Einschritt-Reduktionsreaktion aus der Diphosphat-Riboseform des Nukleotides zur Diphosphat-Desoxyriboseform des Nukle- otides hergestellt. Nach der Phosphorylierung können diese Moleküle an der DNA- Synthese teilnehmen.
IV. Trehalose-Metabolismus und Verwendungen
Trehalose besteht aus zwei Glucosemolekülen, die über α,α-1,1-Bindung miteinander verknüpft sind. Sie wird gewöhnlich in der Nahrungsmittelindustrie als Süßstoff, als Additiv für getrocknete oder gefrorene Nahrungsmittel sowie in Getränken verwendet. Sie wird jedoch auch in der pharmazeutischen Industrie, der Kosmetik- und Biotechnologie-Industrie angewendet (s. bspw. Nishimoto et al., (1998) US-Patent Nr. 5 759 610; Singer, M.A. und Lindquist, S. Trends Biotech. 16 (1998) 460-467; Paiva, C.L.A. und Panek, A.D. Biotech Ann. Rev. 2 (1996) 293-314; und Shiosaka, M. J. Japan 172 (1997) 97-102). Trehalose wird durch Enzyme von vielen Mikroorganismen produziert
und auf natürliche Weise in das umgebende Medium abgegeben, aus dem sie durch im Fachgebiet bekannte Verfahren gewonnen werden kann.
Besonders bevorzugte biosynthetische Produkte sind ausgewählt aus der Gruppe or- ganische Säuren, Proteine, Nukleotide und Nukleoside, sowohl proteinogene als auch nicht-proteinogene Aminosäuren, Lipide und Fettsäuren, Diole, Kohlehydrate, aromatische Verbindungen, Vitamine und Cofaktoren, Enzyme und Proteine.
Bevorzugte organische Säuren sind Weinsäure, Itaconsäure und Diaminopimelinsäure
Bevorzugte Nukleoside und Nukleotide sind beispielsweise beschrieben in Kuninaka, A. (1996) Nucleotides and related compounds, S. 561-612, in Biotechnology Bd. 6, Rehm et al., Hrsg. VCH: Weinheim und den darin enthaltenen Zitaten.
Bevorzugte biosynthetische Produkte sind weiterhin Lipide, gesättigte und ungesättigte Fettsäuren, wie beispielsweise Arachidonsäure, Diole wie beispielsweise Propandiol und Butandiol, Kohlenhydrate, wie beispielsweise Hyaluronsäure und Trehalose, aromatische Verbindungen, wie beispielsweise aromatische Amine, Vanillin und Indigo, Vitamine und Cofaktoren, wie beispielsweise beschrieben in Ullmann's Encyclopedia of Industrial Chemistry, Bd. A27, "Vitamins", S. 443-613 (1996) VCH: Weinheim und den darin enthaltenen Zitaten; und Ong, A.S., Niki, E. und Packer, L. (1995) "Nutrition, Lip- ids, Health and Disease" Proceedings of the UNESCO/Confederation of Scientific and Technological Associations in Malaysia and the Society for Free Radical Research - Asien, abgehalten am 1.-3. Sept. 1994 in Penang, Malysia, AOCS Press (1995)), En- zyme Polyketide (Cane et al. (1998) Science 282: 63-68), und sämtliche anderen von Gutcho (1983) in Chemicals by Fermentation, Noyes Data Corporation, ISBN: 0818805086 und den darin angegebenen Literaturstellen, beschriebenen Chemikalien.
Besonders bevorzugte Gene, die mit den erfindungsgemäßen Promotoren in Pflanzen der Gattung Tagetes exprimiert werden sind demnach Gehe, ausgewählt sind aus der Gruppe Nukleinsäuren kodierend ein Protein aus den Biosyntheseweg von proteinoge- nen und nicht-proteinogenen Aminosäuren, Nukleinsäuren kodierend ein Protein aus dem Biosyntheseweg von Nukleotiden und Nukleosiden, Nukleinsäuren kodierend ein Protein aus dem Biosyntheseweg von organischen Säuren, Nukleinsäuren kodierend ein Protein aus dem Biosyntheseweg von Lipiden und Fettsäuren, Nukleinsäuren kodierend ein Protein aus dem Biosyntheseweg von Diolen, Nukleinsäuren kodierend ein Protein aus dem Biosyntheseweg von Konhlenhydraten, Nukleinsäuren kodierend ein Protein aus dem Biosyntheseweg von aromatischen Verbindung, Nukleinsäuren kodierend ein Protein aus dem Biosyntheseweg von Vitaminen, Nukleinsäuren kodierend ein Protein aus dem Biosyntheseweg von Carotinoiden, insbesondere Ketocarotinoiden,
Nukleinsäuren kodierend ein Protein aus dem Biosyntheseweg von Cofaktoren und Nukleinsäuren kodierend ein Protein aus dem Biosyntheseweg von Enzymen.
Bevorzugte Feinchemikalien oder biosynthetische Produkte, die in Pflanzen der Gat- tung Tagetes, insbesondere in Petalen der Blüten der Pflanzen der Gattung Tagetes hergestellt werden können, sind Carotinoide, wie beispielsweise Phytoen, Lycopin, Lutein, Zeaxanthin, Astaxanthin, Canthaxanthin, Echinenon, 3-Hydroxyechinenon, 3'- Hydroxyechinenon, Adonirubin, Violaxanthin und Adonixanthin.
Besonders bevorzugte Carotinoide sind Ketocarotinoide, wie beispielsweise Astaxanthin, Canthaxanthin, Echinenon, 3-Hydroxyechinenon, 3'-Hydroxyechinenon, Adonirubin, Violaxanthin und Adonixanthin.
Ganz, besonders bevorzugte Gene, die mit den erfindungsgemäßen Promotoren in Pflanzen der Gattung Tagetes exprimiert werden sind demnach Gene die Proteine aus dem Biosyntheseweg von Carotinoiden kodiern.
Insbesondere bevorzugt sind Gene ausgewählt sind aus der Gruppe Nukleinsäuren, kodierend eine Ketolase, Nukleinsäuren kodierend eine ß-Hydroxylase, Nukleinsäuren kodierend eine ß-Cyclase, Nukleinsäuren kodierend eine ε-Cyclase, Nukleinsäuren kodierend eine Epoxidase, Nukleinsäuren kodierend eine HMG-CoA-Reduktase, Nukleinsäuren kodierend eine (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase, Nukleinsäuren kodierend eine 1-Deoxy-D-Xylose-5-Phosphat-Synthase, Nukleinsäuren kodierend eine 1-Deoxy-D-XyIose-5-Phosphat-Reduktoisomerase, Nukleinsäuren ko- dierend eine Isopentenyl-Diphosphat-Δ-Isomerase, Nukleinsäuren kodierend eine Ge- ranyl-Diphosphat-Synthase, Nukleinsäuren kodierend eine Famesyl-Diphosphat- Synthase, Nukleinsäuren kodierend eine Geranyl-Geranyl-Diphosphat-Synthase, Nukleinsäuren kodierend eine Phytoen-Synthase, Nukleinsäuren kodierend eine Phytoen- Desaturase, Nukleinsäuren kodierend eine Prephytoen-Synthase, Nukleinsäuren ko- dierend eine Zeta-Carotin-Desaturase, Nukleinsäuren kodierend ein crtlSO Protein, Nukleinsäuren kodierend ein FtsZ Protein und Nukleinsäuren kodierend ein MinD Protein.
Unter einer Ketolase wird ein Protein verstanden, das die enzymatische Aktivität a'uf- weist, am, gegebenenfalls substituierten, ß-lonon-Ring von Carotinoiden eine Keto- Gruppe einzuführen.
Insbesondere wird unter einer Ketolase ein Protein verstanden, das die enzymatische Aktivität aufweist, ß-Carotin in Canthaxanthin umzuwandeln.
Beispiele für Nukleinsäuren, kodierend eine Ketolase, und die entsprechenden Ketola- sen, sind beispielsweise Sequenzen aus
Haematoccus pluvialis, insbesondere aus Haematoccus pluvialis Flotow em. Wille (Ac- cession NO: X86782; Nukleinsäure: SEQ ID NO: 15, Protein SEQ ID NO: 16),
Haematoccus pluvialis, NIES-144 (Accession NO: D45881 ; Nukleinsäure: SEQ ID NO: 17, Protein SEQ ID NO: 18),
Agrobacterium aurantiacum (Accession NO: D58420; Nukleinsäure: SEQ ID NO: 19, Protein SEQ ID NO: 20),
Alicaligenes spec. (Accession NO: D58422; Nukleinsäure: SEQ ID NO: 21 , Protein SEQ ID NO: 22),
Paracoccus marcusii (Accession NO: Y15112; Nukleinsäure: SEQ ID NO: 23, Protein SEQ ID NO: 24).
Synechocystis sp. Strain PC6803 (Accession NO: NP442491 ; Nukleinsäure: SEQ ID NO: 25, Protein SEQ ID NO: 26).
Bradyrhizobium sp. (Accession NO: AF218415; Nukleinsäure: SEQ ID NO: 27, Protein SEQ ID NO: 28).
Nostoc sp. Strain PCC7120 (Accession NO: AP003592, BAB74888; Nukleinsäure: SEQ ID NO: 29, Protein SEQ ID NO: 30).
Haematococcus pluvialis
(Accession NO: AF534876, AAN03484; Nukleinsäure: SEQ ID NO: 31, Protein : SEQ ID NO: 32)
Paracoccus sp. MBIC1143
(Accession NO: D58420, P54972; Nukleinsäure: SEQ ID NO: 33, Protein : SEQ ID NO: 34)
Brevundimonas aurantiaca
(Accession NO: AY166610, AAN86030; Nukleinsäure: SEQ ID NO: 35, Protein : SEQ
ID NO: 36)
Nodularia spumigena NSOR10
(Accession NO: AY210783, AAO64399; Nukleinsäure: SEQ ID NO: 37, Protein : SEQ ID NO: 38)
Nostoc punctifor e ATCC 29133 (Accession NO: NZ_AABC01000195, ZP_00111258; Nukleinsäure: SEQ ID NO: 39, Protein : SEQ ID NO: 40)
Nostoc punctiforme ATCC 29133
(Accession NO: NZ_AABC01000196; Nukleinsäure: SEQ ID. NO: 41, Protein : SEQ ID NO: 42)
Deinococcus radiodurans R1
(Accession NO: E75561 , AE001872; Nukleinsäure: SEQ ID NO: 43, Protein : SEQ ID
NO: 44),
Synechococcus sp. WH 8102,
Nukleinsäure: Acc.-No. NZ_AABD01000001 , Basenpaar 1,354,725-1 ,355,528 (SEQ ID NO: 75), Protein: Acc.-No. ZP_00115639 (SEQ ID NO: 76) (als putatives Protein annotiert),
Unter einer ß-Cyclase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, einen endständigen, linearen Rest von Lycopin in einen ß-lonon-Ring zu überführen.
Insbesondere wird unter einer ß-Cyclase ein Protein verstanden, das die enzymatische Aktivität aufweist, γ-Carotin in ß-Carotin umzuwandeln.
Beispiele für ß-Cyclase-Gene sind Nukleinsäuren, kodierend eine ß-Cyclase aus Tomate (Accession X86452).(Nukleinsäure: SEQ.ID NO: 45, Protein: SEQ ID NO: 46), sowie ß-Cyclasen der folgenden Accession Nummern:
S66350 lycopene beta-cyclase (EC 5.5.1.-) - tomato
CAA60119 lycopene synthase [Capsicum annuum]
S66349 lycopene beta-cyclase (EC 5.5.1.-) - common tobacco CAA57386 lycopene cyclase [Nicotiana tabacum]
AAM21152 lycopene beta-cyclase [Citrus sinensis]
AAD38049 lycopene cyclase [Citrus x paradisi]
AAN86060 lycopene cyclase [Citrus unshiu]
AAF44700 lycopene beta-cyclase [Citrus sinensis] AAK07430 lycopene beta-cyclase [Adonis palaestina]
AAG 10429 beta cyclase [Tagetes erecta] AAA81880 lycopene cyclase AAB53337 Lycopene beta cyclase AAL92175 beta-lycopene cyclase [Sandersonia aurantiaca] CAA67331 lycopene cyclase [Narcissus pseudonarcissus] AAM45381 beta cyclase [Tagetes erecta] AAO18661 lycopene beta-cyclase [Zea mays] AAG21133 chromoplast-specific lycopene beta-cyclase [Lycopersicon esculentum] AAF18989 lycopene beta-cyclase [Daucus carota] ZP_001140 hypothetical protein [Prochlorococcus marinus str. MIT9313] ZP_001050 hypothetical protein [Prochlorococcus marinus subsp. pastoris str. CCMP1378]
ZP_001046 hypothetical protein [Prochlorococcus marinus subsp. pastoris str. CCMP1378] ZP_001134 hypothetical protein [Prochlorococcus marinus str. MIT9313] ZP_001150 hypothetical protein [Synechococcus sp. WH 8102] AAF10377 lycopene cyclase [Deinococcus radiodurans] BAA29250 393aa long hypothetical protein [Pyrococcus horikoshii] BAC77673- lycopene beta-monocyclase [marine bacterium P99-3] AAL01999 lycopene cyclase [Xanthobacter sp. Py2] ZP_000190 hypothetical protein [Chloroflexus aurantiacus] ZP_000941 hypothetical protein [Novosphingobium aromaticivorans] AAF78200 lycopene cyclase [Bradyrhizobium sp. ORS278] BAB79602 crtY [Pantoea agglomerans pv. milletiae] CAA64855 lycopene cyclase [Streptomyces griseus] AAA21262 dycopene cyclase [Pantoea agglomerans] C37802 crtY protein - Erwinia uredovora BAB79602 crtY [Pantoea agglomerans pv. milletiae] AAA64980 lycopene cyclase [Pantoea agglomerans] AAC44851 lycopene cyclase BAA09593 Lycopene cyclase [Paracoccus sp. MBIC1143] ZP_000941 hypothetical protein [Novosphingobium aromaticivorans] CAB56061 lycopene beta-cyclase [Paracoccus marcusii] BAA20275 lycopene cyclase [Erythrobacter longus] ZP_000570 hypothetical protein [Thermobifida fusca] ZP_000190 hypothetical protein [Chloroflexus aurantiacus] AAK07430 lycopene beta-cyclase [Adonis palaestina] CAA67331 lycopene cyclase [Narcissus pseudonarcissus] AAB53337 Lycopene beta cyclase BAC77673 lycopene beta-mόnocyclase [marine bacterium P99-3]
Eine besonders bevorzugte ß-Cyclase ist weiterhin die chromoplastenspezifische ß- Cyclase aus Tomate (AAG21133) (Nukleinsäure: SEQ. ID. No. 49; Protein: SEQ. ID. No. 50)
Unter einer Hydroxylase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, am, gegebenenfalls substituierten, ß-lonon-Ring von Carotinoiden eine Hydroxy-Gruppe einzuführen.
Insbesondere wird unter einer Hydroxylase ein Protein verstanden, das die enzymatische Aktivität aufweist, ß-Carotin in Zeaxanthin oder Canthaxanthin in Astaxanthin umzuwandeln.
Beispiele für ein Hydroxylase-Gene sind:
eine Nukleinsäure, kodierend eine Hydroxylase aus Haematococcus pluvialis, Accession AX038729, WO 0061764); (Nukleinsäure: SEQ ID NO: 49, Protein: SEQ ID NO: 50),
sowie Hydroxylasen der folgenden Accession Nummern:
|emb|CAB55626.1, CAA70427.1, CAA70888.1, CAB55625.1 , AF499108 , AF315289_1, AF296158_1, AAC49443.1, NP 94300.1, NP_200070.1, AAG10430.1, CAC06712.1 , AAM88619.1, CAC95130.1, AAL80006.1 , AF162276 , AAO53295.1, AAN85601.1 , CRTZ_ERWHE, CRTZ_PANAN, BAB79605.1 , CRTZ_ALCSP, CRTZ_AGRAU, CAB56060.1, ZP_00094836.1 , AAC44852.1 , BAC77670.1, NP_745389.1, NP_344225.1 , NP_849490.1, ZP_00087019.1, NP_503072.1, NP_852012.1 , NP_115929.1 , ZP_00013255.1
Eine besonders bevorzugte Hydroxylase ist weiterhin die Hydroxylase aus Tomate
(Accession Y14810, CrtR-b2) (Nukleinsäure: SEQ ID NO: 51; Protein: SEQ ID NO. 52).
Unter einer HMG-CoA-Reduktase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, 3-Hydroxy-3-Methyl-Glutaryl-Coenzym-A in Mevalonat umzuwan- dein.
Unter einer (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, (E)-4-Hydroxy-3-Methylbut-2-enyl- Diphosphat in Isopentenyldiphosphat und Dimethylallyldiphosphate umzuwandeln.
Unter einer 1-Deoxy-D-Xylose-5-Phosphat-Synthase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, Hydroxyethyl-ThPP und Glycerinaldehyd-3- Phosphat in 1-Deoxy-D-Xylose-5-Phosphat umzuwandeln.
Unter einer 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, 1-Deoxy-D-Xylose-5-Phpsphat in 2- C-methyl-D-erythritol 4-Phosphat umzuwandeln
Unter einer Isopentenyl-Diphosphat-Δ- Isomerase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, Isopentenyl-Diphosphat in Dimethylallylphosphat umzuwandeln.
Unter einer Geranyl-Diphosphat-Synthase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, Isopentenyl-Diphosphat und Dimethylallylphosphat in Ge- ranyl-Diphosphat umzuwandeln.
Unter einer Famesyl-Diphosphat-Synthase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, sequentiell 2 Molekülelsopentenyl-Diphosphatmit Dimethy- lallyl-Diphosphat und dem resultierenden Geranyl-Diphosphat in Famesyl-Diphosphat umzuwandeln
Unter einer Geranyl-Geranyl-Diphosphat-Synthase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, Famesyl-Diphosphat und Isopentenyl-Diphosphat in Geranyl-Geranyl-Diphosphat umzuwandeln.
Unter einer Phytoen-Synthase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, Geranyl-Geranyl-Diphosphat in Phytoen umzuwandeln.
Unter einer Phytoen-Desaturase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, Phytoen in Phytofluen und/oder Phytofluen in ζ-Carotin (Zetacarotin) umzuwandeln.
Unter einer Zeta-Carotin-Desaturase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, ζ-Carotin in Neurosporin und/oder Neurosporin in Lycopin um- zuwandeln.
Unter einem crtlSO-Proteins wird ein Protein verstanden, das die enzymatische Aktivität aufweist, 7,9,7',9'-tetra-cis-Lycopin in all-trans-Lycopin umzuwandeln.
Unter einem FtsZ-Protein wird ein Protein verstanden, das eine Zellteilungs und Plasti- denteilungs-fördernde Wirkung hat und Homologien zu Tubulinproteinen aufweist.
Unter einem MinD -Protein wird ein Protein verstanden, das eine multifunktionele Rolle bei der Zellteilung aufweist. Es ist eine Membran-assoziierte ATPase und kann innerhalb der Zelle eine oszillierende Bewegung von Pol zu Pol zeigen.
Beispiele für HMG-CoA-Reduktase-Gene sind:
Eine Nukleinsäure, kodierend eine HMG-CoA-Reduktase aus Arabidopsis thaliana, Accession NM_106299; (Nukleinsäure: SEQ ID NO: 53, Protein: SEQ ID NO: 54),
sowie weitere HMG-CoA-Reduktase -Gene aus anderen Organismen mit den folgenden Accession Nummern:
P54961, P54870, P54868, P54869, O02734, P22791 , P54873, P54871, P23228, P13704, P54872, Q01581, P17425, P54874, P54839, P14891, P34135, 064966, P29057, P48019, P48020, P12683, P43256, Q9XEL8, P34136, 064967, P29058, P48022, Q41437, P12684, Q00583, Q9XHL5, Q41438, Q9YAS4, 076819, 028538, Q9Y7D2, P54960, 051628, P48021, Q03163, P00347, P14773, Q12577, Q59468, P04035, O24594, P09610, Q58116, 026662, Q01237, Q01559, Q12649, 074164, O59469, P51639, Q10283, O08424, P20715, P13703, P13702, Q96UG4, Q8SQZ9, 015888, Q9TUM4, P93514, Q39628, P93081, P93080, Q944T9, Q40148, Q84MM0, Q84LS3, Q9Z9N4, Q9KLM0
Beispiele für (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase-Gene sind:
Eine Nukleinsäure, kodierend eine (E)-4-Hydroxy-3-Methylbut- 2-enyl-Diphosphat-Reduktase aus Arabidopsis thaliana (lytB/ISPH), ACCESSION AY168881, (Nukleinsäure: SEQ ID NO: 55, Protein: SEQ ID NO:56),
sowie weitere (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase -Gene aus anderen Organismen mit den folgenden Accession Nummern:
T04781 , AF270978_1 , NP_485028.1 , NP_442089.1 , NP_681832.1 , ZP_00110421.1 , ZPJ30071594.1 , ZP_00114706.1, ISPH_SYNY3, ZP_00114087.1, ZP_00104269.1 , AF398145_1 , AF398146 , AAD55762.1, AF514843_1 , NP_622970.1, NP_348471.1 , NP_562001.1 , NP_223698.1 , NP_781941.1, ZPJ30080Ö42.1 , NP_859669.1, NP_214191.1 , ZP_00086191.1, ISPH_VIBCH, NP_230334.1, NP_742768.1, NP_302306.1 , ISPH_MYCLE, NP_602581.1, ZP_00026966.1, NP_520563.1,
NP_253247.1, NP_282047.1, ZP_00038210.1, ZP_00064913.1, CAA61555.1, ZP__00125365.1, ISPH_ACICA, EAA24703.1, ZP_00013067.1, ZP_00029164.1, NP_790656.1, NP_217899.1, NP_641592.1, NP_636532.1, NP_719076.1, NP_660497.1, NP_422155.1, NP_715446.1, ZP_00090692.1, NP_759496.1, ISPH_BURPS, ZP_00129657.1, NP_215626.1, NP_335584.1, ZP_00135016.1, NP_789585.1 , NP_787770.1 , NP_769647.1 , ZP_00043336.1 , NP_242248.1 , ZP_00008555.1, NP_246603.1, ZP_00030951.1, NP_670994.1, NP_404120.1, NP_540376.1, NP_733653.1, NP_697503.1, NP_840730.1, NP_274828.1, NP_796916.1, ZP_00123390.1, NP_824386.1, NP_737689.1, ZP_00021222.1, NP_757521.1, NP_390395.1, ZP_00133322.1, CAD76178.1, NP_600249.1, NP_454660.1, NP_712601.1, NP_385018.1, NP_751989.1
Beispiele für 1-Deoxy-D-Xylose-5-Phosphat-Synthase -Gene sind:
Eine Nukleinsäure, kodierend eine 1-Deoxy-D-Xylose-5-Phosphat-Synthase aus Lycopersicon esculentum, ACCESSION #AF143812 (Nukleinsäure: SEQ ID NO: 57 , Protein: SEQ ID NO: 58),
sowie weitere 1-Deoxy-D-Xylose-5-Phosphat-Synthase -Gene aus anderen Organis- men mit den folgenden Accession Nummern:
AF143812_1, DXS_CAPAN, CAD22530.1, AF182286_1, NP_193291.1, T52289, AAC49368.1, AAP14353.1, D71420, DXSJDRYSA, AF443590_1, BAB02345.1, CAA09804.2, NP_850620.1, CAD22155.2, AAM65798.1, NP_566686.1, CAD22531.1, AAC33513.1, CAC08458.1, AAG10432.1, T08140, AAP14354.1, AF428463_1, ZP_00010537.1, NP_769291.1, AAK59424.1, NP_107784.1, NP_697464.1,
NP_540415.1, NP_196699.1, NP_384986.1, ZP_00096461.1, ZP_00013656.1, NP_353769.1, BAA83576.1, ZP_00005919.1, ZP_00006273.1, NP_420871.1, AAM48660.1, DXS_RHOCA, ZP_00045608.1, ZP_00031686.1, NP_841218.1, ZP_00022 74.1, ZP_00086851.1, NP_742690.1, NP_520342.1, ZP_00082120.1, NP_790545.1, ZP_00125266.1, CAC17468.1, NP_252733.1, ZP_00092466.1, NP_439591.1, NP_414954.1, NP_752465.1, NP_622918.1, NP_286162.1, NP_836085.1, NP_706308.1, ZP_00081148.1, NP_797065.1, NP_213598.1, NP_245469.1, ZP_00075029.1, NP_455016.1, NP_230536.1, NP_459417.1, NP_274863.1, NP_283402.1, NP_759318.1, NP_406652.1, DXS_SYNLE, DXS_SYNP7, NP_440409.1 , ZP_00067331.1 , ZP_00122853.1 , NP_717142.1 , ZP_00104889.1, NP_243645.1, NP_681412.1, DXS_SYNEL, NP_637787.1, DXS_CHLTE, ZP_00129863.1, NP_661241.1, DXS_XANCP, NP_470738.1, NP_484643.1, ZP_00108360.1, NP_833890.1, NP_846629.1, NP_658213.1, NP_642879.1, ZP_00039479.1 , ZP_00060584.1, ZP_00041364.1, ZP_00117779.1,
NP_299528.1
Beispiele für 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase-Gene sind:
Eine Nukleinsäure, kodierend eine 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase aus Arabidopsis thaliana, ACCESSION #AF148852, (Nukleinsäure: SEQ ID NO: 59 , Protein: SEQ ID NO: 60),
sowie weitere 1-Deoxy-D~Xylose-5-Phosphat-Reduktoisomerase-Gene aus anderen Organismen mit den folgenden Accession Nummern:
AF148852, AY084775, AY054682, AY050802, AY045634, AY081453, AY091405, AY098952; AJ242588, AB009053, AY202991, NP_201085.1, T52570, AF331705 , BAB16915.1, AF367205_1 , AF250235_1, CAC03581.1 , CAD22156.1 , AF182287 , DXR_MENPI, ZP_00071219.1 , NP_488391.1 , ZP_00111307.1 , DXR_SYNLE, AAP56260.1 , NP_681831.1 , NP_442113.1, ZP_00115071.1 , ZP_00105106.1 , ZP_00113484.1 , NP_833540.1, NP_657789.1, NP_661031.1, DXR_BACHD, NP_833080.1 , NP_845693.1 , NP_562610.1, NP_623020.1, NP_810915.1, NP_243287.1 , ZP_00118743.1, NP_464842.1, NP_470690.1, ZP_00082201.1, NP_781898.1 , ZP_00123667.1 , NP_348420.1 , NP_604221.1 , ZP_00053349.1 , ZP_00064941.1 , NP_246927.1, NP_389537.1, ZP_00102576.1, NP_519531.1, AF124757_19, DXR_ZYMMO, NP_713472.1, NP_459225.1, NP_454827.1, ZP_00045738.1 , NP_743754.1 , DXR_PSEPK, ZP_00130352.1, NP_702530.1, NP_841744.1, NP_438967.1 , AF514841 , NP_706118.1 , ZP_00125845.1, NP_404661.1 , NP_285867.1 , NP_240064.1 , NP_414715.1 , ZP_00094058.1 ,
NP_791365.1 , ZP_00012448.1 , ZP_00015132.1, ZPJD0091545.1, NP_629822.1 , NP_771495.1 , NP_798691.1 , NP_231885.1 , NP_252340.1, ZP_00022353.1 , NP_355549.1, NP_420724.1 , ZP_00085169.1, EAA17616.1, NP_273242.1, NP_219574.1 , NP_387094.1 , NP_296721.1 , ZP_00004209.1 , NP_823739.1, NP_282934.1 , BAA77848.1 , NP_660577.1, NP_760741.1 , NP_641750.1, NP_636741.1, NP_829309.1 , NP_298338.1 , NP_444964.1, NP_717246.1, NP_224545.1, ZP_00038451.1, DXR_KITGR, NP_778563.1.
Beispiele für Isopentenyl-Diphosphat-Δ-Isomerase-Gene sind:
Eine Nukleinsäure, kodierend eine Isopentenyl-Diphosphat-Δ-Isomerase aus Adonis palaestina clone AplPI28, (ipiAal), ACCESSION #AF188060, veröffentlicht durch Cun- ningham,F.X. Jr. and Gantt.E.: Identification of multi-gene families encoding isopente- nyl diphosphate isomerase in plants by heterologous complementation in Escherichia coli, Plant Cell Physiol. 41 (1), 119-123 (2000) (Nukleinsäure: SEQ ID NO: 61, Protein:
SEQ ID NO: 62),
sowie weitere Isopentenyl-Diphosphat-Δ-Isomerase-Gene aus anderen Organismen mit den folgenden Accession Nummern:
Q38929, 048964, Q39472, Q13907, 035586, P58044, 042641 , O35760, Q10132, P15496, Q9YB30, Q8YNH4, Q42553, O27997, P50740, O51627, 048965, Q8KFR5, Q39471, Q39664, Q9RVE2, Q01335, Q9HHE4, Q9BXS1, Q9KWF6, Q9CIF5, Q88WB6, Q92BX2, Q8Y7A5, Q8TT35 Q9KK75, Q8NN99, Q8XD58, Q8FE75, Q46822, Q9HP40, P72002, P26173, Q9Z5D3, Q8Z3X9, Q8ZM82, Q9X7Q6, 013504, Q9HFW8, Q8NJL9, Q9UUQ1, Q9NH02, Q9M6K9, Q9M6K5, Q9FXR6, 081691, Q9S7C4, Q8S3L8, Q9M592, Q9M6K3, Q9M6K7, Q9FV48, Q9LLB6, Q9AVJ1, Q9AVG8, Q9M6K6, Q9AVJ5, Q9M6K2, Q9AYS5, Q9M6K8, Q9AVG7, Q8S3L7, Q8W250, Q94IE1, Q9AVI8, Q9AYS6, Q9SAY0, Q9M6K4, Q8GVZ0, Q84RZ8, Q8KZ12, Q8KZ66, Q8FND7, Q88QC9, Q8BFZ6, BAC26382, CAD94476.
Beispiele für Geranyl-Diphosphat-Synthase -Gene sind:
Eine Nukleinsäure, kodierend eine Geranyl-Diphosphat-Synthase aus Arabidopsis tha- liana, ACCESSION #Y17376, Bouvier.F., Suire.O, d'HarlingueA, Backhaus,R.A. and Camara.B.; Molecular cloning όf geranyl diphosphate synthase and compartmentation of monoterpene synthesis in plant cells, Plant J. 24 (2), 241-252 (2000) (Nukleinsäure: SEQ ID NO: 63, Protein: SEQ ID NO: 64),
sowie weitere Geranyl-Diphosphat-Synthase-Gene aus anderen Organismen mit den folgenden Accession Nummern:
Q9FT89, Q8LKJ2, Q9FSW8, Q8LKJ3, Q9SBR3, Q9SBR4, Q9FET8, Q8LKJ1, Q84LG1, Q9JK86
Beispiele für Farnesyl-Diphosphat-Synthase-Gene sind:
Eine Nukleinsäure, kodierend eine Farnesyl-Diphosphat-Synthase aus Arabidopsis thaliana (FPS1), ACCESSION #U80605, veröffentlicht durch Cunillera.N., Arro.M., De- lourme.D., Karst.F., Boronat,A. und Ferrer,A.: Arabidopsis thaliana contains two diffe- rentially expressed famesyl-diphosphate synthase genes, J. Biol. Chem. 271 (13), 7774-7780 (1996)., (Nukleinsäure: SEQ ID NO: 65, Protein: SEQ ID NO:66),
sowie weitere Farnesyl-Diphosphat-Synthase-Gene aus anderen Organismen mit den folgenden Accession Nummern:
P53799, P37268, Q02769, Q09152, P49351 , 024241 , Q43315, P49352, O24242, P49350, P08836, P14324, P49349, P08524, 066952, Q08291, P54383, Q45220, P57537, Q8K9A0, P22939, P45204, 066126, P55539, Q9SWH9, Q9AVI7, Q9FRX2, Q9AYS7, Q94IE8, Q9FXR9, Q9ZWF6, Q9FXR8, Q9AR37, O50009,Q94IE9,Q8RVK7, Q8RVQ7, O04882, Q93RA8, Q93RB0, Q93RB4, Q93RB5,Q93RB3, Q93RB1 , Q93RB2, Q920E5.
Beispiele für Geranyl-geranyl-Diphosphat-Synthase -Gene sind:
Eine Nukleinsäure, kodierend eine Geranyl-geranyl-Diphosphat-Synthase aus Sinaps alba, ACCESSION #X98795, veröffentlicht durch Bonk.M., Hoffmann,B., Von Lintig.J., Schledz,M., AI-Babili,S., Hobeika.E., Kleinig,H. and Beyer.P.: Chloroplast import of four carotenoid biosynthetic enzymes in vitro reveals differential fates prior to membrane binding and oligomeric assembly, Eur. J. Biochem. 247 (3), 942-950 (1997), (Nukleinsäure: SEQ ID NO: 67, Protein: SEQ ID NO: 68),
sowie weitere Geranyl-geranyl-Diphosphat-Synthase-Gene aus anderen Organismen mit den folgenden Accession Nummern:
P22873, P34802 ,P56966, P80042, Q42698, Q92236, 095749, Q9WTN0, Q50727, P24322, P39464, Q9FXR3, Q9AYN2, Q9FXR2, Q9AVG6, Q9FRW4, Q9SXZ5, Q9AVJ7, Q9AYN1 , Q9AVJ4, Q9FXR7, Q8LSC5, Q9AVJ6, Q8LSC4, Q9AVJ3, Q9SSU0, Q9SXZ6, Q9SST9, Q9AVJ0, Q9AVI9, Q9FRW3, Q9FXR5, Q94IF0, Q9FRX1, Q9K567, Q93RA9, Q93QX8, CAD95619, EAA31459
Beispiele für Phytoen-Synthase-Gene sind:
Eine Nukleinsäure, kodierend eine Phytoen-Synthase aus Erwinia uredovora, ACCESSION # D90087; veröffentlicht durch Misawa.N., Nakagawa.M., Kobayashi,K., Yama- no,S., lzawa,Y.,Nakamura,K. und Harashima,K.: Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli; J. Bacteriol. 172 (12), 6704-6712 (1990), (Nukleinsäure: SEQ ID NO: 69, Protein: SEQ ID NO: 70),
sowie weitere Phytoen-Synthase -Gene aus anderen Organismen mit den folgenden Accession Nummern:
CAB39693, BAC69364, AAF10440, CAA45350, BAA20384, AAM72615, BAC09112, CAA48922, P_001091 , CAB84588, AAF41518, CAA48155, AAD38051 , AAF33237, AAG10427, AAA34187, BAB73532, CAC19567, AAM62787, CAA55391, AAB65697, AAM45379, CAC27383, AAA32836, AAK07735, BAA84763, P_000205, AAB60314, P_001163, P_000718, AAB71428, AAA34153, AAK07734, CAA42969, CAD76176, CAA68575, P_000130, P_001142, CAA47625, CAA85775, BAC14416, CAA79957, BAC76563, P_000242, P_000551 , AAL02001 , AAK 15621, CAB94795, AAA91951, P_000448
Beispiele für Phytoen-Desaturase-Gene sind:
Eine Nukleinsäure, kodierend eine Phytoen-Desaturase aus Erwinia uredovora, ACCESSION # D90087; veröffentlicht durch Misawa,N., Nakagawa,M., Kobayashi,K., Yamano.S., lzawa,Y.,Nakamura,K. und Harashima.K.: Elucidation of the Erwinia ure- dovora carotenoid biosynthetic pathway by functional analysis of gene products ex- pressed in Escherichia coli; J. Bacteriol. 172 (12), 6704-6712 (1990), (Nukleinsäure: SEQ ID NO: 71, Protein: SEQ ID NO: 72),
sowie weitere Phytoen-Desaturase -Gene aus anderen Organismen mit den folgenden Accession Nummern:
AAL15300, A39597, CAA42573, AAK51545, BAB08179, CAA48195, BAB82461, AAK92625, CAA55392, AAG 10426, AAD02489, AAO24235, AAC12846, AAA99519, AAL38046, CAA60479, CAA75094, ZP_001041 , ZP_001163, CAA39004, CAA44452, ZP_001142, ZP_000718, BAB82462, AAM45380, CAB56040, ZP_001091 , BAC09113, AAP79175, AAL80005, AAM72642, AAM72043, ZP_000745, ZP_001141, BAC07889, CAD55814, ZPJD01041, CAD27442, CAE00192, ZP_001163, ZP_000197, BAA18400, AAG10425, ZP_001119, AAF13698, 2121278A, AAB35386, AAD02462, BAB68552, CAC85667, AAK51557, CAA12062, AAG51402, AAM63349, AAF85796, BAB74081 , AAA91161 , CAB56041 , AAC48983, AAG14399, CAB65434, BAB73487, ZP_001117, ZP_000448, CAB39695, CAD76175, BAC69363, BAA17934, ZP_000171, AAF65586, ZP_000748, BAC07074, ZP_001133, CAA64853, BAB74484, ZP_001156, AAF23289, AAG28703, AAP09348, AAM71569, BAB69140, ZP_000130, AAF41516, AAG18866, CAD95940, NP_656310, AAG10645, ZP_000276, ZP_000192, ZP_000186, AAM94364, EAA31371, ZP_000612, BAC75676, AAF65582
Beispiele für Zeta-Carotin-Desaturase-Gene sind:
Eine Nukleinsäure, kodierend eine Zeta-Carotin-Desaturase aus Narcissus pseudonar- cissus, ACCESSION #AJ224683, veröffentlicht durch AI-Babiii,S., Oelschlegel,J. and
Beyer.P.: A cDNA encoding for beta carotene desaturase (Accession No.AJ224683) from Narcissus pseudonarcissus L. (PGR98-103), Plant Physiol. 117, 719-719 (1998), (Nukleinsäure: SEQ ID NO: 73, Protein: SEQ ID NO: 74),
sowie weitere Zeta-Carotin-Desaturase-Gene aus anderen Organismen mit den folgenden Accession Nummern:
Q9R6X4, Q38893, Q9SMJ3, Q9SE20, Q9ZTP4, O49901, P74306, Q9FV46, Q9RCT2, ZDS_NARPS, BAB68552.1, CAC85667.1 , AF372617 , ZDS_TARER, CAD55814.1, CAD27442.1, 2121278A, ZDS_CAPAN, ZDS .YCES, NP_187138.1, AAM63349.1 , ZDS_ARATH, AAA91161.1 , ZDS_MAIZE, AAG14399.1, NP_441720.1, NP_486422.1 , ZP_00111920.1, CAB56041.1, ZP_00074512.1, ZP_00116357.1 , NP_681127.1 , ZP_00114185.1 , ZP„00104126.1, CAB65434.1 , NP_662300.1
Beispiele für crtlSO-Gene sind:
Eine Nukleinsäure, kodierend eine crtlSO aus Lycopersicon esculentum; ACCESSION #AF416727, veröffentlicht durch Isaacson.T., Ronen, G., Zamir.D. and Hirschberg, J.: Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the pro- duction of beta-carotene and xanthophylls in plants; Plant Cell 14 (2), 333-342 (2002), (Nukleinsäure: SEQ ID NO: 75, Protein: SEQ ID NO: 76),
sowie weitere crtlSO -Gene aus anderen Organismen mit den folgenden Accession Nummern:
AAM53952
Beispiele für FtsZ-Gene sind:
Eine Nukleinsäure, kodierend eine FtsZ aus Tagetes erecta, ACCESSION #AF251346, veröffentlicht durch Moehs,C.P„ Tian,L., Osteryoung.K.W. and Dellapenna.D.: Analysis of carotenoid biosynthetic gene expression during marigold petal development Plant Mol. Biol. 45 (3), 281-293 (2001), (Nukleinsäure: SEQ ID NO: 77, Protein: SEQ ID NO: 78),
sowie weitere FtsZ -Gene aus anderen Organismen mit den folgenden Accession Nummern:
CAB89286.1, AF205858_1, NP_200339.1, CAB89287.1 , CAB41987.1, AAA82068.1 , T06774,AF383876_1 , BAC57986.1 , CAD22047.1 , BAB91150.1 , ZP_00072546.1 ,
NP_440816.1, T51092, NP_683172.1, BAA85116.1, NP_487898.1, JC4289, BAA82871.1, NP_781763.1, BAC57987.1, ZP_00111461.1, T51088, NPJ90843.1, ZP_00060035.1, NP_846285.1, AAL07180.1, NP_243424.1, NP_833626.1, AAN04561.1, AAN04557.1, CAD22048.1, T51089, NP_692394.1, NP_623237.1, NP_565839.1, T51090, CAA07676.1, NP_113397.1, T51087, CAC44257.1, E84778, ZP_00105267.1, BAA82091.1, ZP_00112790.1, BAA96782.1, NP_348319.1, NP_471472.1, ZP_00115870.1, NP_465556.1, NP_389412.1, BAA82090.1, NP_562681.1, AAM22891.1, NP_371710.1, NP_764416.1, CAB95028.1, FTSZ_STRGR, AF120117_1, NP_827300.1, JE0282, NP_626341.1, AAC45639.1, NP_785689.1 , NP_336679.1 , NP_738660.1 , ZP_00057764.1 , AAC32265.1 , NP_814733.1 , FTSZ_MYCKA, NP_216666.1 , CAA75616.1 , NP_301700.1 , NP_601357.1, ZP_00046269.1, CAA70158.1, ZP_00037834.1 , NP_268026.1, FTSZ_ENTHR, NP_787643.1, NP_346105.1, AAC32264.1, JC5548, AAC95440.1, NP_710793.1, NP_687509.1, NP_269594.1, AAC32266.1, NP_720988.1, NP_657875.1 , ZP_00094865.-1 , ZP_00080499.1 , ZP_00043589.1 , JC7087, NP_660559.1, AAC46069.1, AF179611_14, AAC44223.1, NP_404201.1.
Beispiele für MinD -Gene sind:
Eine Nukieinsäure, kodierend eine MinD aus Tagetes erecta, ACCESSION
#AF251019, veröffentlicht durch Moehs.C.P., Tian.L., Osteryoung,K.W. und Dellapen- na,D.: Analysis of carotenoid biosynthetic gene expression during marigold petal deve- lopment; Plant Mol. Biol.45 (3), 281-293 (2001), (Nukleinsäure: SEQ ID NO: 79, Protein: SEQ ID NO: 80),
sowie weitere MinD -Gene mit den folgenden Accession Nummern:
NP 97790.1, BAA90628.1, NP_038435.1, NP_045875.1, AAN33031.1, NP_050910.1, CAB53105.1, NP_050687.1, NP_682807.1, NP_487496.1, ZP_00111708.1, ZP_00071109.1, NP_442592.1, NP_603083.1, NP_782631.1, ZP_00097367.1, ZP_00104319.1, NP_294476.1, NP_622555.1, NP_563054.1, NP_347881.1, ZP_00113908.1, NP_834154.1, NP_658480.1, ZP_00059858.1 ,
NP_470915.1, NP_243893.1, NP_465069.1, ZP_00116155.1 NP_390677.1, NP_692970.1, NP_298610.1, NP_207129.1, ZP_00038874.1 NP_778791.1, NP_223033.1, NP_641561.1, NP_636499.1, ZP_00088714.1 NP_213595.1, NP_743889.1, NP_231594.1, ZP_00085067.1, NP_797252.1 ZP_00136593.1, NP_251934.1, NP_405629.1, NP_759144.1, ZP_00102939.1 NP_793645.1, NP_699517.1, NP_460771.1, NP_860754.1, NP_456322.1, NP_718163.1, NP_229666.1, NP_357356.1, NP_541904.1, NP_287414.1, NP_660660.1, ZP_00128273.1, NP 03411.1, NP_785789.1, NP_715361.1, AF149810_1,
NP_841854.1 , NP_437893.1 , ZP_00022726.1 , EAA24844.1, ZP_00029547.1 , NP_521484.1 , NP_240148.1, NP_770852.1 , AF345908_2, NP_777923.1, ZP_00048879.1 , NP_579340.1 , NP 43455.1, NP_126254.1 , NPJ42573.1, NP_613505.1 , NP 27112.1, NP^712786.1 , NP_578214.1, NP_069530.1, NP_247526.1 , AAA85593.1 , NP_212403.1 , NP_782258.1 , ZP_00058694.1 , NP_247137.1 , NP_219149.1 , NP_276946.1, NP_614522.1 , ZP_00019288.1 , CAD78330.1
Die Erfindung betrifft ferner eine genetisch veränderte Pflanze der Gattung Tagetes, wobei die genetische Veränderung zu einer Erhöhung oder Verursachung der Expressionsrate mindestens eines Gens im Vergleich zum Wildtyp führt und bedingt ist durch die Regulation der Expression dieses Gens in der Pflanze durch die erfindungsgemäßen Promotoren. '<
Wie vorstehend erwähnt, wird unter „Expressionsaktivität" erfindungsgemäß die in einer bestimmten Zeit durch den Promotor gebildete Menge Protein, also die Expressionsrate verstanden.
Unter „spezifischer Expressionsaktivität" wird erfindungsgemäß die in einer bestimmten Zeit durch den Promotor gebildete Menge Protein pro Promotor verstanden.
Bei einer „verursachten Expressionsaktivität" oder „verursachten Expressionsrate" im Bezug auf ein Gen im Vergleich zum Wildtyp wird somit im Vergleich zum Wildtyp die Bildung eines Proteins verursacht, das im Wildtyp der Pflanze der Gattung Tagetes nicht vorhanden war.
Beispielsweise weisen Wildtyp-Pflanzen der Gattung Tagetes kein Ketolase-Gen auf. Die Regulation der Expression des Ketolase-Gens in der Pflanze durch die erfindungsgemäßen Promotoren fürht somit zu einer Verursachung der Expressionsrate.
Bei einer „erhöhten Expressionsaktivität" oder „erhöhten Expressionsrate" im Bezug auf ein Gen im Vergleich zum Wildtyp wird somit im Vergleich zum Wildtyp der Pflanze der Gattung Tagetes in einer bestimmten Zeit die gebildete Menge des Proteins erhöht.
Beispielsweise weisen Wildtyp-Pflanzen der Gattung Tagetes ein Hydroxylase-Gen auf. Die Regulation der Expression des Hydroxylase-Gens in der Pflanze durch die erfindungsgemäßen Promotoren fürht somit zu einer Erhöhung der Expressionsrate.
In einer bevorzugten Ausführungsform der erfindungsgemäßen genetisch veränderten Pflanzen der Gattung Tagetes wird die Regulation der Expression von Genen in der
Pflanze durch die erfindungsgemäßen Promotoren dadurch erreicht, dass man
a) einen oder mehrere erfindungsgemäße Promotoren in das Genom der Pflanze einbringt, so dass die Expression eines oder mehrerer endogenen Gene unter der Kon- trolle der eingebrachten erfindungsgemäßen Promotoren erfolgt oder
b) ein oder mehrere Gene in das Genom der Pflanze einbringt, so dass die Expression eines oder mehrerer der eingebrachten Gene unter der Kontrolle der endogenen, erfindungsgemäßen Promotoren erfolgt oder
c) ein oder mehrere Nukleinsäurekonstrukte, enthaltend mindestens einen erfindungsgemäßen Promotor und funktioneil verknüpft eine oder mehrere zu exprimierende Gene in die Pflanze einbringt.
In einer bevorzugten Ausführungsform bringt man gemäß Merkmal c) ein oder mehrere Nukleinsäurekonstrukte, enthaltend mindestens einen erfindungsgemäßen Promotor und funktionell verknüpft eine oder mehrere zu exprimierende Gene, in die Pflanze ein. Die Integration der Nukleinsäurekonstrukte in der Pflanze der Gattung Tagetes kann dabei intrachromosomal oder extrachromosomal erfolgen.
Bevorzugte erfindungsgemäße Promotoren und bevorzugte zu exprimierende Gene (Effektgene) sind vorstehend beschrieben.
Im folgenden wird exemplarisch die Herstellung der genetisch veränderten Pflanzen der Gattung Tagetes mit erhöhter oder verursachter Expressionsrate eines Effektgens beschrieben.
Die Transformation kann bei den Kombinationen von genetischen Veränderungen einzeln oder durch Mehrfachkonstrukte erfolgen.
Die Herstellung der transgenen Pflanzen erfolgt vorzugsweise durch Transformation der Ausgangspflanzen, mit einem Nukleinsäurekonstrukt, das mindestens einen der vorstehend beschriebenen, erfindungsgemäßen Promotoren enthält, die mit einem zu exprimierenden Effektgen und gegebenenfalls weiteren Regulationssignalen funktionell verknüpft sind.
Diese Nukleinsäurekonstrukte, in denen die erfindungsgemäßen Promotoren und Effektgene funktionell verknüpft sind, werden im folgenden auch Expressionskassetten genannt.
Die Expressionskassetten können weitere Regulatiόnssignale enthalten, also regulative Nukleinsäuresequenzen, welche die Expression der Effektgene in der Wirtszelle steuern. Gemäß einer bevorzugten Ausführungsform umfasst eine Expressionskassette stromaufwärts, d.h. am 5'-Ende der kodierenden Sequenz, mindestens einen erfin- dungsgemäßen Promotor und stromabwärts, d.h. am 3'-Ende, ein Polyadenylierungssignal und gegebenenfalls weitere regulatorische Elemente, welche mit der dazwischenliegenden kodierenden Sequenz des Effektgens für mindestens eines der vorstehend beschriebenen Gene operativ verknüpft sind.
Unter einer operativen Verknüpfung versteht man die sequenzielle Anordnung von Promotor, kodierender Sequenz, Terminator und ggf. weiterer regulativer Elemente derart, das jedes der regulativen Elemente seine Funktion bei der Expression der kodierenden Sequenz bestimmungsgemäß erfüllen kann.
Im folgenden werden beispielhaft die bevorzugten Nukleinsäurekonstrukte, Expressionskassetten und Vektoren für Pflanzen und Verfahren zur Herstellung von transgenen Pflanzen, sowie die transgenen Pflanzen der Gattung Tagetes selbst beschrieben.
Die zur operativen Verknüpfung bevorzugten, aber nicht darauf beschränkten Sequen- zen, sind Targeting-Sequenzen zur Gewährleistung der subzellulären Lokalisation im Apoplasten, in der Vakuole, in Piastiden, im Mitochondrium, im Endoplasmatischen Retikulum (ER), im Zellkern, in Ölkörperchen oder anderen Kompartimenten und Translationsverstärkern wie die 5'-Führungssequenz aus dem Tabak-Mosaik-Virus (Gallie et al., Nucl. Acids Res. 15 (1987), 8693 -8711).
Die Herstellung einer Expressionskassette erfolgt vorzugsweise durch Fusion mindestens eines erfindungsgemäßen Promotors mit mindestens einem Gen, vorzugsweise mit einem der vorstehend beschriebenen Effektgene, und vorzugsweise einer zwischen Promotor und Nukleinsäure-Sequenz inserierten Nukleinsäure, die für ein plastiden- spezifisches Transitpeptid kodiert, sowie einem Polyadenylierungssignal nach gängigen Rekombinations- und Klonierungstechniken, wie sie beispielsweise in T. Maniatis, E.F. Fritsch und J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989) sowie in TJ. Silhavy, M.L. Berman und L.W. Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) und in Ausubel, F.M. et al., Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley-Interscience (1987), beschrieben sind.
Die vorzugsweise insertierte Nukleinsäuren, kodierend ein plastidäres- Transitpeptid, gewährleisten die Lokalisation in Piastiden und insbesondere in Chromoplasten.
Es können auch Expressionskassetten verwendet werden, deren Nukleinsäure- Sequenz für ein Effektgen-Produkt-Fusionsprotein kodiert, wobei ein Teil des Fusionsproteins ein Transitpeptid ist, das die Translokation des Polypeptides steuert. Bevorzugt sind für die Chromoplasten spezifische Transitpeptide, welche nach Translokation der Effektgene in die Chromoplasten vom Effektgenprodukt-Teil enzymatisch abgespalten werden.
Insbesondere bevorzugt ist das Transitpeptid, das von der plastidären Nicotiana taba- cum Transketolase oder einem anderen Transitpeptid (z.B. dem Transitpeptid der kleinen Untereinheit der Rubisco (rbcS) oder der Ferredoxin NADP Oxidoreduktase als auch der Isopentenylpyrophosphat lsomerase-2 oder dessen funktionellem Äquivalent abgeleitet ist.
Besonders bevorzugt sind Nukleinsäure-Sequenzen von drei Kassetten des Plastiden- Transitpeptids der plastidären Transketolase aus Tabak in drei Leserastem als Kpnl/BamHI Fragmente mit einem ATG-Codon in der Ncol Schnittstelle:
pTP09
Kpnl_GGTACCATGGCGTCTTCTTCTTCTCTCACTCTCTCTCAAGCTATCCTCTCTC GTTCTGTCCCTCGCCATGGCTCTGCCTCTTCTTCTCAACTTTCCCCTTCTTCTCT- CAC I I I I I CCGGCCTTAAATCCAATCCCAATATCACCACCTCCCGCCGCCG- TACTCCTTCCTCCGCCGCCGCCGCCGCCGTCGTAAGGTCACCGGC- GATTCGTGCCTCAGCTGCAACCGAAACCATAGAGAAAACTGAGACTGCGG- GATCC_BamHI
pTPΪO
Kpn)_GGTACCATGGCGTCTTCTTCTTCTCTCACTCTCTCTCAAGCTATCCTCTCTC GTTCTGTCCCTCGCCATGGCTCTGCCTCTTCTTCTCAACTTTCCCCTTCTTCTCT- CAC I I I I I CCGGCCTTAAATCCAATCCCAATATCACCACCTCCCGCCGCCG- TACTCCTTCCTCCGCCGCCGCCGCCGCCGTCGTAAGGTCACCGGC-
GATTCGTGCCTCAGCTGCAACCGAAACCATAGAGAAAACTGAGACTGCGCTG- GATCC BamHI
pTP11
Kpnl_GGTACCATGGCGTCTTCTTCTTCTCTCACTCTCTCTCAAGCTATCCTCTCTC GTTCTGTCCCTCGCCATGGCTCTGCCTCTTCTTCTCAACTTTCCCCTTCTTCTCT- CAC I I I I I CCGGCCTTAAATCCAATCCCAATATCACCACCTCCCGCCGCCG- TACTCCTTCCTCCGCCGCCGCCGCCGCCGTCGTAAGGTCACCGGC- GATTCGTGCCTCAGCTGCAACCGAAACCATAGAGAAAACTGAGACTGCGGG- GATCC_BamHI
Weitere Beispiele für ein plastidäres Transitpeptid sind das Transitpeptid der plastidären Isopentenyl-pyrophosphat lsomerase-2 (IPP-2) aus Arabisopsis thaliana und das Transitpeptid der kleinen Untereinheit der Ribulosebisphosphat Carboxylase (rbcS) aus Erbse (Guerineau, F, Woolston, S, Brooks, L, Mullineaux, P (1988) An expression cas- sette for targeting fpreign proteins into the chloroplasts. Nucl. Acids Res. 16: 11380).
Die erfindungsgemäßen Nukleinsäuren können synthetisch hergestellt oder natürlich gewonnen sein oder eine Mischung aus synthetischen und natürlichen Nukleinsäure- Bestandteilen enthalten, sowie aus verschiedenen heterologen Genabschnitten verschiedener Organismen bestehen.
Bevorzugt sind, wie vorstehend beschrieben, synthetische Nukieotid-Sequenzen mit Kodons, die von Pflanzen bevorzugt werden. Diese von Pflanzen bevorzugten Kodons können aus Kodons mit der höchsten Proteinhäufigkeit bestimmt werden, die in den meisten interessanten Pflanzenspezies exprimiert werden.
Bei der Präparation einer Expressionskassette können verschiedene DNA-Fragmente manipuliert werden, um eine Nukleotid-Sequenz zu erhalten, die zweckmäßigerweise in der korrekten Richtung liest und die mit einem korrekten Leseraster ausgestattet ist. Für die Verbindung der DNA-Fragmente miteinander können an die Fragmente Adap- toren oder Linker angesetzt werden.
Zweckmäßigerweise können die Promotor- und die Terminator-Regionen in Transkriptionsrichtung mit einem Linker oder Polylinker, der eine oder mehrere Restriktionsstellen für die Insertion dieser Sequenz enthält, versehen werden. In der Regel hat der Linker 1 bis 10, meistens 1 bis 8, vorzugsweise 2 bis 6 Restriktionsstellen. Im allgemeinen hat der Linker innerhalb der regulatorischen Bereiche eine Größe von weniger als 100 bp, häufig weniger als 60 bp, mindestens jedoch 5 bp. Der Promotor kann sowohl nativ bzw. homolog als auch fremdartig bzw. heterolog zur Wirtspflanze sein. Die Expressionskassette beinhaltet vorzugsweise in der 5'-3'-Transkriptionsrichtung den Promotor, eine kodierende Nukleinsäuresequenz oder ein Nukleinsäurekonstrukt und eine Region für die transkriptiönale Termination. Verschiedene Terminationsbereiche
sind gegeneinander beliebig austauschbar.
Beispiele für einen Terminator sind der 35S-Terminator (Guerineau et al. (1988) Nucl Acids Res. 16: 11380), der nos Terminator (Depicker A, Stachel S; Dhaese P, Zambryski P, Goodman HM. Nopaline synthase: transcript mapping and DNA sequen- ce. J Mol Appl Genet. 1982; 1(6): 561-73) oder der ocs Terminator (Gielen, J, de Beuckeleer, M, Seurinck, J, Debroek, H, de Greve, H, Lemmers, M, van Montagu, M, Schell, J (1984) The complete sequence of the TL-DNA of the Agrobacterium tumefaciens plasmid pTiAchδ. EMBO J. 3: 835-846).
Ferner können Manipulationen, die passende Restriktionsschnittstellen bereitstellen oder die überflüssige DNA oder Restriktionsschnittstellen entfernen, eingesetzt werden. Wo Insertionen, Deletionen oder Substitutionen wie z.B. Transitionen und Transversionen in Frage kommen, können in w/ro-Mutagenese, "primer-repair", Restriktion oder Ligation verwendet werden.
Bei geeigneten Manipulationen, wie z.B. Restriktion, "chewing-back" oder Auffüllen von Überhängen für "bluntends", können komplementäre Enden der Fragmente für die Ligation zur Verfügung gestellt werden.
Bevorzugte Polyadenylierungssignale sind pflanzliche Polyadenylierungssignale, vorzugsweise solche, die im wesentlichen T-DNA-Polyadenylierungssignale aus Agrobacterium tumefaciens, insbesondere des Gens 3 der T-DNA (Octopin Synthase) des Ti- Plasmids pTiACH5 entsprechen (Gielen et al., EMBO J. 3 (1984), 835 ff) oder funktio- nelle Äquivalente.
Die Übertragung von Fremdgenen in das Genom einer Pflanze wird als Transformation bezeichnet.
Dazu können an sich bekannte Methoden zur Transformation und Regeneration von Pflanzen aus Pflanzengeweben oder Pflanzenzellen zur transienten oder stabilen Transformation genutzt werden.
Geeignete Methoden zur Transformation von Pflanzen sind die Protoplastentransfor- mation durch Polyethylenglykol-induzierte DNA-Aufnahme, das biolistische Verfahren mit der Genkanone - die sogenannte "particle bombardment" Methode, die Elektropo- ration, die Inkubation trockener Embryonen in DNA-haltiger Lösung, die Mikroinjektion und der, vorstehend beschriebene, durch Agrobacterium vermittelte Gentransfer. Die genannten Verfahren sind beispielsweise in B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1 , Engineering and Utilization, herausgegeben von
S.D. Kung und R. Wu, Academic Press (1993), 128-143 sowie in Potrykus, Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991), 205-225) beschrieben.
Vorzugsweise wird das zu exprimierende Konstrukt in einen Vektor kloniert, der geeig- net ist, Agrobacterium tumefaciens zu transformieren, beispielsweise pBin19 (Bevan et al., Nucl. Acids Res. 12 (1984), 8711) oder besonders bevorzugt pSUN2, pSUN3, pSUN4 oder pSUN5 (WO 02/00900).
Mit einem Expressionsplasmid transformierte Agrobakterien können in bekannter Wei- se zur Transformation von Pflanzen verwendet werden, z.B. indem verwundete Blätter oder Blattstücke in einer Agrobakterienlösung gebadet und anschließend in geeigneten Medien kultiviert werden.
Zur bevorzugten Herstellung von genetisch veränderten Pflanzen, im folgenden auch transgene Pflanzen bezeichnet, wird die fusionierte Expressionskassette in einen Vektor, beispielsweise pBin19 oder insbesondere pSUN5 und pSUN3 kloniert, der geeignet ist, in Agrobacterium tumefaciens transformiert zu werden. Mit einem solchen Vektor transformierte Agrobakterien können dann in bekannter Weise zur Transformation von Pflanzen, insbesondere von Kulturpflanzen verwendet werden, indem beispiels- weise verwundete Blätter oder Blattstücke in einer Agrobakterienlösung gebadet und anschließend in geeigneten Medien kultiviert werden.
Die Transformation von Pflanzen durch Agrobakterien ist unter anderem bekannt aus F.F. White, Vectors for Gene Transfer in Higher Plants; in Transgenic Plants, Vol. 1 , Engineering and Utilization, herausgegeben von S.D. Kung und R. Wu, Academic Press, 1993, S. 15-38. Aus den transformierten Zellen der verwundeten Blätter bzw. Blattstücke können in bekannter Weise transgene Pflanzen regeneriert werden, die ein oder mehrere in die Expressionskassette integrierte Gene enthalten.
Zur Transformation einer Wirtspflanze mit einem oder mehreren erfindungsgemäßen Effektgenen wird eine Expressionskassette als Insertion in einen rekombinanten Vektor eingebaut, dessen Vektor-DNA zusätzliche funktionelle Regulationssignale, beispielsweise Sequenzen für Replikation oder Integration enthält. Geeignete Vektoren sind unter anderem in "Methods in Plant Molecular Biology and Biotechnology" (CRC Press), Kap. 6/7, S. 71-119 (1993) beschrieben.
Unter Verwendung der oben zitierten Rekombinations- und Klonierungstechniken können die Expressionskassetten in geeignete Vektoren kloniert werden, die ihre Vermehrung, beispielsweise in E. coli, ermöglichen. Geeignete Klonierungsvektoren sind u.a. pJIT117 (Guerineau et al. (1988) Nucl. Acids Res.16 :11380), pBR332, pUC-Serien,
M13mp-Serien und pACYC184. Besonders geeignet sind binäre Vektoren, die sowohl in £ coli als auch in Agrobakterien replizieren können.
Die Erfindung betrifft daher weiterhin eine genetisch veränderte Pflanze der Gattung Tagetes, enthaltend einen erfindungsgemäßen Promotor und funktionell verknüpft ein zu eprimierendes Gen, mit der Maßgabe, dass Gene aus Pflanzen der Gattung Tagetes, die in Wildtyppflanzen der Gattung Tagetes von dem jeweiligen Promotor exprimiert werden, ausgenommen sind.
Bevorzugte erfindungsgemäße Promotoren und bevorzugte Effektgene sind vorstehend beschrieben.
Insbesondere bevorzugt sind Effektgene ausgewählt sind aus der Gruppe Nukleinsäuren, kodierend eine Ketolase, Nukleinsäuren kodierend eine ß-Hydroxylase, Nuklein- säuren kodierend eine ß-Cyclase, Nukleinsäuren kodierend eine ε-Cyclase, Nukleinsäuren kodierend eine Epoxidase, Nukleinsäuren kodierend eine HMG-CoA- Reduktase, Nukleinsäuren kodierend eine (E)-4-Hydroxy-3-Methylbut-2-enyl- Diphosphat-Reduktase, Nukleinsäuren kodierend eine 1-Deoxy-D-Xylose-5-Phosphat- Synthase, Nukleinsäuren kodierend eine 1-Deoxy-D-Xylose-5-Phosphat- Reduktoisomerase, Nukleinsäuren kodierend eine Isopentenyl-Diphosphat-Δ-
Isomerase, Nukleinsäuren kodierend eine Geranyl-Diphosphat-Synthase, Nukleinsäuren kodierend eine Famesyl-Diphosphat-Synthase, Nukleinsäuren kodierend eine Ge- ranyl-Geranyl-Diphosphat-Synthase, Nukleinsäuren kodierend eine Phytoen-Synthase, Nukleinsäuren kodierend eine Phytoen-Desaturase, Nukleinsäuren kodierend eine Prephytoen-Synthase, Nukleinsäuren kodierend eine Zeta-Carotin-Desaturase, Nukleinsäuren kodierend ein crtlSO Protein, Nukleinsäuren kodierend ein FtsZ Protein und Nukleinsäuren kodierend ein MinD Protein.
Bevorzugte, genetisch veränderte Pflanzen der Gattung Tagetes sind Marigold, Tage- tes erecta, Tagetes patula, Tagetes lucida, Tagetes pringlei, Tagetes palmeri, Tagetes minuta oder Tagetes campanulata.
Durch die erfindungsgemäßen Promotoren ist es mit Hilfe der vorstehend beschriebenen, erfindungsgemäßen Verfahren möglich, in den vorstehend beschriebenen, erfin- dungsgemäßen genetisch veränderten Pflanzen der Gattung Tagetes die Stoffwechselwege zu spezifischen biosynthetischen Produkten zu regulieren.
Dazu werden beispielsweise Stoffwechselwege, die zu einem spezifischen biosynthetischen Produkt führen, durch Verursachung oder Erhöhung der Transkriptionrate bzw. Expressionsrate von Genen dieses Biosyntheseweges verstärkt, indem die erhöhte
Proteinmenge zu einer erhöhten Gesamtaktivität dieser Proteine des gewünschten Biosyntheseweges und damit durch einem verstärkten Stoffwechselfluß zu dem ge- wünschen biosynthetischen Produkt führt.
Je nach gewünschtem biosynthetischen Produkt muss die Transkriptionsrate bzw. Expressionsrate verschiedener Gene erhöht bzw. reduziert werden. In der Regel ist es vorteilhaft, die Transkrioptionsrate bzw. Expressionsrate mehrere Gene zu verändern, d.h. die Transkrioptionsrate bzw. Expressionsrate einer Kombination von Gene zu Erhöhen und/oder die Transkrioptionsrate bzw. Expressionsrate einer Kombination von Gene zu reduzieren.
In den erfindungsgemäßen genetisch veränderten Pflanzen ist mindestens eine erhöhte oder verursachte Expressionsrate eines Gens auf einen erfindungsgemäßen Promotor zurückzuführen.
Weitere, zusätzliche veränderte, d.h. zusätzlich erhöhte oder zusätzlich reduzierte Expressionsraten von weiteren Genen in genetisch veränderten Pflanzen können, müssen aber nicht auf die erfindungsgemäßen Promotoren zurück gehen.
Die Erfindung betrifft daher ein Verfahren zur Herstellung von biosynthetischen Produkten durch Kultivierung von erfindungsgemäßen, genetisch veränderten Pflanzen der Gattung Tagetes.
Die Erfindung betrifft insbesondere ein Verfahren zur Herstellung von Carotinoiden durch Kultivierung von erfindungsgemäßen genetisch veränderten Pflanzen der Gattung Tagetes, dadurch gekennzeichnet, dass die zu exprimierenden Gene ausgewählt sind aus der Gruppe Nukleinsäuren, kodierend eine Ketolase, Nukleinsäuren kodierend eine ß-Hydroxylase, Nukleinsäuren kodierend eine ß-Cyclase, Nukleinsäuren kodierend eine ε-Cyclase, Nukleinsäuren kodierend eine Epoxidase, Nukleinsäuren kodie- rend eine HMG-CoA-Reduktase, Nukleinsäuren kodierend eine (E)-4-Hydroxy-3- Methylbut-2-enyl-Diphosphat-Reduktase, Nukleinsäuren kodierend eine 1-Deoxy-D- Xylose-5-Phosphat-Synthase, Nukleinsäuren kodierend eine 1-Deoxy-D-Xylose-5- Phosphat-Reduktoisomerase, Nukleinsäuren kodierend eine Isopentenyl-Diphosphat- Δ-Isomerase, Nukleinsäuren kodierend eine Geranyl-Diphosphat-Synthase, Nuklein- säuren kodierend eine Farnesyl-Diphosphat-Synthase, Nukleinsäuren kodierend eine Geranyl-Geranyl-Diphosphat-Synthase, Nukleinsäuren kodierend eine Phytoen- Synthase, Nukleinsäuren kodierend eine Phytoen-Desaturase, Nukleinsäuren kodierend eine Prephytoen-Synthase, Nukleinsäuren kodierend eine Zeta-Carotin- Desaturase, Nukleinsäuren kodierend ein crtlSO Protein, Nukleinsäuren kodierend ein
FtsZ Protein und Nukleinsäuren kodierend ein MinD Protein.
Die Carotinoide sind vorzugsweise ausgewählt aus der Gruppe Phytoen, Phytofluen, Lycopin, Lutein, Zeaxanthin, Astaxanthin, Canthaxanthin, Echinenon, 3- Hydroxyechinenon, 3'-Hydroxyechinenon, Adonirubin, Violaxanthin und Adonixanthin.
Insbeondere betrifft die Erfindung weiterhin ein Verfahren zur Herstellung von Ketocarotinoiden durch Kultivierung von erfindungsgemäßen genetisch veränderten Pflanzen der Gattung Tagetes, dadurch gekennzeichnet, dass die zu exprimierenden Gene ausgewählt sind aus der Gruppe Nukleinsäuren, kodierend eine Ketolase,
Nukleinsäuren kodierend eine ß-Hydroxylase, Nukleinsäuren kodierend eine ß- Cyclase, Nukleinsäuren kodierend eine ε-Cyclase, Nukleinsäuren kodierend eine Epoxidase, Nukleinsäuren kodierend eine HMG-CoA-Reduktase, Nukleinsäuren kodierend eine (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase, Nukleinsäuren kodierend eine 1-Deoxy-D-Xylose-5-Phosphat-Synthase, Nukleinsäuren kodierend eine 1-Deoxy-D-Xylose-5-Phosphät-Reduktoisomerase, Nukleinsäuren kodierend eine Isopentenyl-Diphosphät-Δ-Isomerase, Nukleinsäuren kodierend eine Geranyl-Diphosphat-Synthase, Nukleinsäuren kodierend eine Farnesyl-Diphosphat- Synthase, Nukleinsäuren kodierend eine Geranyl-Geranyl-Diphosphat-Synthase, Nukleinsäuren kodierend eine Phytoen-Synthase, Nukleinsäuren kodierend eine Phytoen-Desaturase, Nukleinsäuren kodierend eine Prephytoen-Synthase, Nukleinsäuren kodierend eine Zeta-Carotin-Desaturase, Nukleinsäuren kodierend ein crtlSO Protein, Nukleinsäuren kodierend ein FtsZ Protein und Nukleinsäuren kodierend ein MinD Protein. Die Ketocarotinoide sind vorzugsweise ausgewählt aus der Gruppe Astaxanthin, Canthaxanthin, Echinenon, 3-Hydroxyechinenon, 3'-Hydroxyechinenon, Adonirubin, Violaxanthin und Adonixanthin.
Im erfindungsgemäßen Verfahren zur Herstellung von biosynthetischen Produkten, insbesondere Carotinoiden, vorzugsweise Ketocarotinoiden, wird vorzugsweise dem Kultivierungsschritt der genetisch veränderten Pflanzen ein Ernten der Pflanzen und ein Isolieren der biosynthetischen Produkte, insbesondere Carotinoide, vorzugsweise Ketocarotinoide aus den Pflanzen, vorzugsweise aus den Petalen der Pflanzen, angeschlossen.
Die genetisch veränderten Pflanzen der Gattung Tagetes werden in an sich bekannter Weise auf Nährböden gezogen und entsprechend geerntet.
Die Isolierung von Ketocarotinoiden aus den geernteten Blütenblättern erfolgt bei- spielsweise in an sich bekannter Weise, beispielsweise durch Trocknung und an-
schließender Extraktion und gegebenenfalls weiterer chemischer oder physikalischer Reinigungsprozesse, wie beispielsweise Fällungsmethoden, Kristallographie, thermische Trennverfahren, wie Rektifizierverfahren oder physikalische Trennverfahren, wie beispielsweise Chromatographie. Die Isolierung von Ketocarotinoiden aus den Blüten- blättern erfolgt beispielsweise bevorzugt durch organische Lösungsmittel wie Aceton, Hexan, Heptan, Ether oder tert.-Methylbutylether.
Weitere Isolierverfahren von Ketocarotinoiden, insbesondere aus Blütenblättern, sind beispielsweise in Egger und Kleinig (Phytochemistry (1967) 6, 437-440) und Egger (Phytochemistry (1965) 4, 609-618) beschrieben.
Ein besonders bevorzugtes Ketocarotinoid ist Astaxanthin.
Die Ketocarotinoide fallen im erfindungsgemäßen Verfahren in Blütenblättern in Form ihrer Mono- oder Diester mit Fettsäuren an. Einige nachgewiesene Fettsäuren sind z.B. Myristinsäure, Palmitinsäure, Stearinsäure, Ölsäure, Linolensäure, und Laurinsäure (Kamata und Simpson (1987) Comp. Biochem. Physiol. Vol. 86B(3), 587-591).
Von Menschen und Tieren verzehrbare erfindungsgemäße, genetisch veränderte Pflanzen oder Pflanzenteile, wie insbesondere Blütenblätter mit erhöhtem Gehalt an biosynthetischen Produkten, insbesondere Carotinoide, insbesondere Ketocarotinoide, insbesondere Astaxanthin, können auch beispielsweise direkt oder nach an sich bekannter Prozessierung als Nahrungsmittel oder Futtermittel oder als Futter- und Nah- rungsergänzungsmittel verwendet werden.
Ferner können die genetisch veränderten Pflanzen zur Herstellung von biosynthetischen Produkt-, insbesondere Carotinoid-, insbesondere Ketocarotinoid-, insbesondere Astaxanthin-haltigen Extrakten und/oder zur Herstellung von Futter- und Nahrungser- gänzungsmitteln sowie von Kosmetika und Pharmazeutika verwendet werden.
Die genetisch veränderten Pflanzen der Gattung Tagetes weisen im Vergleich zum Wildtyp einen erhöhten Gehalt an dem gewünschten biosynthetischen Produkten, insbesondere Carotinoide, insbesondere Ketocarotinoide, insbesondere Astaxanthin auf.
Unter einem erhöhten Gehalt wird in diesem Fall auch ein verursachter Gehalt an Ketocarotinoiden, bzw. Astaxanthin verstanden.
Die Erfindung wird durch die nun folgenden Beispiele erläutert, ist aber nicht auf diese beschränkt:
Allgemeine Experimentelle Bedingungen: Sequenzanalyse rekombinanter DNA
Die Sequenzierung rekombinanter DNA-Moleküle erfolgte mit einem Laserfluoreszenz- DNA-Sequenzierer der Firma Licor (Vertrieb durch MWG Biotech, Ebersbach) nach der Methode von Sanger (Sanger et al., Proc. Natl. Acad. Sei. USA 74 (1977), 5463-5467).
Beispiel 1:
Amplifikation einer DNA, die die gesamte Primärsequenz der NOST-Ketolase aus Nostoc sp. PCC 7120 kodiert
Die DNA, die für die NOST-Ketolase aus Nostoc sp. PCC 7120 kodiert, wurde mittels PCR aus Nostoc sp. PCC 7120 (Stamm der "Pasteur Culture Collection of Cyanobac- terium") amplifiziert.
Für die Präparation von genomischer DNA aus einer Suspensionskultur von Nostoc sp. PCC 7120, die 1 Woche mit Dauerlicht und konstantem Schütteln (150 rpm) at 25°C in BG 11-Medium (1.5 g/l NaNO3, 0.04 g/l K2PO4x3H2O, 0.075 g/l MgSO4xH2O, 0.036 g/l CaCI2x2H2O, 0.006 g/l citric acid, 0.006 g/l Ferric ammonium citrate, 0.001 g/l ED- TA disodium magnesium, 0.04 g/l Na2CO3, 1ml trace metal mix A5+Co (2.86 g/l
H3BO3, 1.81 g/l MnCI2x4H2o, 0.222 g/l ZnSO4x7H2o,0.39 g/l NaMoO4X2H2o, 0.079 g/l CuSO4x5H2O, 0.0494 g/l Co(NO3)2x6H2O)) gewachsen war, wurden die Zellen durch Zentrifugation geerntet, in flüssigem Stickstoff eingefroren und im Mörser pulverisiert.
Protokoll für DNA Isolation aus Nostoc PCC7120:
Aus einer 10 ml Flüssigkultur wurden die Bakterienzellen durch 10minütige Zentrifugation bei 8 000 rpm pelletiert. Anschließend wurden die Bakterienzellen in flüssigem Stickstoff mit einem Mörser zerstoßen und gemahlen. Das Zellmaterial wurde in 1 ml 10mM Tris HCI (pH 7.5) resuspendiert und in ein Eppendorf Reaktionsgefäß (2ml Volumen) überführt. Nach Zugabe von 100 μl Proteinase K (Konzentration: 20 mg/ml) wurde die Zellsuspension für 3 Stunden bei 37°C inkubiert. Anschließend wurde die Suspension mit 500 μl Phenol extrahiert. Nach δminütiger Zentrifugation bei 13 000 upm wurde die obere, wässrige Phase in ein neues 2 ml-Eppendorf Reaktionsgefäß überführt. Die Extraktion mit Phenol wurde 3mal wiederholt. Die DNA wurde durch Zugabe von 1/10 Volumen 3 M Natriumacetat (pH 5.2) und 0.6 Volumen Isopropanol gefällt und anschließend mit 70% Ethanol gewaschen. Das DNA-Pellet wurde bei Raumtemperatur getrocknet, in 25 μl Wasser aufgenommen und unter Erhitzung auf 65°C
gelöst.
Die Nukleinsäure, kodierend eine Ketolase aus Nostoc PCC 7120, wurde mittels "polymerase chain reaction" (PCR) aus Nostoc sp. PCC 7120 unter Verwendung eines sense-spezifischen Primers (NOSTF, SEQ ID No. 79) und eines antisense- spezifischen Primers (NOSTG SEQ ID No. 80) amplifiziert.
Die PCR-Bedingungen waren die folgenden:
Die PCR zur Amplifikation der DNA, die für ein Ketolase Protein bestehend aus der gesamten Primärsequenz kodiert, erfolgte in einem 50 ul Reaktionsansatz, in dem enthalten war:
- 1 ul einer Nostoc sp. PCC 7120 DNA (hergestellt wie oben beschrieben) - 0.25 mM dNTPs
- 0.2 mM NOSTF (SEQ ID No. 79)
- 0.2 mM NOSTG (SEQ ID No. 80)
- 5 ul 10X PCR-Puffer (TAKARA)
- 0.25 ul-R-Taq Polymerase (TAKARA) - 25.8 ul Aq. Dest.
Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:
1X94°C 2 Minuten 35X94°C 1 Minute 55°C 1 Minuten 72°C 3 Minuten 1X72°C 10 Minuten
Die PCR-Amplifikation mit SEQ ID No. 79 und SEQ ID No. 80 resultierte in einem 805 Bp-Fragment, das für ein Protein bestehend aus der gesamten Primärsequenz kodiert (SEQ ID No. 81). Unter Verwendung von Standardmethoden wurde das Amplifikat in den PCR-Klonierungsvektor pGEM-T (Promega) kloniert und der Klon pNOSTF-G erhalten.
Sequenzierung des Klons pNOSTF-G mit dem M13F- und dem M13R-Primer bestätigte eine Sequenz, welche mit der DNA-Sequenz von 88,886-89,662 des Datenbankeintrages AP003592 identisch ist. Diese Nukleotidsequenz wurde in einem unabhängigem Amplifikationsexperiment reproduziert und repräsentiert somit die Nukleotidsequenz im verwendeten Nostoc sp. PCC 7120.
Beispiel 2
Amplifikation einer DNA, die die gesamte Primärsequenz der NP196-Ketolase aus Nostoc punctiforme A TCC 29133 kodiert
Die DNA, die für die NP196-Ketolase aus Nostoc punctiforme ATCC 29133 kodiert, wurde mittels PCR aus Nostoc punctiforme ATCC 29133 (Stamm der "American Type Culture Collection") amplifiziert.
Für die Präparation von genomischer DNA aus einer Suspensionskultur von Nostoc punctiforme ATCC 29133, die 1 Woche mit Dauerlicht und konstantem Schütteln (150 rpm) at 25°C in BG 11-Medium (1.5 g/l NaNO3, 0.04 g/l ^PO^HzO, 0.075 g/l MgSO4xH2O, 0.036 g/l CaCI2x2H2O, 0.006 g/l citric acid, 0.006 g/l Ferric ammonium citrate, 0.001 g/l EDTA disodium magnesium, 0.04 g/l Na2CO3, 1ml Trace Metal Mix "A5+Co" (2.86 g/l H3BO3, 1.81 g/l MnCI2x4H2o, 0.222 g/l ZnSθ4x7H20, 0.39 g/l Na- Moθ4X2H2o, 0.079 g/l CuSO^δHsO, 0.0494 g/l Co(NO3)2x6H2O)) gewachsen war, wurden die Zellen durch Zentrifugation geerntet, in flüssigem Stickstoff eingefroren und im Mörser pulverisiert.
Protokoll für die DNA-Isolation aus Nostoc punctiforme ATCC 29133:
Aus einer 10 ml Flüssigkultur wurden die Bakterienzellen durch 10 minütige Zentrifugation bei 8000 rpm pelletiert. Anschließend wurden die Bakterienzellen in flüssigem Stickstoff mit einem Mörser zerstoßen und gemahlen. Das Zellmaterial wurde in 1 ml 10mM Tris-HCI (pH 7.5) resuspendiert und in ein Eppendorf-Reaktionsgefäß (2ml Volumen) überführt. Nach Zugabe von 100 μl Proteinase K (Konzentration: 20 mg/ml) wurde die Zellsuspension für 3 Stunden bei 37°C inkubiert. Anschließend wurde die Suspension mit 500 μl Phenol extrahiert. Nach δminütiger Zentrifugation bei 13 000 upm wurde die obere, wässrige Phase in ein neues 2 ml-Eppendorf-Reaktionsgefäß überführt. Die Extraktion mit Phenol wurde 3mal wiederholt. Die DNA wurde durch Zugabe von 1/10 Volumen 3 M Natriumacetat (pH 5.2) und 0.6 Volumen Isopropanol gefällt und anschließend mit 70% Ethanol gewaschen. Das DNA-Pellet wurde bei Raumtemperatur getrocknet, in 25 μl Wasser aufgenommen und unter Erhitzung auf 65°C gelöst.
Die Nukleinsäure, kodierend eine Ketolase aus Nostoc punctiforme ATCC 29133, wurde mittels "polymerase chain reaction" (PCR) aus Nostoc punctiforme ATCC 29133 unter Verwendung eines sense-spezifischen Primers (NP196-1, SEQ ID No. 82) und
eines antisense-spezifischen Primers (NP196-2 SEQ ID No. 83) amplifiziert.
Die PCR-Bedingungen waren die folgenden:
Die PCR zur Amplifikation der DNA, die für ein Ketolase Protein bestehend aus der gesamten Primärsequenz kodiert, erfolgte in einem 50 ul Reaktionsansatz, in dem enthalten war:
- 1 ul einer Nostoc punctiforme ATCC 29133 DNA (hergestellt wie oben beschrieben) - 0.25 mM dNTPs
- 0.2 mM NP196-1 (SEQ ID No. 82)
- 0.2 mM NP196-2 (SEQ ID No. 83)
- 5 ul 10X PCR-Puffer (TAKARA)
- 0.25 ul R Taq Polymerase (TAKARA) - 25.8 ul Aq. Dest.
Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt: .
1X94°C 2 Minuten 35X94°C 1 Minute 55°C 1 Minuten 72°C 3 Minuten 1X72°C 10 Minuten
Die PCR-Amplifikation mit SEQ ID No. 82 und SEQ ID No. 83 resultierte in einem 792 Bp-Fragment, das für ein Protein bestehend aus der gesamten Primärsequenz kodiert (NP196, SEQ ID No. 84). Unter Verwendung von Standardmethoden wurde das Ampli- fikat in den PCR-Klonierungsvektor pCR 2.1 (Invitrogen) kloniert und der Klon pNP196 erhalten.
Sequenzierung des Klons pNP196 mit dem M13F- und dem M13R-Primer bestätigte eine Sequenz, welche mit der DNA-Sequenz von 140.571-139.810 des Datenbankeintrages NZ_AABC01000196 identisch ist (inverse orientiert zum veröffentlichen Datenbankeintrag) mit der Ausnahme, daß G in Position 140.571 durch A ersetzt wurde, um ein Standard-Startkodon ATG zu erzeugen. Diese Nukleotidsequenz wurde in einem unabhängigem Amplifikationsexperiment reproduziert und repräsentiert somit die Nukleotidsequenz im verwendeten Nostoc punctiforme ATCC 29133.
Dieser Klon pNP196 wurde daher für die Klonierung in den Expressionsvektor pJIT117(Guerineau et al. 1988, Nucl. Acids Res. 16: 11380) verwendet.
pJIT117 wurde modifiziert, indem der 35S-Terminator durch den OCS-Terminator (Oc- topine Synthase) des Ti-Plasmides pTi15955 von Agrobacterium tumefaciens (Datenbankeintrag X00493 von Position 12,541-12,350, Gielen et al. (1984) EMBO J. 3 835- 846) ersetzt wurde.
Das DNA-Fragment, das die OCS-Terminatorregion beinhaltet, wurde mittels PCR unter Verwendung des Plasmides pHELLSGATE (Datenbankeintrag AJ311874, Wesley et al. (2001) Plant J. 27 581-590, nach Standardmethoden aus E.coli isoliert) sowie der Primer OCS-1 (SEQ ID No. 85) und OCS-2 (SEQ ID No. 86) hergestellt.
Die PCR-Bedingungen waren die folgenden:
Die PCR zur Amplifikation der DNA, die die Octopin Synthase (OCS) Terminatorregion (SEQ ID No. 87) beinhaltet, erfolgte in einem 50 ul Reaktionsansatz, in dem enthalten waren:
- 100 ng pHELLSGATE plasmid DNA
- 0.25 mM dNTPs - 0.2 mM OCS-1 (SEQ ID No. 85)
- 0.2 mM OCS-2 (SEQ ID No. 86)
- 5 ul 10X PCR-Puffer (Stratagene)
- 0.25 ul Pfu Polymerase (Stratagene)
- 28.8 ul Aq. Dest.
Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:
1X94°C 2 Minuten 35X94°C 1 Minute 50°C 1 Minute 72°C 1 Minute 1X72°C 10 Minuten
Das 210 bp Amplifikat wurde unter Verwendung von Standardmethoden in den PCR- Klonierungsvektor pCR 2.1 (Invitrogen) kloniert und das Plasmid pOCS erhalten.
Sequenzierung des Klons pOCS bestätigte eine Sequenz, die mit einem Sequenzabschnitt auf dem Ti-Plasmid pTi15955 von Agrobacterium tumefaciens (Datenbankeintrag X00493) von Position 12.541 bis 12.350 übereinstimmt.
Die Klonierung erfolgte durch Isolierung des 210 bp Sall-Xhol Fragmentes aus pOCS und Ligierung in den Sall-Xhol geschnittenen Vektor pJIT117. Dieser Klon heisst pJO und wurde daher für die Klonierung in den Expressionsvektor pJONP196 verwendet.
Die Klonierung erfolgte durch Isolierung des 782 Bp Sphl-Fragmentes aus pNP196 und Ligierung in den Sphl geschnittenen Vektor pJO. Der Klon, der die NP196-Ketolase von Nostoc punctiforme in der korrekten Orientierung als N-terminale translationale Fusion mit dem rbcS Transitpeptid enthält, heisst pJONP 96.
Beispiel S.¬ Herstellung von Expressionsvektoren zur blütenspezifischen Expression der NP196- Ketolase aus Nostoc punctiforme ATCC 29133 in Tagetes erecta
Die Expression der NP196-Ketolase aus Nostoc punctiforme in Tagetes erecta erfolgte mit dem Transitpeptid rbcS aus Erbse (Anderson et al. 1986, Biochem J. 240:709-715). Die Expression erfolgte unter Kontrolle des blütenspezifischen Promoters EPSPS aus Petunia hybrida (Datenbankeintrag M37029: Nukleotidregion 7-1787; Benfey et al. (1990) Plant Cell 2: 849-856).
Das DNA Fragment, das die EPSPS Promoterregion (SEQ ID No. 88) aus Petunia hybrida beinhaltet, wurde mittels PCR unter Verwendung genomischer DNA (nach Standardmethoden aus Petunia hybrida isoliert) sowie der Primer EPSPS-1 (SEQ ID No. 89) und EPSPS-2 (SEQ ID No. 90) hergestellt.
Die PCR-Bedingungen waren die folgenden:
Die PCR zur Amplifikation der DNA, die das EPSPS-Promoterfragment (Datenbankeintrag M37029: Nukleotidregion 7-1787) beinhaltet, erfolgte in einem 50 μl Reaktionsan- satz, in dem enthalten war:
- 100 ng genomischer DNA aus A. thaliana
- 0.25 mM dNTPs
- 0.2 mM EPSPS-1 (SEQ ID No. 89) - 0.2 mM EPSPS-2 (SEQ ID No. 90)
- 5 ul 10X PCR-Puffer (Stratagene)
- 0.25 ul Pfu Polymerase (Stratagene)
- 28.8 ul Aq. Dest.
Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:
1X94°C 2 Minuten 35X94°C 1 Minute 50°C 1 Minute 72°C 2 Minute 1X72°C 10 Minuten
Das 1773 Bp Amplifikat wurde unter Verwendung von Standardmethoden in den PCR- Klonierungsvektor pCR 2.1 (Invitrogen) kloniert und das Plasmid pEPSPS erhalten.
Sequenzierung des Klons pEPSPS bestätigte eine Sequenz, die sich lediglich durch zwei Deletion (Basen ctaagtttcagga in Position 46-58 der Sequenz M37029; Basen aaaaatat in Position 1422-1429 der Sequenz M37029) und die Basenaustausche (T statt G in Position 1447 der Sequenz M37029; A statt C in Position 1525 der Sequenz M37029; A statt G in Position 1627 der Sequenz M37029) von der publizierten EPSPS- Sequenz (Datenbankeintrag M37029: Nukleotidregion 7-1787) unterscheidet. Die zwei Deletionen and die zwei Basenaustausche an den Positionen 1447 und 1627 der Sequenz M37029 wurden in einem unabhängigen Amplifikationsexperiment reproduziert und repräsentieren somit die tatsächliche Nukleotidsequenz in den verwendeten Petunia hybrida Pflanzen.
Der Klon pEPSPS wurde daher für die Klonierung in den Expressionsvektor pJONP196 verwendet.
Die Klonierung erfolgte durch Isolierung des 1763 Bp Sacl-Hindlll Fragmentes aus pEPSPS und Ligierung in den Sacl-Hindlll geschnittenen Vektor pJ0NP196. Der Klon, der den Promoter EPSPS anstelle des ursprünglichen Promoters d35S enthält, heisst pJOESP:NP196. Diese Expressionskassette enthält das Fragment NP196 in der kor- rekten Orientierung als N-terminale Fusion mit dem rbcS-Transitpeptid.
Zur Herstellung des Expressionsvektors MSP107 wurde das 2.961 KB bp Sacl-Xhol Fragment aus pJOESP:NP196 mit dem Sacl-Xhol geschnittenen Vektor pSUN3 ligiert MSP 107 beinhaltet Fragment EPSPS den EPSPS Promoter (1761 bp), Fragment rbcS TP FRAGMENT das rbcS Transitpeptid aus Erbse (194 bp), Fragment NP196 KETO CDS (761 bp), kodierend für die Nostoc punctiforme NP 96-Ketolase, Fragment OCS Terminator (192 bp) das Polyadenylierungssignal von Octopin-Synthase.
Die Herstellung einer Expressionsvektors für die Agrobacterium-vermittelte Transformation der EPSPS-kontrollierten NP196-Ketolase aus Nostoc punctiforme in Tagetes erecta erfolgte unter der Verwendung des binären Vektors pSUN5 (WO02/00900).
Zur Herstellung des Expressionsvektors MSP108 wurde das 2.961 KB bp Sacl-Xhol Fragment aus pJOESP:NP196 mit dem Sacl-Xhol geschnittenen Vektor pSUN5 ligiert. MSP 108 beinhaltet Fragment EPSPS den EPSPS Promoter (1761 bp), Fragment rbcS TP FRAGMENT das rbcS Transitpeptid aus Erbse (194 bp), Fragment NP196 KETO CDS (761 bp), kodierend für die Nostoc punctiforme NP196-Ketolase , Fragment OCS Terminator (192 bp) das Polyadenylierungssignal von Octopin-Synthase.
Beispiel 4:
Amplifikation einer DNA, die die gesamte Primärsequenz der NP195-Ketolase aus
Nostoc punctiforme ATCC 29133 kodiert
Die DNA, die für die NP195-Ketolase aus Nostoc punctiforme ATCC 29133 kodiert, wurde mittels PCR aus Nostoc punctiforme ATCC 29133 (Stamm der "American Type Culture Collection") amplifiziert. Die Präparation von genomischer DNA aus einer Suspensionskultur von Nostoc punctiforme ATCC 29133 wurde in Beispiel 19 beschrieben.
Die Nukleinsäure, kodierend eine Ketolase aus Nostoc punctiforme ATCC 29133, wurde mittels "polymerase chain reaction" (PCR) aus Nostoc punctiforme ATCC 29133 unter Verwendung eines sense-spezifischen Primers (NP195-1 , SEQ ID No. 91) und eines antisense-spezifischen Primers (NP195-2 SEQ ID No. 92) amplifiziert.
Die PCR-Bedingungen waren die folgenden:
Die PCR zur Amplifikation der DNA, die für ein Ketolase Protein bestehend aus der gesamten Primärsequenz kodiert, erfolgte in einem 50 ul Reaktionsansatz, in dem ent- halten war:
- 1 ul einer Nostoc punctiforme ATCC 29133 DNA (hergestellt wie oben beschrieben)
- 0.25 mM dNTPs
- 0.2 mM NP195-1 (SEQ ID No. 91) - 0.2 mM NP195-2 (SEQ ID No. 92)
- 5 ul 10X PCR-Puffer (TAKARA)
- 0.25 ul R Taq Polymerase (TAKARA)
- 25.8 ul Aq. Dest.
Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:
1X94°C 2 Minuten 35X94°C 1 Minute 55°C 1 Minuten 72°C 3 Minuten 1X72°C 10 Minuten
Die PCR-Amplifikation mit SEQ ID No. 91 und SEQ ID No. 92 resultierte in einem 819 Bp-Fragment, das für ein Protein bestehend aus der gesamten Primärsequenz kodiert (NP195, SEQ ID No. 93). Unter Verwendung von Standardmethoden wurde das Ampli- fikat in den PCR-Klonierungsvektor pCR 2.1 (Invitrogen) kloniert und der Klon pNP195 erhalten. Sequenzierung des Klons pNP195 mit dem M13F- und dem M13R-Primer bestätigte eine Sequenz, welche mit der DNA-Sequenz von 55,604-56,392 des Datenbankeintrages NZ_AABC010001965 identisch ist, mit der Ausnahme, daß T in Position 55.604 durch A ersetzt wurde, um ein Standard-Startkodon ATG zu erzeugen. Diese ! Nukleotidsequenz würde in einem unabhängigem Amplifikationsexperiment reprodu- ziert und repräsentiert somit die Nukleotidsequenz im verwendeten Nostoc punctiforme ATCC 29133.
Dieser Klon pNP195 wurde daher für die Klonierung in den Expressionsvektor pJO (in Beispiel 6 beschrieben) verwendet. Die Klonierung erfolgte durch Isolierung des 809 Bp Sphl-Fragmentes aus pNP195 und Ligierung in den Sphl geschnittenen Vektor pJO. Der Klon, der die NP195-Ketolase von Nostoc punctiforme in der korrekten Orientierung als N-terminale translationale Fusion mit dem rbcS Transitpeptid enthält, heisst pJONP195. Beispiel 5: Amplifikation einer DNA, die die gesamte Primärsequenz der NODK-Ketolase aus No- dularia spumignea NSOR10 kodiert.
Die DNA, die für die Ketolase aus Nodularia spumignea NSOR10 kodiert, wurde mittels PCR aus Nodularia spumignea NSOR10 amplifiziert.
Für die Präparation von genomischer DNA aus einer Suspensionskultur von Nodularia spumignea NSOR10 , die 1 Woche mit Dauerlicht und konstantem Schütteln (150 rpm) at 25°C in BG ^-Medium (1.5 g/l NaNO3, 0.04 g/l KaPO^HsO, 0.075 g/l MgSO4xH2O, 0.036 g/l CaCI2x2H2O, 0.006 g/l citric acid, 0.006 g/l Ferric ammonium citrate, 0.001 g/l
EDTA disodium magnesium, 0.04 g/l Na2CO3, 1ml Trace Metal Mix "A5+Co" (2.86 g/l H3BO3, 1.81 g/l MnCI2x4H2o, 0.222 g/l ZnSθ4x7H20, 0.39 g/l NaMoθ4X2H2o, 0.079 g/l CuSO^δH∑O, 0.0494 g/l Co(NO3)2x6H2O) gewachsen war, wurden die Zellen durch Zentrifugation geerntet, in flüssigem Stickstoff eingefroren und im Mörser pulverisiert.
Protokoll für die DNA-Isolation aus Nodularia spumignea NSOR10 :
Aus einer 10 ml Flüssigkultur wurden die Bakterienzellen durch 10 minütige Zentrifugation bei 8000 rpm pelletiert. Anschließend wurden die Bakterienzellen in flüssigem Stickstoff mit einem Mörser zerstoßen und gemahlen. Das Zellmaterial wurde in 1 ml 10mM TrisJHCI (pH 7.5) resuspendiert und in ein Eppendorf-Reaktionsgefäß (2ml Volumen) überführt. Nach Zugabe von
100 μl Proteinase K (Konzentration: 20 mg/ml) wurde die Zellsuspension für 3 Stunden bei 37°C inkubiert. Anschließend wurde die Suspension mit 500 μl Phenol extrahiert. Nach δminütiger Zentrifugation bei 13 000 upm wurde die obere, wässrige Phase in ein neues 2 ml-Eppendorf-Reaktionsgefäß überführt. Die Extraktion mit Phenol wurde 3mal wiederholt. Die DNA wurde durch Zugabe von 1/10 Volumen 3 M Natriumacetat (pH 5.2) und 0.6 Volumen Isopropanol gefällt und anschließend mit 70% Ethanol gewaschen. Das DNA-Pellet wurde bei Raumtemperatur getrocknet, in 25 μl Wasser auf- genommen und unter Erhitzung auf 65°C gelöst.
Die Nukleinsäure, kodierend eine Ketolase aus Nodularia spumignea NSOR10, wurde mittels "polymerase chain reaction" (PCR) aus Nodularia spumignea NSOR10 unter Verwendung eines sense-spezifischen Primers (NODK-1, SEQ ID No. 94) und eines antisense-spezifischen Primers (NODK-2 SEQ ID No. 95) amplifiziert.
Die PCR-Bedingungen waren die folgenden:
Die PCR zur Amplifikation der DNA, die für ein Ketolase Protein bestehend aus der gesamten Primärsequenz kodiert, erfolgte in einem 50 ul Reaktionsansatz, in dem enthalten war:
- 1 ul einer Nodularia spumignea NSOR10 DNA (hergestellt wie oben beschrieben)
- 0.25 mM dNTPs - 0.2 mM NODK-1 (SEQ ID No. 94)
- 0.2 mM NODK-2 (SEQ ID No. 95)
- 5 ul 10X PCR-Puffer (TAKARA)
- 0.25 ul R Taq Polymerase (TAKARA)
- 25.8 ul Aq. Dest.
Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:
1X94°C 2 Minuten 35X94°C 1 Minute 55°C 1 Minuten 72°C 3 Minuten 1X72°C 10 Minuten
Die PCR-Amplifikation mit SEQ ID No. 94 und SEQ ID No. 95 resultierte in einem 720 Bp-Fragment, das für ein Protein bestehend aus der gesamten Primärsequenz kodiert (NODK, SEQ ID No. 96). Unter Verwendung von Standardmethoden wurde das Ampli- fikat in den PCR-Klonierungsvektor pCR 2.1 (Invitrogen) kloniert und der Klon pNODK erhalten.
Sequenzierung des Klons pNODK mit dem M13F- und dem M13R-Primer bestätigte eine Sequenz, welche mit der DNA-Sequenz von 2130-2819 des Datenbank-eintrages AY210783 identisch ist (inverse orientiert zum veröffentlichen Datenbankeintrag). Diese Nukleotidsequenz wurde in einem unabhängigem Amplifikationsexperiment reproduziert und repräsentiert somit die Nukleotidsequenz im verwendeten Nodularia spu- mignea NSOR10. J
Dieser Klon pNODK wurde daher für die Klonierung in den Expressionsvektor pJO (in Beispiel 6 beschrieben) verwendet. Die Klonierung erfolgte durch Isolierung des 710 Bp Sphl-Fragmentes aus pNODK und Ligierung in den Sphl geschnittenen Vektor pJO. Der Klon, der die NODK-Ketolase von Nodularia spumignea in der korrekten Orientierung als N-terminale translationale Fusion mit dem rbcS Transitpeptid enthält, heisst pJONODK.
Beispiel 6:
Herstellung von Expressionsvektoren zur blütenspezifischen Expression der NODK- Ketolase aus Nodularia spumignea NSOR10 in Lycopersicon esculentum und Tagetes erecta.
Die Expression der NODK-Ketolase aus Nodularia spumignea NSOR10 in L. esculentum und Tagetes erecta erfolgte mit dem Transitpeptid rbcS aus Erbse (Anderson et al. 1986, Biochem J. 240:709-715). Die Expression erfolgte unter Kontrolle des blütenspezifischen Promoters EPSPS aus Petunia hybrida (Datenbankeintrag M37029: Nukleotidregion 7-1787; Benfey et al. (1990) Plant Cell 2: 849-856).
Der Klon pEPSPS (in Beispiel 8 beschrieben) wurde daher für die Klonierung in den Expressionsvektor pJONODK (in Beispiel 12 beschrieben) verwendet.
Die Klonierung erfolgte durch Isolierung des 1763 Bp Sacl-Hindlll Fragmentes aus pEPSPS und Ligierung in den Sacl-Hindlll geschnittenen Vektor pJONODK. Der Klon, der den Promoter EPSPS anstelle des ursprünglichen Promoters d35S enthält, heisst pJOESP:NODK. Diese Expressionskassette enthält das Fragment NODK in der korrekten Orientierung als N-terminale Fusion mit dem rbcS-Transitpeptid.
Die Herstellung eines Expressionsvektors für die Agrobacterium-vermittelte Transformation der EPSPS-kontrollierten NODK-Ketolase aus Nodularia spumignea NSOR10 in L esculentum erfolgte unter der Verwendung des binären Vektors pSUN3 (WO02/00900).
Zur Herstellung des Expressionsvektors MSP115 wurde das 2.889 KB bp Sacl-Xhol Fragment aus pJOESP:NODK mit dem Sacl-Xhol geschnittenen Vektor pSUN3 ligiert. MSP 115 beinhaltet Fragment EPSPS den EPSPS Promoter (1761 bp), Fragment rbcS TP FRAGMENT das rbcS Transitpeptid aus Erbse (194 bp), Fragment NODK KETO CDS (690 bp), kodierend für die Nodularia spumignea NSOR10 NODK-Ketolase, Fragment OCS Terminator (192 bp) das Polyadenylierungssignal von Octopin- Synthase.
Die Herstellung einer Expressionsvektors für die Agrobacterium-vermittelte Transformation der EPSPS-kontrollierten NODK-Ketolase aus Nodularia spumignea NSOR10 in Tagetes erecta erfolgte unter der Verwendung des binären Vektors pSUN5 (WO02/00900).
Zur Herstellung des Express ionsvektors MSP116 wurde das 2.889 KB bp Sacl-Xhol Fragment aus pJOESP:NODK mit dem Sacl-Xhol geschnittenen Vektor pSUN5 ligiert. MSP 116 beinhaltet Fragment EPSPS den EPSPS Promoter (1761 bp), Fragment rbcS TP FRAGMENT das rbcS Transitpeptid aus Erbse (194 bp), Fragment NODK KETO CDS (690 bp), kodierend für die Nodularia spumignea NSOR10 NODK-Ketolase, Fragment OCS Terminator (192 bp) das Polyadenylierungssignal von Octopin- Synthase.
Beispiel 6A:
Herstellung von Expressionsvektoren zur blütenspezifischen Expression der NP196- Ketolase aus Nostoc punctiforme ATCC 29133 in Lycopersicon esculentum und Tagetes erecta.
Die Expression der NP196-Ketolase aus Nostoc punctiforme in Tagetes erecta erfolgte mit dem Transitpeptid rbcS aus Erbse (Anderson et al. 1986, Biochem J. 240:709-715). Die Expression erfolgte unter Kontrolle des blütenspezifischen Promoters PDS (Phytoendesaturase) aus Lycopersicon esculentum (Datenbankeintrag U46919).
Das DNA Fragment, das die PDS Promoterregion (SEQ ID No. 100) aus Lycopersicon esculentum beinhaltet, wurde mittels PCR unter Verwendung genomischer DNA (nach Standardmethoden aus Lycopersicon esculentum isoliert) sowie der Primer PDS-1 (SEQ ID No. 98) und PDS-2 (SEQ ID No. 99) hergestellt.
Die PCR-Bedingungen waren die folgenden:
Die PCR zur Amplifikation der DNA, die das PDS-Promoterfragment beinhaltet, erfolgte in einem 50 μl Reaktionsansatz, in dem enthalten war:
100 ng genomischer DNA aus Lycopersicon esculentum 0.25 mM dNTPs 0.2 mM PDS-1 (SEQ ID No. 98) 0.2 mM PDS-2 (SEQ ID No. 99) - 5 uMOX PCR-Puffer (Stratagene) 0.25 ul Pfu Polymerase (Stratagene) 28.8 ul Aq. Dest.
Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:
1X 94°C 2 Minuten
35X 94°C 1 Minute 50°C 1 Minute 72°C 2 Minute
1X 72°C 10 Minuten
Das 2096 Bp Amplifikat wurde unter Verwendung von Standardmethoden in den PCR-
Klonierungsvektor pCR 2.1 (Invitrogen) kloniert und das Plasmid pPDS erhalten.
Der Klon pPDS wurde daher für die Klonierung in den Expressionsvektor pJOEPS:NP196 (in Beispiel 3 beschrieben) verwendet.
Die Klonierung erfolgte durch Isolierung des 2094 Bp Ecl136ll-Smal Fragmentes aus pPDS und Ligierung in den Ecl136ll-Hindlll geschnittenen Vektor pJOEPS:NP196. Die Hindi Il-Schnittstelle des Vektors wurde zuvor durch Behandlung mit dem Klenow-
Enzym in eine „blunt-end"-Schnittstelle überführt. Der Klon, der den Promoter PDS anstelle des ursprünglichen Promoters EPSPS enthält, heisst pJOPDS:NP196. Diese Expressionskassette enthält das Fragment NP196 in der korrekten Orientierung als N- terminale Fusion mit dem rbcS-Transitpeptid.
Die Herstellung eines Expressionsvektors für die Agrobacterium-vermittelte Transformation der PDS-kontrollierten NP196-Ketolase aus Nostoc punctiforme in L. esculentum erfolgte unter der Verwendung des binären Vektors pSUN3 (WO02/00900).
Zur Herstellung des Expressionsvektors MSP117 wurde das 3.3 KB Ecl136ll-Xhol Fragment aus pJOPDS:NP196 mit dem Ecl136ll-Xhol geschnittenen Vektor pSUN3 ligiert. MSP 117 beinhaltet Fragment PDS den PDS Promoter, Fragment rbcS TP FRAGMENT das rbcS Transitpeptid aus Erbse (194 bp), Fragment NP196 KETO CDS (761 bp), kodierend für die Nostoc punctiforme NP196-Ketolase, Fragment OCS Ter- minator (192 bp) das Polyadenylierungssignal von Octopin-Synthase.
Die Herstellung einer Expressionsvektors für die Agrobacterium-vermittelte Transformation der PDS-kontrollierten NP196-Ketolase aus Nostoc punctiforme in Tagetes e- recta erfolgte unter der Verwendung des binären Vektors pSUN5 (WO02/00900).
Zur Herstellung des Expressionsvektors MSP118 wurde das 3.3 KB bp Ecl136ll-Xhol Fragment aus pJOPDS:NP196 mit dem Ecl136ll-Xhol geschnittenen Vektor pSUN5 ligiert. MSP 118 beinhaltet Fragment PDS den PDS Promoter, Fragment rbcS TP FRAGMENT das rbcS Transitpeptid aus Erbse (194 bp), Fragment NP196 KETO CDS (761 bp), kodierend für die Nostoc punctiforme NP196-Ketolase , Fragment OCS Terminator (192 bp) das Polyadenylierungssignal von Octopin-Synthase.
Beispiel 6B:
Herstellung von Expressionsvektoren zur blütenspezifischen Expression der NP196- Ketolase aus Nostoc punctiforme ATCC 29133 in Lycopersicon esculentum und Tagetes erecta.
Die Expression der NP196-Ketolase aus Nostoc punctiforme in Tagetes erecta erfolgte mit dem Transitpeptid rbcS aus Erbse (Anderson et al. 1986, Biochem J. 240:709-715). Die Expression erfolgte unter Kontrolle des biütenspezifischen Promoters B-GENE (chromoplastenspezifische lycopene B-cyclase) aus Lycopersicon esculentum (Datenbankeintrag AAZ51517).
Das DNA Fragment, das die B-GENE Promoterregion (SEQ ID No. 103) aus Lycoper- sicon esculentum beinhaltet, wurde mittels PCR unter Verwendung genomischer DNA
(nach Standardmethoden aus Lycopersicon esculentum isoliert) sowie der Primer BGEN-1 (SEQ ID No. 101) und BGEN-2 (SEQ ID No. 102) hergestellt.
Die PCR-Bedingungen waren die folgenden:
Die PCR zur Amplifikation der DNA, die das B-GENE-Promoterfragment beinhaltet, erfolgte in einem 50 μl Reaktionsansatz, in dem enthalten war:
- 100 ng genomischer DNA aus Lycopersicon esculentum - 0.25 mM dNTPs 0.2 mM BGEN-1 (SEQ ID No. 101) 0.2 mM BGEN-2 (SEQ ID No. 102) 5 ul 10X PCR-Puffer (Stratagene) 0.25 ul Pfu Polymerase (Stratagene) - 28.8 ul Aq. Dest.
Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:
1X 94°C 2 Minuten
35X 94°C 1 Minute 50°C 1 Minute 72°C 2 Minute
1X 72°C 10 Minuten
Das 1222 Bp Amplifikat wurde unter Verwendung von Standardmethoden in den PCR- Klonierungsvektor pCR 2.1 (Invitrogen) kloniert und das Plasmid pB-GENE erhalten.
Der Klon pB-GENE wurde daher für die Klonierung in den Expressionsvektor pJOEPS:NP196 (in Beispiel 3 beschrieben) verwendet.
Die Klonierung erfolgte durch Isolierung des 1222 Bp Sacl-Hindlll Fragmentes aus pB- GENE und Ligierung in den Sacl-Hindlll geschnittenen Vektor pJOEPS:NP196. Der Klon, der den Promoter B-GENE anstelle des ursprünglichen Promoters EPSPS enthält, heisst pJOBGEN:NP196. Diese Expressionskassette enthält das Fragment NP196 in der korrekten Orientierung als N-terminale Fusion mit dem rbcS- Transitpeptid.
Die Herstellung eines Expressionsvektors für die Agrobacterium-vermittelte Transformation der PDS-kontrollierten NP196-Ketolase aus Nostoc punctiforme in L. esculen- tum erfolgte unter der Verwendung des binären Vektors pSUN3 (WO02/00900).
Zur Herstellung des Expressionsvektors MSP119 wurde das 2.4 KB Sacl-Xhol Fragment aus pJOBGEN:NP196 mit dem Sacl-Xhol geschnittenen Vektor pSUN3 ligiert. MSP 119 beinhaltet Fragment B-GENE den B-GENE Promoter, Fragment rbcS TP FRAGMENT das rbcS Transitpeptid aus Erbse (194 bp), Fragment NP196 KETO CDS (761 bp), kodierend für die Nostoc punctiforme NP196-Ketolase, Fragment OCS Terminator (192 bp) das Polyadenylierungssignal von Octopin-Synthase.
Die Herstellung einer Expressionsvektors für die Agrobacterium-vermittelte Transfor- mation der PDS-kontrollierten NP196-Ketolase aus Nostoc punctiforme in Tagetes e- recta erfolgte unter der Verwendung des binären Vektors pSUN5 (WO02/00900).
Zur Herstellung des Expressionsvektors MSP120 wurde das 2.4 KB bp Sacl-Xhol Fragment aus pJOBGEN:NP196 mit dem Sacl-Xhol geschnittenen Vektor pSUN5 li- giert. MSP 120 beinhaltet Fragment B-GENE den B-GENE Promoter, Fragment rbcS TP FRAGMENT das rbcS Transitpeptid aus Erbse (194 bp), Fragment NP196 KETO CDS (761 bp), kodierend für die Nostoc punctiforme NP196-Ketolase , Fragment OCS Terminator (192 bp) das Polyadenylierungssignal von Octopin-Synthase.
Beispiel 6C:
Herstellung von Expressionsvektoren zur blütenspezifischen Expression der NP196- Ketolase aus Nostoc punctiforme ATCC 29133 in Lycopersicon esculentum und Tagetes erecta.
Die Expression der NP196-Ketolase aus Nostoc punctiforme in Tagetes erecta erfolgte mit dem Transitpeptid rbcS aus Erbse (Anderson et al. 1986, Biochem J. 240:709-715). Die Expression erfolgte unter Kontrolle des blütenspezifischen Promoters CHRC (chromoplast-specific carotenoid-associated protein) aus Cucumis sativa (Datenbankeintrag AF099501).
Das DNA Fragment, das die CHRC Promoterregion (SEQ ID No. 106) aus Lycopersicon esculentum beinhaltet, wurde mittels PCR unter Verwendung genomischer DNA (nach Standardmethoden aus Lycopersicon esculentum isoliert) sowie der Primer CHRC-1 (SEQ ID No. 104) und CHRC-2 (SEQ ID No. 105) hergestellt.
Die PCR-Bedingungen waren die folgenden:
Die PCR zur Amplifikation der DNA, die das CHRC-Promoterfragment beinhaltet, erfolgte in einem 50 μl Reaktionsansatz, in dem enthalten war:
100 ng genomischer DNA aus Lycopersicon esculentum 0.25 mM dNTPs 0.2 mM CHRC-1 (SEQ ID No. 101) 0.2 M CHRC-2 (SEQ ID No. 102) 5 ul 10X PCR-Puffer (Stratagene) 0.25 ul Pfu Polymerase (Stratagene) 28.8 ul Aq. Dest.
Die PCR wurde unter folgenden Zyklusbedingungen durchgefü
1X 94°C 2 Minuten
35X 94°C 1 Minute 50°C 1 Minute 72°C 2 Minute
1X 72°C 10 Minuten
Das 1222 Bp Amplifikat wurde unter Verwendung von Standardmethoden in den PCR- Klonierungsvektor pCR 2.1 (lnvitrogen) kloniert und das Plasmid pCHRC erhalten.
Der Klon pB-GENE wurde daher für die Klonierung in den Expressionsvektor pJOEPS:NP196 (in Beispiel 2 beschrieben) verwendet.
Die Klonierung erfolgte durch Isolierung des 1540 Bp Sacl-Hindlll Fragmentes aus pCHRC und Ligierung in den Sacl-Hindlll geschnittenen Vektor pJOEPS:NP196. Der Klon, der den Promoter CHRC anstelle des ursprünglichen Promoters EPSPS enthält, heisst pJOCHRC:NP196. Diese Expressionskassette enthält das Fragment NP196 in der korrekten Orientierung als N-terminale Fusion mit dem rbcS-Transitpeptid. ie Herstellung eines Expressionsvektors für die Agrobacterium-vermittelte Transfor- mation der PDS-kontrollierten NP196-Ketolase aus Nostoc punctiforme in L. esculentum erfolgte unter der Verwendung des binären Vektors pSUN3 (WO02/00900).
Zur Herstellung des Expressionsvektors MSP121 wurde das 2.6 KB Sacl-Xhol Fragment aus pJOCHRC:NP196 mit dem Sacl-Xhol geschnittenen Vektor pSUN3 ligiert. MSP 121 beinhaltet Fragment CHRC den CHRC Promoter, Fragment rbcS TP FRAGMENT das rbcS Transitpeptid aus Erbse (194 bp), Fragment NP196 KETO CDS (761 bp), kodierend für die Nostoc punctiforme NP196-Ketolase, Fragment OCS Terminator (192 bp) das Polyadenylierungssignal von Octopin-Synthase.
Die Herstellung einer Expressionsvektors für die Agrobacterium-vermittelte Transformation der PDS-kontrollierten NP196-Ketolase aus Nostoc punctiforme in Tagetes e- recta erfolgte unter der Verwendung des binären Vektors pSUN5 (WO02/00900).
Zur Herstellung des Expressionsvektors MSP122 wurde das 2.6 KB bp Sacl-Xhol Fragment aus pJOCHRC:NP196 mit dem Sacl-Xhol geschnittenen Vektor pSUN5 ligiert. MSP 122 beinhaltet Fragment CHRC den CHRC Promoter, Fragment rbcS TP FRAGMENT das rbcS Transitpeptid aus Erbse (194 bp), Fragment NP196 KETO CDS (761 bp), kodierend für die Nostoc punctiforme NP196-Ketolase , Fragment OCS Ter- minator (192 bp) das Polyadenylierungssignal von Octopin-Synthase.
Beispiel 7:
Herstellung transgener Tagetes Pflanzen
Tagetessamen werden sterilisiert und auf Keimungsmedium (MS-Medium; Murashige and Skoog, Physiol. Plant. 15(1962), 473-497) pH 5,8, 2% Saccharose) aufgelegt. Die Keimung erfolgt in einem Temperatur/Licht/Zeitintervall von 18-28°C/20-200 μE/3 - 16 Wochen, bevorzugt jedoch bei 21 °C, 20-70 μE, für 4-8 Wochen.
Alle Blätter der sich bis dahin entwickelten in vitro Pflanzen werden geerntet und quer zur Mittelrippe geschnitten. Die dadurch entstehenden Blattexplantate mit einer Größe von 10 - 60 mm2 werden im Verlaufe der Präparation in flüssigem MS - Medium bei Raumtemperatur für maximal 2 h aufbewahrt.
Ein beliebiger Agrobakterium tumefaciens Stamm, bevorzugt aber ein supervirulenter Stamm, wie z.B. EHA105 mit einem entsprechenden Binärplasmid, das ein Selekti- onsmarkergen (bevorzugt bar oder pat) sowie ein oder mehrere Trait- oder Reportergene tragen kann wird (pS5FNR:NOST,pS5AP3:NOST pS5FNR:NP196, pS5EPS:NP196, pS5FNR:NP195, pS5EPS:NP195, pS5FNR:NODK und pS5EPS:NODK), über Nacht angezogen und für die Co-Kultivierung mit dem Blattmaterial verwendet. Die Anzucht des Bakterienstammes kann wie folgt erfolgen: Eine Einzelkolonie des entsprechenden Stammes wird in YEB (0,1 % Hefeextrakt, 0,5 % Rindfleischextrakt, 0,5 % Pepton, 0,5 % Saccharose, 0,5 % Magnesiumsulfat x 7 H20) mit 25 mg/l Kanamycin angeimpft und bei 28°C für 16 bis 20 h angezogen. Anschließend wird die Bakteriensuspension durch Zentrifugation bei 6000 g für 10 min geerntet und derart in flüssigem MS Medium resuspendiert, daß eine OD600 von ca. 0,1 bis 0,8 ent- stand.Diese Suspension wird fuer die C-Kultivierung mit dem Blattmaterial verwendet.
Unmittelbar vor der Co-Kultivierung wird das MS-Medium, in dem die Blätter aufbe- wahrt worden sind, durch die Bakteriensuspension ersetzt. Die Inkubation der Blatt-
chen in der Agrobakteriensuspension erfolgte für 30 min unter leichtem Schütteln bei Raumtemperatur. Anschließend werden die infizierten Explantate auf ein mit Agar (z.B. 0,8 % Plant Agar (Duchefa, NL) verfestigtes MS-Medium mit Wachstumsregulatoren, wie beispielsweise 3 mg/1 Benzylaminopurin (BAP) sowie 1 mg/l Indolylessigsäure (IAA) aufgelegt. Die Orientierung der Blätter auf dem Medium ist bedeutungslos. Die Kultivierung der Explantate findet für 1 bis 8 Tage, bevorzugt aber für 6 Tage statt, dabei können folgende Bedingungen angewendet werden: Lichtintensität: 30 - 80 μMol/m2 x sec, Temperatur: 22 - 24°C, hell/dunkel Wechsel von 16/8 Stunden. Anschließend werden die co-kultivierten Explantate auf frisches MS-Medium, bevorzugt mit den gleichen Wachstumsregulatoren übertragen, wobei dieses zweite Medium zusätzlich ein Antibiotikum zur Unterdrückung des Bakterienwachstums enthält. Timentin in einer Konzentration von 200 bis 500 mg/l ist für diesen Zweck sehr geeignet. Als zweite selektive Komponente wird eine für die Selektion des Transformationserfolges eingesetzt. Phosphinothricin in einer Konzentration von 1 bis 5 mg/l selektiert sehr effi- zient, aber auch andere selektive Komponenten gemäß des zu verwendenden Verfahrens sind denkbar.
Nach jeweils ein bis drei Wochen erfolgt der Transfer der Explantate auf frisches Medium bis sich Sproßknospen und kleine Sprosse entwickeln, die dann auf das gleiche Basalmedium einschließlich Timentin und PPT oder alternative Komponenten mit Wachstumsregulatoren, nämlich z.B. 0,5 mg/l Indolylbuttersäure (IBA) und 0,5 mg/l Gibberillinsäure GA3, zur Bewurzelung übertragen werden. Bewurzelte Sprosse können ins Gewächshaus überführt werden.
Zusätzlich zu der beschriebenen Methode sind folgende vorteilhafte Modifikationen möglich:
Bevor die Explantate mit den Bakterien infiziert werden, können sie für 1 bis 12 Tage, bevorzugt 3 - 4, auf das oben beschriebene Medium für die Co-Kultur vorinkubiert werden. Anschließend erfolgt die Infektion, Co-Kultur und selektive Regeneration wie oben beschrieben.
Der pH Wert für die Regeneration (normalerweise 5,8) kann auf pH 5,2 gesenkt werden. Dadurch wird die Kontrolle des Agrobakterienwachstums verbessert.
Die Zugabe von AgNO3 (3 - 10 mg/l) zum Regenerationsmedium verbessert den Zustand der Kultur einschließlich der Regeneration selbst.
Komponenten, die die Phenolbildung reduzieren und dem Fachmann bekannt sind, wie z.B. Zitronensäure, Ascorbinsäure, PVP u.v.a.m., wirken sich positiv auf die Kultur aus.
Für das gesamte Verfahren kann auch flüssiges Kulturmedium Verwendung finden. Die Kultur kann auch auf handelsüblichen Trägern, die auf dem flüssigen Medium positioniert werden inkubiert werden.
Gemäß der oben beschriebenen Transformationsmethode wurden mit folgenden Ex- pressionskonstrukten folgende Linien erhalten:
M it pS5FNR:NOST wurde beispielsweise erhalten: MSP102-1 , MSP102-2, MSP102-3,
Mi t pS5AP3:NOST wurde beispielsweise erhalten: MSP104-1 , MSP104-2, MSP104-3
M it pS5FNR:NP196 wurde erhalten: MSP106-1, MSP106-2, MSP106-3
M t pS5EPS:NP196 wurde erhalten: MSP108-1, MSP108-2, MSP108-3
Mi t pS5FNR:NP195 wurde erhalten: MSP110-1 , MSP110-2, MSP110-3
Mi t pS5EPS:NP195 wurde erhalten: MSP112-1 , MSP112-2, MSP112-3
M t pS5FNR:NODK wurde erhalten: MSP114-1 , MSP114-2, MSP114-3
M it pS5EPS:NODK wurde erhalten: MSP116-1 , MSP116-2, MSP116-3
M t pS3PDS:NP196 wurde erhalten: MSP117-1 , MSP117-2, MSP117-3
M it pS5PDS:NP196 wurde erhalten: MSP118-1 , MSP118-2, MSP118-3
M t pS3CHRC:NP196 wurde erhalten: MSP119-1 , MSP119-2, MSP119-3
M it pS5CHRC:NP196 wurde erhalten: MSP120-1 , MSP120-2, MSP120-3
M t pS3BGEN:NP196 wurde erhalten: MSP121-1 , MSP121-2, MSP121-3
M it pS5BGEN:NP196 wurde erhalten: MSP122-1, MSP122-2, MSP122-3
Beispiel 8:
Enzymatische Lipase-katalysierte Hydrolyse von Carotinoidestem aus Pflanzenmaterial und Identifizierung der Carotinoide
Allgemeine Arbeitsvorschrift
a) Gemörsertes Pflanzenmaterial (z.B. Petalenmaterial) (30-100 mg Frischgewicht) wird mit 100% Aceton (dreimal 500μl; jeweils etwa 15 Minuten schütteln) extrahiert. Das Lösungsmittel wird evaporiert. Carotinoide werden anschließend in 495 μl Aceton aufgenommen, 4,95 ml Kaliumphosphatpuffer (100 , pH7.4) zugegeben und gut gemischt. Danach erfolgt die Zugabe von ca. 17 mg Bile-Salze (Sigma) und 149 μl einer NaCI/CaCI2-Lösung (3M NaCI und 75 mM CaCI2). Die Suspension wird für 30 Minuten bei 37°C inkubiert. Für die enzymatische Hydrolyse der Carotinoidester wird 595 μl einer Lipaselösung (50 mg/ml Lipase Typ7 von Candida rugosa (Sigma)) zugegeben und unter Schütteln bei 37C inkubiert. Nach etwa 21 Stunden erfolgte nochmals eine Zugabe von 595 μl Lipase mit erneuter Inkubation von mindestens 5 Stunden bei 37°C. Anschließend werden etwa ca. 700 mg Na2SO4 in der Lösung gelöst. Nach Zugabe von 1800 μl Petrolether werden die Carotinoide durch kräftig Mischen in die organische Phase extrahiert. Dieses Ausschütteln wird solange wiederholt, bis die organische Phase farblos bleibt. Die Petroletherfraktionen werden vereinigt und der Petrolether evaporiert. Freie Carotinoide werden in 100-120 μl Aceton aufgenommen. Mittels HPLC und C30-reverse phase-Säule können freie Carotinoide aufgrund von Retenti- onszeit und UV-VIS-Spektren identifiziert werden.
Die verwendeten Bile-Salze oder Gallensäuresalze sind 1 :1 Mischungen von Cholat und Desoxycholat.
b) Arbeitsvorschrift für Aufarbeitung, wenn nur geringe Mengen an Carotinoidestem im Pflanzenmaterial vorhanden sind
Alternativ kann die Hydrolyse der Carotinoidester durch Lipase aus Candida rugosa nach Trennung mittels Dünnschichtchromatographie erreicht werden. Dazu werden 50- 100mg Pflanzenmaterial dreimal mit etwa 750μl Aceton extrahiert. Der Lösungsmit- telextrakt wird im Vakuum einrotiert (erhöhte Temperaturen von 40-50°C sind tolera- bel). Danach erfolgt Zugabe von 300μl Petrolether:Aceton (Verhältnis 5:1) und gute Durchmischung. Schwebstoffe werden durch Zentrifugation (1-2 Minuten) sedimentiert. Die obere Phase wird in ein neues Reaktionsgefäß überführt. Das verbleibende Rest wird erneut mit 200μl Petrolether:Aceton (Verhältnis 5:1) extrahiert und Schwebstoffe werden durch Zentrifugation entfernt. Die beiden Extrakte werden zusammengeführt (Volumen 500μl) und die Lösungsmittel evaporiert. Der Rückstand wird in 30μl Petrol- ether:Aceton (Verhältnis 5:1) resuspendiert und auf eine Dünnschichtplatte (Silica-Gel 60, Merck) aufgetragen. Falls mehr als eine Auftragung für präparativ-analytische Zwecke erforderlich ist, sollten mehrere Aliquots mit jeweils 50-100 mg Frischgewicht in der
beschriebenen Weise für die dünnschichtchromatographische Trennung aufbereitet werden.
Die Dünnschichtplatte wird in PetroletheπAceton (Verhältnis 5:1) entwickelt. Caroti- noidbanden können visuell aufgrund ihrer Farbe identifiziert werden. Einzelne Caroti- noidbanden werden ausgekratzt und können für präparativ-analytische Zwecke gepoolt werden. Mit Aceton werden die Carotinoide vom Silica-Material eluiert; das Lösungsmittel wird im Vakuum evaporiert. Zur Hydrolyse der Carotinoidester wird der Rückstand in 495μl Aceton gelöst, 17mg Bile-Salze (Sigma), 4,95ml 0.1M Kaliumphosphat- puffer (pH 7,4) und 149μl (3M NaCI, 75mM CaCI2) zugegeben. Nach guter Durchmischung wird 30min bei 37°C äquilibriert. Danach erfolgt die Zugabe von 595μl Lipase von Candida rugosa (Sigma, Stammlösung von 50mg/ml in 5mM CaCI2). Über Nacht erfolgt die Inkubation mit Lipase unter Schütteln bei 37°C. Nach etwa 21 Stunden wird nochmals die gleiche Menge an Lipase zugegeben; für mindestens 5 Stunden wird nochmals bei 37°C unter Schütteln inkubiert. Dann erfolgt die Zugabe von 700mg Na2SO (wasserfrei); mit 1800μl Petrolether wird für ca. 1 Minute ausgeschüttelt und die Mischung bei 3500 Umdrehungen/Minute für 5 Minuten zentrifugiert. Die obere Phase wird in ein neues Reaktionsgefäß überführt und das Ausschütteln so lange wiederholt, bis die obere Phase farblos ist. Die vereinigte Petrolether-Phase wird im Vaku- um eingeengt (Temperaturen von 40-50°C sind möglich). Der Rückstand wird in 120μl Aceton, eventuell mittels Ultraschall, gelöst. Die gelösten Carotinoide können mittels HPLC unter Verwendung einer C30-Säule getrennt und anhand von Referenzsubstanzen quantifiziert werden. Beispiel 9: HPLC-Analyse freier Carotinoide
Die Analyse der nach der Arbeitsvorschriften in Beispiel 15 erhaltenen Proben erfolgt unter folgenden Bedingungen:
Folgende HPLC-Bedingungen wurden eingestellt. Trennsäule: Prontosil C30-Säule, 250 x 4,6 mm, (Bischoff, Leonberg, Germany) Flussrate: 1.0 ml/min Eluenten: Laufmittel A - 100% Methanol Laufmittel B - 80% Methanol, 0.2% Ammoniumacetat Laufmittel C - 100% t-Butyl-methylether Detektion: 300-530 nm
Gradientenprofil:
Einige typische Retentionszeiten für erfindungsgemäß gebildete Carotinoide sind z.B. Violaxanthin 11 , 7 min, Astaxanthin 17,7 min, Adonixanthin 19 min, Adonirubin 19,9 min, Zeaxanthin 21 min.
Claims
Patentansprüche
1. Verwendung eines Promotors, ausgewählt aus der Gruppe
A) EPSPS Promotor
B) B-Gene Promotor
C) PDS Promotor und
D) CHRC Promotor
zur Expression von Genen in Pflanzen der Gattung Tagetes, mit der Maßgabe, dass Gene aus Pflanzen der Gattung Tagetes, die in Wildtyppflanzen der Gattung Tagetes von dem jeweiligen Promotor exprimiert werden, ausgenommen sind.
2. Verwendung nach Anspruch 1 , dadurch gekennzeichnet, dass die Expression spe- zifisch in Blüten erfolgt.
3. Verwendung nach Anspruch 2, dadurch gekennzeichnet, dass die Expression spezifisch in Petalen erfolgt.
4. Verwendung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der EPSPS Promotor gemäß Anspruch 1
A1) die Nukleinsäuresequenz SEQ. ID. NO. 1, 2 oder 3 oder A2) eine von diesen Sequenzen durch Substitution, Insertion oder Deletion von Nukleotiden abgeleitete Sequenz, die eine Identität von mindestens 60 % auf Nukleinsäureebene mit der jeweiligen Sequenz SEQ. ID. NO. 1, 2 oder 3 aufweist oder A3) eine Nukleinsäuresequenz, die mit der Nukleinsäuresequenz SEQ. ID. NO. 1 , 2 oder 3 unter stringenten Bedingungen hybridisiert oder A4) funktionell äquivalente Fragmente der Sequenzen unter A1), A2) oder A3) enthält.
5. Verwendung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der B-Gene Promotor gemäß Anspruch 1
B1) die Nukleinsäuresequenz SEQ. ID. NO. 4, 5 oder 6 oder
B2) eine von diesen Sequenzen durch Substitution, Insertion oder Deletion von Nukleotiden abgeleitete Sequenz, die eine Identität von mindestens 60 % auf Nukleinsäureebene mit der jeweiligen Sequenz SEQ. ID. NO. 4, 5 oder 6 aufweist oder B3) eine Nukleinsäuresequenz, die mit der Nukleinsäuresequenz SEQ. ID. NO. 4, 5 oder 6 unter stringenten Bedingungen hybridisiert oder B4) funktionell äquivalente Fragmente der Sequenzen unter B1), B2) oder B3) enthält. i. Verwendung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der PDS Promotor gemäß Anspruch 1
C1) die Nukleinsäuresequenz SEQ. ID. NO. 7, 8, 9 oder 10 oder C2) eine von diesen Sequenzen durch Substitution, Insertion oder Deletion von Nukleotiden abgeleitete Sequenz, die eine Identität von mindestens 60 % auf Nukleinsäureebene mit der jeweiligen Sequenz SEQ. ID. NO. 7, 8, 9 oder 10 aufweist oder C3) eine Nukleinsäuresequenz, die mit der Nukleinsäuresequenz SEQ. ID. NO. 7, 8, 9 oder 10 unter stringenten Bedingungen hybridisiert oder C4) funktionell äquivalente Fragmente der Sequenzen unter C1), C2) oder C3) enthält.
7. Verwendung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der CHRC Promotor gemäß Anspruch 1
D1) die Nukleinsäuresequenz SEQ. ID. NO. 11 , 12, 13 oder 14 oder D2) eine von diesen Sequenzen durch Substitution, Insertion oder Deletion von Nukleotiden abgeleitete Sequenz, die eine Identität von mindestens 60 % auf Nukleinsäureebene mit der jeweiligen Sequenz SEQ. ID. NO. 11, 12, 13 oder 14 aufweist oder D3) eine Nukleinsäuresequenz, die mit der Nukleinsäuresequenz SEQ. ID. NO. 11, 12, 13 oder 14 unter stringenten Bedingungen hybridisiert oder D4) funktionell äquivalente Fragmente der Sequenzen unter D1), D2) oder D3) enthält.
8. Genetisch veränderte Pflanze der Gattung Tagetes, wobei die genetische Veränderung zu einer Erhöhung oder Verursachung der Expressionsrate mindestens eines Gens im Vergleich zum Wildtyp führt und bedingt ist durch die Regulation der Expression dieses Gens in der Pflanze durch Promotoren gemäß einem der An- Sprüche 1 bis 7.
9. Genetisch veränderte Pflanze nach Anspruch 8, dadurch gekennzeichnet, dass die Regulation der Expression von Genen in der Pflanze durch Promotoren gemäß einem der Ansprüche 1 bis 7 dadurch erreicht wird, dass man a) eine oder mehrere Promotoren gemäß einem der Ansprüche 1 bis 7 in das Genom der Pflanze einbringt, so dass die Expression eines oder mehrerer endogenen Gene unter der Kontrolle der eingebrachten Promotoren gemäß einem der Ansprüche 1 bis 7 erfolgt oder b) ein oder mehrere Gene in das Genom der Pflanze einbringt, so dass die Expression eines oder mehrerer der eingebrachten Gene unter der Kontrolle der endogenen Promotoren gemäß einem der Ansprüche 1 bis 7 erfolgt oder c) ein oder mehrere Nukleinsäurekonstrukte, enthaltend mindestens einen Promotor gemäß einem der Ansprüche 1 bis 7 und funktionell verknüpft eine oder mehrere, zu exprimierende Gene, in die Pflanze einbringt.
10. Genetisch veränderte Pflanze der Gattung Tagetes, enthaltend einen Promotor gemäß einem der Ansprüche 1 bis 7 und funktionell verknüpft ein zu eprimierendes Gen, mit der Maßgabe, dass Gene aus Pflanzen der Gattung Tagetes, die in Wildtyppflanzen der Gattung Tagetes von dem jeweiligen Promotor exprimiert werden, ausgenommen sind.
11. Genetisch veränderte Pflanze nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass die zu exprimierenden Gene ausgewählt sind aus der Gruppe Nukleinsäuren kodierend ein Protein aus den Biosyntheseweg von proteinogenen und nicht-proteinogenen Aminosäuren, Nukleinsäuren kodierend ein Protein aus dem Biosyntheseweg von Nukleotiden und Nukleosiden, Nukleinsäuren kodierend ein Protein aus dem Biosyntheseweg von organischen Säuren, Nukleinsäuren kodierend ein Protein aus dem Biosyntheseweg von Lipiden und Fettsäuren, Nuk-
leinsäuren kodierend ein Protein aus dem Biosyntheseweg von Diolen, Nukleinsäuren kodierend ein Protein aus dem Biosyntheseweg von Konhlenhydraten, Nukleinsäuren kodierend ein Protein aus dem Biosyntheseweg von aromatischen Verbindung, Nukleinsäuren kodierend ein Protein aus dem Biosyntheseweg von Vitaminen, Nukleinsäuren kodierend ein Protein aus dem Biosyntheseweg von Carotinoiden, Nukleinsäuren kodierend ein Protein aus dem Biosyntheseweg von Cofaktoren und Nukleinsäuren kodierend ein Protein aus dem Biosyntheseweg von Enzymen, wobei die Gene gegebenenfalls weitere Regulationselemente enthalten können.
12. Genetisch veränderte Pflanze nach Anspruch 11, dadurch gekennzeichnet, dass man als zu exprimierende Gene Nukleinsäuren kodierend ein Protein aus dem Biosyntheseweg von Carotinoiden verwendet.
13. Genetisch veränderte Pflanze nach Anspruch 12, dadurch gekennzeichnet, dass die zu exprimierenden Gene ausgewählt sind aus der Gruppe Nukleinsäuren, kodierend eine Ketolase, Nukleinsäuren kodierend eine ß-Hydroxylase, Nukleinsäuren kodierend eine ß-Cyclase, Nukleinsäuren kodierend eine ε-Cyclase, Nukleinsäuren kodierend eine Epoxidase, Nukleinsäuren kodierend eine HMG-CoA- Reduktase, Nukleinsäuren kodierend eine (E)-4-Hydroxy-3-Methylbut-2-enyl- Diphosphat-Reduktase, Nukleinsäuren kodierend eine 1-Deoxy-D-Xylose-5- Phosphat-Synthase, Nukleinsäuren kodierend eine 1-Deoxy-D-Xylose-5-Phosphat- Reduktoisomerase, Nukleinsäuren kodierend eine Isopentenyl-Diphosphat-Δ- Isomerase, Nukleinsäuren kodierend eine Geranyl-Diphosphat-Synthase, Nuklein- säuren kodierend eine Farnesyl-Diphosphat-Synthase, Nukleinsäuren kodierend eine Geranyl-Geranyl-Diphosphat-Synthase, Nukleinsäuren kodierend eine Phytoen-Synthase, Nukleinsäuren kodierend eine Phytoen-Desaturase, Nukleinsäuren kodierend eine Prephytoen-Synthase, Nukleinsäuren kodierend eine Zeta-Carotin- Desaturase, Nukleinsäuren kodierend ein crtlSO Protein, Nukleinsäuren kodierend ein FtsZ Protein und Nukleinsäuren kodierend ein MinD Protein.
14. Verfahren zur Herstellung von biosynthetischen Produkten durch Kultivierung von genetisch veränderten Pflanzen der Gattung Tagetes gemäß einem der Ansprüche 8 bis 13.
15. Verfahren zur Herstellung von Carotinoiden durch Kultivierung von genetisch veränderten Pflanzen gemäß einem der Ansprüche 8 bis 13, dadurch gekennzeichnet, dass die zu exprimierenden Gene ausgewählt sind aus der Gruppe Nukleinsäuren, kodierend eine Ketolase, Nukleinsäuren kodierend eine ß-Hydroxylase, Nuklein- säuren kodierend eine ß-Cyclase, Nukleinsäuren kodierend eine ε-Cyclase, Nukleinsäuren kodierend eine Epoxidase, Nukleinsäuren kodierend eine HMG-CoA- Reduktase, Nukleinsäuren kodierend eine (E)-4-Hydroxy-3-Methylbut-2-enyl- Diphosphat-Reduktase, Nukleinsäuren kodierend eine 1 -Deoxy-D-Xylose-5- Phosphat-Synthase, Nukleinsäuren kodierend eine 1-Deoxy-D-Xylose-5-Phosphat- Reduktoisomerase, Nukleinsäuren kodierend eine Isopentenyl-Diphosphat-Δ- Isomerase, Nukleinsäuren kodierend eine Geranyl-Diphosphat-Synthase, Nukleinsäuren kodierend eine Farnesyl-Diphosphat-Synthase, Nukleinsäuren kodierend eine Geranyl-Geranyl-Diphosphat-Synthase, Nukleinsäuren kodierend eine Phytoen-Synthase, Nukleinsäuren kodierend eine Phytoen-Desaturase, Nukleinsäuren kodierend eine Prephytoen-Synthase, Nukleinsäuren kodierend eine Zeta-Carotin- Desaturase, Nukleinsäuren kodierend ein crtlSO Protein, Nukleinsäuren kodierend ein FtsZ Protein und Nukleinsäuren kodierend ein MinD Protein.
16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, dass man nach dem Kulti- vieren die genetisch veränderten Pflanzen erntet und anschließend die Carotinoide aus den genetisch veränderten Pflanzen isoliert.
17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass man die Blüten der genetisch veränderten Pflanzen erntet und anschließend die Carotinoide aus den Petalen der genetisch veränderten Pflanzen isoliert.
18. Verfahren nach einem der Ansprüche 15 bis 17, dadurch gekennzeichnet, dass die Carotinoide ausgewählt sind aus der Gruppe Phytoen, Lycopin, Lutein, Zeaxanthin, Astaxanthin, Canthaxanthin, Echinenon, 3-Hydroxyechinenon, 3'- Hydroxyechinenon, Adonirubin, Violaxanthin und Adonixanthin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP04763695A EP1658371A2 (de) | 2003-08-18 | 2004-07-31 | Promotoren zur expression von genen in tagetes |
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2003/009105 WO2004018385A2 (de) | 2002-08-20 | 2003-08-18 | Verfahren zur herstellung von zeaxanthin und/oder dessen biosynthetischen zwischen- und/oder folgeprodukten |
PCT/EP2003/009107 WO2004018695A2 (de) | 2002-08-20 | 2003-08-18 | Verfahren zur herstellung von ketocarotinoiden in früchten von pflanzen |
PCT/EP2003/009106 WO2004018694A2 (de) | 2002-08-20 | 2003-08-18 | Verfahren zur herstellung von ketocarotinoiden in genetisch veränderten organismen |
PCT/EP2003/009109 WO2004017749A2 (de) | 2002-08-20 | 2003-08-18 | Verwendung von astaxanthinhaltigen pflanzen oder pflanzenteilen der gattung tagetes als futtermittel |
PCT/EP2003/009102 WO2004018693A2 (de) | 2002-08-20 | 2003-08-18 | Verfahren zur herstellung von ketocarotinoiden in blütenblättern von pflanzen |
PCT/EP2003/009101 WO2004018688A1 (de) | 2002-08-20 | 2003-08-18 | VERFAHREN ZUR HERSTELLUNG VON β-CAROTINOIDEN |
DE102004007623A DE102004007623A1 (de) | 2004-02-17 | 2004-02-17 | Promotoren zur Expression von Genen in Tagetes |
EP04763695A EP1658371A2 (de) | 2003-08-18 | 2004-07-31 | Promotoren zur expression von genen in tagetes |
PCT/EP2004/008624 WO2005019460A2 (de) | 2003-08-18 | 2004-07-31 | Promotoren zur expression von genen in tagetes |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1658371A2 true EP1658371A2 (de) | 2006-05-24 |
Family
ID=36204256
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04763695A Withdrawn EP1658371A2 (de) | 2003-08-18 | 2004-07-31 | Promotoren zur expression von genen in tagetes |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP1658371A2 (de) |
-
2004
- 2004-07-31 EP EP04763695A patent/EP1658371A2/de not_active Withdrawn
Non-Patent Citations (1)
Title |
---|
See references of WO2005019460A2 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2005019460A2 (de) | Promotoren zur expression von genen in tagetes | |
EP1531683B1 (de) | Verwendung von astaxanthinhaltigen pflanzen oder pflanzenteilen der gattung tagetes als futtermittel | |
DE10300649A1 (de) | Verfahren zur Herstellung von Ketocarotinoiden durch Kultivierung von genetisch veränderten Organismen | |
US20120156718A1 (en) | Production of Ketocarotenoids in Plants | |
DE19909637A1 (de) | Verfahren zur Verbesserung des agronomischen Wertes und der ernährungsphysiologischen Eigenschaften von Pflanzen | |
WO2005019467A1 (de) | Verfahren zur herstellung von ketocarotinoiden in genetisch veränderten, nichthumanen organismen | |
EP2087117B1 (de) | Neue ketolasen zur herstellung von ketocarotenoiden in targets | |
DE10238980A1 (de) | Verfahren zur Herstellung von Ketocarotinoiden in Blütenblättern von Pflanzen | |
EP2032705A2 (de) | Verwendung eines plastid-lipid associated protein-promotors (pap-promotors) zur heterologen genexpression | |
EP1658371A2 (de) | Promotoren zur expression von genen in tagetes | |
US20100021962A1 (en) | Use of A Plastid-Lipid Associated Protein Promoter (PAP Promoter) For Heterologous Gene Expression | |
DE102004007624A1 (de) | Neue Ketolasen und Verfahren zur Herstellung von Ketocarotinoiden | |
WO2008058948A1 (en) | Plastid-lipid-associated protein promoters for the production of keto-carotenoids in tagetes | |
DE10111676A1 (de) | Erhöhung des Vitamin-E-Gehalts in Organismen durch Erhöhung der Tyrosinaminotransferase-Aktivität | |
DE10253112A1 (de) | Verfahren zur Herstellung von Ketocarotinoiden in genetisch veränderten Organismen | |
DE10238978A1 (de) | Verfahren zur Herstellung von Ketocarotinoiden in Früchten von Pflanzen | |
EP1658377A1 (de) | VERFAHREN ZUR HERSTELLUNG VON KETOCAROTINOIDEN IN GENETISCH VER&Auml;NDERTEN, NICHTHUMANEN ORGANISMEN | |
DE10238979A1 (de) | Verfahren zur Herstellung von Zeaxanthin und/oder dessen biosynthetischen Zwischen- und/oder Folgeprodukten | |
EP1658372A2 (de) | Ketolasen und verfahren zur herstellung von ketocarotinoiden | |
DE10064454A1 (de) | Veränderung des Gehalts an Feinchemikalien in Organismen durch genetische Veränderung des Shikimatweges |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20060320 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SUNGENE GMBH |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20070410 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20081223 |