EP1658372A2 - Ketolasen und verfahren zur herstellung von ketocarotinoiden - Google Patents

Ketolasen und verfahren zur herstellung von ketocarotinoiden

Info

Publication number
EP1658372A2
EP1658372A2 EP04763696A EP04763696A EP1658372A2 EP 1658372 A2 EP1658372 A2 EP 1658372A2 EP 04763696 A EP04763696 A EP 04763696A EP 04763696 A EP04763696 A EP 04763696A EP 1658372 A2 EP1658372 A2 EP 1658372A2
Authority
EP
European Patent Office
Prior art keywords
sequence
sequence seq
amino acid
ketolase
nucleic acids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04763696A
Other languages
English (en)
French (fr)
Inventor
Matt Sauer
Christel Renate Schopfer
Ralf Flachmann
Karin Herbers
Irene Kunze
Martin Klebsattel
Thomas Luck
Dirk Voeste
Angelika-Maria Pfeiffer
Hendrik Tschoep
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SunGene GmbH
Original Assignee
SunGene GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/EP2003/009101 external-priority patent/WO2004018688A1/de
Priority claimed from PCT/EP2003/009106 external-priority patent/WO2004018694A2/de
Priority claimed from DE102004007624A external-priority patent/DE102004007624A1/de
Application filed by SunGene GmbH filed Critical SunGene GmbH
Priority to EP04763696A priority Critical patent/EP1658372A2/de
Publication of EP1658372A2 publication Critical patent/EP1658372A2/de
Withdrawn legal-status Critical Current

Links

Definitions

  • the present invention relates to a process for the production of ketocarotenoids by cultivating genetically modified, non-human organisms which have a modified ketolase activity compared to the wild type, the genetically modified organisms, their use as food and feed and for the production of ketocarotenoid extracts and new ketolases and nucleic acids encoding these ketolases ..
  • Ketocarotenoids are synthesized de novo in bacteria, algae, fungi and plants.
  • Ketocarotenoids i.e. carotenoids, which contain at least one keto group, such as astaxanthin, canthaxanthin, echinenone, 3-hydroxyechinenone, 3'-hydroxyechinenone, adonirubin and adonixanthin are natural antioxidants and pigments that are produced by some algae and microorganisms as secondary metabolites.
  • ketocarotenoids and in particular astaxanthin are used as pigmenting aids in animal nutrition, especially in trout, salmon and shrimp farming.
  • Natural ketocarotenoids such as natural astaxanthin
  • Nucleic acids encoding a ketolase and the corresponding protein sequences have been isolated and annotated from various organisms, such as nucleic acids encoding a ketolase from Agrobacterium aurantiacum (EP 735 137, Accession NO: D58420), from Alcaligenes sp. PC-1 (EP 735137, Accession NO: D58422), Haematococcus pluvialis Flotow em.
  • EP 735 137 describes the production of xanthophylls in microorganisms, such as, for example, E. coli by introducing ketolase genes (crtW) from Agrobacterium aurantiacum or Alcaligenes sp. PC-1 in microorganisms.
  • ketolase genes crtW
  • WO 98/18910 and Hirschberg et al. describe the synthesis of ketocarotenoids in nectaries of tobacco flowers by introducing the ketolase gene from Haematococcus pluvialis (crtO) into tobacco.
  • WO 01/20011 describes a DNA construct for the production of ketocarotenoids, in particular astaxanthin, in seeds of oilseed plants such as oilseed rape, sunflower, soybean and mustard using a seed-specific promoter and a ketolase from Haematococcus pluvialis.
  • ketolases and processes for the preparation of ketocarotenoids described in the prior art and in particular the processes described for the preparation of astaxanthin have the disadvantage that on the one hand the yield is not yet satisfactory and on the other hand the transgenic organisms have a large amount of hydroxylated by-products , such as zeaxanthin and adonixanthin.
  • the object of the invention was therefore to provide a process for the production of ketocarotenoids by cultivating genetically modified, non-human organisms, or further genetically modified, non-human organisms which produce ketocarotenoids and new, advantageous ketolases to provide, which have the disadvantages of the prior art described above to a lesser extent or no longer or which provide the desired ketocarotenoids, in particular astaxanthin, in higher yields. Accordingly, a method for producing ketocarotenoids has been found by cultivating genetically modified non-human organisms which have an altered ketolase activity compared to the wild type and which altered ketolase activity is caused by a ketolase selected from the group
  • a ketolase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 80% at the amino acid level with the sequence SEQ. ID. NO. 2 has
  • B ketolase containing the amino acid sequence SEQ. ID. NO. 10 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 90% at the amino acid level with the sequence SEQ. ID. NO. 10 has
  • C ketolase containing the amino acid sequence SEQ. ID. NO. 12 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 90% at the amino acid level with the sequence SEQ. ID. NO. 12 or
  • D ketolase containing the amino acid sequence SEQ. ID. NO. 14 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 50% at the amino acid level with the sequence SEQ. ID. NO. 14 has.
  • an altered ketolase activity compared to the wild type is preferably understood to mean a “ketolase activity caused compared to the wild type”.
  • an altered ketolase activity compared to the wild type is preferably understood to mean an “increased ketolase activity compared to the wild type”.
  • non-human organisms according to the invention are preferably naturally able, as starting organisms, to produce carotenoids such as, for example, ⁇ -carotene or zeaxanthin, or can be changed by genetic modification, such as re-regulating metabolic pathways or complementing them Be able to produce carotenoids such as ß-carotene or zeaxanthin.
  • Some organisms, as starting or wild type organisms, are already able to produce ketocarotenoids such as astaxanthin or canthaxanthin.
  • wild type is understood to mean the corresponding starting organism.
  • organism can be understood to mean the non-human starting organism (wild type) or an inventive, genetically modified, non-human organism or both.
  • wild type is used to increase or cause the ketolase activity, for the increase or cause described below, or to cause the hydroxylase activity for which Increase or cause of ⁇ -cyclase activity described below, for the increase in HMG-CoA reductase activity described below, for the increase in (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate described below Reductase activity, for the increase in 1-deoxy-D-xylose-5-phosphate synthase activity described below, for the increase in 1-deoxy-D-xylose-5-phosphate described below.
  • Reductoisomerase activity for the increase in isopenyl diphosphate- ⁇ -isomerase activity described below, for the increase in geranyl diphosphate synthase activity described below, for the increase in famesyl diphosphate synthase activity described below, for the increase in geranyl-geranyl diphosphate synthase activity described below, for the increase in phytoene synthase activity described below, for the increase in phytoene desaturase activity described below, for the increase in zeta-carotene described below Desaturase activity, for the increase in crtlSO activity described below, for the increase in FtsZ activity described below, for the increase in MinD activity described below, for the reduction in ⁇ -cyclase activity described below and for that described below Reduction of endogenous ß-hydroxylase activity u nd the increase in the content of ketocarotenoids was understood as a reference organism. This reference organism is preferably Haematococcus pluvialis for microorganisms which already have
  • This reference organism is preferably Blakeslea for microorganisms which, as a wild type, have no ketolase activity.
  • this reference organism is preferably Adonis aestivalis, Adonis flammeus or Adonis a ⁇ nuus, particularly preferably Adonis aestivalis.
  • This reference organism is particularly preferred for plants which, as wild type, have no ketolase activity in petals, preferably Tagetes erecta, Tagetes patula, Tagetes lucida, Tagetes pringlei, Tagetes palmeri, Tagetes minuta or Tagetes campanulata.
  • Ketolase activity means the enzyme activity of a ketolase.
  • a ketolase is understood to mean a protein which has the enzymatic activity of introducing a keto group on the optionally substituted ⁇ -ionone ring of carotenoids.
  • a ketolase is understood to be a protein which has the enzymatic activity to convert ⁇ -carotene into canthaxanthin.
  • ketolase activity is understood to mean the amount of ⁇ -carotene or amount of canthaxanthin formed by the protein ketolase in a certain time.
  • non-human organisms are used as starting organisms which already have a ketolase activity as wild type or starting organism, such as, for example, Haematococcus pluvialis, Paracoccus marcusii, Xanthophyllomyces dendrorhous, Bacillus circulans, Chlorococcum, Phaffia rhodozyma, Adonis florets (Adonis aestivalis), Neochloris wimmeri, Protosiphon botryoides, Scotiellopsis oocystiformis, Scenedesmus vacuolatus, Chlorela zoofingiensis, Ankistrodesmus braunii, Euglena sanguinea or Bacillus atrophaeus.
  • the genetic modification causes an increase in ketolase activity compared to the wild type or parent organism.
  • the protein ketolase will convert the amount of ß- Carotene or the amount of canthaxanthin formed increases.
  • This increase in ketolase activity is preferably at least 5%, more preferably at least 20%, more preferably at least 50%, further preferably at least 100%, more preferably at least 300%, even more preferably at least 500%, in particular at least 600% of the ketolase Wild type activity.
  • ketolase activity in genetically modified organisms according to the invention and in wild-type or reference organisms is preferably determined under the following conditions:
  • the ketolase activity in plant or microorganism material is determined in accordance with the method of Fraser et al., (J. Biol. Chem. 272 (10): 6128-6135, 1997).
  • the ketolase activity in plant or microorganism extracts is determined with the substrates ⁇ -carotene and canthaxanthin in the presence of lipid (soy lecithin) and detergent (sodium cholate).
  • Substrate / product ratios from the ketolase assays are determined by means of HPLC.
  • the ketolase activity can be increased in various ways, for example by switching off inhibitory regulatory mechanisms at the translation and protein levels or by increasing the gene expression of a nucleic acid encoding a ketolase compared to the Wiid type, for example by inducing the ketolase gene by activators or by introducing nucleic acids encoding a ketolase into the organism.
  • Increasing the gene expression of a nucleic acid encoding a ketolase means, according to the invention, in this embodiment also the manipulation of the expression of the organism's own endogenous ketolases. This can be achieved, for example, by changing the promoter DNA sequence for genes encoding ketolase. Such a change, which results in a changed or preferably increased expression rate of at least one endogenous ketolase gene, can be carried out by deleting or inserting DNA sequences.
  • an increased expression of at least one endogenous ketolase gene can be achieved in that one that is not found in the wild-type organism or modified regulatory protein interacts with the promoter of these genes.
  • Such a regulator can represent a chimeric protein which consists of a DNA binding domain and a transcription activator domain, as described, for example, in WO 96/06166.
  • the ketolase activity is increased compared to the wild type by increasing the gene expression of a nucleic acid encoding a ketolase selected from the group
  • a ketolase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 80% at the amino acid level with the sequence SEQ. ID. NO. 2 has
  • B ketolase containing the amino acid sequence SEQ. ID. NO. 10 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 90% at the amino acid level with the sequence SEQ. ID. NO. 10 has
  • C ketolase containing the amino acid sequence SEQ. ID. NO. 12 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 90% at the amino acid level with the sequence SEQ. ID. NO. 12 or
  • the gene expression of a nucleic acid encoding a ketolase is increased by introducing nucleic acids encoding ketolases selected from the group
  • a ketolase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 80% on amino acids level with the sequence SEQ. ID. NO. 2 has
  • B ketolase containing the amino acid sequence SEQ. ID. NO. 10 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 90% at the amino acid level with the sequence SEQ. ID. NO. 10 has
  • C ketolase containing the amino acid sequence SEQ. ID. NO. 12 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 90% at the amino acid level with the sequence SEQ. ID. NO. 12 or
  • non-human organisms are used as starting organisms which, as a wild type, have no ketolase activity, such as, for example, Blakeslea, Marigold, Tagetes erecta, Tagetes lucida, Tagetes minuta, Tagetes pringlei, Tagetes palmeri and 7a getes campanulata.
  • ketolase activity such as, for example, Blakeslea, Marigold, Tagetes erecta, Tagetes lucida, Tagetes minuta, Tagetes pringlei, Tagetes palmeri and 7a getes campanulata.
  • the genetic modification causes ketolase activity in the organisms.
  • the genetically modified organism according to the invention thus has a ketolase activity in comparison to the genetically unmodified wild type and is therefore preferably able to transgenically express a ketolase, the ketolases being selected from the group
  • a ketolase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 80% at the amino acid level with the sequence SEQ. ID. NO. 2 has
  • B ketolase containing the amino acid sequence SEQ. ID. NO. 10 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 90% at the amino acid level with the sequence SEQ. ID. NO. 10 has
  • C ketolase containing the amino acid sequence SEQ. ID. NO. 12 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 90% at the amino acid level with the sequence SEQ. ID. NO. 12 or
  • the gene expression of a nucleic acid encoding a ketolase is caused analogously to that described above Increasing the gene expression of a nucleic acid encoding a ketolase, preferably by introducing nucleic acids encoding ketolases into the starting organism, the ketolases being selected from group A ketolase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 80% at the amino acid level with the sequence SEQ. ID. NO. 2, B ketolase containing the amino acid sequence SEQ. ID. NO.
  • any ketolase gene that is to say any, can do this in both embodiments
  • ketolases are used, the ketolases being selected from the group
  • a ketolase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 80% at the amino acid level with the sequence SEQ. ID. NO. 2 has
  • B ketolase containing the amino acid sequence SEQ. ID. NO. 10 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 90% at the amino acid level with the sequence SEQ. ID. NO. 10 has
  • D ketolase containing the amino acid sequence SEQ. ID. NO. 14 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 50% at the amino acid level with the sequence SEQ. ID. NO. 14 has.
  • nucleic acids mentioned in the description can be, for example, an RNA, DNA or cDNA sequence.
  • nucleic acid sequences such as that which have already been processed to use corresponding cDNAs.
  • nucleic acids encoding a ketolase and the corresponding ketolases from group A that can be used in the method according to the invention are, for example, the ketolase sequences according to the invention
  • Nodularia spumigena strain NSOR10 Nodularia spumigena strain NSOR10
  • Nucleic acid SEQ ID NO: 1
  • protein SEQ ID NO: 2 (Acc. -No.AY210783, wrong sequence annotated as putative keto analysis),
  • Nodularia spumigena (Culture Collection of Algae at the University of Vienna, (CCAUV) 01-037), nucleic acid: SEQ ID NO: 3, protein: SEQ ID NO: 4),
  • Nodularia spumigena (Culture Collection of Algae at the University of Vienna (CCAUV) 01-053), nucleic acid: SEQ ID NO: 5, protein: SEQ ID NO: 6) and
  • Nodularia spumigena (Culture Collection of Algae at the University of Vienna (CCAUV) 01-061), nucleic acid: SEQ ID NO: 7, protein: SEQ ID NO: 8)
  • nucleic acids encoding a ketolase and the corresponding ketolases from group B which can be used in the method according to the invention are, for example, the ketolase sequences according to the invention Nostoc puntiforme (collection of algal cultures Göttingen (SAG) 60.79 nucleic acid: SEQ ID NO: 9, protein: SEQ ID NO: 10.
  • nucleic acids encoding a ketolase and the corresponding ketolases from group C that can be used in the method according to the invention are, for example, the ketolase sequences according to the invention
  • nucleic acids encoding a ketolase and the corresponding ketolases from group D that can be used in the method according to the invention are, for example, the ketolase sequences according to the invention
  • ketolases and ketolase genes that can be used in the method according to the invention can be obtained, for example, from different organisms whose genomic sequence is known by comparing the identity of the amino acid sequences or the corresponding back-translated nucleic acid sequences from databases with the sequences described above and easy to find especially with the sequences SEQ ID NO: 2 and / or 10 and / or 12 and / or 14.
  • ketolases and ketolase genes can furthermore be derived from the nucleic acid sequences described above, in particular from the sequences SEQ ID NO: 1 and / or 9 and / or, 11 and / or 13 from different organisms, the genomic sequence of which is not is known to be easily found by hybridization techniques in a manner known per se.
  • hybridization and this condition applies to all nucleic acid sequences in the description, can take place under moderate (low stringency) or preferably under stringent (high stringency) conditions.
  • the conditions during the washing step can be selected from the range of conditions limited by those with low stringency (with 2X SSC at 50 ° C) and those with high stringency (with 0.2X SSC at 50 ° C, preferably at 65 ° C) (20X SSC: 0.3 M sodium citrate, 3 M sodium chloride, pH 7.0).
  • the temperature during the washing step can be raised from moderate conditions at room temperature, 22 ° C, to stringent conditions at 65 ° C.
  • Both parameters, salt concentration and temperature, can be varied simultaneously, one of the two parameters can be kept constant and only the other can be varied.
  • Denaturing agents such as formamide or SDS can also be used during hybridization. In the presence of 50% formamide, the hybridization is preferably carried out at 42 ° C.
  • Group A ketolases contain the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 80%, preferably at least 85%, more preferably at least 90%, more preferably at least 95%, more preferably at least 97%, particularly preferably at least 99% at the amino acid level with the sequence SEQ. ID. NO. 2 has.
  • Group B ketolases contain the amino acid sequence SEQ. ID. NO. 10 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 90%, more preferably at least 95%, more preferably at least 97%, particularly preferably at least 99% at the amino acid level with the sequence SEQ. ID. NO. 10 has.
  • Group C ketolases contain the SEQ amino acid sequence. ID. NO. 12 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 90%, more preferably at least 95%, more preferably at least 97%, particularly preferably at least 99% at the amino acid level with the sequence SEQ. ID. NO. 12 has.
  • the group D ketolases contain the amino acid sequence SEQ. ID. NO. 14 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 50%, more preferably at least 60%, more preferably at least 70%, more preferably at least 80%, more preferably at least 85%, more preferably at least 90%, more preferably at least 95%, more preferably at least 97%, particularly preferably at least 99% at the amino acid level with the sequence SEQ. ID. NO. 14 has.
  • substitution is to be understood as the exchange of one or more amino acids by one or more amino acids. So-called conservative exchanges are preferably carried out, in which the replaced amino acid has a similar property to the original amino acid, for example replacement of Glu by Asp, Gin by Asn, Val by Ile, Leu by Ile, Ser by Thr.
  • Deletion is the replacement of an amino acid with a direct link.
  • Preferred positions for deletions are the termini of the polypeptide and the links between the individual protein domains.
  • Inserts are insertions of amino acids into the polypeptide chain, with a direct bond being formally replaced by one or more amino acids.
  • Identity between two proteins means the identity of the amino acids over the respective total protein length, in particular the identity that is obtained by comparison using the Vector NTI Suite 7.1 software from Informax (USA) using the clustal method (Higgins DG, Sharp PM Fast and sensitive multiple sequence alignments on a microcomputer. Comput Appl. Biosci. 1989 Apr; 5 (2): 151-1) is calculated using the following parameters:
  • Pairwise alignment parameters FAST algorithm on K-tuplesize 1 Gap penalty 3 Window size 5 Number of best diagonals 5
  • a protein which has an identity of at least 80% at the amino acid level with a specific sequence is accordingly understood to be a protein which has an identity of at least 80% when comparing its sequence with the specific sequence, in particular according to the above-mentioned program logarithm with the above parameter set.
  • a protein which has, for example, an identity of at least 80% at the amino acid level with the sequence SEQ ID NO: 2 is accordingly understood to be a protein which, when its sequence is compared with the sequence
  • SEQ ID NO: 2 in particular according to the above program logarithm with the above parameter set, has an identity of at least 80%.
  • a protein which has, for example, an identity of at least 90% at the amino acid level with the sequence SEQ ID NO: 10 is accordingly understood to be a protein which, when comparing its sequence with the sequence SEQ ID NO: 10, in particular according to the above program logarithm
  • the above parameter set has an identity of at least 90%.
  • a protein which has, for example, an identity of at least 90% at the amino acid level with the sequence SEQ ID NO: 12 is accordingly understood to be a protein which, when comparing its sequence with the sequence SEQ ID NO: 12, in particular according to the above program logarithm
  • the above parameter set has an identity of at least 90%.
  • a protein which has, for example, an identity of at least 50% at the amino acid level with the sequence SEQ ID NO: 14 is accordingly understood to be a protein which, when its sequence is compared with the sequence SEQ ID NO: 14, in particular according to the program logic above. with the above parameter set has an identity of at least 50%.
  • Suitable nucleic acid sequences can be obtained, for example, by back-translating the polypeptide sequence in accordance with the genetic code. Those codons that are frequently used in accordance with the organism-specific codon usage are preferably used for this. The codon usage can easily be determined on the basis of computer evaluations of other, known genes of the organisms in question.
  • a nucleic acid containing the sequence SEQ ID NO: 2 is introduced into the organism.
  • a nucleic acid containing the sequence SEQ ID NO: 10 is introduced into the organism.
  • a nucleic acid containing the sequence SEQ ID NO: 12 is introduced into the organism.
  • a nucleic acid containing the sequence SEQ ID NO: 14 is introduced into the organism.
  • ketolase genes can also be produced in a manner known per se by chemical synthesis from the nucleotide building blocks, for example by fragment condensation of individual overlapping, complementary nucleic acid building blocks of the double helix.
  • the chemical synthesis of oligonucleotides can be carried out, for example, in a known manner using the phosphoamidite method (Voet, Voet, 2nd edition, Wiley Press New York, pp. 896-897).
  • the attachment of synthetic oligonucleotides and the filling of gaps using the Klenow fragment of DNA polymerase and ligation reactions as well as general cloning methods are described in Sambrook et al. (1989) Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press.
  • plants are cultivated which, in addition to the wild type, have an increased or caused hydroxylase activity and / or ⁇ -cyclase activity.
  • ⁇ -cyclase activity changed compared to the wild type is preferably understood to mean “ ⁇ -cyclase activity caused compared to the wild type”.
  • a .beta.-cyclase activity changed in comparison to the wild type preferably understood to mean an “increased ⁇ -cyclase activity compared to the Wiid type”.
  • hydroxylase activity that is changed in comparison with the wild type is preferably understood to mean “hydroxylase activity caused in comparison with the wild type”.
  • a “hydroxylase activity changed in comparison to the wild type” is preferably understood to mean “an increased hydroxylase activity in comparison to the wild type”.
  • Hydroxylase activity means the enzyme activity of a hydroxylase.
  • a hydroxylase is understood to mean a protein which has the enzymatic activity of introducing a hydroxyl group on the optionally substituted ⁇ -ionone ring of carotenoids.
  • a hydroxylase is understood to mean a protein which has the enzymatic activity to convert ⁇ -carotene into zeaxanthin or canthaxanthin into astaxanthin.
  • hydroxyase activity is understood to mean the amount of ⁇ -carotene or canthaxanthin converted or the amount of zeaxanthin or astaxanthin formed in a certain time by the protein hydroxylase.
  • the amount of ⁇ -carotene or canthaxantine or the amount of zeaxanthin or astaxanthin formed is increased by the protein hydroxylase in a certain time compared to the wild type.
  • This increase in the hydroxylase activity is preferably at least 5%, more preferably at least 20%, more preferably at least 50%, more preferably at least 100%, more preferably at least 300%, even more preferably at least 500%, in particular at least 600% of the hydroxylase activity of the wild type.
  • ⁇ -cyclase activity means the enzyme activity of a ⁇ -cyclase.
  • a ß-cyclase is understood to mean a protein which has the enzymatic activity to convert a terminal, linear residue of lycopene into a ß-ionone ring. to lead.
  • a ⁇ -cyclase is understood to be a protein which has the enzymatic activity to convert ⁇ -carotene into ⁇ -carotene.
  • ß-cyclase activity is understood to mean the amount of ⁇ -carotene converted or the amount of ß-carotene formed in a certain time by the protein ß-cyclase.
  • the amount of ⁇ -carotene converted or the amount of ⁇ -carotene formed is increased by the protein ß-cyclase in a certain time compared to the wild type.
  • This increase in the ⁇ -cyclase activity is preferably at least 5%, more preferably at least 20%, more preferably at least 50%, more preferably at least 100%, more preferably at least 300%, even more preferably at least 500%, in particular at least 600% of the ⁇ - Wild-type cyclase activity.
  • hydroxylase activity in genetically modified organisms according to the invention and in wild-type or reference organisms is preferably determined under the following conditions:
  • the activity of the hydroxylase is according to Bouvier et al. (Biochim. Biophys. Acta 1391 (1998), 320-328) in vitro. Ferredoxin, ferredoxin-NADP oxidoreductase, catalase, NADPH and beta-carotene with mono- and digalactosylglycerides are added to a certain amount of organism extract.
  • the hydroxylase activity is particularly preferably determined under the following conditions according to Bouvier, Keller, d'Harlingue and Camara (Xanthophyll bio-synthesis: molecular and functional characterization of carotenoid hydroxylases from pepper fruits (Capsicum annuum L; Biochim. Biophys. Acta 1391 ( 1998), 320-328):
  • the in vitro assay is carried out in a volume of 0.250 ml volume.
  • the mixture contains 50 mM potassium phosphate (pH 7.6), 0.025 mg ferredoxin from spinach, 0.5 units ferredoxin-NADP + oxidoreductase from spinach, 0.25 mM NADPH, 0.010 mg beta-carotene (emulsified in 0.1 mg Tween 80), 0.05 mM a mixture of mono - and Digalactosylglyceriden (1: 1), 1 unit catalysis, 0.2 mg bovine serum albumin and organism extract in different volumes.
  • the reaction mixture is incubated at 30 ° C for 2 hours.
  • reaction products are extracted with organic solvent such as acetone or chloroform / methanol (2: 1) and determined by means of HPLC.
  • organic solvent such as acetone or chloroform / methanol (2: 1)
  • determination of the ⁇ -cyclase activity in genetically modified organisms according to the invention and in wiid-type or reference organisms is preferably carried out under the following conditions:
  • the activity of the ⁇ -cyclase is determined according to Fräser and Sandmann (Biochem. Biophys. Res. Comm. 185 (1) (1992) 9-15) / n vitro. Potassium phosphate is used as a buffer for a certain amount of organism extract (pH 7.6) , Lycopene as substrate, Stro- maprotein from paprika, NADP +, NADPH and ATP added.
  • the ⁇ -cyclase activity is particularly preferably determined under the following conditions according to Bouvier, d'Hariingue and Camara (Molecular Analysis of carotenoid cyclae inhibition; Arch. Biochem. Biophys. 346 (1) (1997) 53-64):
  • the in vitro assay is carried out in a volume of 250 ⁇ l volume.
  • the batch contains 50 mM potassium phosphate (pH 7.6), different amounts of plant extract, 20 nM lycopene, 250 ⁇ g of chromoplastidic stromal protein from paprika, 0.2 mM NADP +, 0.2 mM NADPH and 1 mM ATP.
  • NADP / NADPH and ATP are dissolved in 10 ⁇ l ethanol with 1 mg Tween 80 immediately before the addition to the incubation medium.
  • the reaction products extracted in chloroform are analyzed by HPLC.
  • the hydroxylase activity and / or ⁇ -cyclase activity can be increased in various ways, for example by switching off inhibitory regulatory mechanisms at the expression and protein level or by increasing the gene expression of nucleic acids encoding a hydroxylase and / or of nucleic acids encoding one ⁇ -cyclase compared to the wild type.
  • the increase in the gene expression of the nucleic acids encoding a hydroxylase and / or the increase in the gene expression of the nucleic acid encoding a ⁇ -cyclase, as compared to the wild type, can also be achieved in various ways, for example by inducing the hydroxylase gene and / or ⁇ -cyclase gene by activators or by introducing one or more hydroxylase gene copies and / or ⁇ -cyclase gene copies, ie by introducing at least one nucleic acid encoding a hydroxylase and / or at least one nucleic acid, encoding a ß-cyclase, in the organism.
  • Increasing the gene expression of a nucleic acid, encoding a hydroxylase and / or ⁇ -cyclase also means, according to the invention, the manipulation of the expression of the organisms' own endogenous hydroxylase and / or ⁇ -cyclase.
  • an altered or increased expression of an endogenous hydroxylase and / or ⁇ -cyclase gene can be achieved in that a regulator protein which does not occur in the non-transformed organism interacts with the promoter of this gene.
  • Such a regulator can represent a chimeric protein which consists of a DNA binding domain and a transcription activator domain, as described, for example, in WO 96/06166.
  • the gene expression of a nucleic acid encoding a hydroxylase is increased and / or the gene expression of a nucleic acid encoding a ⁇ -cyclase is increased by introducing at least one nucleic acid encoding a hydroxylase and / or by introducing at least one a nucleic acid encoding a ⁇ -cyclase in the organism.
  • any hydroxylase gene or each ⁇ -cyclase gene that is to say any nucleic acid which codes for a hydroxylase and any nucleic acid which codes for a ⁇ -cyclase, can be used for this purpose.
  • genomic hydroxylase or. ⁇ -cyclase nucleic acid sequences from eukaryotic sources which contain introns are for the case that the host organism is unable or cannot be able to express the corresponding hydroxylase or ⁇ -cyclase , preferably already processed nucleotides To use acid sequences like the corresponding cDNAs.
  • hydroxylase genes are nucleic acids encoding a hydroxylase from Haematococcus pluvialis, accession AX038729, WO 0061764); (Nucleic acid: SEQ ID NO: 15, protein: SEQ ID NO: 16), and coding hydroxylases of the following accession numbers:
  • Another particularly preferred hydroxylase is the hydroxylase from tomato (nucleic acid: SEQ. ID. No. 47; protein: SEQ. ID. No. 48).
  • ⁇ -cyclase genes are nucleic acids encoding a ⁇ -cyclase from tomato (Accession X86452). (Nucleic acid: SEQ ID NO: 17, protein: SEQ ID NO: 18), and ⁇ -cyclases of the following access numbers:
  • AAK07430 lycopene beta-cyclase [Adonis palaestina]
  • AAG 10429 beta cyclase [Tagetes erecta]
  • CAA67331 lycopene cyclase [Narcissus pseudonarcissus]
  • AAM45381 beta cyclase [Tagetes erecta]
  • AAG21133 chromoplast-specific lycopene beta-cyclase [Lycopersicon esculentum] AAF18989 lycopene beta-cyclase [Daucus carota]
  • ZP_001140 hypothetical protein [Prochlorococcus marinus str. MIT9313]
  • ZP_001050 hypothetical protein [Prochlorococcus marinus subsp. pastoris str. CCMP1378]
  • ZP_001046 hypothetical protein [Prochlorococcus marinus subsp. pastoris str. CCMP1378]
  • ZP_001134 hypothetical protein [Prochlorococcus marinus str. MIT9313] ZP_001150 hypothetical protein [Synechococcus sp. WH 8102] AAF10377 lycopene cyclase [Deinococcus radiodurans] BAA29250 393aa long hypothetical protein [Pyrococcus horikoshii] BAC77673 lycopene beta-monocyclase [marine bacterium P99-3] AAL01999 lycopene cyclase [Xanthobacter sp.
  • ZP_000190 hypothetical protein [Chloroflexus aurantiacus]
  • ZP_000941 hypothetical protein [Novosphingobium aromaticivorans]
  • AAF78200 lycopene cyclase [Bradyrhizobium sp. ORS278]
  • BAB79602 crtY [Pantoea agglomerans pv.
  • lycopene beta-cyclase [Paracoccus marcusii] BAA20275 lycopene cyclase [Erythrobacter longus] ZP_000570 hypothetical protein [Thermobifida fusca] ZP_000190 hypothetical protein [Chloroflexus aurantiacus] AAK07430 lycopene beta-cyclase [Adonis palaestina] CAA67331 lycopene cyclase [Narcissus pseudonarcissus] AAB53337 Lycopene beta cyclase BAC77673 lycopene beta monocyclase. [marine bacterium P99-3]
  • a particularly preferred ⁇ -cyclase is also the chromoplast-specific ⁇ -cyclase from tomato (AAG21133) (nucleic acid: SEQ. ID. No. 49; protein: SEQ. ID. No. 50)
  • the preferred transgenic organisms according to the invention therefore have at least one further hydroxylase gene and / or ⁇ -cyclase gene compared to the wild type.
  • the genetically modified organism has, for example, at least one exogenous nucleic acid encoding a hydroxylase or at least two endogenous nucleic acids encoding a hydroxylase and / or at least one exogenous nucleic acid encoding a ⁇ -cyclase or at least two endogenous nucleic acids encoding a ⁇ -Cyclase on.
  • the preferred hydroxylase genes used are nucleic acids which encode proteins, containing the amino acid sequence SEQ ID NO: 16 or 48 or a sequence derived from these sequences by substitution, insertion or deletion of amino acids and which have an identity of at least 30%, preferably at least 50%, more preferably at least 70%, even more preferably at least 90%, most preferably at least 95% at the amino acid level with the sequences SEQ. ID. NO: 16 or 48, and which have the enzymatic property of a hydroxylase.
  • hydroxylases and hydroxylase genes can be obtained, for example, from various organisms whose genomic sequence is known, as described above, by comparing the homology of the amino acid sequences or the corresponding back-translated nucleic acid sequences from databases with the sequences SEQ. ID. NO: Easily find 16 or 48.
  • hydroxylases and hydroxylase genes can also be found, for example, starting from the sequences SEQ ID NO: 15 or 47 from different organisms whose genomic sequence is not known, as described above, by hybridization and PCR techniques in a manner known per se Easy to find.
  • nucleic acids are introduced into organisms which encode proteins containing the amino acid sequence of the hydroxylase of the sequence SEQ ID NO: 16 or 48.
  • Suitable nucleic acid sequences can be obtained, for example, by back-translating the polypeptide sequence in accordance with the genetic code.
  • Those codons are preferably used for this which are frequently used in accordance with the organism-specific codon usage.
  • the codon usage can be. easily determined using computer evaluations of other known genes of the organisms concerned.
  • a nucleic acid containing the sequence SEQ is brought. ID. NO: 15 or 47, in the organism.
  • the ⁇ -cyclase genes used are preferably nucleic acids which encode proteins containing the amino acid sequence SEQ ID NO: 18 or 50 or a sequence derived from these sequences by substitution, insertion or deletion of amino acids and which have an identity of at least 30%, preferably at least 50%, more preferably at least 70%, even more preferably at least 90%, most preferably at least 95% at the amino acid level with the respective sequences SEQ ID NO: 18 or 50, and which have the enzymatic property of a ⁇ -cyclase exhibit.
  • ⁇ -cyclases and ⁇ -cyclase genes can easily be found, for example, from various organisms whose genomic sequence is known, as described above, by comparing the homology of the amino acid sequences or the corresponding back-translated nucleic acid sequences from databases with SEQ ID NO: 18 or 50 ,
  • ⁇ -cyclases and ⁇ -cyclase genes can also be obtained, for example, starting from the sequence SEQ ID NO: 17 or 49 from various organisms, the genomic sequence of which is not known, by hybridization and PCR techniques find oneself in a known manner.
  • nucleic acids are introduced into organisms which encode proteins containing the amino acid sequence of the ⁇ -cyclase of the sequence SEQ. ID. NO: 18 or 50.
  • Suitable nucleic acid sequences can be obtained, for example, by back-translating the polypeptide sequence in accordance with the genetic code.
  • codons are preferably used for this which are frequently used in accordance with the organism-specific codon usage.
  • the codon usage can easily be determined on the basis of computer evaluations of other, known genes of the organisms concerned.
  • a nucleic acid containing the sequence SEQ is brought. ID. NO: 17 or 49 in the organism.
  • All of the above-mentioned hydroxylase genes or ⁇ -cyclase genes can also be produced in a manner known per se by chemical synthesis from the nucleotide building blocks, for example by fragment condensation of individual overlapping, complementary nucleic acid building blocks of the double helix.
  • the chemical synthesis of oligonucleotides can be carried out, for example, in a known manner using the phosphoamidite method (Voet, Voet, 2nd edition, Wiley Press New York, pages 896-897).
  • genetically modified, non-human organisms are cultivated which, in addition to the wild type, have an increased activity of at least one of the activities selected from the group HMG-CoA reductase activity, (E) -4-hydroxy-3-methylbutyl 2-enyl-diphosphate reductase activity, 1-deoxy-D-xylose-5-phosphate synthase activity, 1-deoxy-D-xylose-5-phosphate reductoisomerase activity, isopentenyl-diphosphate- ⁇ -isomerase- Activity, geranyl diphosphate synthase activity, famesyl diphosphate synthase activity, geranyl geranyl diphosphate synthase activity, phytoene synthase activity, phytoene desaturase activity, zeta carotene desaturase activity, crtlSO- Have activity, FtsZ activity and MinD activity. •
  • HMG-CoA reductase activity is understood to mean the enzyme activity of an HMG-CoA reductase (3-hydroxy-3-methyl-glutaryl-coenzyme A reductase).
  • An HMG-CoA reductase means a protein which has the enzymatic activity to convert 3-hydroxy-3-methyl-glutaryl-coenzyme-A to mevalonate.
  • HMG-CoA reductase activity is understood to mean the amount of 3-hydroxy-3-methyl-glutaryl-coenzyme A converted or amount of mevalonate formed in a certain time by the protein HMG-CoA reductase.
  • the HMG-CoA reductase activity is increased compared to the wild type, the amount of 3-hydroxy-3-methyl-glutaryl-coenzyme-A or the formed amount of mevalonate increased.
  • This increase in the HMG-CoA reductase activity is preferably at least 5%, more preferably at least 20%, more preferably at least 50% preferably at least 100%, more preferably at least 300%, even more preferably at least 500%, in particular at least 600% of the HMG-CoA reductase activity of the wild type.
  • the determination of the HMG-CoA reductase activity in genetically modified organisms according to the invention and in wild-type or reference organisms is preferably carried out under the following conditions:
  • Frozen organism material is homogenized by intensive Mosern in liquid nitrogen and extracted with extraction buffer in a ratio of 1: 1 to 1:20.
  • the respective ratio depends on the enzyme activities in the available organism material, so that a determination and quantification of the enzyme activities within the linear measuring range is possible.
  • the extraction buffer can consist of 50 mM HEPES-KOH (pH 7.4), 10 mM MgCI2, 10 mM KCI, 1 mM EDTA, 1 mM EGTA, 0.1% (v / v) Triton X-100, 2 mM ⁇ -aminocaproic acid, 10% glycerin, 5 mM KHCO3. Shortly before the extraction, 2 mM DTT and 0.5 mM PMSF are added.
  • Organism tissue can be homogenized and extracted in cold buffer (100 mM potassium phosphate (pH 7.0), 4 mM MgCl 2 , 5 mM DTT). The homogenate is centrifuged at 10,000 g at 4C for 15 minutes. The supernatant is then centrifuged again at 100,000 g for 45-60 minutes.
  • the activity of the HMG-CoA reductase is determined in the supernatant and in the pellet of the microsomal fraction (after resuspending in 100 mM potassium phosphate (pH 7.0) and 50 mM DTT). Aliquots of the solution and the suspension (the protein content of the suspension corresponds to approximately 1-10 ⁇ g) are in 100 mM potassium phosphate buffer (pH 7.0 with 3 mM NADPH and 20 ⁇ M ( 14 C) HMG-CoA (58 ⁇ Ci / ⁇ M) ideally incubated in a volume of 26 ⁇ l for 15-60 minutes at 30 C.
  • the reaction is terminated by adding 5 ⁇ l mevalonate lactone (1 mg / ml) and 6 N HCl, after which the mixture is incubated at room temperature for 15 minutes ( 14 C) - Mevalonate formed in the reaction is quantified by adding 125 ⁇ l of a saturated potassium phosphate solution (pH 6.0) and 300 ⁇ l of ethyl acetate, the mixture is mixed well and centrifuged, and the radioactivity can be determined by scintillation measurement.
  • a saturated potassium phosphate solution pH 6.0
  • the (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductase activity also called lytB or IspH, describes the enzyme activity of a (E) -4-hydroxy-3-methylbut-2-enyl- Diphosphate reductase understood.
  • An (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductase means a protein which has the enzymatic activity, (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate in Convert isopentenyl diphosphate and dimethylallyldiphosphate.
  • This increase in the (E) -4-hydroxy-3-methylbut-2-enyldiphosphate reductase activity is preferably at least 5%, more preferably at least 20%, more preferably at least 50%, more preferably at least 100%, more preferably at least 300%, more preferably at least 500%, especially at least 600% of the (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductase activity of the wild type.
  • the (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductase activity is preferably determined in genetically modified, non-human organisms according to the invention and in wild-type or reference organisms under the following conditions:
  • Frozen organism material is homogenized by intensive Mosern in liquid nitrogen and extracted with extraction buffer in a ratio of 1: 1 to 1:20.
  • the respective ratio depends on the enzyme activities in the available organism material, so that a determination and quantification of the enzyme activities within the linear measuring range is possible.
  • the extraction buffer can consist of 50 mM HEPES-KOH (pH 7.4), 10 mM MgCI2, 10 mM KCI, 1 mM EDTA, 1 mM EGTA, 0.1% (v / v) Triton X-100, 2 mM ⁇ -aminocaproic acid, 10% glycerin, 5 mM KHCO3.
  • LytB protein catalyzes the terminal step of the 2-C-methyl-D-erythritol 4-phosphate pathway of isoprenoid biosynthesis; FEBS Letters 532 (2002,) 437-440) an in vitro system which reduces the reduction of (E) -4-hydroxy-3-methyl-but-2-enyl diphosphate into the isopentenyl diphosphate and dimethyl allyl diphosphate.
  • 1-Deoxy-D-xylose-5-phosphate synthase activity means the enzyme activity of a 1-deoxy-D-xylose-5-phosphate synthase.
  • a 1-deoxy-D-xylose-5-phosphate synthase is understood to mean a protein which has the enzymatic activity to convert hydroxyethyl-ThPP and glyceraldehyde-3-phosphate into 1-deoxy-D-xylose-5-phosphate.
  • 1-deoxy-D-xylose-5-phosphate synthase activity means the amount of hydroxyethyl-ThPP and / or glyceraldehyde-3 converted by the protein 1-deoxy-D-xylose-5-phosphate synthase in a certain time Phosphate or the amount of 1-deoxy-D-xylose-5-phosphate formed.
  • the protein 1-deoxy-D-xylose-5-phosphate synthase With an increased 1-deoxy-D-xylose-5-phosphate synthase activity compared to the wild type, the protein 1-deoxy-D-xylose-5-phosphate synthase thus converts the amount converted in a certain time compared to the wild type Hydroxyethyl-ThPP and / or glyceraldehyde-3-phosphate or the amount -deoxy-D-xylose-5-phosphate formed increased.
  • This increase in 1-deoxy-D-xylose-5-phosphate synthase activity is preferably at least 5%, more preferably at least 20%, more preferably at least 50%, more preferably at least 100%, more preferably at least 300%, even more preferably at least 500%, in particular at least 600%, of the wild-type 1-deoxy-D-xylose-5-phosphate synthase activity.
  • Frozen organism material is homogenized by intensive mortar in liquid nitrogen and extracted with extraction buffer in a ratio of 1: 1 to 1:20.
  • the respective ratio depends on the enzyme activities in the available organism material, so that a determination and quantification of the enzyme activities within the linear measuring range is possible.
  • the extraction buffer can consist of 50 mM HEPES-KOH (pH 7.4), 10 mM MgCI2, 10 mM KCI, 1 mM EDTA, 1 mM EGTA, 0.1% (v / v) Triton X-100, 2 mM ⁇ - Aminocaproic acid, 10% glycerin, 5 mM KHCO3. Shortly before the extraction, 2 mM DTT and 0.5 mM PMSF are added.
  • the reaction solution (50-200 ⁇ l) for the determination of the D-1-deoxyxylulose-5-phosphate synthase activity consists of 100 mM Tris-HCl (pH 8.0), 3 mM MgCl 2 , 3 mM MnCl 2 , 3 mM ATP, 1 mM thiamine diphosphate, 0.1% Tween-60, 1 mM Ka liumfluorid, 30 uM (2- 14 C) pyruvate (0.5 uCi), 0.6 mM DL-Glyerinaldehyd-3-phosphate.
  • the organism extract is 1 to 2 hours in the reaction solution at 37C. incubated.
  • the quantification is carried out using a scintillation counter.
  • the method was described in Harker and Bramley (FEBS Letters 448 (1999) 115-119).
  • FEBS Letters 448 (1999) 115-119 Alternatively, a fluorometric assay to determine the DXS synthase activity of Queol and colleagues has been described (Analytical Biochemistry 296 (2001) 101-105).
  • 1-deoxy-D-xylose-5-phosphate reductoisomerase activity the enzyme activity of a 1-deoxy-D-xylose-5-phosphate reductoisomerase, also 1-deoxy-D-xylulose-5-phosphate reductoisomerase called, understood.
  • a 1-deoxy-D-xylose-5-phosphate reductoisomerase means a protein which has the enzymatic activity, 1-deoxy-D-xylose-5-phosphate in 2-C-methyl-D-erythritol 4-phosphate convert.
  • 1-deoxy-D-xylose-5-phosphate reductoisomerase activity becomes the amount of 1-deoxy-D-xylose-5 converted by the protein 1-deoxy-D-xylose-5-phosphate reductoisomerase in a certain time -Phosphate or formed Amount of 2-C-methyl-D-erythritol 4-phosphate understood.
  • the protein 1-deoxy-D-xylose-5-phosphate reductoisomerase With an increased 1-deoxy-D-xylose-5-phosphate reductoisomerase activity compared to the wild type, the protein 1-deoxy-D-xylose-5-phosphate reductoisomerase thus converts the amount converted in a certain time compared to the wild type 1-Deoxy-D-xylose-5-phosphate or the amount formed 2-C-methyl-D-erythritol 4-phosphate increased.
  • This increase in 1-deoxy-D-xylose-5-phosphate reductoisomerase activity is preferably at least 5%, more preferably at least 20%, more preferably at least 50%, more preferably at least 100%, more preferably at least 300%, even more preferably at least 500%, in particular at least 600%, 1-deoxy-D-xylose-5-phosphate reductoisomerase activity of the wild type.
  • the determination of the 1-deoxy-D-xylose-5-phosphate reductoisomerase activity in genetically modified organisms according to the invention and in wild-type or reference organisms is preferably carried out under the following conditions:
  • Frozen organism material is homogenized by intensive mortar in liquid nitrogen and extracted with extraction buffer in a ratio of 1: 1 to 1:20.
  • the respective ratio depends on the enzyme activities in the available organism material, so that a determination and quantification of the enzyme activities within the linear measuring range is possible.
  • the extraction buffer can consist of 50 mM HEPES-KOH (pH 7.4), 10 mM MgCl 2, 10 mM KCl, 1 mM EDTA, 1 mM EGTA, 0.1% (v / v) Triton X-100, 2 mM ⁇ -aminocaproic acid, 10% glycerin, 5 mM KHCO3. Shortly before the extraction, 2 mM DTT and 0.5 mM PMSF are added.
  • D-1-deoxyxylulose-5-phosphate reductoisomerase (DXR) is measured in a buffer of 100 mM Tris-HCl (pH 7.5), 1 mM MnCl 2 , 0.3 mM NADPH and 0, 3 mM 1-deoxy-D-xylulose-4-phosphate, which can be synthesized, for example, enzymatically (Kuzuyama, Takahashi, Watanabe and Seto: Tetrahedon letters 39 (1998) 4509-4512).
  • the reaction is started by adding the organism extract.
  • the reaction volume can typically be 0.2 to 0.5 mL; incubation takes place at 37C for 30-60 minutes. During this time, the oxidation of NADPH is monitored photometrically at 340 nm.
  • Isopentenyl diphosphate ⁇ isomerase activity is understood to mean the enzyme activity of an isopentenyl diphosphate ⁇ isomerase.
  • An isopentenyl diphosphate ⁇ isomerase is understood to mean a protein which has the enzymatic activity to convert isopentenyl diphosphate to dimethylallyl phosphate.
  • isopentenyl diphosphate ⁇ -isomerase activity is understood to mean the amount of isopentenyl diphosphate or dimethylallyl phosphate formed in a certain time by the protein isopentenyl diphosphate D- ⁇ isomerase.
  • the type isopentenyl diphosphate- ⁇ -isomerase increases the amount of isopentenyl diphosphate converted or the amount of dimethylallyl phosphate formed in a certain time compared to the wild type.
  • This increase in isopentenyl diphosphate is preferably
  • ⁇ -isomerase activity at least 5%, more preferably at least 20%, more preferably at least 50%, more preferably at least 100%, more preferably at least 300%, even more preferably at least 500%, in particular at least 600% of the isopentenyl diphosphate ⁇ isomerase Wild type activity.
  • the determination of the isopentenyl diphosphate ⁇ isomerase activity in genetically modified organisms according to the invention and in wild-type or reference organisms is preferably carried out under the following conditions:
  • Frozen organism material is homogenized by intensive mortar in liquid nitrogen and extracted with extraction buffer in a ratio of 1: 1 to 1:20.
  • the respective ratio depends on the enzyme activities in the available organism material, so that a determination and quantification of the enzyme activities within the linear measuring range is possible.
  • the extraction buffer can consist of 50 mM HEPES-KOH (pH 7.4), 10 mM MgCl 2, 10 mM KCl, 1 mM EDTA, 1 mM EGTA, 0.1% (v / v) Triton X-100, 2 mM ⁇ -aminocaproic acid, 10% glycerin, 5 mM KHCO3. Shortly before the extraction, 2 mM DTT and 0.5 mM PMSF are added.
  • IPP isomerase activity determinations of isopentenyl diphosphate isomerase (IPP isomerase) can be carried out using the method presented by Fräser and colleagues (Fräser, Römer, Shipton, Mills, Kiano, Misawa, Drake, Schuch and Bramley: Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner; Proc. Natl. Acad. Sci. USA 99 (2002), 1092-1097, based on Fraser, Pinto, Holloway and Bramley, Plant Journal 24 (2000), 551-558).
  • Geranyl diphosphate synthase activity means the enzyme activity of a geranyl diphosphate synthase.
  • a geranyl diphosphate synthase is understood to mean a protein which has the enzymatic activity of converting isopentenyl diphosphate and dimethylallyl phosphate into geranyl diphosphate.
  • geranyl diphosphate synthase activity means the amount of isopentenyl diphosphate and / or dimethylallyl phosphate or amount of geranyl diphosphate formed in a certain time by the protein geranyl diphosphate synthase.
  • the amount of isopentenyl diphosphate and / or dimethylallyl phosphate or the amount of geranyl Diphosphate increased.
  • This increase in geranyl diphosphate synthase activity is preferably at least 5%, more preferably at least 20%, more preferably at least 50%, more preferably at least 100%, more preferably at least 300%, even more preferably at least 500%, in particular at least 600% of the Wild-type geranyl diphosphate synthase activity.
  • the geranyl diphosphate synthase activity is determined in genetically modified organisms according to the invention and in wild-type or reference organisms preferably under the following conditions:
  • Frozen organism material is homogenized by intensive mortar in liquid nitrogen and extracted with extraction buffer in a ratio of 1: 1 to 1:20.
  • the respective ratio depends on the enzyme activities in the available organism material, so that a determination and quantification of the enzyme activities within the linear measuring range is possible.
  • the extraction buffer can consist of 50 mM HEPES-KOH (pH 7.4), 10 mM MgCI2, 10 mM KCI, 1 mM EDTA, 1 mM EGTA, 0.1% (v / v) Triton X-100, 2 mM ⁇ - Aminocaproic acid, 10% glycerin, 5 mM KHCO3. Shortly before the extraction, 2 mM DTT and 0.5 mM PMSF are added.
  • geranyl diphosphate synthase can be found in 50 mM Tris-HCl (pH 7.6), 10 mM MgCl 2 , 5 mM MnCl 2 , 2 mM DTT, 1 mM ATP, 0.2% Tween-20.5 ⁇ M ( 14C ) IPP and 50 ⁇ M DMAPP (dimethylallyl pyrophosphate) can be determined after adding organism extract (according to Bouvier, Suire, d'Harlingue, Backhaus and Camara: Meolcular cloning of geranyl diphosphate synthase and compartmentation of monoterpene synthesis in plant cells, plant Journal 24 (2000) 241-252). After incubation of, for example, 2 hours at 37 ° C., the reaction products are dephosphyrylated (according to Koyama, Fuji and Ogura: Enzymatic hydrolysis of polyprenyl pyrophosphates,
  • Famesyl diphosphate synthase activity means the enzyme activity of a farnesyl diphosphate synthase.
  • a farnesyl diphosphate synthase is understood to mean a protein which has the enzymatic activity of sequentially converting 2 molecular sopentenyl diphosphate with dimethyl allyl diphosphate and the resulting geranyl diphosphate into famesyl diphosphate.
  • farnesyl diphosphate synthase activity is understood to mean the amount of dimethylallyl diphosphate and / or isopentenyl diphosphate or amount of famesyl diphosphate formed in a certain time by the protein farnesyl diphosphate synthase.
  • the protein ferns syl diphosphate synthase increases the amount of dimethylallyl diphosphate and / or isopentenyl diphosphate or the amount of farnesyl diphosphate formed.
  • This increase in the farnesyl diphosphate synthase activity is preferably at least 5%, more preferably at least 20%, more preferably at least 50%, more preferably at least 100%, more preferably at least 300%, even more preferably at least 500%, in particular at least 600% of the Wild-type famesyl diphosphate synthase activity.
  • Farnesyl diphosphate synthase activity in genetically modified organisms according to the invention and in wild-type or reference organisms is preferably determined under the following conditions:
  • Frozen organism material is homogenized by intensive mortar in liquid nitrogen and extracted with extraction buffer in a ratio of 1: 1 to 1:20.
  • the respective ratio depends on the enzyme activities in the available organism material, so that a determination and quantification of the enzyme activities within the linear measuring range is possible.
  • the extraction buffer can consist of 50 mM HEPES-KOH (pH 7.4), 10 mM MgCI2, 10 mM KCI, 1 mM EDTA, 1 mM EGTA, 0.1% (v / v) Triton X-100, 2 mM ⁇ - Aminocaproic acid, 10% glycerin, 5 mM KHCO3. Shortly before the extraction, 2 mM DTT and 0.5 mM PMSF are added.
  • FPP synthase farnesyl pyrophosphate snthase
  • the enzyme activity in a buffer of 10 mM HEPES (pH 7.2), 1 mM MgCl 2, 1 mM dithiothreitol, 20 uM and 40 uM will geranyl pyrophosphate (1- 14 C) isopentenyl pyrophosphate (4 Ci / mmol) measured.
  • the reaction mixture is incubated at 37 ° C; the reaction is stopped by adding 2.5 N HCl (in 70% ethanol with 19 ⁇ g / ml farnesol).
  • the reaction products are thus hydrolyzed within 30 minutes by acid hydrolysis at 37C.
  • the mixture is neutralized by adding 10% NaOH and extracted with hexane. An aliquot of the hexane phase can be measured using a scintillation counter to determine the built-in radioactivity.
  • reaction products can be separated into benzene / methanol (9: 1) by means of thin layer chromatography (silica gel SE60, Merck). Products labeled with radioactivity are eluted and radioactivity determined (according to Gaffe, Bru, Causse, Vidal, Stamitti-Bert, Carde and Gallusci: LEFPS1, a tomato farnesyl pyrophosphate gene highly ex- pressed during early fruit development; Plant Physiology 123 (2000) 1351-1362).
  • Geranyl-geranyl diphosphate synthase activity is understood to mean the enzyme activity of a geranyl-geranyl diphosphate synthase.
  • a geranyl-geranyl diphosphate synthase is understood to be a protein which has the enzymatic activity to convert famesyl diphosphate and isopentenyl diphosphate into geranyl-geranyl diphosphate.
  • geranyl-geranyl diphosphate synthase activity is understood to mean the amount of farnesyl diphosphate and / or isopentenyl diphosphate or the amount of geranyl-geranyl diphosphate formed in a certain time by the protein geranyl-geranyl diphosphate synthase.
  • the amount of farnesyl diphosphate and / or isopentenyl diphosphate or the formed amount of geranyl-geranyl diphosphate increased.
  • This increase in geranyl-geranyl diphosphate synthase activity is preferably at least 5%, more preferably at least 20%, more preferably at least 50%, more preferably at least 100%, more preferably at least 300%, even more preferably at least 500%, in particular at least 600 % of wild-type geranyl-geranyl-piphosphate synthase activity.
  • the geranyl-geranyl-diphosphate synthase activity in genetically modified organisms according to the invention and in wild-type or reference organisms is preferably determined under the following conditions:
  • Frozen organism material is homogenized by intensive mortar in liquid nitrogen and extracted with extraction buffer in a ratio of 1: 1 to 1:20.
  • the respective ratio depends on the enzyme activities in the available organism material, so that a determination and quantification of the enzyme activities within the linear measuring range is possible.
  • the extraction buffer can consist of 50 mM HEPES-KOH (pH 7.4), 10 mM MgCl 2, 10 mM KCl, 1 mM EDTA, 1 mM EGTA, 0.1% (v / v) Triton X-100, 2 mM ⁇ -aminocaproic acid, 10% glycerin, 5 mM KHCO3.
  • GGPP synthase geranylgeranyl pyrophosphate synthase
  • Activity measurements of geranylgeranyl pyrophosphate synthase can be carried out by the method described by Dogbo and Camara (in Biochim. Biophys. Acta 920 (1987), 140-148: Purification of isopentenyl pyrophosphate isomerase and geranylgeranyl pyrophosphate synthase from Capsicochrome chromoplasts by affinity ) can be determined.
  • a buffer 50 mM Tris-HCl (pH 7.6), 2 mM MgCl 2, 1 mM MnCl 2, 2 mM dithiothreitol, (1- 14 C) IPP (0.1 uCi is, 10 uM), 15 uM DMAPP, GPP or FPP) with a total volume of about 200 ul organism extract.
  • Incubation can be for 1-2 hours (or longer) at 30C.
  • the reaction is carried out by adding 0.5 ml of ethanol and 0.1 ml of 6N HCl. After incubation at 37 ° C.
  • reaction mixture is neutralized with 6N NaOH, mixed with 1 ml of water and extracted with 4 ml of diethyl ether.
  • amount of radioactivity is determined in an aliquot (for example 0.2 ml) of the ether phase by means of scintillation counting.
  • the radioactively labeled prenyl alcohols can be shaken out in ether and HPLC (25 cm column Spherisorb ODS-1, 5um; elution with methanol / water (90:10; v / v) at a flow rate of 1 ml / min) are separated and quantified using a radioactivity monitor (according to Wiedemann, Misawa and Sandmann: Purification and enzymatic characterization of the geranylgeranyl pyrophosphate synthase from Erwinia uredovora after expression in Escherichia coli; Archives Biochemistry and Biophysics 306 (1993), 152-157 ).
  • Phytoene synthase activity means the enzyme activity of a phytoene synthase.
  • a phytoene synthase is understood to be a protein which has the enzymatic activity to convert geranyl-geranyl diphosphate into phytoene.
  • phytoene synthase activity is understood to mean the amount of geranyl-geranyl diphosphate or amount of phytoene formed in a certain time by the protein phytoene synthase.
  • the amount of geranyl-geranyl diphosphate or the amount of phytoene formed is increased in a certain time by the protein phytoene synthase compared to the wild type.
  • This increase in phytoene synthase activity is preferably at least 5%, more preferably at least 20%, more preferably at least 50%, more preferably at least 100%, more preferably at least 300%, even more preferably at least 500%, in particular at least 600% of the phytoene Wild-type synthase activity.
  • the phytoene synthase activity in genetically modified organisms according to the invention and in wild-type or reference organisms is preferably determined under the following conditions:
  • Frozen organism material is homogenized by intensive mortar in liquid nitrogen and extracted with extraction buffer in a ratio of 1: 1 to 1:20.
  • the respective ratio depends on the enzyme activities in the available organism material, so that a determination and quantification of the enzyme activities within the linear measuring range is possible.
  • the extraction buffer can consist of 50 mM HEPES-KOH (pH 7.4), 10 mM MgCl 2, 10 mM KCl, 1 mM EDTA, 1 mM EGTA, 0.1% (v / v) Triton X-100, 2 mM ⁇ -aminocaproic acid, 10% glycerin, 5 mM KHCO3. Shortly before the extraction, 2 mM DTT and 0.5 mM PMSF are added.
  • PY phytoene synthase
  • Fräser and colleagues Fräser, Romer, Shipton, Mills, Kiano, Misawa, Drake, Schuch and Bramley: Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit- specific manner; Proc. Natl. Acad. Sci. USA 99 (2002), 1092-1097, based on Fraser, Pinto, Holloway and Bramley, Plant Journal 24 (2000) 551-558).
  • GeranyIgeranyl pyrophosphate 15 mCi / mM, American Radiolabeled Chemicals, St.
  • Organism extracts are mixed with buffer, eg 295 ul buffer with extract in a total volume of 500 ul. Incubate for at least 5 hours at 28C. Then, phytoene is in each case extracted by shaking twice '500 ul) with chloroform. The radioactively labeled phytoene formed during the reaction is separated by thin layer chromatography on silica plates in methane / water (95: 5; v / v).
  • Phytoenes can be identified on the silica plates in an iodine-enriched atmosphere (by heating fewer iodine crystals).
  • a phytoene standard serves as a reference.
  • the amount of radioactively labeled product is determined by measurement in a scintillation counter.
  • phytoenes can also be quantified using HPLC, which is equipped with a radioactivity detector (Fräser, Albrecht and Sandmann: Development of high Performance liquid Chromatographie Systems for the Separation of radiolabeled carotenes and precursors formed in specific enzymatic reactions; J. Chromatogr. 645 ( 1993) 265-272).
  • Phytoene desaturase activity means the enzyme activity of a phytoene desaturase.
  • a phytoene desaturase is understood to mean a protein which has the enzymatic activity to convert phytoene into phytofluene and / or phytofluene into ⁇ -carotene (zeta-carotene).
  • phytoene desaturase activity is understood to mean the amount of phytoene or phytofluene or amount of phytofluene or ⁇ -carotene formed in a certain time by the protein phytoene desaturase.
  • the amount of phytoene or phytofluene or the amount of phytofluen or inclin.-carotene formed is increased in a certain time by the protein phytoen desaturase compared to the wild type.
  • This increase in phytoene desaturase activity is preferably at least 5%, more preferably at least 20%, more preferably at least 50%, more preferably at least 100%, more preferably at least 300%, even more preferably at least 500%, in particular at least 600% of the phytoene Wild-type desaturase activity.
  • Phytoene desaturase activity in genetically modified organisms according to the invention and in wild-type or reference organisms is preferably determined under the following conditions:
  • Frozen organism material is homogenized by intensive mortar in liquid nitrogen and extracted with extraction buffer in a ratio of 1: 1 to 1:20.
  • the respective ratio depends on the enzyme activities in the available organism material, so that a determination and quantification of the enzyme activities within the linear measuring range is possible.
  • the extraction buffer can consist of 50 mM HEPES-KOH (pH 7.4), 10 mM MgCl 2, 10 mM KCl, 1 mM EDTA, 1 mM EGTA, 0.1% (v / v) Triton X-100, 2 mM ⁇ -
  • Aminocaproic acid 10% glycerin, 5 mM KHCO3. Shortly before the extraction, 2 mM DTT and 0.5 mM PMSF are added.
  • the activity of phytoene desaturase can be measured by incorporating radioactively labeled ( 14 C) phytoene in unsaturated carotenes (according to Römer, Fraser, Kiano, Shipton, Misawa, Schuch and Bramley: Elevation of the provitamin A content of transgenic tomato plants; Nature Biotechnology 18 (2000) 666-669).
  • Radioactively labeled phytoenes can be synthesized according to Fräser (Fräser, De la Rivas, Mackenzie, Bramley: Phycomyces blakesleanus CarB mutants: their use in assays of phytoene desaturase; Phytochemistry 30 (1991), 3971-3976).
  • Membranes from plastic The target tissue can be mixed with 100 M MES buffer (pH 6.0) with 10 mM MgCl 2 and
  • pigments are extracted three times with about 5 mL petroleum ether (mixed with 10% diethyl ether) and separated and quantified by HPLC.
  • Zeta-carotene desaturase activity means the enzyme activity of a zeta-carotene desaturase.
  • a zeta-carotene desaturase is understood to mean a protein which has the enzymatic activity to convert ot-carotene into neurosporin and / or neurosporin into lycopene.
  • zeta-carotene desaturase activity means the amount of ⁇ -carotene or neurosporin or the amount of neurosporin or lycopene formed in a certain time by the protein zeta-carotene desaturase.
  • the amount of ⁇ -carotene or neurosporin or the amount of neurosporin or lycopene formed is increased in a certain time by the protein zeta-carotene desaturase compared to the wild type.
  • This increase in zeta-carotene desaturase activity is preferably at least 5%, more preferably at least 20%, more preferably at least 50%, more preferably at least 100%, more preferably at least 300%, even more preferably at least 500%, in particular at least 600% of the Zeta-carotene desaturase - wild-type activity.
  • the zeta-carotene desaturase activity in genetically modified organisms according to the invention and in wild-type or reference organisms is preferably determined under the following conditions: Frozen organism material is homogenized by intensive mortar in liquid nitrogen and extracted with extraction buffer in a ratio of 1: 1 to 1:20. The respective ratio depends on the enzyme activities in the available organism material, so that a determination and quantification of the enzyme activities within the linear measuring range is possible.
  • the extraction buffer can consist of 50 mM HEPES-KOH (pH 7.4), 10 mM MgCl 2, 10 mM KCl, 1 mM EDTA, 1 mM EGTA, 0.1% (v / v) Triton X-100, 2 mM ⁇ -aminocaproic acid, 10% glycerin, 5 mM KHCO3. Shortly before the extraction, 2 mM DTT and 0.5 mM PMSF are added.
  • ZDS desaturase can be carried out in 0.2 M potassium phosphate (pH 7.8, buffer volume of about 1 ml).
  • the analysis method was developed by Schunbach and colleagues (Breitenbach, Kuntz, Takaichi and Sandmann: Catalytic properties of an expressed and purified higher plant type ⁇ -carotene desaturase from Capsicum annuum; European Journal of Biochemistry. 265 (1): 376-383 , 1999 Oct).
  • Each analysis batch contains 3 mg phosphytidylcholine suspended in 0.4 M potassium phosphate buffer (pH 7.8), 5 ocg ⁇ -carotene or neurosporin, 0.02% butylated hydroxytoluene, 10 ⁇ l decyl plastoquinone (1 mM methanolic stock solution) and organism extract.
  • the volume of the organism extract must be adjusted to the amount of ZDS desaturase activity present in order to enable quantifications in a linear measuring range.
  • Incubations typically take place for about 17 hours with vigorous shaking (200 revolutions / minute) at about 28 ° C in the dark.
  • Carotenoids are extracted by adding 4 ml acetone at 50 ° C for 10 minutes with shaking.
  • the carotenoids are transferred from this mixture to a petroleum ether phase (with 10% diethyl ether).
  • the ethyl ether / petroleum ether phase is evaporated under nitrogen, the carotenoids redissolved in 20 ⁇ l and separated and quantified by HPLC.
  • CrtlSO activity means the enzyme activity of a crtlSO protein.
  • a crtlSO protein is understood to mean a protein which has the enzymatic activity of converting 7,9,7 ', 9'-tetra-cis-lycopene into all-trans-lycopene.
  • crtlSO activity is understood to mean the amount of 7,9,7 ', 9'-tetra-cis-lycopene or amount of all-trans-lycopene formed in a certain time by the crtlSO protein.
  • the amount converted by the crtlSO protein in a certain time compared to the wild type 7,9,7 ', 9'-tetra-cis-lycopene or the amount of all-trans-lycopene formed increased.
  • This increase in crtlSO activity is preferably at least 5%, more preferably at least 20%, more preferably at least 50%, further preferably at least 100%, more preferably at least 300%, even more preferably at least 500%, in particular at least 600% of the crtlSO- Wild type activity.
  • FtsZ activity is understood to mean the physiological activity of an FtsZ protein.
  • FtsZ protein is understood to be a protein which has a cell division and plastid division promoting effect and has homologies to tubulin proteins.
  • MinD activity is understood to mean the physiological activity of a MinD protein.
  • a MinD protein is understood to be a protein that has a multifunctional role in cell division. It is a membrane-associated ATPase and can show an oscillating movement from pole to pole within the cell.
  • enzymes in the non-mevalonate pathway can lead to a further increase in the desired ketocarotenoid end product.
  • examples of this are the 4-diphosphocytidyl-2-C-methyl-D-erythritol synthase, the 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase and the 2-C-methyl-D-erythritol kinase 2,4-cyclodiphoshate synthase.
  • the activity of the enzymes mentioned can be increased by changing the gene expression of the corresponding genes.
  • the changed concentrations of the relevant proteins can be detected as standard by means of antibodies and corresponding blotting techniques.
  • the increase in HMG-CoA reductase activity and / or (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductase activity and / or 1-deoxy-D-xylose-5-phosphate synthase -Activity and / or 1-deoxy-D-xylose-5-phosphate reductoisomerase activity and / or isopentenyl diphosphate- ⁇ -isomerase activity and / or geranyl diphosphate synthase activity and / or farnesyl diphosphate synthase -Activity and / or geranyl-geranyl-diphosphate synthase activity and / or phytoene synthase activity and / or phytoene desaturase activity and / or zeta-carotene desaturase activity and / or crtlSO activity and / or FtsZ Activity and / or MinD activity can take place in various ways, for example by switching off inhibitory regulatory mechanisms at the
  • Diphosphate- ⁇ -isomerase and / or nucleic acids encoding a geranyl diphosphate synthase and / or nucleic acids encoding a farnesyl diphosphate synthase and / or nucleic acids encoding a geranyl geranyl diphosphate synthase and / or nucleic acids encoding a phytoene synthase and / or nucleic acids encoding a phytoene desaturase and / or nucleic acids encoding a zeta-carotene desaturase and / or nucleic acids encoding a crtlSO protein and / or nucleic acids encoding an FtsZ protein and / or nucleic acids encoding a MinD protein compared to the wild type also take place in various ways, for example by inducing the HMG-CoA reductase gene and / or (E) -4-hydroxy-3-methylbut-2-enyl-
  • Such a change, which results in an increased expression rate of the gene can take place, for example, by deleting or inserting DNA sequences.
  • the gene expression of a nucleic acid encoding an HMG-CoA reductase is increased and / or the gene expression is increased.
  • Synthase gene or phytoene desaturase gene or zeta-carotene desaturase gene or crtlSO gene or FtsZ gene or MinD gene can be used.
  • the preferred transgenic organisms according to the invention therefore have at least one further HMG-CoA reductase gene and / or (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductase gene and compared to the wild type / or 1-deoxy-D-xylose-5-phosphate synthase gene and / or 1-deoxy-D-xylose-5-phosphate reductoisomerase gene and / or isopentenyl-diphosphate- ⁇ -isomerase gene and / or Geranyl diphosphate synthase gene and / or farnesyl diphosphate synthase gene and / or geranyl geranyl diphosphate synthase gene and / or phytoene synthase gene and / or phytoene desaturase gene and / or zeta Carotene desaturase gene and / or crtlSO gene and / or FtsZ gene and / or MinD gene.
  • the genetically modified organism has, for example, at least one exogenous nucleic acid, coding for an HMG-CoA reductase or at least two endogenous nucleic acids, coding for an HMG-CoA reductase and / or at least one exogenous nucleic acid, coding for an (E) -4 - Hydroxy-3-methylbut-2-enyl diphosphate reductase or at least two endogenous nucleic acids encoding an (E) -4-hydroxy-3-methylbut-2-enyl diphosphate reductase and / or at least one exogenous nucleic acid, coding a 1-deoxy-D-xylose-5-phosphate synthase or at least two endogenous nucleic acids encoding a 1-deoxy-D-xyiose-5-phosphate synthase and / or at least one exogenous nucleic acid encoding a 1-deoxy-D -Xylose-5-phosphate
  • HMG-CoA reductase genes are:
  • HMG-CoA reductase genes as well as other HMG-CoA reductase genes from other organisms with the following accession numbers:
  • AF270978 NP_485028.1, NP_442089.1, NP_681832.1, ZP_00110421.1, ZP_00071594.1, ZP_00114706.1, ISPH_SYNY3, ZP_00114087.1, ZP_00104269.1, AF398145_71, AF3985156A5, AF39814567, AF398145_1, AF398145141A, AF3981456_1, AF398145A5.
  • Examples of 1-deoxy-D-xylose-5-phosphate synthase genes are:
  • nucleic acid encoding a 1-deoxy-D-xylose-5-phosphate synthase from Lycopersicon esculentum, ACCESSION # AF143812 (nucleic acid: SEQ ID NO: 23, protein: SEQ ID NO: 24),
  • NP_540415.1 NP_196699.1, NP_384986.1, ZP_00096461.1, ZP_00013656.1
  • NP_790545.1 ZP_00125266.1, CAC17468.1, NP_252733.1, ZP_00092466.1,
  • Examples of 1-deoxy-D-xylose-5-phosphate reductoisomerase genes are:
  • nucleic acid encoding a 1-deoxy-D-xylose-5-phosphate reductoisomerase from Arabidopsis thaliana, ACCESSION # AF148852, (nucleic acid: SEQ ID NO: 25, protein: SEQ ID NO: 26),
  • NP_224545.1 ZP_00038451.1, DXR_KITGR, NP_778563.1.
  • isopentenyl diphosphate ⁇ isomerase genes are:
  • geranyl diphosphate synthase genes are:
  • Examples of farnesyl diphosphate synthase genes are:
  • Arabidopsis thaliana contains two differentially expressed famesyl-diphosphate synthase genes, J. Biol. Chem. 271 (13), 7774-7780 (1996), (nucleic acid: SEQ ID NO: 31, protein: SEQ ID NO: 32),
  • geranyl-geranyl diphosphate synthase genes are:
  • phytoene synthase genes are: a nucleic acid encoding a phytoene synthase from Erwinia uredovora, ACCESSION # D90087; published by Misawa.N., Nakagawa, M., Kobayashi.K., Yamama, S., lzawa, Y., Nakamura, K. and Harashima.K .: Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli; J. Bacteriol.
  • phytoene desaturase genes are:
  • zeta-carotene desaturase genes are:
  • a nucleic acid encoding a Narcissus pseudonarcissus zeta-carotene desaturase ACCESSION # AJ224683, published by AI-Babili, S., Oelschlegel.J. and Beyer.P .: A cDNA encoding for beta carotene desaturase (Accession No.AJ224683) from Narcissus pseudonarcissus L. (PGR98-103), Plant Physiol. 117, 719-719 (1998), (nucleic acid: SEQ ID NO: 39, protein: SEQ ID NO: 40),
  • crtlSO genes are:
  • nucleic acid encoding a crtlSO from Lycopersicon esculentum; ACCESSION # AF416727, published by IsaacsonT., Ronen, G., Zamir.D. and Hirschberg, J .: Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of beta-carotene and xanthophylls in plants; Plant Cell 14 (2), 333-342 (2002), (nucleic acid: SEQ ID NO: 41, protein: SEQ ID NO: 42),
  • FtsZ genes are:
  • MinD genes are:
  • nucleic acids encoding proteins are preferably used as HMG-CoA reductase genes, containing the amino acid sequence SEQ ID NO: 20 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which have an identity of at least 30%, preferably at least 50%, more preferably at least 70%, even more preferably at least 90%, most preferably at least 95% at the amino acid level with the sequence SEQ ID NO: 20, and which have the enzymatic property of an HMG-CoA reductase ,
  • HMG-CoA reductases and HMG-CoA reductase genes can be obtained, for example, from various organisms whose genomic sequence is known, as described above, by comparing the homology of the amino acid sequences or the corresponding back-translated nucleic acid sequences from databases with the SeQ ID NO: 20 easy to find.
  • HMG-CoA reductases and HMG-CoA reductase genes can also be found, for example, starting from the sequence SEQ ID NO: 19 from various organisms, the genomic sequence of which is not known, as described above, can easily be found by hybridization and PCR techniques in a manner known per se.
  • nucleic acids are introduced into organisms which encode proteins containing the amino acid sequence of the HMG-CoA reductase of the sequence SEQ ID NO: 20.
  • Suitable nucleic acid sequences can be obtained, for example, by back-translating the polypeptide sequence in accordance with the genetic code.
  • codons which are frequently used in accordance with the organism-specific codon usage are preferably used for this.
  • the codon usage can easily be determined on the basis of computer evaluations of other known genes of the organisms in question.
  • a nucleic acid containing the sequence SEQ ID NO: 19 is introduced into the organism.
  • nucleic acids encoding proteins are preferably used as (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductase genes, containing the amino acid sequence SEQ ID NO: 22 or one of these sequences Substitution, insertion or deletion of a sequence derived from amino acids, which has an identity of at least 30%, preferably at least 50%, more preferably at least 70%, more preferably at least 90%, most preferably at least 95% at the amino acid level with the sequence SEQ ID NO: 22, and which have the enzymatic property of an (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductase.
  • (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductases and (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductase genes can also be obtained, for example, from the sequence SEQ ID NO: 21 from different orga- nisms whose genomic sequence is not known, as described above, can easily be found by hybridization and PCR techniques in a manner known per se.
  • nucleic acids are introduced into organisms which code for proteins containing the amino acid sequence of (E) - 4- Hydroxy-3-methylbut-2-enyl diphosphate reductase of sequence SEQ ID NO: 22.
  • Suitable nucleic acid sequences can be obtained, for example, by back-translating the polypeptide sequence in accordance with the genetic code.
  • codons which are frequently used in accordance with the organism-specific codon usage are preferably used for this.
  • the codon usage can easily be determined on the basis of computer evaluations of other known genes of the organisms in question.
  • a nucleic acid containing the sequence SEQ ID NO: 21 is introduced into the organism.
  • (1-deoxy-D-xylose-5-phosphate synthase and (1-deoxy-D-xylose-5-phosphate synthase genes can be obtained, for example, from various organisms whose genomic sequence is known, as described above , easy to find by comparing the homology of the amino acid sequences or the corresponding back-translated nucleic acid sequences from databases with the SeQ ID NO: 24.
  • (1-qeoxy-D-xylose-5-phosphate synthases and (1-deoxy-D-xylose-5-phosphate synthase genes can also be obtained from different organisms, for example, starting from the sequence SEQ ID NO: 23 whose genomic sequence is not known, as described above, by hybridization and Easily find PCR techniques in a manner known per se.
  • nucleic acids are introduced into organisms which code for proteins containing the amino acid sequence of the (1-deoxy-D-xylose-5 Phosphate synthase of sequence SEQ ID NO: 24.
  • Suitable nucleic acid sequences can be obtained, for example, by back-translating the polypeptide sequence in accordance with the genetic code.
  • codons which are frequently used in accordance with the organism-specific codon usage are preferably used for this.
  • the codon usage can easily be determined on the basis of computer evaluations of other known genes of the organisms in question.
  • a nucleic acid containing the sequence SEQ ID NO: 23 is introduced into the organism.
  • nucleic acids which encode proteins containing the amino acid sequence SEQ ID NO: 26 or one of these sequences by substitution, insertion or deletion of are used as 1-deoxy-D-xylose-5-phosphate reductoisomerase genes
  • Amino acid-derived sequence which has an identity of at least 30%, preferably at least 50%, more preferably at least 70%, more preferably at least 90%, most preferably at least 95% at the amino acid level with the sequence SEQ ID NO: 26, and which is the enzymatic Have property of a 1-deoxy-D-xylose-5-phosphate reductoisomerase.
  • 1-deoxy-D-xylose-5-phosphate reductoisomerase and 1-deoxy-D-xylose-5-phosphate reductoisomerase genes can be obtained, for example, from various organisms, the genomic sequence of which is known, as described above easily find homology comparisons of the amino acid sequences or the corresponding back-translated nucleic acid sequences from databases with SeQ ID NO: 26.
  • 1-deoxy-D-xylose-5-phosphate reductoisomerases and 1-deoxy-D-xylose-5-phosphate reductoisomerase genes can also be found, for example, starting from the sequence SEQ ID NO: 25 from different organisms and their genomic Sequence is not known, as described above, by hybridization tion and PCR techniques can be easily found in a manner known per se.
  • nucleic acids are introduced into organisms which code for proteins containing the amino acid sequence of the 1-deoxy-D-xylose-5-phosphate Reductoisomerase of sequence SEQ ID NO: 26.
  • Suitable nucleic acid sequences can be obtained, for example, by back-translating the polypeptide sequence in accordance with the genetic code. , -
  • codons which are frequently used in accordance with the organism-specific codon usage are preferably used for this.
  • the codon usage can easily be determined on the basis of computer evaluations of other known genes of the organisms in question.
  • a nucleic acid containing the sequence SEQ ID NO: 25 is introduced into the organism.
  • nucleic acids which encode proteins are preferably used as isopentenyl-D-isomerase genes, containing the amino acid sequence SEQ ID NO: 28 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids and having an identity of at least 30%, preferably at least 50%, more preferably at least 70%, even more preferably at least 90%, most preferably at least 95% at the amino acid level with the sequence SEQ ID NO: 28, and which have the enzymatic property of an isopentenyl-D-isornerase ,
  • isopentenyl-D-isomerases and isopentenyl-D-isomerase genes can be obtained, for example, from various organisms whose genomic sequence is known, as described above, by comparing the homology of the amino acid sequences or the corresponding back-translated nucleic acid sequences from databases with the SeQ ID NO: 28 easy to find.
  • isopentenyl-D-isomerases and isopentenyl-D-isomerase genes can also be obtained, for example, starting from the sequence SEQ ID NO: 27 from various organisms whose genomic sequence is not known, as described above, by hybridization and PCR techniques easy to find in a manner known per se.
  • nucleic acids are introduced into organisms which code for proteins containing the amino acid sequence of the isopentenyl-D-isomerase of the sequence SEQ ID NO: 28.
  • Suitable nucleic acid sequences can be obtained, for example, by back-translating the polypeptide sequence in accordance with the genetic code.
  • codons are preferably used for this which are frequently used in accordance with the organism-specific codon usage.
  • the codon usage can easily be determined on the basis of computer evaluations of other known genes of the organisms in question.
  • a nucleic acid containing the sequence SEQ ID NO: 27 is introduced into the organism.
  • the geranyl diphosphate synthase genes used are nucleic acids which encode proteins, containing the amino acid sequence SEQ ID NO: 30 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids and which have an identity of at least 30%, preferably at least 50%, more preferably at least 70%, even more preferably at least 90%, most preferably at least 95% at the amino acid level with the sequence SEQ ID NO: 30 and which have the enzymatic property of a geranyl diphosphate synthase.
  • geranyl diphosphate synthases and geranyl diphosphate synthase genes can be obtained, for example, from various organisms whose genomic sequence is known, as described above, by comparing the homology of the amino acid sequences or the corresponding back-translated nucleic acid sequences from databases with the SeQ ID NO: 30 easy to find.
  • geranyl diphosphate synthases and geranyl diphosphate synthase genes can also be obtained, for example, starting from the sequence SEQ ID NO: 29 from various organisms whose genomic sequence is not known, as described above, by hybridization and PCR - easily find techniques in a manner known per se.
  • nucleic acids are introduced into organisms which encode proteins containing the amino acid sequence of the geranyl diphosphate Synthase of sequence SEQ ID NO: 30.
  • Suitable nucleic acid sequences can be obtained, for example, by back-translating the polypeptide sequence in accordance with the genetic code.
  • codons which are frequently used in accordance with the organism-specific codon usage are preferably used for this.
  • the codon usage can easily be determined on the basis of computer evaluations of other known genes of the organisms in question.
  • a nucleic acid containing the sequence SEQ ID NO: 29 is introduced into the organism.
  • the famesyl diphosphate synthase genes used are preferably nucleic acids which encode proteins, containing the amino acid sequence SEQ ID NO: 32 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids and which have an identity of at least 30%, preferably at least 50%, more preferably at least 70%, even more preferably at least 90%, most preferably at least 95% at the amino acid level with the sequence SEQ ID NO: 32, and which have the enzymatic property of a farnesyl diphosphate synthase.
  • famesyl diphosphate synthases and farnesyl diphosphate synthase genes can be obtained, for example, from various organisms whose genomic sequence is known, as described above, by comparing the homology of the amino acid sequences or the corresponding back-translated nucleic acid sequences from databases with the SeQ ID NO: 32 easy to find.
  • famesyl diphosphate synthases and famesyl diphosphate synthase genes can also be obtained, for example, starting from the sequence SEQ ID NO: 31 from various organisms whose genomic sequence is not known, as described above, by hybridization and PCR techniques easy to find in a manner known per se.
  • codons are preferably used for this which are frequently used in accordance with the organism-specific codon usage.
  • the codon usage can easily be determined on the basis of computer evaluations of other known genes of the organisms in question.
  • a nucleic acid containing the sequence SEQ ID NO: 31 is introduced into the organism.
  • the geranyl-geranyl-diphosphate synthase genes used are preferably nucleic acids which encode proteins containing the amino acid sequence SEQ ID NO: 34 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which is a Identity of at least 30%, preferably at least 50%, more preferably at least 70%, more preferably at least 90%, most preferably at least 95% at the amino acid level with the sequence SEQ ID NO: 34, and which the enzymatic property of a geranyl-geranyl-diphosphate Have synthase.
  • geranyl-geranyl-diphosphate synthases and geranyl-geranyl-diphosphate synthase genes can be obtained, for example, from various organisms whose genomic sequence is known, as described above, by comparing the homology of the amino acid sequences or the corresponding back-translated nucleic acid sequences from databases easy to find with SeQ ID NO: 22.
  • geranyl-geranyl-diphosphate synthases and geranyl-geranyl-diphosphate synthase genes can also be obtained, for example, starting from the sequence SEQ ID NO: 33 from various organisms whose genomic sequence is not known, as described above, by hybridization and PCR techniques can be easily found in a manner known per se.
  • nucleic acids are introduced into organisms which encode proteins containing the amino acid sequence of the geranyl-geranyl-diphosphate synthase of the sequence SEQ ID NO: 34.
  • Suitable nucleic acid sequences can be obtained, for example, by back-translating the polypeptide sequence in accordance with the genetic code. Those codons which are frequently used in accordance with the organism-specific codon usage are preferably used for this. The codon usage can easily be determined on the basis of computer evaluations of other, known genes of the organisms in question.
  • a nucleic acid containing the sequence SEQ ID NO: 33 is introduced into the organism.
  • the phytoene synthase genes used are preferably nucleic acids which encode proteins containing the amino acid sequence SEQ ID NO: 36 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids and having an identity of at least 30 %, preferably at least 50%, more preferably at least 70%, even more preferably at least 90%, most preferably at least 95% at the amino acid level with the sequence SEQ ID NO: 36, and which have the enzymatic property of a phytoene synthase.
  • phytoene synthases and phytoene synthase genes can easily be found, for example, from various organisms whose genomic sequence is known, as described above, by comparing the homology of the amino acid sequences or the corresponding back-translated nucleic acid sequences from databases with the SeQ ID NO: 36.
  • phytoene synthases and phytoene synthase genes can also be obtained, for example, starting from the sequence SEQ ID NO: 35 from various organisms whose genomic sequence is not known, as described above, by hybridization and PCR techniques in a manner known per se Easy to find.
  • nucleic acids are introduced into organisms which code for proteins containing the amino acid sequence of the phytoene synthase of the sequence SEQ ID NO: 36.
  • Suitable nucleic acid sequences can be obtained, for example, by back-translating the polypeptide sequence in accordance with the genetic code.
  • codon usage can be determined on the basis of computer evaluations of other known genes of the relevant organ easily identify nisms.
  • a nucleic acid containing the sequence SEQ ID NO: 35 is introduced into the organism.
  • the phytoene desaturase genes used are preferably nucleic acids which encode proteins containing the amino acid sequence SEQ ID NO: 38 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids and having an identity of at least 30 %, preferably at least 50%, more preferably at least 70%, even more preferably at least 90%, most preferably at least 95% at the amino acid level with the sequence SEQ ID NO: 38, and which have the enzymatic property of a phytoene desaturase.
  • phytoene desaturases and phytoene desaturase genes can easily be found, for example, from various organisms whose genomic sequence is known, as described above, by comparing the homology of the amino acid sequences or the corresponding back-translated nucleic acid sequences from databases with the SeQ ID NO: 38.
  • phytoene desaturases and phytoene desaturase genes can also be obtained, for example, starting from the sequence SEQ ID NO: 37 from various organisms whose genomic sequence is not known, as described above, by hybridization and PCR techniques in a manner known per se Easy to find.
  • nucleic acids which encode proteins containing the amino acid sequence of the phytoene desaturase of the sequence SEQ ID NO: 38 are introduced into organisms to increase the phytoene desaturase activity.
  • Suitable nucleic acid sequences can be obtained, for example, by back-translating the polypeptide sequence in accordance with the genetic code.
  • Those codons which are frequently used in accordance with the organism-specific codon usage are preferably used for this.
  • the codon usage can easily be determined on the basis of computer evaluations of other, known genes of the organisms in question.
  • a nucleic acid containing the sequence SEQ ID NO: 37 is introduced into the organism.
  • the zeta-carotene desaturase genes used are preferably nucleic acids which encode proteins, containing the amino acid sequence SEQ ID NO: 40 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids and which have an identity of at least 30%, preferably at least 50%, more preferably at least 70%, even more preferably at least 90%, most preferably at least 95% at the amino acid level with the sequence SEQ ID NO: 40, and which have the enzymatic property of a zeta-carotene desaturase ,
  • zeta-carotene desaturases and zeta-carotene desaturase genes can be obtained, for example, from various organisms whose genomic sequence is known, as described above, by comparing the homology of the amino acid sequences or the corresponding back-translated nucleic acid sequences from databases with the SEQ ID NO: 40 easy to find.
  • zeta-carotene desaturases and zeta-carotene desaturase genes can also be obtained, for example, starting from the sequence SEQ ID NO: 39 from various organisms whose genomic sequence is not known, as described above, by hybridization and PCR techniques easy to find in a manner known per se.
  • nucleic acids are introduced into organisms which code for proteins containing the amino acid sequence of the zeta-carotene desaturase of the sequence SEQ ID NO: 40.
  • Suitable nucleic acid sequences can be obtained, for example, by back-translating the polypeptide sequence in accordance with the genetic code.
  • codons which are frequently used in accordance with the organism-specific codon usage are preferably used for this.
  • the codon usage can easily be determined on the basis of computer evaluations of other known genes of the organisms in question.
  • a nucleic acid containing the sequence SEQ ID NO: 39 is introduced into the organism.
  • nucleic acids encoding proteins are preferably used as CrtlSO genes, containing the amino acid sequence SEQ ID NO: 42 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids and having an identity of at least 30%, preferably at least 50%, more preferably at least 70%, even more preferably at least 90%, most preferably at least 95% at the amino acid level with the sequence SEQ ID NO: 42, and which have the enzymatic property of a Crtlso.
  • CrtlSO and CrtlSO genes can easily be found, for example, from various organisms whose genomic sequence is known, as described above, by comparing the homology of the amino acid sequences or the corresponding back-translated nucleic acid sequences from databases with the SeQ ID NO: 42.
  • CrtlSO and CrtlSO genes can also be easily found, for example, starting from the sequence SEQ ID NO: 41 from various organisms whose genomic sequence is not known, as described above, by hybridization and PCR techniques in a manner known per se.
  • nucleic acids are introduced into organisms which code for proteins containing the amino acid sequence of the CrtlSO of the sequence SEQ ID NO: 42.
  • Suitable nucleic acid sequences can be obtained, for example, by back-translating the polypeptide sequence in accordance with the genetic code.
  • codons which are frequently used in accordance with the organism-specific codon usage are preferably used for this.
  • the codon usage can easily be determined on the basis of computer evaluations of other known genes of the organisms in question.
  • a nucleic acid containing the sequence SEQ ID NO: 41 is introduced into the organism.
  • the FtsZ genes used are preferably nucleic acids which encode proteins, comprising the amino acid sequence SEQ ID NO: 44 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids and which have an identity of at least 30%, preferably at least 50%, more preferably at least 70%, even more preferred at least 90%, most preferably at least 95% at the amino acid level with the sequence SEQ ID NO: 44 and which have the enzymatic property of an FtsZ.
  • FtsZn and FtsZ genes can easily be found, for example, from various organisms whose genomic sequence is known, as described above, by comparing the homology of the amino acid sequences or the corresponding back-translated nucleic acid sequences from databases with the SeQ ID NO: 44.
  • FtsZn and FtsZ genes can also be easily found, for example, starting from the sequence SEQ ID NO: 43 from various organisms whose genomic sequence is not known, as described above, by hybridization and PCR techniques in a manner known per se.
  • FtsZ activity Nucleic acids introduced into organisms which encode proteins, containing the amino acid sequence of the FtsZ of the sequence SEQ ID NO: 44
  • Suitable nucleic acid sequences can be obtained, for example, by back-translating the polypeptide sequence in accordance with the genetic code.
  • codons which are frequently used in accordance with the organism-specific codon usage are preferably used for this.
  • the codon usage can easily be determined on the basis of computer evaluations of other, known genes of the organisms concerned.
  • a nucleic acid containing the sequence SEQ ID NO: 43 is introduced into the organism.
  • nucleic acids which encode proteins are preferably used as MinD genes, containing the amino acid sequence SEQ ID NO: 46 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids and having an identity of at least 30%, preferably at least 50%, more preferably at least 70%, even more preferably at least 90%, most preferably at least 95% at the amino acid level with the sequence SEQ ID NO: 46, and which have the enzymatic property of a MinD.
  • MinDn and MinD genes can be obtained, for example, from various organisms whose genomic sequence is known, as described above, by comparing the amino acid sequences or the corresponding ones with homology easily locate DO back-translated nucleic acid sequences from databases with SeQ ID NO: 46.
  • MinDn and MinD genes can also easily be obtained, for example, starting from the sequence SEQ ID NO: 45 from various organisms whose genomic sequence is not known, as described above, by hybridization and PCR techniques in a manner known per se find.
  • nucleic acids which encode proteins containing the amino acid sequence of the MinD of the sequence SEQ ID NO: 46 are introduced into organisms to increase the MinD activity.
  • Suitable nucleic acid sequences can be obtained, for example, by back-translating the polypeptide sequence in accordance with the genetic code.
  • codons which are frequently used in accordance with the organism-specific codon usage are preferably used for this.
  • the codon usage can easily be determined on the basis of computer evaluations of other known genes of the organisms in question.
  • a nucleic acid containing the sequence SEQ ID NO: 45 is introduced into the organism.
  • 5-phosphate synthase genes 1-deoxy-D-xylose-5-phosphate reductoisomerase genes, isopentenyl diphosphate ⁇ isomerase genes, geranyl diphosphate synthase genes, fernesyl diphosphate synthase genes Genes, geranyl-geranyl diphosphate synthase genes, phytoene synthase genes, phytoene desaturase genes, zeta-carotene desaturase genes, crtl-SO genes, FtsZ genes or MinD genes are still in themselves can be prepared in a known manner by chemical synthesis from the nucleotide building blocks, for example by fragment condensation of individual overlapping, complementary nucleic acid building blocks of the double helix.
  • oligonucleotides can be carried out, for example, in a known manner using the phosphoamidite method (Voet, Voet, 2nd edition, Wiley Press New York, pages 896-897).
  • the attachment of synthetic oligonucleotides and the filling of gaps using the Klenow fragment of DNA polymerase and ligation reactions as well as general cloning methods are described in Sambrook et al. (1989) Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press.
  • a ketolase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 80% at the amino acid level with the sequence SEQ. ID. NO. 2 has
  • B ketolase containing the amino acid sequence SEQ. ID. NO. 10 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 90% at the amino acid level with the sequence SEQ. ID. NO. 10 has
  • C ketolase containing the amino acid sequence SEQ. ID. NO. 12 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 90% at the amino acid level with the sequence SEQ. ID. NO. 12 or
  • the genetically modified, non-human organisms can be produced as described below, for example by introducing individual nucleic acid constructs (expression cassettes) containing an effect gene, or by introducing multiple constructs which contain up to two or three or more of the effect genes included.
  • organisms are preferably understood to mean organisms which, as wild-type or starting organisms, naturally or by genetic complementation and / or reorganization of the metabolic pathways, are capable of producing carotenoids, in particular ⁇ -carotene and / or zeaxanthin and / or neoxanthine and / or violaxanthin and / or to produce lutein.
  • Further preferred organisms already have hydroxylase activity as wild-type or starting organisms and are therefore capable of producing zeaxanthin as wild-type or starting organisms.
  • Preferred organisms are plants or microorganisms, such as bacteria, yeasts, algae or fungi.
  • Both bacteria can be used as bacteria that are able to synthesize xanthophylls due to the introduction of genes of the carotenoid biosynthesis of a carotenoid-producing organism, such as bacteria of the genus Escherichia, which contain, for example, crt genes from Erwinia, as well as bacteria.
  • a carotenoid-producing organism such as bacteria of the genus Escherichia, which contain, for example, crt genes from Erwinia, as well as bacteria.
  • teries that are capable of synthesizing xanthophylls such as bacteria of the genus Erwinia, Agrobacterium, Flavobacterium, Alcaligenes, Paracoccus, Nostoc or cyanobacteria of the genus Synechocystis.
  • Preferred bacteria are Escherichia coli, Erwinia herbicola, Erwinia uredovora, Agrobacterium aurantiacum, Alcaligenes sp. PC-1, Flavobacterium sp. strain R1534, the Cyanobacterium Synechocystis sp. PCC6803, Paracoccus marcusii or Paracoccus carotinifaciens.
  • yeasts are Candida, Saccharomyces, Hansenula, Pichia or Phaffia. Particularly preferred yeasts are Xanthophyllomyces dendrorhous or Phaffia rhodozyma.
  • Preferred mushrooms are Aspergillus, Trichoderma, Ashbya, Neurospora, Blakeslea, in particular Blakeslea trispora, Phycomyces, Fusarium or others in Indian Chem. Engr. Section B. Vol. 37, No. 1, 2 (1995) on page 15, table 6 described mushrooms.
  • Preferred algae are green algae, such as algae of the genus Haematococcus, Phaedactylum tricornatum, Volvox or Dunaliella. Particularly preferred algae are Haematococcus puvialis or Dunaliella bardawil. Further useful microorganisms and their preparation for carrying out the method according to the invention are known, for example, from DE-A-199 16 140, to which reference is hereby made.
  • plants are used as non-human organisms.
  • genetically modified plants are used which have the highest expression rate of a ketolase according to the invention in flowers.
  • the gene expression of the ketolase according to the invention takes place under the control of a flower-specific promoter.
  • the nucleic acids described above, as described in detail below are introduced into the plant in a nucleic acid construct, functionally linked with a flower-specific promoter.
  • the genetically modified plants additionally have a reduced ⁇ -cyclase activity compared to the wild type.
  • ⁇ -Cyclase activity means the enzyme activity of an ⁇ -cyclase.
  • An ⁇ -cyclase is understood to mean a protein which has the enzymatic activity to convert a terminal, linear residue of lycopene into an ⁇ -ionone ring.
  • ⁇ -cyclase is therefore understood to mean in particular a protein which has the enzymatic activity to convert lycopene to ⁇ -carotene.
  • ⁇ -cyclase activity is understood to mean the amount of lycopene converted or amount of ⁇ -carotene formed by the protein ⁇ -cyclase in a certain time.
  • the amount of lycopene converted or the amount of ⁇ -carotene formed is reduced in a certain time by the protein ⁇ -cyclase compared to the wild type.
  • the partially or essentially complete, based on different cell biological mechanisms is preferably de Understanding or blocking the functionality of an ⁇ -cyclase in a plant cell, plant or a part, tissue, organ, cells or seeds derived therefrom.
  • the ⁇ -cyclase activity in plants can be reduced compared to the wild type, for example by reducing the amount of ⁇ -cyclase protein or the amount of ⁇ -cyclase mRNA in the plant. Accordingly, ⁇ -cyclase activity which is reduced compared to the wild type can be determined directly or by determining the amount of ⁇ -cyclase protein or the amount of ⁇ -cyclase mRNA of the plant according to the invention in comparison to the wild type.
  • a reduction in ⁇ -cyclase activity includes a quantitative reduction in ⁇ -cyclase up to an essentially complete absence of ⁇ -cyclase (i.e. lack of detectability of ⁇ -cyclase activity or lack of immunological detectability of ⁇ -cyclase).
  • the ⁇ -cyclase activity (or the ⁇ -cyclase protein amount or the ⁇ -cyclase mRNA amount) in the plant, particularly preferably in flowers compared to the wild type is preferably increased by at least 5%, more preferably by at least 20% , more preferably reduced by at least 50%, more preferably by 100%.
  • “reduction” also means the complete absence of the ⁇ -cyclase activity (or the ⁇ -cyclase protein or the ⁇ -cyclase mRNA).
  • ⁇ -cyclase activity in genetically modified plants according to the invention and in wild-type or reference plants is preferably carried out under the following conditions:
  • the ⁇ -cyclase activity can be determined according to Fräser and Sandmann (Biochem. Biophys. Res. Comm. 185 (1) (1992) 9-15) / n vitro if potassium phosphate is used as a buffer for a certain amount of plant extract (pH 7.6 ), Lycopene as substrate, stro- maprotein from paprika, NADP +, NADPH and ATP are added.
  • ⁇ -cyclase activity in genetically modified plants according to the invention and in wild-type or reference plants is carried out particularly preferably according to Bouvier, Darlingue and Camara (Molecular Analysis of carotenoid cyclase inhibition; Arch. Biochem. Biophys. 346 (1) (1997) 53-64):
  • the in vitro assay is carried out in a volume of 0.25 ml.
  • the mixture contains 50 mM potassium phosphate (pH 7.6), different amounts of plant extract, 20 nM lycopene, 0.25 mg of chromoplastid stromal protein from paprika, 0.2 mM NADP +, 0.2 mM NADPH and 1 mM ATP.
  • NADP / NADPH and ATP are dissolved in 0.01 ml ethanol with 1 mg Tween 80 immediately before adding to the incubation medium.
  • the reaction is ended by adding chloroform / methanol (2: 1).
  • the reaction products extracted in chloroform are analyzed by HPLC.
  • the ⁇ -cyclase activity in plants is preferably reduced by at least one of the following methods:
  • ⁇ -cyclase dsRNA a double-stranded ⁇ -cyclase ribonucleic acid sequence
  • ⁇ -cyclase dsRNA an expression cassette or cassettes ensuring expression thereof.
  • ⁇ -cyclase-ds.RNA is directed against an ⁇ -cyclase gene (that is to say genomic DNA sequences such as the promoter sequence) or an ⁇ -cyclase transcript (that is to say mRNA sequences),
  • ⁇ -cyclase antisenseRNA introduction of at least one ⁇ -cyclase antisense ribonucleic acid sequence, hereinafter also called ⁇ -cyclase antisenseRNA, or an expression cassette ensuring its expression.
  • ⁇ -cyclase antisenseRNA introduction of at least one ⁇ -cyclase antisense ribonucleic acid sequence, hereinafter also called ⁇ -cyclase antisenseRNA, or an expression cassette ensuring its expression.
  • ⁇ -cyclase senseRNA introduction of at least one ⁇ -cyclase sense ribonucleic acid sequence, hereinafter also referred to as ⁇ -cyclase senseRNA, for inducing a co-suppression or an expression cassette ensuring its expression
  • Knockout mutants can preferably be generated by means of targeted insertion into said ⁇ -cyclase gene by homologous recombination or introduction of sequence-specific nucleases against ⁇ -cyclase gene sequences.
  • ⁇ -cyclase-dsRNA a double-stranded ⁇ -cyclase-ribonucleic acid sequence
  • double-stranded RNA interference double-stranded RNA interference
  • dsRNAi double-stranded RNA interference
  • Matzke MA et al. (2000) Plant Mol Biol 43: 401-415; Fire A. et al (1998) Nature 391: 806-811; WO 99/32619; WO 99/53050; WO 00/68374; WO 00/44914; WO 00/44895; WO 00/49035 or WO 00/63364.
  • dsRNAi double-stranded RNA interference
  • double-stranded ribonucleic acid sequence means one or more ribonucleic acid sequences which are theoretically based on complementary sequences, for example in accordance with the base pair rules of Waston and Crick and / or factually, for example based on hybridization experiments, in vitro and / or in vivo are able to form double-stranded RNA structures.
  • the person skilled in the art is aware that the formation of double-stranded RNA structures represents an equilibrium state.
  • the ratio of double-stranded molecules to corresponding dissociated forms is preferably at least 1 to 10, preferably 1: 1, particularly preferably 5: 1, most preferably 10: 1.
  • a double-stranded ⁇ -cyclase-ribonucleic acid sequence or ⁇ -cyclase-dsRNA is preferably understood to mean an RNA molecule which has a region with a double-strand structure and which contains a nucleic acid sequence in this region which
  • a) is identical to at least part of the plant's own ⁇ -cyclase transcript and / or
  • b) is identical to at least part of the plant's own ⁇ -cyclase promoter sequence.
  • an RNA which has a region with a double-strand structure and which contains a nucleic acid sequence in this region is therefore preferably introduced into the plant in order to reduce the ⁇ -cyclase activity
  • a) is identical to at least part of the plant's own ⁇ -cyclase transcript and / or
  • b) is identical to at least part of the plant's own ⁇ -cyclase promoter sequence.
  • ⁇ -cyclase transcript is understood to mean the transcribed part of an ⁇ -cyclase gene which, in addition to the ⁇ -cyclase coding sequence, also contains, for example, non-coding sequences, such as UTRs.
  • "A part" of the plant's own ⁇ -cyclase transcript or the plant's own ⁇ -cyclase promoter sequence is understood to mean partial sequences which can range from a few base pairs to complete sequences of the transcript or the promoter sequence. The person skilled in the art can easily determine the optimal length of the partial sequences by routine experiments.
  • the length of the partial sequences is at least 10 bases and at most 2 kb, preferably at least 25 bases and at most 1.5 kb, particularly preferably at least 50 bases and at most 600 bases, very particularly preferably at least 100 bases and at most 500 am most preferably at least 200 bases or at least 300 bases and at most 400 bases.
  • the partial sequences are preferably selected in such a way that the highest possible specificity is achieved and activities of other enzymes, the reduction of which is not desired, are not reduced. It is therefore advantageous to select parts of the ⁇ -cyclase transcript and / or partial sequences of the ⁇ -cyclase promoter sequences for the partial sequences of the ⁇ -cyclase dsRNA that do not occur in other activities.
  • the ⁇ -cyclase dsRNA therefore contains a sequence which is identical to a part of the plant's own ⁇ -cyclase transcripts and the 5 'end or the 3' end of the plant's own nucleic acid, coding for an ⁇ -Cyclase contains.
  • non-translated regions in the 5 'or 3' of the transcript are suitable for producing selective double-strand structures.
  • Another object of the invention relates to double-stranded RNA molecules (dsRNA molecules) which, when introduced into a plant organism (or a cell, tissue, organ or propagation material derived therefrom), reduce ⁇ -cyclase.
  • dsRNA molecules double-stranded RNA molecules
  • a double-stranded RNA molecule for reducing the expression of an ⁇ -cyclase preferably comprises
  • RNA strand comprising at least one ribonucleotide sequence which is essentially identical to at least part of a “sense” RNA ⁇ -Cy ase transcript, and
  • RNA strand which is essentially, preferably completely, complementary to the RNA “sense” strand under a).
  • a nucleic acid construct is preferably used which is introduced into the plant and which is transcribed into the ⁇ -cyclase dsRNA in the plant.
  • the present invention therefore also relates to a nucleic acid construct that can be transcribed into
  • RNA strand comprising at least one ribonucleotide sequence which is essentially identical to at least part of the “sense” RNA ⁇ -cyclase transcript
  • RNA strand which is essentially — preferably completely — complementary to the RNA sense strand under a).
  • nucleic acid constructs are also called expression cassettes or expression vectors below.
  • ⁇ -cyclase nucleic acid sequence is preferably understood to be the sequence according to SEQ ID NO: 38 or a Tel thereof.
  • dsRNA sequence can also have insertions, deletions and individual point mutations in comparison to the ⁇ -cyclase target sequence and nevertheless brings about an efficient reduction in expression.
  • the homology is preferably at least 75%, preferably at least 80%, very particularly preferably at least 90%, most preferably 100% between the “sense” strand of an inhibitory dsRNA and at least part of the “sense” RNA transcript of an ⁇ -Cyclase Ge ⁇ s, or between the "antisense” strand the complementary strand of an ⁇ -cyclase gene.
  • dsRNA preferably comprises sequence regions of ⁇ -cyclase gene transcripts which correspond to conserved regions. said conserved areas can easily be derived from sequence comparisons.
  • an "essentially identical" dsRNA can also be defined as a nucleic acid sequence which is capable of hybridizing with part of an ⁇ -cyclase gene transcript (for example in 400 mM NaCl, 40 mM PIPES pH 6.4, 1 mM EDTA at 50 ° C or 70 ° C for 12 to 16 h).
  • “Essentially complementary” means that the “antisense” RNA strand can also have inserts, deletions and individual point mutations in comparison to the complement of the “sense” RNA strand.
  • the homology is preferably at least 80%, preferably at least 90%, very particularly preferably at least 95%, most preferably 100% between the "antisense” RNA strand and the complement of the "sense” RNA strand.
  • the ⁇ -cyclase dsRNA comprises
  • RNA strand comprising at least one ribonucleotide sequence which is essentially identical to at least part of the “sense” RNA transcript of the promoter region of an ⁇ -cyclase gene
  • RNA strand which is essentially — preferably completely — complementary to the RNA “sense” strand under a).
  • nucleic acid construct comprises
  • a “sense” DNA strand which is essentially identical to at least part of the promoter region of an ⁇ -cyclase gene
  • an “antisense” DNA strand which is essentially — preferably completely — complementary to the DNA “sense” strand under a).
  • the promoter region of an ⁇ -cyclase is preferably understood to mean a sequence according to SEQ ID NO: 51 or a part thereof.
  • the following partial sequences are particularly preferably used to produce the ⁇ -cyclase dsRNA sequences for reducing the ⁇ -cyclase activity, in particular for Tagetes erecta: SEQ ID NO: 52: Sense fragment of the 5'-terminal region of the ⁇ -cyclase
  • SEQ ID NO: 53 Antisense fragment of the 5'-terminal region of the ⁇ -cyclase
  • SEQ ID NO: 54 Sense fragment of the 3'-terminal region of the ⁇ -cyclase
  • SEQ ID NO: 55 Antisense fragment of the 3'-terminal region of the ⁇ -cyclase
  • SEQ ID NO: 56 Sense fragment of the ⁇ -cyclase promoter
  • SEQ ID NO: 57 Antisense fragment of the ⁇ -cyclase promoter
  • the dsRNA can consist of one or more strands of polyribonucleotides.
  • several individual dsRNA molecules, each comprising one of the ribonucleotide sequence sections defined above, can also be introduced into the cell or the organism.
  • the double-stranded dsRNA structure can be formed from two complementary, separate RNA strands or - preferably - from a single, self-complementary RNA strand.
  • the “sense” RNA strand and the “antisense” RNA strand are preferably covalently linked to one another in the form of an inverted “repeat”.
  • the dsRNA can also comprise a hairpin structure, in that the “sense” and “antisense” strand are connected by a connecting sequence (“linker”; for example an intron).
  • linker for example an intron
  • the self-complementary dsRNA structures are preferred since they only require the expression of an RNA sequence and the complementary RNA strands always comprise an equimolar ratio.
  • the connecting sequence is an intron (e.g. an intron of the ST-LS1 gene from potato; Vancänneyt GF et al. (1990) Mol Gen Genet 220 (2): 245-250).
  • the nucleic acid sequence coding for a dsRNA can contain further elements. such as transcription termination signals or polyadenylation signals.
  • the dsRNA is directed against the promoter sequence of an ⁇ -cyclase, it preferably does not include any transcription termination signals or polyadenylation signals. This enables a retention of the dsRNA in the nucleus of the cell and prevents a distribution of the dsRNA in the whole plant "Spreadinng"). If the two strands of the dsRNA are to be brought together in a cell or plant, this can be done, for example, in the following way:
  • RNA duplex The formation of the RNA duplex can be initiated either outside the cell or inside it.
  • the dsRNA can be synthesized either in vivo or in vitro.
  • a DNA sequence coding for a dsRNA can be placed in an expression cassette under the control of at least one genetic control element (such as, for example, a promoter). Polyadenylation is not required, and there is no need for elements to initiate translation.
  • the expression cassette for the MP-dsRNA is preferably contained on the transformation construct or the transformation vector.
  • the expression of the dsRNA takes place starting from an expression construct under the functional control of a flower-specific promoter.
  • the expression cassettes coding for the “antisense” and / or the “sense” strand of an ⁇ -cyclase dsRNA or for the self-complementary strand of the dsRNA are preferably inserted into a transformation vector for this purpose and into the plant cell using the methods described below brought in.
  • a stable insertion into the genome is advantageous for the method according to the invention.
  • the dsRNA can be introduced in an amount that enables at least one copy per cell. Larger quantities (e.g. at least 5, 10, 100, 500 or 1000 copies per cell) can possibly result in an efficient reduction. b) introduction of an antisense ribonucleic acid sequence of an ⁇ -cyclase ( ⁇ -cyclase-antisenseRNA)
  • the antisense nucleic acid molecule hybridizes or binds with the cellular mRNA and / or genomic DNA coding for the ⁇ -cyclase to be reduced. As a result, the transcription and / or translation of the ⁇ -cyclase is suppressed.
  • Hybridization can occur in a conventional manner via the formation of a stable duplex or - in the case of genomic DNA - by binding of the antisense nucleic acid molecule with the duplex of the genomic DNA through specific interaction in the major groove of the DNA helix.
  • An ⁇ -cyclase antisenseRNA can be derived using the nucleic acid sequence coding for this ⁇ -cyclase, for example the nucleic acid sequence according to SEQ ID NO: 58, according to the base pair rules of Watson and Crick.
  • the ⁇ -cyclase antise ⁇ seRNA can be complementary to the entire transcribed mRNA of the ⁇ -cyclase, limited to the coding region or consist only of an oligonucleotide which is complementary to part of the coding or non-coding sequence of the mRNA.
  • the oligonucleotide can be complementary to the region that comprises the translation start for the ⁇ -cyclase.
  • the ⁇ -cyclase antisenseRNA can have a length of, for example, 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides, but can also be longer and at least 100, 200, 500, 1000, 2000 or comprise 5000 nucleotides.
  • ⁇ -Cyclase antisenseRNAs are preferably recombinantly expressed in the target cell in the context of the method according to the invention.
  • Another object of the invention relates to transgenic expression cassettes containing a nucleic acid sequence coding for at least part of an ⁇ -cyclase, said nucleic acid sequence being functionally linked to a promoter which is functional in plant organisms in an antisense orientation.
  • the expression of the antisenseRNA takes place starting from an expression construct under the functional control of a flower-specific promoter.
  • Said expression cassettes can be part of a transformation construct or transformation vector, or can also be introduced as part of a co-transformation.
  • the expression of an ⁇ -cyclase can be inhibited by nucleotide sequences which are complementary to the regulatory one
  • Region of an ⁇ -cyclase gene e.g. an ⁇ -cyclase promoter and / or enhancer
  • ⁇ -cyclase promoter and / or enhancer form triple-helical structures with the DNA double helix there, so that the transcription of the ⁇ -cyclase gene is reduced.
  • Appropriate methods have been described (Helene C (1991) Anticancer Drug Res 6 (6): 569-84; Helene C et al.
  • the ⁇ -cyclase antisenseRNA can be an ⁇ -anomeric nucleic acid.
  • ⁇ -anomeric nucleic acid molecules form specific double-stranded hybrids with complementary RNA in which, in contrast to the conventional ⁇ -nucleic acids, the two strands run parallel to one another (Gautier C et al. (1987) Nucleic Acids Res 15: 6625-6641).
  • the antisense strategy described above can advantageously be coupled with a ribozyme method.
  • Catalytic RNA molecules or ribozymes can be adapted to any target RNA and cleave the phosphodiester framework at specific positions, whereby the target RNA is functionally deactivated (Tanner NK (1999) FEMS Microbiol Rev 23 (3): 257-275 ). This does not modify the ribozyme itself, but is able to cleave further target RNA molecules analogously, which gives it the properties of an enzyme.
  • the incorporation of ribozyme sequences in "antisense" RNAs gives these "antisense” RNAs this enzyme-like, RNA-cleaving property and thus increases their efficiency in inactivating the target RNA.
  • RNA molecules The preparation and use of corresponding ribozyme "antisense” RNA molecules is described (inter alia in Haseloff et al. (1988) Nature 334: 585-591); Haselhoff and Gerlach (1988) Nature 334: 585-591; Steinecke P et al. (1992) EMBO J 11 (4): 1525-1530; de Feyter R et al. (1996) Mol Gen Genet. 250 (3): 329-338).
  • ribozymes for example "Hammerhead”ribozymes; Haselhoff and Gerlach (1988) Nature 334: 585-591
  • Ribozyme technology can increase the efficiency of an antisense strategy.
  • Methods for the expression of ribozymes for the reduction of certain proteins are described in (EP 0 291 533, EP 0 321 201, EP 0 360 257). Ribozyme expression is also described in plant cells (Steinecke P et al. (1992) EMBO J 11 (4): 1525-1530; de Feyter R et al.
  • Suitable target sequences and ribozymes can be described, for example, as in "Steinecke P, Ribozymes, Methods in Cell Biology 50, Galbraith et al. Eds, Academic Press, Inc. (1995), pp. 449-460". were determined by secondary structure calculations of ribozyme and target RNA and by their interaction (Bayley CC et al. (1992) Plant Mol Biol. 18 (2): 353-361; Lloyd AM and Davis RW et al. (1994) Mol Gen Genet. 242 (6): 653-657).
  • Tetrahymena L-19 IVS RNA can be constructed which have regions complementary to the mRNA of the ⁇ -cyclase to be suppressed (see also US 4,987,071 and US 5,116,742).
  • ribozymes can also be identified via a selection process from a library of diverse ribozymes (Bartel D and Szostak JW (1993) Science 261: 1411-1418).
  • ⁇ -cyclase ribonucleic acid sequence (or a part thereof) in sense orientation can lead to a co-suppression of the corresponding ⁇ -cyclase gene.
  • sense RNA with homology to an endogenous ⁇ -cyclase gene can reduce or switch off the expression of the same, similarly as has been described for antisense approaches (Jorgensen et al. (1996) Plant Mol Biol 31 (5): 957-973; Goring et al. (1991) Proc Natl Acad Sei USA 88: 1770-1774; Smith et al. (1990) Mol Gen Genet 224: 447-481; Napoli et al.
  • the cosuppression is preferably implemented using a sequence which is essentially identical to at least part of the nucleic acid sequence coding for an ⁇ -cyclase, for example the nucleic acid sequence according to SEQ ID NO: 38.
  • the ⁇ -cyclase-senseRNA is preferably selected such that translation of the ⁇ -cyclase or a part thereof cannot occur.
  • the ⁇ '-untranslated or 3'-untranslated region can be selected or the ATG start codon deleted or mutated.
  • a reduction in ⁇ -cyclase expression is also possible with specific DNA-binding factors, for example with factors of the type of zinc finger transcription factors. These factors attach to the genomic sequence of the endogenous target gene, preferably in the regulatory areas, and cause a reduction in expression. Appropriate processes for the production of such factors are described (Dreier B et al. (2001) J Biol Chem 276 (31): 29466-78; Dreier B et al. (2000) J Mol Biol 303 (4): 489-502; Beerli RR et al. (2000) Proc Natl Acad Sei USA 97 (4): 1495-1500; Beerli RR et al.
  • ⁇ -cyciase gene can be selected using any piece of an ⁇ -cyciase gene.
  • This section is preferably in the region of the promoter region. For gene suppression, however, it can also lie in the area of the coding exons or introns.
  • proteins can be introduced into a cell that inhibit the ⁇ -cyclase itself.
  • protein binding factors can e.g. Aptamers (Famulok M and Mayer G (1999) Curr Top Microbiol Immunol 243: 123-36) or antibodies or antibody fragments or single-chain antibodies. The extraction of these factors has been described (Owen M et al. (1992) Biotechnology (NY) 10 (7): 790-794; Franken E et al. (1997) Curr Opin Biotechnol 8 (4): 411-416; Whitelam ( 1996) Trend Plant Be 1: 286-272).
  • the ⁇ -cyclase expression can also be effectively achieved by induction of the specific ⁇ -cyclase RNA degradation by the plant using a viral expression system (Amplikon; Angell SM et al. (1999) Plant J 20 (3): 357-362) , These systems - also referred to as "VIGS” (viral induced gene silencing) - introduce nucleic acid sequences into the plant with homology to the transcript of an ⁇ -cyclase to be reduced by means of viral vectors. The transcription is then switched off - presumably mediated by plant defense mechanisms against viruses. Appropriate techniques and processes are described (Ratcliff F et al.
  • the VIGS-mediated reduction is preferably implemented using a sequence which is essentially identical to at least part of the nucleic acid sequence coding for an ⁇ -cyclase, for example the nucleic acid sequence according to SEQ ID NO: 1.
  • genomic sequences can be modified in a targeted manner. These include in particular methods such as the generation of knockout mutants by means of targeted homologous recombination e.g. by generating stop codons, shifts in the reading frame etc. (Hohn B and Puchta H (1999) Proc Natl Acad Sei USA 96: 8321-8323) or the targeted deletion or inversion of sequences using e.g. sequence-specific recombinases or nucleases (see below)
  • -Activity can also be realized by a targeted insertion of nucleic acid sequences (for example the nucleic acid sequence to be inserted in the process according to the invention) into the sequence coding for an ⁇ -cyclase (for example by means of intermolecular homologous recombination).
  • a DNA construct is preferably used which comprises at least a part of the sequence of an ⁇ -cyclase gene or neighboring sequences and can thus be recombined in a targeted manner in the target cell, so that at least by deletion, addition or substitution of a nucleotide the ⁇ -cyclase gene is changed in such a way that the functionality of the ⁇ -cyclase gene is reduced or completely eliminated.
  • the change can also affect the regulatory elements (eg the promoter) of the ⁇ -cyclase gene, so that the coding sequence remains unchanged, but expression (transcription and / or translation) is omitted and reduced.
  • the sequence to be inserted is flanked at its 5 'and / or 3' end by further nucleic acid sequences (A 1 or B ') which are of sufficient length and homology to corresponding sequences of the ⁇ -cyclase - Show genes (A or B) to enable homologous recombination.
  • the length is usually in the range from several hundred bases to several kilobases (Thomas KR and Capecchi MR (1987) Cell 51: 503; Strepp et al.
  • the plant cell with the recombination construct is transformed using the methods described below and successfully recombined clones are selected based on the ⁇ -cyclase which is inactivated as a result.
  • the efficiency of the recombination is increased by combination with methods which promote homologous recombination. Such methods are described and include, for example, the expression of proteins such as RecA or the treatment with PARP inhibitors. It could be shown that the intrachromosomal homologous recombination in tobacco plants can be increased by using PARP inhibitors (Puchta H et al.
  • Inhibitors such as 3-aminobenzamide, 8-hydroxy-2-methyiquinazolin-4-one (NU1025), 1.11 b-dihydro- [2H] benzopyrano- [4,3,2-de] isoquinolin-3-one are preferably included (GPI 6150), 5-aminoisoquinolinone, 3,4-dihydro-5- [4- (1-piperidinyl) butoxy] -1 (2H) -isoquinolinone or those described in WO 00/26192, WO 00/29384, WO 00 / 32579, WO 00/64878, WO 00/68206, WO 00/67734, WO 01/23386 and WO 01/23390.
  • RNA / DNA oligonucleotides into the plant
  • Knockout mutants with the help of e.g. T-DNA mutagenesis
  • Point mutations can also be generated using DNA-RNA hybrids, also known as "chimeraplasty” (Cole-Strauss et al. (1999) Nucl Acids Res 27 (5): 1323-1330; Kmiec (1999) Gene therapy American Scientist 87 (3): 240-247).
  • PTGS post-transcriptional gene silencing
  • TGS transcriptional gene silencing
  • the ⁇ -cyclase activity is reduced compared to the wild type by:
  • the ⁇ -cyclase activity is reduced compared to the wild type by introducing at least one double-stranded ⁇ -cyclase ribonucleic acid sequence or an expression cassette or expression cassettes ensuring its expression in plants.
  • genetically modified plants are used which have the lowest expression rate of an ⁇ -cyclase in flowers.
  • this is achieved in that the transcription of the ⁇ -cyclase dsRNA sequences takes place under the control of a flower-specific promoter or, even more preferably, under the control of a flower-leaf-specific promoter.
  • Particularly preferred plants are plants selected from the families Amaranthaceae, Amaryllidaceae, Apocynaceae, Asteraceae, Balsaminaceae, Begonia- ceae, Berberidaceae, Brassicaceae, Cannabaceae, Caprifoliaceae, Caryophyllaceae, Chenopodiaceae, Compitaceae, Compositaceae, Compositaceae, Compositeaeae, Compositeae, Compositeae , Graminae, llliaceae, Labiatae, Lamiaceae, Leguminosae, Liliaceae, Linaceae, Lobeliaceae, Malvaceae, Oleaceae, Orchidaceae, Papaveraceae, Plumbaginaceae, Poaceae, Polemoniaceae, Primulacaceae, Roseaaceae, Rosunceae , Vitaceae and Violaceae.
  • Very particularly preferred plants are selected from the group of the plant genera Marigold, Tagetes erreeta, Tagetes patula, Acacia, Aconitum, Adonis, Arnica, Aquilegia, Aster, Astragalus, Bignonia, Calendula, Caltha, Campanula, Canna, Centaurea, Cheiranthus, Chrysanthemum , Citrus, Crepis, Crocus, Curcurbita, Cytisus, Delonia, Delphinium, Dianthus, Dimorphotheca, Doronicum, Eschscholtzia, Forsythia, Fremontia, Gazania, Gelsemium, Genista, Gentiana, Geranium, Gerbera, Geum, Grevillea, Helenium, Helianthus, Hepatica, Heracleum, Hisbiscus, Heliopsis, Hypericum, Hypochoeris Impatiens, Iris, Jacaranda, Kenya, Laburnum, Lathyrus, Leontodon, Lilium
  • Calendula Physalis, Medicago, Helianthus, Chrysanthemum, Aster, Tulipa, Narcissus, Petunia, Geranium, Tropaeolum or Adonis.
  • the cultivation step of the genetically modified organisms is preferably followed by harvesting the organisms and more preferably additionally isolating ketocarotenoids from the organisms.
  • the organisms are harvested in a manner known per se in accordance with the respective organism.
  • Microorganisms such as bacteria, yeast, algae or fungi or plant cells, which are cultivated by fermentation in liquid nutrient media, can be separated off, for example, by centrifuging, decanting or filtering. Plants are grown on nutrient media in a manner known per se and harvested accordingly.
  • the cultivation of the genetically modified microorganisms is preferably carried out in the presence of oxygen at a cultivation temperature of at least about 20 ° C, e.g. 20 ° C to 40 ° C, and a pH of about 6 to 9.
  • the microorganisms are preferably first cultivated in the presence of oxygen and in a complex medium, such as e.g. TB or LB medium at a cultivation temperature of about 20 ° C or more, and a pH of about 6 to 9 until a sufficient cell density is reached.
  • a complex medium such as e.g. TB or LB medium
  • an inducible promoter is preferred. Cultivation is carried out after induction of ketolase expression in the presence of oxygen, e.g. 12 hours to 3 days continued.
  • ketocarotenoids are isolated from the harvested biomass in a manner known per se, for example by extraction and, if appropriate, further chemical or physical purification processes, such as, for example, precipitation methods, crystallography, thermal separation processes, such as rectification processes or physical see separation methods such as chromatography.
  • ketocarotenoids in the genetically modified plants according to the invention can preferably be produced specifically in various plant tissues, such as, for example, seeds, leaves, fruits, flowers, in particular in petals.
  • Ketocarotenoids are isolated from the harvested petals in a manner known per se, for example by drying and subsequent extraction and, if appropriate, further chemical or physical purification processes, such as, for example, precipitation methods, crystallography, thermal separation processes, such as rectification processes or physical separation processes, such as chromatography. Ketocarotenoids are isolated from the petals, for example, preferably using organic solvents such as acetone, hexane, ether or tert-methylbutyl ether.
  • ketocarotenoids in particular from petals, are described, for example, in Egger and Kleinig (Phytochemistry (1967) 6, 437-440) and Egger (Phytochemistry (1965) 4, 609-618).
  • ketocarotenoids are preferably selected from the group of astaxanthin, canthaxanthin, echinenone, 3-hydroxyechinenone, 3'-hydroxyechinenone, adonirubin and adonixanthin.
  • ketocarotenoid is astaxanthin.
  • ketocarotenoids are obtained in free form or as fatty acid esters or as diglucosides.
  • the ketocarofinlides are obtained in the process according to the invention in the form of their mono- or diesters with fatty acids.
  • Some proven fatty acids are e.g. Myristic acid, palmitic acid, stearic acid, oleic acid, linolenic acid, and lauric acid (Kamata and Simpson (1987) Comp. Biochem. Physiol. Vol. 86B (3), 587-591).
  • the ketocarotenoids can be produced in the whole plant or, in a preferred embodiment, specifically in plant tissues which contain chromoplasts.
  • Preferred plant tissues are, for example, roots, seeds, leaves, fruits, flowers and in particular nectaries and petals, which also have petals. be drawn.
  • genetically modified plants are used which have the highest expression rate of a ketolase in fruits.
  • the gene expression of the ketolase takes place under the control of a fruit-specific promoter.
  • the nucleic acids described above, as described in detail below are introduced into the plant in a nucleic acid construct functionally linked with a fruit-specific promoter.
  • genetically modified plants are used which have the highest expression rate of a ketolase in seeds.
  • the gene expression of the ketolase takes place under the control of a seed-specific promoter.
  • the nucleic acids described above, as described in detail below are introduced into the plant in a nucleic acid construct functionally linked with a seed-specific promoter.
  • the targeting in the chrome peaks is carried out by a functionally linked plastid transit peptide.
  • the modified ketolase activity being caused by a ketolase selected from group A ketolase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 80% at the amino acid level with the sequence SEQ. ID. NO. 2, B ketolase containing the amino acid sequence SEQ. ID. NO. 10 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 90% at the amino acid level with the sequence SEQ. ID. NO. 10 has.
  • D ketolase containing the amino acid sequence SEQ. ID. NO. 14 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 50% at the amino acid level with the sequence SEQ. ID. NO. 14 has.
  • Synthase activity, geranyl-geranyl diphosphate synthase activity, phytoene synthase activity, phytoene desaturase activity, zeta-carotene desaturase activity, crtlSO activity, FtsZ activity and / or MinD activity can be analogous The corresponding effect genes are used.
  • the transformation can take place individually or through multiple constructs.
  • the transgenic plants are preferably produced by transforming the starting plants, using a nucleic acid construct which contains at least one of the effect genes described above and which are functionally linked to one or more regulation signals which ensure transcription and translation in plants.
  • nucleic acid constructs in which the effect genes are functionally linked to one or more regulation signals which ensure transcription and translation in plants, are also called expression cassettes below.
  • the regulation signals preferably contain one or more promoters which ensure transcription and translation in plants.
  • an expression cassette contains regulatory signals, that is to say regulative nucleic acid sequences which control the expression of the effect genes in the host cell.
  • an expression cassette comprises a promoter upstream, ie at the 5 'end of the coding sequence, and downstream, ie at 3'-end, a polyadenylation signal and optionally further regulatory elements which are operatively linked to the intermediate coding sequence of the effect gene for at least one of the genes described above.
  • An operative link is understood to mean the sequential arrangement of promoter, coding sequence, terminator and, if appropriate, further regulatory elements in such a way that each of the regulatory elements can fulfill its function as intended when expressing the coding sequence.
  • sequences which are preferred, but not limited to, for operative linking are targeting sequences for ensuring subcellular localization in the apoplast, in the vacuole, in plastids, in the mitochondrion, in the endoplasmic reticulum (ER), in the cell nucleus, in oil bodies or other compartments and Translation enhancers such as the 5 'leader sequence from the tobacco mosaic virus (Gallie et al., Nucl. Acids Res. 15 (1987), 8693-8711).
  • any promoter which can control the expression of foreign genes in plants is suitable as the promoter of the expression cassette.
  • Constant promoter means those promoters which ensure expression in numerous, preferably all, tissues over a relatively long period of plant development, preferably at all times during plant development.
  • a plant promoter or a promoter derived from a plant virus is preferably used in particular. Particularly preferred is the promoter of the 35S transcript of the CaMV cauliflower mosaic virus (Franck et al. (1980) Cell 21: 285-294; Odell et al. (1985) Nature 313: 810-812; Shewmaker et al. (1985) Virology 140: 281-288; Gardner et al. (1986) Plant Mol Biol 6: 221-228), the 19S CaMV promoter (US 5,352,605; WO 84/02913; Benfey et al.
  • TPT triose-phosphate translocator
  • Another suitable constitutive promoter is the pds promoter (Pecker et al. (1992) Proc. Natl. Acad. Be USA 89: 4962-4966) or the "Rubisco small subunit (SSU)" promoter (US 4,962,028), the LeguminB Promoter (GenBank Acc.No. X03677), the promoter of nopaline synthase from Agrobacterium, the TR double promoter, the OCS (octopine synthase) promoter from Agrobacterium, the ubiquitin promoter (Holtorf S et al. (1995) Plant Mol Biol 29: 637-649), the Ubiquitin 1 promoter (Christensen et al.
  • the expression cassettes can also contain a chemically inducible promoter (review article: Gatz et al. (1997) Annu Rev Plant Physiol Plant Mol Biol 48: 89-108), by means of which the expression of the effect genes in the plant can be controlled at a specific point in time can.
  • a chemically inducible promoter e.g. the PRP1 promoter (Ward et al. (1993) Plant Mol Biol 22: 361-366), a salicylic acid-inducible promoter (WO 95/19443), a benzenesulfonamide-inducible promoter (EP 0 388 186), a tetracycline inducible promoter (Gatz et al. (1992) Plant J 2: 397-404), an abscisic acid inducible promoter (EP 0 335 528) or an ethanol or cyclohexanone inducible promoter (WO 93/21334) can also be used become.
  • promoters that are induced by biotic or abiotic stress such as the pathogen-inducible promoter of the PRP1 gene (Ward et al. (1993) Plant Mol Biol 22: 361-366), the heat-inducible hsp70 or hsp80 promoter from tomato (US 5,187,267), the cold-inducible alpha-amylase promoter from the potato (WO 96/12814), the light-inducible PPDK promoter or the wound-induced pinII promoter (EP375091).
  • pathogen-inducible promoter of the PRP1 gene Ward et al. (1993) Plant Mol Biol 22: 361-366
  • the heat-inducible hsp70 or hsp80 promoter from tomato US 5,187,267
  • the cold-inducible alpha-amylase promoter from the potato
  • the light-inducible PPDK promoter or the wound-induced pinII promoter EP375091.
  • Pathogen-inducible promoters include those of genes that are induced as a result of a pathogen attack, such as, for example, genes from PR proteins, SAR proteins, b-1, 3-glucanase, chitinase etc. (for example Redolfi et al. (1983) Neth J Plant Pathol 89: 245-254; Uknes, et al. (1992) The Plant Cell 4: 645-656; Van Loon
  • suitable promoters are, for example, fruit ripening-specific promoters, such as the fruit ripening-specific promoter from tomato (WO
  • Development-dependent promoters partly include the tissue-specific promoters, since the formation of individual tissues is naturally development-dependent.
  • promoters are particularly preferred which ensure expression in tissues or parts of plants in which, for example, the biosynthesis of ketocarotenoids or their precursors takes place.
  • promoters with specificities for the anthers, ovaries, petals, sepals, flowers, leaves, stems, seeds and roots and combinations thereof are preferred.
  • Tuber, storage root or root-specific promoters are, for example, the patatin class I (B33) promoter or the potato cathepsin D inhibitor promoter.
  • Leaf-specific promoters are, for example, the cytosolic promoter
  • FBPase from potato (WO 97/05900), the SSU promoter (small subunit) of Rubisco (ribulose-1, 5-bisphosphate carboxylase) or the ST-LSI promoter from potato (Stockhaus et al. (1989) EMBO J 8: 2445- 2451).
  • Flower-specific promoters are, for example, the phytoene synthase promoter (WO 92/16635) or the promoter of the P-rr gene (WO 98/22593), the AP3 promoter from Arabidopsis thaliana (see Example 5), the CHRC promoter (chromoplast-specific carotenoid-associated protein (CHRC) gene promoter from Cucumis sativus Acc.-No. AF099501, base pair 1 to 1532), the EPSP_Synthase promoter (5-enolpyruvylshikimate-3-phosphate synthase gene promoter from Petunia hybrida, Acc.- No.
  • CHRC chromoplast-specific carotenoid-associated protein
  • the PDS promoter (Phytoene desaturase gene promoter from Solanum lycopersicum, Acc.-No. U46919, base pair 1 to 2078), the DFR-A promoter (dihydroflavonol 4-reductase gene A promoter from Petunia hybrida, Acc. -No.X79723, base pair 32 to 1902) or the FBP1 promoter (Floral Binding Protein 1 gene promoter from Petunia hybrida, Acc.-No. L10115, base pair 52 to 1069).
  • Anther-specific promoters are, for example, the 5126 promoter (US Pat. No. 5,689,049, US Pat. No. 5,689,051), the glob-1 promoter or the g-zein promoter.
  • Seed-specific promoters are, for example, the ACP05 promoter (acyl carrier protein gene, WO9218634), the promoters AtS1 and AtS3 from Arabidopsis (WO 9920775), the LeB4 promoter from Vicia faba (WO 9729200 and US 06403371), the napin Promoter from Brassica napus (US 5608152; EP 255378; US 5420034), the
  • SBP promoter from Vicia faba (DE 9903432) or the maize promoters End1 and End2 (WO 0011177).
  • An expression cassette is preferably produced by fusing a suitable promoter with at least one of the effect genes described above, and preferably a nucleic acid inserted between promoter and nucleic acid sequence, which codes for a plastid-specific transit peptide, and a polyadenylation signal according to common recombination and cloning techniques, such as those for example in T. Maniatis, EF Fritsch and J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989) and in T.J. Silhavy, M.L. Berman and L.W. Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) and in Ausubel, F.M. et al., Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley-Interscience (1987).
  • nucleic acids encoding a plastid transit peptide ensure localization in plastids and in particular in chromoplasts.
  • Expression cassettes the nucleic acid sequence of which codes for an effect gene-product fusion protein, can also be used, part of the fusion protein being a transit peptide which controls the translocation of the polypeptide.
  • Preferred transit peptides are preferred for the chromoplasts, which after translocation the effect genes are split off enzymatically from the effect gene product part into the chromoplasts.
  • the transit peptide which is derived from the plastid Nicotiana tabacum transketolase or another transit peptide (for example the transit peptide of the small subunit of the Rubisco (rbcS) or the ferredoxin NADP oxidoreductase as well as the isopentenyl pyrophosphate isomerase-2) or its functional equivalent is particularly preferred ,
  • Nucleic acid sequences of three cassettes of the plastid transit peptide of plastid transketolase from tobacco in three reading frames are particularly preferred as Kpnl / BamHI fragments with an ATG codon in the Ncol interface:
  • a plastid transit peptide are the transit peptide of the plastid isopentenyl pyrophosphate isomerase-2 (IPP-2) from Arabisopsis thaliana and the transit peptide of the small subunit of ribulose bisphosphate carboxylase (rbcS) from pea (Guerineau, F, Woolston, S, Brook L, Mullineaux, P (1988) An expression casette fortargeting
  • nucleic acids according to the invention can be produced synthetically or obtained naturally or contain a mixture of synthetic and natural nucleic acid constituents, and can consist of different heterologous gene segments from different organisms.
  • various DNA fragments can be manipulated in order to obtain a nucleotide sequence which expediently reads in the correct direction and which is equipped with a correct reading frame.
  • adapters or linkers can be attached to the fragments.
  • the promoter and terminator regions can expediently be provided in the transcription direction with a linker or polylinker which contains one or more restriction sites for the insertion of this sequence.
  • the linker has 1 to 10, usually 1 to 8, preferably 2 to 6, restriction sites.
  • the linker has a size of less than 100 bp, often less than 60 bp, but at least 5 bp within the regulatory ranges.
  • the promoter can be native or homologous as well as foreign or heterologous to the host plant.
  • the expression cassette preferably contains, in the 5'-3 'transcription direction, the promoter, a coding nucleic acid sequence or a nucleic acid construct and a region for the transcriptional termination. Different termination areas are interchangeable.
  • Examples of a terminator are the 35S terminator (Guerineau et al. (1988) Nucl Acids Res. 16: 11380), the nos terminator (Depicker A, Stachel S, Dhaese P, Zambryski P, Goodman HM. Nopaline synthase: transcript mapping and DNA sequence. J Mol Appl Genet.
  • Preferred polyadenylation signals are plant polyadenylation signals, preferably those which essentially correspond to T-DNA polyadenylation signals from Agrobacterium tumefaciens, in particular gene 3 of T-DNA (octopine synthase) of the ti plasmid pTiACH5 (Gielen et al., EMBO J. 3 (1984), 835 ff) or functional equivalents.
  • transformation The transfer of foreign genes into the genome of a plant is called transformation.
  • Suitable methods for the transformation of plants are the protoplast transformation by polyethylene glycol-induced DNA uptake, the biolistic method with the gene cannon - the so-called "particle bombardment” method, the electroporation, the incubation of dry embryos in DNA-containing solution, the Microinjection and the Agrobacterium-mediated gene transfer described above.
  • the methods mentioned are described, for example, in B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, published by S.D. Kung and R. Wu, Academic Press (1993), 128-143 and in Potrykus, Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991), 205-225).
  • the construct to be expressed is preferably cloned into a vector which is suitable for transforming Agrobacterium tumefaciens, for example pBin19 (Bevan et al., Nucl. Acids Res. 12 (1984), 8711) or particularly preferably pSUN2, pSUN3, pSUN4 or pSUN5 (WO 02/00900).
  • Agrobacteria transformed with an expression plasmid can be used in a known manner to transform plants, for example by bathing wounded leaves or leaf pieces in an agrobacterial solution and then cultivating them in suitable media.
  • the fused expression cassette is cloned into a vector, for example pBin19 or in particular pSUN5 and pSUN3, which is suitable for being transformed into Agrobacterium tumefaciens.
  • Agrobacteria transformed with such a vector can then be used in a known manner to transform plants, in particular crop plants, for example by bathing wounded leaves or leaf pieces in an agrobacterial solution and then cultivating them in suitable media.
  • Transgenic plants which contain one or more genes integrated into the expression cassette can be regenerated in a known manner from the transformed cells of the wounded leaves or leaf pieces.
  • an expression cassette is inserted as an insertion into a recombinant vector, the vector DNA of which contains additional functional regulatory signals, for example sequences for replication or integration.
  • additional functional regulatory signals for example sequences for replication or integration.
  • Suitable vectors are inter alia in "Methods in Plant Molecular Biology and Biotechnology” (CRC Press), Chap. 6/7, pp. 71-119 (1993).
  • the expression cassettes can be cloned into suitable vectors which enable their multiplication, for example in E. coli.
  • suitable cloning vectors include pJIT117 (Guerineau et al. (1988) Nucl. Acids Res. 16: 11380), pBR332, pUC series, M13mp series and pACYC184.
  • Binary vectors which can replicate both in E. coli and in agrobacteria are particularly suitable.
  • the production of genetically modified microorganisms according to the invention with increased or caused ketolase activity is described by way of example, the changed ketolase activity being caused by a ketolase selected from the group A ketolase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 80% at the amino acid level with the sequence SEQ. ID. NO. 2 has
  • B ketolase containing the amino acid sequence SEQ. ID. NO. 10 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 90% at the amino acid level with the sequence SEQ. ID. NO. 10 has
  • C ketolase containing the amino acid sequence SEQ. ID. NO. 12 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 90% at the amino acid level with the sequence SEQ. ID. NO. 12 or
  • D ketolase containing the amino acid sequence SEQ. ID. NO. 14. or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 50% at the amino acid level with the sequence SEQ. ID. NO. 14 has.
  • Synthase activity, geranyl-geranyl diphosphate synthase activity, phytoene synthase activity, phytoene desaturase activity, zeta-carotene desaturase activity, crtlSO activity, FtsZ activity and / or MinD activity can be analogous The corresponding effect genes are used.
  • nucleic acids described above encoding a ketolase, ⁇ -hydroxylase or ⁇ -cyclase, and the nucleic acids encoding an HMG-CoA reductase, nucleic acids encoding an (E) -4-hydroxy-3-methylbut-2-enyl diphosphate reductase , Nucleic acids encoding a 1-deoxy-D-xylose-5-phosphate synthase, nucleic acids encoding a 1-deoxy-D-xylose-5-phosphate reductoisomerase, nucleic acids encoding an isopentenyl-diphosphate- ⁇ -isomerase, nucleic acids encoding a geranyl -Diphosphate synthase, nucleic acids encoding a farnesyl diphosphate synthase, nucleic acids encoding a geranyl-geranyl diphosphate synthase, nucleic acids encoding a phytoene synthase, nucleic acids
  • Such constructs according to the invention preferably comprise a promoter 5 'upstream of the respective coding sequence and a terminator sequence 3' downstream and, if appropriate, further customary regulatory elements, in each case operatively linked to the effect gene.
  • An “operative linkage” is understood to mean the sequential arrangement of promoter, coding sequence (effect gene), terminator and, if appropriate, further regulatory elements in such a way that each of the regulatory elements can perform its function as intended in the expression of the coding sequence.
  • sequences which can be linked operatively are targeting sequences as well.
  • Further regulatory elements include selectable markers, amplification signals, origins of replication and the like.
  • the natural regulation sequence can still be present before the actual effect gene. This natural regulation can possibly be switched off by genetic modification and the expression of the genes increased or decreased.
  • the gene construct can also have a simpler structure, ie no additional regulation signals are inserted in front of the structural gene and the natural promoter with its regulation is not removed. Instead, the natural regulatory sequence is mutated so that regulation no longer takes place and gene expression is increased or decreased.
  • the nucleic acid sequences can be contained in one or more copies in the gene construct.
  • Examples of useful promoters in microorganisms are: cos-, tac-, trp-, tet-, trp-tet-, Ipp-, lac-, Ipp-lac-, laclq-, T7-, T5-, T3-, gal- , trc, ara, SP6, lambda PR or in the lambda PL promoter, which are advantageously used in gram-negative bacteria; as well as the gram-positive promoters amy and SPO2 or the yeast promoters ADC1, MFa, AC, P-60, CYC1, GAPDH.
  • inducible promoters such as, for example, light and in particular temperature-inducible promoters, such as the P r P r promoter
  • inducible promoters such as, for example, light and in particular temperature-inducible promoters, such as the P r P r promoter
  • all natural promoters with their regulatory sequences can be used.
  • synthetic promoters can also be used advantageously.
  • the regulatory sequences mentioned are intended to enable the targeted expression of the nucleic acid sequences and the protein expression. Depending on the host organism, this can mean, for example, that the gene is only expressed or overexpressed after induction, or that it is expressed and / or overexpressed immediately.
  • the regulatory sequences or factors can preferably have a positive influence on the expression and thereby increase or decrease it.
  • the regulatory elements can advantageously be strengthened at the transcription level by using strong transcription signals such as promoters and / or "enhancers".
  • an increase in translation is also possible, for example, by improving the stability of the mRNA.
  • An expression cassette is produced by fusing a suitable promoter with the nucleic acid sequences described above, encoding a ketolase, ⁇ -hydroxylase, ⁇ -cyclase, HMG-CoA reductase, (E) -4-hydroxy-3-methylbut-2-enyl- Diphosphate reductase, 1-deoxy-D-xylose-5-phosphate synthase, 1-deoxy-D-xylose-5-phosphate reductoisomerase, isopentenyl-diphosphate- ⁇ -isomerase, geranyl-diphosphate-synthase, farnesyl-diphosphate- Synthase, geranyl-geranyl-diphosphate synthase, phytoene synthase, phytoene desaturase, zeta-carotene desaturase, crtlSO protein, FtsZ protein and / or a MinD protein and a terminator or polyadenylation signal.
  • the recombinant nucleic acid construct or gene construct is advantageously inserted into a host-specific vector which enables optimal expression of the genes in the host.
  • Vectors are well known to those skilled in the art and can be found, for example, in "Cloning Vectors" (Pouwels PH et al., Ed., Elsevier, Amsterdam-New York-Oxford, 1985).
  • vectors also include all other vectors known to the person skilled in the art, such as, for example, phages, viruses such as SV40, CMV, baculovirus and adeovirus, transposons, IS elements, phasmids, cosmids, and linear or circular Understand DNA. These vectors can be replicated autonomously in the host organism or replicated chromosomally.
  • fusion expression vectors such as pGEX (Pharmacia Biotech Ine; Smith, DB and Johnson, KS (1988) Gene 67: 31-40), pMAL (New England Biolabs, Beverly, MA) and pRIT 5 (Pharmacia, Piscataway, NJ) which glutathione-S-transferase (GST), maltose E-binding protein or protein A is fused to the recombinant target protein.
  • GST glutathione-S-transferase
  • Non-fusion protein expression vectors such as pTrc (Amann et al., (1988) Gene 69: 301-315) and pET 11d (Studier et al. Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California (1990) 60-89) or pBluescript and pUC vectors.
  • yeast expression vector for expression in the yeast S. cerevisiae such as pYepSed (Baldari et al., (1987) Embo J. 6: 229-234), pMFa (Kurjan and Herskowitz (1982) Cell 30: 933-943) , pJRY88 (Schultz et al. (1987) Gene 54: 113-123) and pYES2 (Invitrogen Corporation, San Diego, CA).
  • Vectors and methods of constructing vectors suitable for use in other fungi such as filamentous fungi include those described in detail in: van den Hondel, C.A.M.J.J. & Punt, P.J. (1991) "Gene transfer Systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, J.F. Peberdy et al., Eds., Pp. 1-28, Cambridge University Press: Cambridge.
  • Baculovirus vectors available for expression of proteins in cultured insect cells include the pAc series (Smith et al., (1983) Mol. Cell Biol .. 3: 2156-2165) and pVL series (Lucklow and Summers (1989) Virology 170: 31-39).
  • genetically modified microorganisms can be produced, for example with at least one vector according to the invention are transformed.
  • recombinant constructs according to the invention described above are advantageously introduced and expressed in a suitable host system.
  • Common cloning and transfection methods known to the person skilled in the art such as, for example, co-precipitation, protoplast fusion, electroporation, retroviral transfection and the like, are preferably used to bring the nucleic acids mentioned into expression in the respective expression system. Suitable systems are described, for example, in Current Protocols in Molecular Biology, F. Ausubel et al., Ed., Wiley Interscience, New York 1997.
  • marker genes which are also contained in the vector or in the expression cassette.
  • marker genes are genes for antibiotic resistance and for enzymes which catalyze a coloring reaction which stains the transformed cell. These can then be selected using automatic cell sorting.
  • Microorganisms which have been successfully transformed with a vector and carry an appropriate antibiotic resistance gene can be selected using appropriate antibiotic-containing media or nutrient media.
  • Marker proteins that are presented on the cell surface can be used for selection by means of affinity chromatography.
  • the invention further relates to the genetically modified, non-human organisms, the genetic modification being the activity of a ketolase
  • a ketolase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 80% at the amino acid level with the sequence SEQ. ID. NO. 2 has
  • B ketolase containing the amino acid sequence SEQ. ID. NO. 10 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 90% at the amino acid level with the sequence SEQ. ID. NO. 10 has
  • C ketolase containing the amino acid sequence SEQ. ID. NO. 12 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 90% at the amino acid level with the sequence SEQ. ID. NO. 12 or
  • D ketolase containing the amino acid sequence SEQ. ID. NO. 14 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 50% at the amino acid level with the sequence SEQ. ID. NO. 14 has.
  • the increase (according to E) or causation (according to F) of the ketolase activity compared to the wild type is preferably carried out by the
  • a ketolase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 80% at the amino acid level with the sequence SEQ. ID. NO. 2 has
  • B ketolase containing the amino acid sequence SEQ. ID. NO. 10 or one of this sequence by substitution, insertion or deletion of amino acids derived sequence that is at least 90% identical at the amino acid level to the sequence SEQ. ID. NO. 10 has
  • C ketolase containing the amino acid sequence SEQ. ID. NO. 12 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 90% at the amino acid level with the sequence SEQ. ID. NO. 12 or
  • D ketolase containing the amino acid sequence SEQ. ID. NO. 14 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 50% at the amino acid level with the sequence SEQ. ID. NO. 14 has.
  • the gene expression of a nucleic acid encoding a ketolase is increased by introducing into the organism nucleic acids encoding ketolases selected from the group
  • a ketolase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 80% at the amino acid level with the sequence SEQ. ID. NO. 2 has
  • B ketolase containing the amino acid sequence SEQ. ID. NO. 10 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 90% at the amino acid level with the sequence SEQ. ID. NO. 10 has
  • C ketolase containing the amino acid sequence SEQ. ID. NO. 12 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 90% at the amino acid level with the sequence SEQ. ID. NO. 12 or
  • D ketolase containing the amino acid sequence SEQ. ID. NO. 14 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 50% on amino acids. level with the sequence SEQ. ID. NO. 14 has.
  • the transgenic organisms according to the invention therefore have at least one further ketolase gene according to the invention compared to the wild type.
  • genetically modified organisms additionally have an increased or induced hydroxlase activity and / or ⁇ -cyclase activity compared to the wild type. Further preferred embodiments are described above in the method according to the invention.
  • genetically modified non-human organisms additionally have at least one further increased activity compared to the wild type, selected from the group HMG-CoA reductase activity, (E) - 4-hydroxy-3 -Methylbut-2-enyl-diphosphate reductase activity, 1 -deoxy-D-xylose-5-phosphate synthase activity, 1-deoxy-D-xylose-5-phosphate reductoisomerase activity, isopentenyl-diphosphate- ⁇ -Isomerase activity, geranyl diphosphate synthase activity, farnesyl diphosphate synthase activity, geranyl geranyl diphosphate synthase activity, phytoene synthase activity, phytoene desaturase activity, zeta-carotene desaturase activity , crtlSO activity, FtsZ activity and MinD activity. Further preferred embodiments are described above in the method according to the invention.
  • genetically modified plants as mentioned above, additionally have a reduced ⁇ -cyclase activity compared to a Wiid type plant. Further preferred embodiments are described above in the method according to the invention.
  • organisms are preferably understood to mean organisms which, as wild-type or starting organisms, naturally or by genetic complementation and / or reorganization of the metabolic pathways, are capable of producing carotenoids, in particular ⁇ -carotene and / or zeaxanthin and / or neoxanthine and / or violaxanthin and / or to produce lutein.
  • Further preferred organisms already have hydroxylase activity as wild-type or starting organisms and are therefore able to produce zeaxanthin as wild-type or starting organisms.
  • Preferred organisms are plants or microorganisms, such as bacteria, yeasts, algae or fungi.
  • Both bacteria can be used as bacteria that are able to synthesize xanthophylls due to the introduction of genes of the carotenoid biosynthesis of a carotenoid-producing organism, such as bacteria of the genus Escherichia, which contain, for example, crt genes from Erwinia, as well Bacteria that are able to synthesize xanthophylls, such as, for example, bacteria of the genus Erwinia, Agrobacterium, Flavobacterium, Alcaligenes, Paracoccus, Nostoc or cyanobacteria of the genus Synechocystis.
  • bacteria of the genus Escherichia which contain, for example, crt genes from Erwinia
  • Bacteria that are able to synthesize xanthophylls such as, for example, bacteria of the genus Erwinia, Agrobacterium, Flavobacterium, Alcaligenes, Paracoccus, Nostoc or cyan
  • Preferred bacteria are Escherichia coli, Erwinia herbicola, Erwinia uredovora, Agrobacterium aurantiacum, Alcaligenes sp. PC-1, Flavobacterium sp. strain R1534, the Cyanobacterium Synechocystis sp. PCC6803, Paracoccus marcusii or Paracoccus carotinifaciens.
  • yeasts are Candida, Saccharomyces, Hansenula, Pichia or Phaffia. Particularly preferred yeasts are Xanthophyllomyces dendrorhous or Phaffia rhodozyma.
  • Preferred mushrooms are Aspergillus, Trichoderma, Ashbya, Neurospora, Blakeslea, in particular Blakeslea trispora, Phycomyces, Fusarium or others in Indian Chem. Engr. Section B. Vol. 37, No. 1, 2 (1995) on page 15, table 6 described mushrooms.
  • Preferred algae are green algae, such as algae of the genus Haematococcus, Phaedactylum tricornatum, Volvox or Dunaliella. Particularly preferred algae are Haematococcus puvialis or Dunaliella bardawil.
  • Particularly preferred plants are selected from the Amaranthaceae.Amaryllidaceae, Apocynaceae, Asteraceae, Balsaminaceae, Begoniaceae, Berberidaceae, Brassicaceae, Cannabaceae, Caprifoliaceae, Caryophyllaceae, Chenopaceae, Compateaceae Gentianaceae, Geraniaceae, Graminae, llliaceae, Labiatae, Lamiaceae, Leguminosae, Liliaceae, Linaceae, Lobeliaceae, Malvaceae, Oleaceae, Orchidaceae, Papaveraceae, Plumbaginaceae, Poaceae, Polemoniaceae Verbana- ceae, Vitaceae and Violaceae.
  • Very particularly preferred plants are selected from the group of the plant genera Marigold, Tagetes errecta, Tagetes patula, Acacia, Aconitum, Adonis, Arnica, Aquilegia, Aster, Astragalus, Bignonia, Calendula, Caltha, Campanula, Canna, Centaurea, Cheiranthus, Chrysanthemum , Citrus, Crepis, Crocus, Curcurbita, Cytisus, Delonia, Delphinium, Dianthus, Dimorphotheca, Doronicum, Eschscholtzia, Forsythia, Fremontia, Gazania, Gelsemium, Genista, Gentiana, Geranium, Gerbera, Geum, Grevillaea, Helenium, Helianthus, Hepatica , Heracleum, Hisbiscus, Heliopsis, Hypericum, Hypochoeris, Impatiens, Iris, Jacaranda, Kenya, Laburnum, Lathyrus, Leontodon, Lili
  • Calendula Physalis, Medicago, Helianthus, Chrysanthemum, Aster, Tulipa, Narcissus, Petunia, Geranium, Tropaeolum or Adonis.
  • Very particularly preferred genetically modified plants are selected from the plant genera Marigold, Tagetes erecta, Tagetes patula, Adonis, Lycopersicon, Rosa, Calendula, Physalis, Medicago, Helianthus, Chrysanthemum, Aster, Tulipa, Narcissus, Petunia, Geranium or Tropaeolum, the genetic modified plant contains at least one transgenic nucleic acid encoding a ketolase.
  • the present invention further relates to the transgenic plants, their reproductive material and their plant cells, tissue or parts, in particular their fruits, seeds, flowers and petals.
  • the genetically modified plants can be used to produce ketocarotenoids, in particular astaxanthin.
  • Genetically modified organisms according to the invention in particular plants or parts of plants, such as in particular petals with an increased content of ketocarotenoids, in particular astaxanthin, which can be consumed by humans and animals can also be used, for example, directly or after processing known per se as food or Feed or used as feed and food supplements.
  • the genetically modified organisms can be used for the production of ketocarotenoid-containing extracts of the organisms and / or for the production of feed and food supplements.
  • the genetically modified organisms have an increased ketocarotenoid content compared to the wild type.
  • An increased ketocarotenoid content is generally understood to mean an increased total ketocarotenoid content.
  • ketocarotenoids is also understood to mean, in particular, an altered content of the preferred ketocarotenoids without the total carotenoid content necessarily having to be increased.
  • the genetically modified plants according to the invention have an increased astaxanthin content compared to the wild type.
  • an increased content is also understood to mean a caused content of ketocarotenoids or astaxanthin.
  • the invention further relates to a ketolase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids and having an identity of at least 80%, preferably at least 85%, more preferably at least 90%, more preferably at least 95%, more preferably at least 97%, particularly preferably at least 99% at the amino acid level with the sequence SEQ. ID. NO. 2 has.
  • ketolases contain the sequence SEQ. ID. NO. 2, 4, 6 or 8. Particularly preferred ketolases are ketolases with the sequences SEQ. ID. NO. 2, 4, 6 or 8.
  • the invention further relates to nucleic acids encoding ketolases described above.
  • Preferred nucleic acids contain the sequence SEQ. ID. NO. 1, 3, 5 or 7. Particularly preferred nucleic acids are nucleic acids with the sequence SEQ. ID. NO. 1, 3, 5 or 7.
  • the invention further relates to a ketolase containing the amino acid sequence SEQ. ID. NO. 10 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 90%, preferably at least 92%, more preferably at least 95%, more preferably at least 97%, more preferably at least 98%, particularly preferably at least 99% at the amino acid level with the sequence SEQ. ID. NO. 10 has.
  • ketolases contain the sequence SEQ. ID. NO. 10. Particularly preferred ketolases are ketolases of the sequence SEQ. ID. NO. 10th
  • the invention further relates to nucleic acids encoding a ketolase described above.
  • Preferred nucleic acids contain the sequence SEQ. ID. NO. 9. Particularly preferred nucleic acids are nucleic acids of the sequence SEQ. ID. NO. 9th
  • the invention further relates to ketolases containing the amino acid sequence SEQ. ID. NO. 12 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 90%, preferably at least 92%, more preferably at least 95%, more preferably at least 97%, more preferably at least 98%, particularly preferably at least 99% at the amino acid level with the sequence SEQ. ID. NO. 12 has.
  • ketolases contain the sequence SEQ. ID. NO. 12. Particularly preferred ketolases are ketolases of the sequence SEQ. ID. NO. 12th
  • the invention further relates to nucleic acids encoding a ketolase described above.
  • Preferred nucleic acids contain the sequence SEQ. ID. NO. 11. Particularly preferred nucleic acids are nucleic acids of the sequence SEQ. ID. NO. 11th
  • ketolase NP60.79 BKT from Nostoc punctiforme SAG 60.79
  • the DNA coding for the ketolase NP60.79: BKT was amplified by means of PCR from Nostoc punctiforme SAG 60.79 (SAG: Collection of algal cultures in Göttingen).
  • the bacterial cells were pelleted from a 10 ml liquid culture by centrifugation at 8,000 rpm for 10 minutes. The bacterial cells were then crushed and ground in liquid nitrogen using a mortar. The cell material was resuspended in 1 ml of 10 mM Tris HCl (pH 7.5) and transferred to an Eppendorf reaction vessel (2 ml volume). After adding 100 ⁇ l Proteinase K (concentration: 20 mg / ml), the cell suspension was incubated for 3 hours at 37 ° C. The suspension was then extracted with 500 ⁇ l of phenol. After centrifugation at 13,000 rpm for ⁇ minutes, the upper, aqueous phase was transferred to a new 2 ml Eppendorf reaction vessel.
  • the extraction with phenol was repeated 3 times.
  • the DNA was precipitated by adding 1/10 volume of 3 M sodium acetate (pH 5.2) and 0.6 volume of isopropanol and then washed with 70% ethanol.
  • the DNA pellet was dried at room temperature, taken up in 25 ⁇ l of water and dissolved with heating to 65 ° C.
  • the nucleic acid coding for the ketolase NP60.79 was determined by means of a "polymerase chain reaction” (PCR) from Nostoc punctiforme SAG 60.79 using a sense-specific primer (NP196-1, SEQ ID No. 59) and an antisense-specific primer (NP196-2 SEQ ID No. 60).
  • PCR polymerase chain reaction
  • the PCR conditions were as follows:
  • the PCR for the amplification of the DNA which codes for a ketolase protein consisting of the entire primary sequence, was carried out in a 50 ⁇ l reaction mixture which contained:
  • the PCR was carried out under the following cycle conditions:
  • PCR amplification with SEQ ID No. 59 and SEQ ID No. 60 resulted in a 792 bp fragment coding for a protein consisting of the entire primary sequence (SEQ ID No. 61).
  • the amplificate was cloned into the PCR cloning vector pCR 2.1-TOPO (Invitrogen) and the clone pNP60.79 was obtained.
  • ketolase NP60.79 BKT from Nostoc punctiforme SAG 60.79 in Lycopersicon esculentum and Tagetes erecta
  • the expression of the ketolase from Nostoc punctiform SAG 60.79 in Lycopersicon esculentum and in Tagetes erecta was carried out under the control of the constitutive promoter FNR (ferredoxin NADPH oxidoreduetase) from Arabidopsis thaliana. Expression was carried out using the pea transit peptide rbcS (Anderson et al. 1986, Biochem J. 240: 709-715).
  • the DNA fragment which contains the FNR promoter region -635 to -1 from Arabidopsis thaliana (SEQ ID No. 65) was PCR-analyzed using genomic DNA (isolated from Arabidopsis thaliana according to standard methods) and the primer FNR-1 (SEQ ID No .63) and FNR-2 (SEQ ID No. 64).
  • the PCR conditions were as follows:
  • the PCR for the amplification of the DNA which contains the FNR promoter fragment (-635 to -1), was carried out in a 50 ⁇ l reaction mixture which contained:
  • the PCR was carried out under the following cycle conditions:
  • the 653 bp amplificate (SEQ ID No. 65) was cloned into the PCR cloning vector pCR 2.1-TOPO (Invitrogen) using standard methods and the plasmid pFNR was obtained.
  • Sequencing of the clone pFNR confirmed a sequence which corresponds to a sequence section on chromosome 5 of Arabidopsis thaliana (database entry AB011474) from position 70127 to 69493.
  • the gene begins at base pair 69492 and is annotated with "ferredoxin-NADP + reductase".
  • the clone pFNR was therefore used for the cloning into the expression vector pJIT117 (Guerineau et al. 1988, Nucl. Acids Res. 16: 11380).
  • the cloning was carried out by isolating the 637 bp Kpnl-Hindlll fragment from pFNR and ligating into the Kpnl-Hindlll cut vector pJIT117.
  • the clone that uses the FNR promoter instead of the original d35S promoter is called pJFNR.
  • the clone pNP60.79 was used for the cloning into the expression vector pJFNR (example 2). The cloning was carried out by isolating the 790 bp Sphl fragment from pNP60.79 and ligating into the Sphl cut vector pJFNR.
  • the clone that contains the Nostoc punctiforme SAG 60.79 ketolase in the correct orientation as an N-terminal translational fusion with the rbcS transit peptide is called pJFNRNP60.79.
  • the 2.4 Kb Kpnl fragment from pJFNRNP60.79 was ligated with the Kpnl-cut vector pSUN3. This clone is called MSP1.
  • ketolase NP60.79 BKT from Nostoc punctiforme SAG 71.79
  • the DNA which codes for the ketolase NP71.79: BKT was amplified by means of PCR from Nostoc punctiforme SAG 71.79 (SAG: Collection of algal cultures in Göttingen).
  • the bacterial cells were pelleted from a 10 ml liquid culture by centrifugation at 8,000 rpm for 10 minutes. The bacterial cells were then crushed and ground in liquid nitrogen using a mortar. The cell material was resuspended in 1 ml of 10 mM Tris HCl (pH 7.5) and transferred to an Eppendorf reaction vessel (2 ml volume). After adding 100 ⁇ l Proteinase K (concentration: 20 mg / ml), the cell suspension was incubated for 3 hours at 37 ° C. The suspension was then extracted with 500 ⁇ l of phenol. After centrifugation at 13,000 rpm for ⁇ minutes, the upper, aqueous phase was transferred to a new 2 ml Eppendorf reaction vessel.
  • the extraction with phenol was repeated 3 times.
  • the DNA was precipitated by adding 1/10 volume of 3 M sodium acetate (pH 5.2) and 0.6 volume of isopropanol and then washed with 70% ethanol.
  • the DNA pellet was dried at room temperature, taken up in 25 ⁇ l of water and dissolved with heating to 65 ° C.
  • PCR polymerase chain reaction
  • the PCR conditions were as follows:
  • the PCR for the amplification of the DNA which codes for a ketolase protein consisting of the entire primary sequence, was carried out in a 50 ⁇ l reaction mixture which contained:
  • the PCR was carried out under the following cycle conditions:
  • PCR amplification with SEQ ID No. 59 and SEQ ID No. 60 resulted in a 792 bp fragment which codes for a protein consisting of the entire primary sequence (SEQ ID No. 66).
  • the amplificate was cloned into the PCR cloning vector pCR 2.1-TOPO (Invitrogen) and the clone pNP71, 79 was obtained.
  • ketolase NP71.79 BKT from Nostoc punctiforme SAG 71.79 in Lycopersicon esculentum and Tagetes erecta
  • the expression of the ketolase from Nostoc punctiform SAG 71.79 in Lycopersicon esculentum and in Tagetes erecta was carried out under the control of the constitutive promoter FNR (ferredoxin NADPH oxidoreduetase) from Arabidopsis thaliana. Expression was carried out using the pea transit peptide rbcS (Anderson et al. 1986, Biochem J. 240: 709-715).
  • the clone pNP71.79 was used for the cloning into the expression vector pJFNR (example 2). The cloning was carried out by isolating the 790 bp Sphl fragment. vector pJFNR cut from pNP71.79 and ligation into the coil. The clone that contains the Nostoc punctiforme SAG 71.79 ketolase in the correct orientation as an N-terminal translational fusion with the rbcS transit peptide is called pJFNRNP71.79.
  • An expression cassette for the Agrobacterium -mediated transformation of the ketolase NP71.79: BKT from Nostoc punctiforme SAG 71.79 in Lycopersicon esculentum was produced using the binary vector pSUN3 (WO02 / 00900).
  • pS3FNRNP71.79 the 2.4 Kb Kpnl fragment from pJFNRNP71.79 was ligated with the Kpnl-cut vector pSUN3. This clone is called MSP3.
  • Example 5 Amplification of a DNA encoding the entire primary sequence of the ketolase NS037: BKT from Nodularia spumigena CCAUV 01-037
  • the DNA coding for the ketolase NS037: BKT was amplified by PCR from Nodularia spumigena CCAUV 01-037 (CCAlN.Culture Collection ofAlgae at the University of Vienna).
  • the bacterial cells were pelleted from a 10 ml liquid culture by centrifugation at 8,000 rpm for 10 minutes. The bacterial cells were then crushed and ground in liquid nitrogen using a mortar. The cell material was resuspended in 1 ml of 10 mM Tris HCl (pH 7.5) and transferred to an Eppendorf reaction vessel (2 ml volume). After adding 100 ⁇ l Proteinase K (concentration: 20 mg / ml), the cell suspension was incubated for 3 hours at 37 ° C. The suspension was then extracted with 500 ⁇ l of phenol. After ⁇ minute centrifugation at 13,000 rpm, the upper, aqueous phase was transferred to a new 2 ml Eppendorf reaction vessel.
  • the extraction with phenol was repeated 3 times.
  • the DNA was precipitated by adding 1/10 volume of 3 M sodium acetate (pH 5.2) and 0.6 volume of isopropanol and then washed with 70% ethanol.
  • the DNA pellet was dried at room temperature, taken up in 25 ⁇ l of water and dissolved with heating to 65 ° C.
  • the nucleic acid coding for the ketolase NS037 BKT from Nodularia spumigena CCAUV 01-037 was synthesized by means of a "polymerase chain reaction” (PCR) from Nodularia spumigena CCAUV 01-037 using a sense-specific primer (NP196-1, SEQ ID No. 59) and an antisense-specific primer (NSK-2 SEQ ID No. 68).
  • PCR polymerase chain reaction
  • the PCR conditions were as follows:
  • the PCR for the amplification of the DNA which codes for a ketolase protein consisting of the entire primary sequence, was carried out in a 50 ⁇ l reaction mixture which contained:
  • NSK-2 SEQ ID No. 68
  • TAKARA 5 ul 10X PCR buffer
  • the PCR was carried out under the following cycle conditions:
  • PCR amplification with SEQ ID No. 59 and SEQ ID No. 68 resulted in an 807 bp fragment that codes for a protein consisting of the entire primary sequence (SEQ ID No. 69).
  • the amplificate in the PCR cloning vector pCR 2.1-TOPO was cloned and the clone pNS037 obtained.
  • NS037 BKT from Nodularia spumigena CCAUV 01-037 in Lycopersicon esculentum and Tagetes erecta
  • the expression of the ketolase from Nodularia spumigena CCAUV 01-037 in Lycopersicon esculentum and in Tagetes erecta was carried out under the control of the constitutive promoter FNR (ferredoxin NADPH oxidoreduetase) from Arabidopsis thaliana. Expression was carried out using the pea transit peptide rbcS (Anderson et al. 1986, Biochem J. 240: 709-715).
  • the clone pNS037 was used for the cloning into the expression vector pJFNR (example 2).
  • the cloning was carried out by isolating the 797 bp Sphl fragment from pNS037 and ligation into the Sphl cut vector pJFNR.
  • the clone which contains the ketolase from Nodularia spumigena CCAUV 01-037 in the correct orientation as an N-terminal translational fusion with the rbcS transit peptide is called pJFNRNS037.
  • the 2.4 Kb Kpnl fragment from pJFNRNS037 was ligated with the Kpnl-cut vector pSUN5. This clone is called MSP6.
  • the DNA coding for the ketolase NS053: BKT was amplified by means of PCR from Nodularia spumigena CCAUV 01-053 (CCAUV: Culture Collection of Algae at the University of Vienna).
  • the bacterial cells were pelleted from a 10 ml liquid culture by centrifugation at 8,000 rpm for 10 minutes. The bacterial cells were then crushed and ground in liquid nitrogen using a mortar. The cell material was resuspended in 1 ml of 10 mM Tris HCl (pH 7.5) and transferred to an Eppendorf reaction vessel (2 ml volume). After adding 100 ⁇ l Proteinase K (concentration: 20 mg / ml), the cell suspension was incubated for 3 hours at 37 ° C. The suspension was then extracted with 500 ⁇ l of phenol. After centrifugation at 13,000 rpm for ⁇ minutes, the upper, aqueous phase was transferred to a new 2 ml Eppendorf reaction vessel.
  • the phenol extraction was repeated 3 times.
  • the DNA was precipitated by adding 1/10 volume of 3 M sodium acetate (pH 5.2) and 0.6 volume of isopropanol and then washed with 70% ethanol.
  • the DNA pellet was dried at room temperature, taken up in 25 ⁇ l of water and dissolved with heating to 65 ° C.
  • the nucleic acid coding for the ketolase NS053 BKT from Nodularia spumigena CCAUV 01-053 was synthesized by means of a "polymerase chain reaction” (PCR) from Nodularia spumigena CCAUV 01-053 using a sense-specific primer (NP196-1, SEQ ID No . 59) and an antisense-specific primer (NSK-2 SEQ ID No. 68).
  • PCR polymerase chain reaction
  • the PCR for the amplification of the DNA which codes for a ketolase protein consisting of the entire primary sequence, was carried out in a 50 ⁇ l reaction mixture, which contained:
  • the PCR was carried out under the following cycle conditions:
  • PCR amplification with SEQ ID No. 59 and SEQ ID No. 68 resulted in an 807 bp fragment coding for a protein consisting of the entire primary sequence (SEQ ID No. 71).
  • the amplificate was cloned into the PCR cloning vector pCR 2.1-TOPO (Invitrogen) and the clone pNS053 was obtained.
  • ketolase NS053 BKT from Nodularia spumigena CCAUV 01-053 in Lycopersicon esculentum and Tagetes erecta
  • the expression of the ketolase from Nodularia spumigena CCAUV 01-053 in Lycopersicon esculentum and in Tagetes erecta was carried out under the control of the constitutive promoter FNR (ferredoxin NADPH oxidoreduetase) from Arabidopsis thaliana. Expression was carried out using the pea transit peptide rbcS (Anderson et al. 1986, Biochem J. 240: 709-715). The clone pNS053 was used for the cloning into the expression vector pJFNR (example
  • the cloning was carried out by isolating the 797 bp Sphl fragment from pNS053 and ligating into the SphI cut vector pJFNR. The clone that the
  • pJFNRNS053 ketolase from Nodularia spumigena CCAUV 01-053 in the correct orientation as an N-terminal translational fusion with the rbcS transit peptide.
  • the 2.4 Kb Kpnl fragment from pJFNRNS053 was ligated with the Kpnl-cut vector pSUN3. This clone is called MSP7.
  • the 2.4 Kb Kpnl fragment from pJFNRNS053 was ligated with the Kpnl-cut vector pSUN5. This clone is called MSP8.
  • ketolase GV35.87 BKT from Gloeobacter violaceus SAG 35.87
  • the DNA coding for the ketolase GV35.87.BKT was amplified by means of PCR from Gloeobacter violaceus SAG 35.87 (SAG: Collection of algal cultures in Göttingen).
  • the bacterial cells were pelleted from a 10 ml liquid culture by centrifugation at 8,000 rpm for 10 minutes. The bacterial cells were then washed in liquid nitrogen with a. Crush and ground the mortar. The cell material was resuspended in 1 ml 10mM Tris HCl (pH 7.5) and transferred to an Eppendorf reaction vessel (2ml volume). After adding 100 ⁇ l Proteinase K (concentration: 20 mg / ml), the cell suspension was incubated for 3 hours at 37 ° C. The suspension was then extracted with 500 ⁇ l of phenol. After centrifugation at 13,000 rpm for ⁇ minutes, the upper, aqueous phase was transferred to a new 2 ml Eppendorf reaction vessel.
  • the extraction with phenol was repeated 3 times.
  • the DNA was precipitated by adding 1/10 volume of 3 M sodium acetate (pH 5.2) and 0.6 volume of isopropanol and then washed with 70% ethanol.
  • the DNA pellet was dried at room temperature, taken up in 25 ⁇ l of water and dissolved with heating to 65 ° C.
  • the nucleic acid coding for the ketolase GV35.87.BKT from Gloeobacter violaceus SAG 35.87 was determined by means of "polymerase chain reaction” (PCR) from Gloeobacter violaceus SAG 35.87 using a sense-specific primer (GVK-F1, SEQ ID No. 73 ) and an antisense-specific primer (GVK-R1 SEQ ID No. 74).
  • PCR polymerase chain reaction
  • the PCR conditions were as follows:
  • the PCR for the amplification of the DNA which codes for a ketolase protein consisting of the entire primary sequence, was carried out in a 50 ⁇ l reaction mixture, which contained:
  • PCR amplification with SEQ ID No. 73 and SEQ ID No. 74 resulted in a 785 bp fragment which codes for a protein consisting of the entire primary sequence (SEQ ID No. 75).
  • the amplificate was cloned into the PCR cloning vector pCR 2.1-TOPO (Invitrogen) and the clone pGV35.87 was obtained.
  • ketolase GV35.87 BKT from Gloeobacter violaceus SAG 35.87 in Lycopersicon esculentum and Tagetes erecta
  • the expression of the ketolase from Gloeobacter violaceus SAG 35.87 m Lycopersicon esculentum and in Tagetes erecta was carried out under the control of the constitutive promoter FNR (ferredoxin NADPH oxidoreduetase) from Arabidopsis thaliana. Expression was carried out using the pea transit peptide rbcS (Anderson et al. 1986, Biochem J. 240: 709-715).
  • the clone pGV35.87 was used for the cloning into the expression vector pJFNR (example 2). The cloning was carried out by isolating the 797 bp Sphl fragment from pGV35.87 and ligation into the SphI-cut vector pJFNR.
  • the clone which contains the ketolase from Gloeobacter violaceus SAG 35.87 in the correct orientation as an N-terminal translational fusion with the rbcS transit peptide is called pJFNRGV35.87.
  • the expression vector pS3FNRGV35.87 To produce the expression vector pS3FNRGV35.87, the 2.4 Kb Kpnl fragment (partial Kpnl hydrolysis) from pJFNRGV35.87 was ligated with the Kpnl-cut vector pSUN3. This clone is called MSP9.
  • An expression cassette for the> 4gro ⁇ acter / - / m -mediated transformation of the expression vector with the ketolase GV35.87; ßKT from Gloeobacter violaceus SAG 35.87 in Tagetes erecta was carried out using the binary vector pSUN ⁇ (WO02 / 00900).
  • PMCL-CrtYlBZ / idi / gps was constructed in three steps using the intermediate stages pMCL-CrtYlBZ and pMCL-CrtYlBZ / idi.
  • the plasmid pMCL200 compatible with high-copy-number vectors was used as the vector (Nakano, Y., Yoshida, Y., Yamashita, Y. and Koga, T .; Construction of a series of pACYC-derived plasmid vectors; Gene 162 ( 1995), 157-168).
  • Example 11.1 Construction of pMCL-CrtYlBZ
  • the biosynthetic genes crtY, crtB, crtl and crtZ come from the bacterium Erwinia uredovora and were amplified by PCR. Genomic DNA from Erwinia uredovora (DSM 30080), prepared by the German Collection of Microorganisms and Cell Culture (DSMZ, Braunschweig) as part of a service.
  • the reaction was carried out according to the manufacturer's instructions (Röche, Long Template PCR: Procedure for amplification of 5-20 kb targets with the expand long template PCR System).
  • the PCR conditions for the amplification of the Erwinia uredovora biosynthesis cluster were as follows:
  • PCR amplification with SEQ ID No. 77 and SEQ ID No. 78 resulted in a fragment (SEQ ID NO. 79) which is responsible for the genes CrtY (protein: SEQ ID NO. 80), Crtl (protein: SEQ ID NO. 81), crtB (protein: SEQ ID NO. 82) and CrtZ (iDNA) encoded.
  • the amplificate was cloned into the PCR cloning vector pCR2.1 (Invitrogen) and the clone pCR2.1-CrtYIBZ was obtained.
  • the plasmid pCR2.1-CrtYIBZ was cut Sall and Hindlll, the resulting Sall / Hindlll fragment isolated and transferred by ligation into the Sall / Hindlll cut ⁇ vector pMCL200.
  • the Sall / Hindlll fragment from pCR2.1-CrtYIBZ cloned in pMCL 200 is 4624 bp long, codes for the genes CrtY, Crtl, crtB and CrtZ and corresponds to the sequence from positions 229 ⁇ to 6918 in D90087 (SEQ ID No. 79).
  • the gene CrtZ is transcribed against the reading direction of the genes CrtY, Crtl and CrtB by means of its endogenous promoter.
  • the resulting clone is called pMCL-CrtYlBZ.0
  • Example 11.2 Construction of pMCL-CrtYlBZ / idi
  • the gene idi isopentenyl diphosphate isomerase; IPP isomerase
  • the nucleic acid encoding the entire idi gene with idi-5 promoter and ribosome binding site, was extracted from E coli by means of "polymerase chain reaction" (PCR) using a sense-specific primer (5'-idi SEQ ID No. 81) and an antisense-specific primer (3'-idi SEQ ID No. 82) was amplified.
  • PCR polymerase chain reaction
  • the PCR conditions were as follows: 0
  • the PCR for the amplification of the DNA was carried out in a 50 ⁇ l reaction mixture, which contained:
  • the PCR was carried out under the following cycle conditions:
  • PCR amplification with SEQ ID No. 81 and SEQ ID No. 82 resulted in a 679 bp fragment coding for a protein consisting of the entire primary sequence (SEQ ID No. 83).
  • the amplificate was cloned into the PCR cloning vector pCR2.1 (Invitrogen) and the clone pCR2.1-idi was obtained.
  • Sequencing of the clone pCR2.1-idi confirmed a sequence that does not differ from the published sequence AE000372 in position 8774 to position 9440. This region includes the promoter region, the potential ribosome binding site and the entire "open reading frame" for the IPP isomerase.
  • the fragment cloned in pCR2.1-idi has a total length of 679 bp by inserting an Xhol site at the 5 'end and a SalI site at the 3' end of the / ' oY gene.
  • This clone was therefore used for the cloning of the / / gene into the vector pMCL-CrtYIBZ.
  • the cloning was carried out by isolating the Xhol / Sall fragment from pCR2.1-idi and ligation into the Xhol / Sall cut vector pMCL-CrtYIBZ.
  • the resulting clone is called pMCL-CrtYlBZ / idi.
  • Example 11.3 Construction of pMCL-CrtYlBZ idi / gps
  • the gene gps (geranylgeranyl pyrophosphate synthase; GGPP synthase) was amplified from Archaeoglobus fulgidus by means of PCR.
  • the nucleic acid encoding gps Archaeoglobus fulgidus was determined by means of "polymerase chain reaction” (PCR) using a sense-specific primer (5'-gps SEQ ID No. 85) and an anti-sense-specific primer (3'-gps SEQ ID No. 86) amplified.
  • the DNA of Archaeoglobus fulgidus was prepared by the German Collection of Microorganisms and Cell Cultures (DSMZ, Braunschweig) as part of a service.
  • the PCR conditions were as follows:
  • the PCR for the amplification of the DNA which codes for a GGPP synthase protein consisting of the entire primary sequence, was carried out in a ⁇ O ⁇ l reaction mixture which contained:
  • the PCR was carried out under the following cycle conditions:
  • SEQ ID No. 86 and SEQ ID No. 86 amplified DNA fragments were eluted from the agarose gel using methods known per se and cut with the restriction enzymes Ncol and HindIII. This results in a 962 bp fragment which codes for a protein consisting of the entire primary sequence (SEQ ID No. 87).
  • Ncol / HindIII cut amplificate was cloned into the vector pCB97-30 and the clone pCB-gps was obtained.

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Ketocarotinoiden durch Kultivierung von genetisch veränderten, nicht humanen Organismen, die im Ver- gleich zum Wildtyp eine veränderte Ketolase-Aktivität aufweisen, die genetisch verän- derten Organismen, deren Verwendung als Nahrungs- und Futtermittel und zur Herstellung von Ketocarotinoidextrakten sowie neue Ketolasen und Nukleinsäuren kodierend diese Ketolasen.

Description

Neue Ketolasen und Verfahren zur Herstellung von Ketocarotinoiden
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Ketocarotinoiden durch Kultivierung von genetisch veränderten, nicht humanen Organismen, die im Vergleich zum Wildtyp eine veränderte Ketolase-Aktivität aufweisen, die genetisch veränderten Organismen, deren Verwendung als Nahrungs- und Futtermittel und zur Herstellung von Ketocarotinoidextrakten sowie neue Ketolasen und Nukleinsäuren kodie- rend diese Ketolasen..
Carotinoide werden de novo in Bakterien, Algen, Pilzen und Pflanzen synthetisiert. Ketocarotinoide, also Carotinoide, die mindestens eine Keto-Gruppe enthalten, wie beispielsweise Astaxanthin, Canthaxanthin, Echinenon, 3-Hydroxyechinenon, 3'- Hydroxyechinenon, Adonirubin und Adonixanthin sind natürliche Antioxidantien und Pigmente, die von einigen Algen und Mikroorganismen als Sekundärmetabolite produziert werden.
Aufgrund ihrer farbgebenden Eigenschaften werden die Ketocarotinoide und insbeson- dere Astaxanthin als Pigmentierhilfsstoffe in der Tierernährung, insbesondere in der Forellen-, Lachs- und Shrimpszucht verwendet.
Die Herstellung von Astaxanthin erfolgt heutzutage größtenteils durch chemische Syntheseverfahren. Natürliche Ketocarotinoide, wie beispielsweise natürliches Astaxanthin, werden heutzutage in biotechnologischen Verfahren in kleinen Mengen durch Kultivierung von Algen, beispielsweise Haematococcus pluvialis oder durch Fermentation von gentechnologisch optimierten Mikroorganismen und anschließender Isolierung gewonnen.
Ein wirtschaftliches biotechnologisches Verfahren zur Herstellung von natürlichen Ketocarotinoiden ist daher von großer Bedeutung.
Nukleinsäuren kodierend eine Ketolase und die entsprechenden Proteinsequenzen sind aus verschiedenen Organismen isoliert und annotiert worden, wie beispielsweise Nukleinsäuren kodierend eine Ketolase aus Agrobacterium aurantiacum (EP 735 137, Accession NO: D58420), aus Alcaligenes sp. PC-1 (EP 735137, Accession NO: D58422), Haematococcus pluvialis Flotow em. Wille und Haematoccus pluvialis, NIES- 144 (EP 725137, WO 98/18910 und Lotan et al, FEBS Letters 1995, 364, 125-128, Accession NO: X86782 und D45881), Paracoccus marcusii (Accession NO: Y15112), Synechocystis sp. Strain PC6803 (Accession NO: NP_442491), Bradyrhizobium sp. (Accession NO: AF218415) und Nostoc sp. PCC 7120 (Kaneko et al, DNA Res. 2001, 8(5), 205 - 213; Accession NO: AP003592, BAB74888).
EP 735 137 beschreibt die Herstellung von Xanthophyllen in Mikroorganismen, wie beispielsweise E. coli durch Einbringen von Ketolase-Genen (crtW) aus Agrobacterium aurantiacum oder Alcaligenes sp. PC-1 in Mikroorganismen.
Aus EP 725 137, WO 98/18910, Kajiwara et al. (Plant Mol. Biol. 1995, 29, 343-352) und Hirschberg et al.(FEBS Letters 1995, 364, 125-128) ist es bekannt, Astaxanthin durch Einbringen von Ketolase-Genen aus Haematococcus pluvialis (crtW, crtO oder bkt) in E. coli herzustellen.
Hirschberg et al.(FEBS Letters 1997, 404, 129-134) beschreiben die Herstellung von Astaxanthin in Synechococcus durch Einbringen von Ketolase-Genen (crtO) aus Haematococcus pluvialis. Sandmann et al. (Photochemistry and Photobiology 2001 , 73(5), 551 -55) beschreiben ein analoges Verfahren, das jedoch zur Herstellung von Canthaxanthin führt und nur Spuren Astaxanthin liefert.
WO 98/18910 und Hirschberg et al. (Nature Biotechnology 2000, 18(8), 888-892) beschreiben die Synthese von Ketocarotinoiden in Nektarien von Tabakblüten durch Ein- bringen des Ketolase-Gens aus Haematococcus pluvialis (crtO) in Tabak.
WO 01/20011 beschreibt ein DNA Konstrukt zur Produktion von Ketocarotinoiden, insbesondere Astaxanthin, in Samen von Ölsaatpflanzen wie Raps, Sonnenblume, Sojabohne und Senf unter Verwendung eines Samen-spezifischen Promotors und einer Ketolase aus Haematococcus pluvialis.
Alle im Stand der Technik beschriebenen Ketolasen und Verfahren zur Herstellung von Ketocarotinoiden und insbesondere die beschriebenen Verfahren zur Herstellung von Astaxanthin weisen den Nachteil auf, dass einerseits die Ausbeute noch nicht befriedi- gend ist und andererseits die transgenen Organismen eine große Menge an hydroxy- lierten Nebenprodukten, wie beispielsweise Zeaxanthin und Adonixanthin liefern.
Der Erfindung lag daher die Aufgabe zugrunde, ein Verfahren zur Herstellung von Ketocarotinoiden durch Kultivierung von genetisch veränderten, nicht-humanen Organis- men zur Verfügung zu stellen, bzw. weitere genetisch veränderte, nicht-humane Organismen, die Ketocarotinoide herstellen und neue, vorteilhafte Ketolasen zur Verfügung zu stellen, die die vorstehend beschriebenen Nachteile des Standes der Technik in geringerem Maße oder nicht mehr aufweisen oder die gewünschten Ketocarotenoide, insbesondere Astaxanthin in höheren Ausbeuten liefern. Demgemäß wurde ein Verfahren zur Herstellung von Ketocarotinoiden gefunden, indem man genetisch veränderte, nicht-humanen Organismen kultiviert, die im Vergleich zum Wildtyp eine veränderte Ketolase-Aktivität aufweisen, und die veränderte Ketolase-Aktivität durch eine Ketolase verursacht wird, ausgewählt aus der Gruppe
A Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 80 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist,
B Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 10 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 90 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 10 aufweist,
C Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 12 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 90 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 12 aufweist oder
D Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 14 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 50 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 14 aufweist.
Unter einer „im Vergleich zum Wildtyp veränderten Ketolase-Aktivität" wird für den Fall, dass der Ausgangsorganismus oder Wildtyp keine Ketolase-Aktivität aufweist, vorzugsweise eine „im Vergleich zum Wildtyp verursachte Ketolase-Aktivität" verstanden.
Unter einer „im Vergleich zum Wildtyp veränderten Ketolase-Aktivität" wird für den Fall, dass der Ausgangsorganismus oder Wildtyp eine Ketolase-Aktivität aufweist, vorzugsweise eine „im Vergleich zum Wildtyp erhöhte Ketolase-Aktivität" verstanden.
Die erfindungsgemäßen, nicht-humanen Organismen wie beispielsweise Mikroorga- nismen oder Pflanzen sind vorzugsweise als Ausgangsorganismen natürlicherweise in der Lage, Carotinoide wie beispielsweise ß-Carotin oder Zeaxanthin herzustellen, oder können durch genetische Veränderung, wie beispielsweise Umregulierung von Stoff- wechselwegen oder Komplementierung in die Lage versetzt werden, Carotinoide wie beispielsweise ß-Carotin oder Zeaxanthin herzustellen. Einige Organismen sind als Ausgangs- oder Wildtyporganismen bereits in der Lage, Ketocarotinoidewie wie beispielsweise Astaxanthin oder Canthaxanthin herzustellen. Diese Organismen, wie beispielsweise Haematococcus pluvialis, Paracoccus marcusii, Xanthophyllomyces dendrorhous, Bacillus circulans, Chlorococcum, Phaffia rhodozy- ma, Adonisröschen (Adonis aestivalis), Neochloris wimmeri, Protosiphon botryoides, Scotiellopsis oocystiformis, Scenedesmus vacuolatus, Chlorela zoofingiensis, An- kistrodesmus braunii, Euglena sanguinea und Bacillus atrophaeus weisen bereits als Ausgangs- oder Wildtyporganismus eine Ketolase-Aktivität auf.
Unter dem Begriff "Wildtyp" wird erfindungsgemäß der entsprechende Ausgangsorganismus verstanden.
Je nach Zusammenhang kann unter dem Begriff "Organismus" der nicht-humane Ausgangsorganismus (Wildtyp) oder ein erfindungsgemäßer, genetisch veränderter, nicht- humaner Organismus oder beides verstanden werden.
Vorzugsweise und insbesondere in Fällen, in denen die Pflanze oder der Wildtyp nicht eindeutig zugeordnet werden kann, wird unter "Wildtyp" für die Erhöhung oder Verursachung der Ketolase-Aktivität, für die nachstehend beschriebene Erhöhung oder Ver- ursachung der Hydroxylase-Aktivität, für die nachstehend beschriebene Erhöhung oder Verursachung der ß-Cyclase-Aktivität, für die nachstehend beschriebene Erhöhung der HMG-CoA-Reduktase-Aktivität, für die nachstehend beschriebene Erhöhung der (E)-4- Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase-Aktivität, für die nachstehend beschriebene Erhöhung der 1-Deoxy-D-Xylose-5-Phosphat-Synthase-Aktivität, für die nachstehend beschriebene Erhöhung der 1-Deoxy-D-Xylose-5-Phosphat-
Reduktoisomerase-Aktivität, für die nachstehend beschriebene Erhöhung der Isopen- tenyl-Diphosphat-Δ-lsomerase-Aktivität, für die nachstehend beschriebene Erhöhung der Geranyl-Diphosphat-Synthase-Aktivität, für die nachstehend beschriebene Erhöhung der Famesyl-Diphosphat-Synthase-Aktivität, für die nachstehend beschriebene Erhöhung der Geranyl-geranyl-Diphosphat-Synthase-Aktivität, für die nachstehend beschriebene Erhöhung der Phytoen-Synthase-Aktivität, für die nachstehend beschriebene Erhöhung der Phytoen-Desaturase-Aktivität, für die nachstehend beschriebene Erhöhung der Zeta-Carotin-Desaturase-Aktivität, für die nachstehend beschriebene Erhöhung der crtlSO-Aktivität, für die nachstehend beschriebene Erhöhung der FtsZ- Aktivität, für die nachstehend beschriebene Erhöhung der MinD-Aktivität, für die nachstehend beschriebene Reduzierung der ε-Cyclase-Aktivität und für die nachstehend beschriebene Reduzierung der endogenen ß-Hydroxylase Aktivität und die Erhöhung des Gehalts an Ketocarotinoiden jeweils ein Referenzorganismus verstanden. Dieser Referenzorganimus ist für Mikroorganismen, die bereits als Wildtyp eine Ketolase Aktivität aufweisen, vorzugsweise Haematococcus pluvialis.
Dieser Referenzorganismus ist für Mikroorganismen, die als Wildtyp keine Ketolase Aktivität aufweisen, vorzugsweise Blakeslea.
Dieser Referenzorganismus ist für Pflanzen, die bereits als Wiidtyp eine Ketolase- Aktivität aufweisen, vorzugsweise Adonis aestivalis, Adonis flammeus oder Adonis aηnuus, besonders bevorzugt Adonis aestivalis.
Dieser Referenzorganismüs ist für Pflanzen, die als Wildtyp keine Ketolase-Aktivität in Blütenblätter aufweisen, vorzugsweise Tagetes erecta, Tagetes patula, Tagetes lucida, Tagetes pringlei, Tagetes palmeri, Tagetes minuta oder Tagetes campanulata, besonders bevorzugt Tagetes erecta.
Unter Ketolase-Aktivität wird die Enzym aktivität einer Ketolase verstanden.
Unter einer Ketolase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, am, gegebenenfalls substituierten, ß-lonon-Ring von Carotinoiden eine Keto- Gruppe einzuführen.
Insbesondere wird unter einer Ketolase ein Protein verstanden, das die enzymatische Aktivität aufweist, ß-Carotin in Canthaxanthin umzuwandeln.
Dementsprechend wird unter Ketolase-Aktivität die in einer bestimmten Zeit durch das Protein Ketolase umgesetzte Menge ß-Carotin bzw. gebildete Menge Canthaxanthin verstanden.
In einer Ausführungsform des erfindungsgemäßen Verfahrens werden als Ausgangs- Organismen nicht-humane Organismen verwendet, die bereits als Wildtyp oder Ausgangsorganismus eine Ketolase-Aktivität aufweisen, wie beispielsweise Haematococcus pluvialis, Paracoccus marcusii, Xanthophyllomyces dendrorhous, Bacillus circu- lans, Chlorococcum, Phaffia rhodozyma, Adonisröschen (Adonis aestivalis), Neochloris wimmeri, Protosiphon botryoides, Scotiellopsis oocystiformis, Scenedesmus vacuola- tus, Chlorela zoofingiensis, Ankistrodesmus braunii, Euglena sanguinea oder Bacillus atrophaeus. In dieser Ausführungsform bewirkt die genetische Veränderung eine Erhöhung der Ketolase-Aktivität im Vergleich zum Wildtyp oder Ausgangsorganismus.
Bei einer erhöhten Ketolase-Aktivität gegenüber dem Wildtyp wird im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein Ketolase die umgesetzte Menge ß- Carotin bzw. die gebildete Menge Canthaxanthin erhöht.
Vorzugsweise beträgt diese Erhöhung der Ketolase-Aktivität mindestens 5 %, weiter bevorzugt mindestens 20 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt min- destens 100 %, bevorzugter mindestens 300 %, noch bevorzugter mindestens 500 %, insbesondere mindestens 600 % der Ketolase-Aktivität des Wildtyps.
Die Bestimmung der Ketolase-Aktivität in erfindungsgemäßen genetisch veränderten Organismen und in Wildtyp- bzw. Referenzorganismen erfolgt vorzugsweise unter fol- genden Bedingungen:
Die Bestimmung der Ketolase-Aktivität in Pflanzen- oder Mikroorganismenmaterial erfolgt in Anlehnung an die Methode von Fräser et al., (J. Biol. Chem. 272(10): 6128- 6135, 1997). Die Ketolase-Aktivität in pflanzlichen oder Mikroorganismus-Extrakten wird mit den Substraten ß-Carotin und Canthaxanthin in Gegenwart von Lipid (Sojaleci- thin) und Detergens (Natriumcholat) bestimmt. Substrat/Produkt-Verhältnisse aus den Ketolase-Assays werden mittels HPLC ermittelt.
Die Erhöhung der Ketolase-Aktivität kann durch verschiedene Wege erfolgen, bei- spielsweise durch Ausschalten von hemmenden Regulationsmechanismen auf Trans- lations- und Proteinebene oder durch Erhöhung der Genexpression einer Nukleinsäure kodierend eine Ketolase gegenüber dem Wiidtyp, beispielsweise durch Induzierung des Ketolase-Gens durch Aktivatoren oder durch Einbringen von Nukleinsäuren kodierend eine Ketolase in den Organismus.
Unter Erhöhung der Genexpression einer Nukleinsäure, kodierend eine Ketolase, wird erfindungsgemäß in dieser Ausführungsform auch die Manipulation der Expression der Organismus eigenen endogenen Ketolasen verstanden. Dies kann beispielsweise durch Veränderung der Promotor DNA-Sequenz für Ketolase kodierende Gene erreicht werden. Eine solche Veränderung, die eine veränderte oder vorzugsweise erhöhte Expressionsrate mindestens eines endogenen Ketolase Gens zur Folge hat, kann durch Deletion oder Insertion von DNA Sequenzen erfolgen.
Es ist wie vorstehend beschrieben möglich, die Expression mindestens einer endoge- nen Ketolase durch die Applikation exogener Stimuli zu verändern. Dies kann durch besondere physiologische Bedingungen, also durch die Applikation von Fremdsubstanzen erfolgen.
Des weiteren kann eine erhöhte Expression mindestens eines endogenen Ketolase- Gens dadurch erzielt werden, dass ein im Wildtyporganismus nicht vorkommendes oder modifiziertes Regulator-Protein mit dem Promotor dieser Gene in Wechselwirkung tritt.
Solch ein Regulator kann ein chimäres Protein darstellen, welches aus einer DNA- Bindedomäne und einer Transkriptionsaktivator-Domäne besteht, wie beispielsweise in WO 96/06166 beschrieben.
In einer bevorzugten Ausführungsform erfolgt die Erhöhung der Ketolase-Aktivität gegenüber dem Wildtyp durch die Erhöhung der Genexpression einer Nukleinsäure, ko- dierend eine Ketolase, ausgewählt aus der Gruppe
A Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 80 % auf Aminosäu- reebene mit der Sequenz SEQ. ID. NO. 2 aufweist,
B Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 10 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 90 % auf Aminosäu- reebene mit der Sequenz SEQ. ID. NO. 10 aufweist,
C Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 12 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 90 % auf Aminosäu- reebene mit der Sequenz SEQ. ID. NO. 12 aufweist oder
D Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 14 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 50 % auf Aminosäu- reebene mit der Sequenz SEQ. ID. NO. 14 aufweist,
gegenüber dem Wildtyp erhöht.
In einer weiter bevorzugten Ausführungsform erfolgt die Erhöhung der Genexpression einer Nukleinsäure, kodierend eine Ketolase, durch Einbringen von Nukleinsäuren, die Ketolasen kodieren, ausgewählt aus der Gruppe
A Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 80 % auf Aminosäu- reebene mit der Sequenz SEQ. ID. NO. 2 aufweist,
B Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 10 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 90 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 10 aufweist,
C Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 12 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 90 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 12 aufweist oder
D Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 14 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 50 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 14 aufweist,
in den Organismus.
In dieser Ausführungsform weist der erfindungsgemäße genetisch veränderte Organismus dementsprechend mindestens eine exogene (=heterologe) Nukleinsäure, kodierend eine Ketolase, auf oder mindestens zwei endogene Nukleinsäuren, kodierend eine Ketolase, auf, wobei die Ketolasen ausgewählt sind aus der Gruppe A Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 80 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist, B Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 10 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 90 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 10 aufweist, C Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 12 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 90 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 12 aufweist oder D Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 14 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 50 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 14 aufweist,
In einer anderen, bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens werden als Ausgangsorganismen nicht-humane Organismen verwendet, die als Wildtyp keine Ketolase-Aktivität aufweisen, wie beispielsweise Blakeslea, Marigold, Tagetes erecta, Tagetes lucida, Tagetes minuta, Tagetes pringlei, Tagetes palmeri und 7a- getes campanulata.
In dieser, bevorzugten Ausführungsform verursacht die genetische Veränderung die Ketolase-Aktivität in den Organismen. Der erfindungsgemäße genetisch veränderte Organismus weist somit in dieser bevorzugten Ausführungsform im Vergleich zum ge- netisch nicht veränderten Wildtyp eine Ketolase-Aktivität auf und ist somit vorzugsweise in der Lage, transgen eine Ketolase zu exprimieren, wobei die Ketolasen ausgewählt sind aus der Gruppe
A Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 80 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist,
B Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 10 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 90 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 10 aufweist,
C Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 12 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 90 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 12 aufweist oder
D Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 14 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 50 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 14 aufweist,
In dieser bevorzugten Ausführungsform erfolgt die Verursachung der Genexpression einer Nukleinsäure, kodierend eine Ketolase, analog zu der vorstehend beschriebenen Erhöhung der Genexpression einer Nukleinsäure, kodierend eine Ketolase, vorzugsweise durch Einbringen von Nukleinsäuren, die Ketolasen kodieren, in den Ausgangsorganismus, wobei die Ketolasen ausgewählt sind aus der Gruppe A Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 80 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist, B Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 10 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 90 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 10 aufweist, C Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 12 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 90 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 12 aufweist oder D Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 14 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 50 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 14 aufweist,
Dazu kann in beiden Ausführungsformen prinzipiell jedes Ketolase-Gen, also jede
Nukleinsäuren, die eine Ketolase kodiert, verwendet werden, wobei die Ketolasen ausgewählt sind aus der Gruppe
A Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 80 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist,
B Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 10 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 90 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 10 aufweist,
C Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 12 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 90 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 12 aufweist oder
D Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 14 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 50 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 14 aufweist.
Alle in der Beschreibung erwähnten Nukleinsäuren können beispielsweise eine RNA-, DNA- oder cDNA-Sequenz sein.
Bei genomischen Ketolase-Sequenzen aus eukaryontischen Quellen, die Introns enthalten, sind für den Fall, dass die Wirtsorganismus nicht in der Lage ist oder nicht in die Lage versetzt werden kann, die entsprechenden Ketolase zu exprimieren, bevor- zugt bereits prozessierte Nukleinsäuresequenzen, wie die entsprechenden cDNAs zu verwenden.
Beispiele für Nukleinsäuren, kodierend eine Ketolase, und die entsprechenden Ketolasen der Gruppe A, die im erfindungsgemäßen Verfahren verwendet werden können, sind beispielsweise die erfindungsgemäßen Ketolase-Sequenzen aus
Nodularia spumigena strain NSOR10,
Nukleinsäure: SEQ ID NO: 1 , Protein: SEQ ID NO: 2 (Acc. -No.AY210783, falsche Sequenz als putative Ketoalse annotiert),
Nodularia spumigena (Culture Collection ofAlgae at the University of Vienna, (CCAUV) 01-037), Nukleinsäure: SEQ ID NO: 3, Protein: SEQ ID NO: 4),
Nodularia spumigena (Culture Collection ofAlgae at the University of Vienna (CCAUV) 01-053), Nukleinsäure: SEQ ID NO: 5, Protein: SEQ ID NO: 6) und
Nodularia spumigena (Culture Collection ofAlgae at the University of Vienna (CCAUV) 01-061), Nukleinsäure: SEQ ID NO: 7, Protein: SEQ ID NO: 8)
Ein Beispiel für Nukleinsäuren, kodierend eine Ketolase, und die entsprechenden Ketolasen der Gruppe B, die im erfindungsgemäßen Verfahren verwendet werden können sind beispielsweise die erfindungsgemäßen Ketolase-Sequenzen aus Nostoc puntiforme (Sammlung von Algenkulturen Göttingen (SAG) 60.79 Nukleinsäure: SEQ ID NO: 9, Protein: SEQ ID NO: 10.
Ein Beispiel für Nukleinsäuren, kodierend eine Ketolase, und die entsprechenden Ketolasen der Gruppe C, die im erfindungsgemäßen Verfahren verwendet werden können, sind beispielsweise die erfindungsgemäßen Ketolase-Sequenzen aus
Nostoc puntiforme (Sammlung von Algenkulturen Göttingen (SAG) 71.79 Nukleinsäure: SEQ ID NO: 11 , Protein: SEQ ID NO: 12.
Ein Beispiel für Nukleinsäuren, kodierend eine Ketolase, und die entsprechenden Ketolasen der Gruppe D, die im erfindungsgemäßen Verfahren verwendet werden können sind beispielsweise die erfindungsgemäßen Ketolase-Sequenzen aus
Gloeobacter violaceous PCC7421, Acc.Nr: GV7421
Nukleinsäure: SEQ ID NO: 13, Protein: SEQ ID NO: 14.
Weitere natürliche Beispiele für Ketolasen und Ketolase-Gene, die im erfindungsgemäßen Verfahren verwendet werden können, lassen sich beispielsweise aus verschie- denen Organismen, deren genomische Sequenz bekannt ist, durch Identitätsvergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit den vorstehend beschriebenen Sequenzen und insbesondere mit den Sequenzen SEQ ID NO: 2 und/oder 10 und/oder 12 und/oder 14 leicht auffinden.
Weitere natürliche Beispiele für Ketolasen und Ketolase-Gene lassen sich weiterhin ausgehend von den vorstehend beschriebenen Nukleinsäuresequenzen, insbesondere ausgehend von den Sequenzen SEQ ID NO: 1 und/oder 9 und/oder ,11 und/oder 13 aus verschiedenen Organismen, deren genomische Sequenz nicht bekannt ist, durch Hybridisierungstechniken in an sich bekannter Weise leicht auffinden.
Die Hybridisierung, und diese Bedingung gilt für sämtliche Nukleinsäuresequenzen der Beschreibung, kann unter moderaten (geringe Stringenz) oder vorzugsweise unter stringenten (hohe Stringenz) Bedingungen erfolgen.
Solche Hybridisierungsbedingungen, die für alle Nukleinsäuren der Beschreibung gelten, sind beispielsweise bei Sambrook, J., Fritsch, E.F., Maniatis, T., in: Molecular Cloning (A Laboratory Manual), 2. Auflage, Cold Spring Harbor Laboratory Press, 1989, Seiten 9.31-9.57 oder in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6 beschrieben.
Beispielhaft können die Bedingungen während des Waschschrittes ausgewählt sein aus dem Bereich von Bedingungen begrenzt von solchen mit geringer Stringenz (mit 2X SSC bei 50°C) und solchen mit hoher Stringenz (mit 0.2X SSC bei 50°C, bevorzugt bei 65°C) (20X SSC: 0,3 M Natriumeitrat, 3 M Natriumchlorid, pH 7.0).
Darüberhinaus kann die Temperatur während des Waschschrittes von moderaten Bedingungen bei Raumtemperatur, 22°C, bis zu stringenten Bedingungen bei 65°C ange- hoben werden.
Beide Parameter, Salzkonzentration und Temperatur, können gleichzeitig variiert werden, auch kann einer der beiden Parameter konstant gehalten und nur der andere variiert werden. Während der Hybridisierung können auch denaturierende Agenzien wie zum Beispiel Formamid oder SDS eingesetzt werden. In Gegenwart von 50 % Formamid wird die Hybridisierung bevorzugt bei 42°C ausgeführt.
Einige beispielhafte Bedingungen für Hybridisierung und Waschschritt sind infolge gegeben:
(l)Hybridiserungsbedingungen mit zum Beispiel
(i) 4X SSC bei 65°C, oder
(ii) 6X SSC bei 45°C, oder
(iii) 6X SSC bei 68°C, 100 mg/ml denaturierter Fischsperma-DNA, oder
(iv) 6X SSC, 0.5 % SDS, 100 mg/ml denaturierte, fragmentierte Lachssperma-DNA bei 68°C, oder
(v)6XSSC, 0.5 % SDS, 100 mg/ml denaturierte, fragmentierte Lachssperma-DNA, 50 % Formamid bei 42°C, oder
(vi) 50 % Formamid, 4X SSC bei 42°C, oder
(vii) 50 % (vol/vol) Formamid, 0.1 % Rinderserumalbumin, 0.1 % Ficoll, 0.1 % Polyvi- nylpyrrolidon, 50 mM Natrium phosphatpuffer pH 6.5, 750 mM NaCI, 75 mM Natriumcit- rat bei 42°C, oder (viii)2X oder 4X SSC bei 50°C (moderate Bedingungen), oder
(ix) 30 bis 40 % Formamid, 2X oder 4X SSC bei 42_ (moderate Bedingungen).
(2) Waschschritte für jeweils 10 Minuten mit zum Beispiel
(i) 0.015 M NaCI/0.0015 M Natriumcitrat/0.1 % SDS bei 50°C, oder
(ii) 0.1X SSC bei 65°C, oder
(iii) 0.1X SSC, 0.5 % SDS bei 68°C, oder
(iv) 0.1X SSC, 0.5 % SDS, 50 % Formamid bei 42°C, oder
(v) 0.2X SSC, 0.1 % SDS bei 42°C, oder
(vi) 2X SSC bei 65°C (moderate Bedingungen).
Die Ketolasen der Gruppe A enthalten die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 80 %, vorzugsweise mindestens 85%, bevorzugter mindestens 90%, bevorzugter mindestens 95%, bevorzugter mindestens 97%, besonders bevorzugt mindestens 99% auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist.
Die Ketolasen der Gruppe B enthalten die Aminosäuresequenz SEQ. ID. NO. 10 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 90 %, bevorzugter mindestens 95%, bevorzugter mindestens 97%, besonders bevorzugt mindestens 99% auf Amino- säureebene mit der Sequenz SEQ. ID. NO. 10 aufweist.
Die Ketolasen der Gruppe C enthalten die Aminosäuresequenz SEQ. ID. NO. 12 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 90 %, bevorzugter mindestens 95%, bevorzugter mindestens 97%, besonders bevorzugt mindestens 99% auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 12 aufweist.
Die Ketolasen der Gruppe D enthalten die Aminosäuresequenz SEQ. ID. NO. 14 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 50 %, bevorzugter mindestens 60%, bevorzugter mindestens 70%, bevorzugter mindestens 80%, bevorzugter mindestens 85%, bevorzugter mindestens 90%, bevorzugter mindestens 95%, bevorzugter mindestens 97%, besonders bevorzugt mindestens 99% auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 14 aufweist.
Die folgenden Definitionen und Bedingungen des Identitätsvergleichs von Proteinen gelten für alle Proteine der Beschreibung.
Unter dem Begriff "Substitution" ist der Austausch einer oder mehrerer Aminosäuren durch eine oder mehrere Aminosäuren zu verstehen. Bevorzugt werden sog. konservative Austausche durchgeführt, bei denen die ersetzte Aminosäure eine ähnliche Eigenschaft hat wie die ursprüngliche Aminosäure, beispielsweise Austausch von Glu durch Asp, Gin durch Asn, Val durch lle, Leu durch lle, Ser durch Thr.
Deletion ist das Ersetzen einer Aminosäure durch eine direkte Bindung. Bevorzugte Positionen für Deletionen sind die Termini des Polypeptides und die Verknüpfungen zwischen den einzelnen Proteindomänen.
Insertionen sind Einfügungen von Aminosäuren in die Polypeptidkette, wobei formal eine direkte Bindung durch ein oder mehrere Aminosäuren ersetzt wird.
Unter Identität zwischen zwei Proteinen wird die Identität der Aminosäuren über die jeweils gesamte Proteinlänge verstanden, insbesondere die Identität die durch Vergleich mit Hilfe der Vector NTI Suite 7.1 Software der Firma Informax (USA) unter An- Wendung der Clustal Methode (Higgins DG, Sharp PM. Fast and sensitive multiple se- quence alignments on a microcomputer. Comput Appl. Biosci. 1989 Apr;5(2): 151-1) unter Einstellung folgender Parameter berechnet wird:
Multiple alignment parameter: Gap opening penalty 10
Gap extension penalty 10
Gap Separation penalty ränge 8
Gap Separation penalty off
% identity for alignment delay 40 Residue specific gaps off
Hydrophilic residue gap off
Transition weighing 0
Pairwise alignment parameter: FAST algorithm on K-tuplesize 1 Gap penalty 3 Window size 5 Number of best diagonals 5
Unter einem Protein, das eine Identität von mindestens 80 % auf Aminosäureebene mit einer bestimmten Sequenz aufweist, wird dementsprechend ein Protein verstanden, das bei einem Vergleich seiner Sequenz mit der bestimmten Sequenz insbesondere nach obigem Programmlogarithmus mit obigem Parametersatz eine Identität von mindestens 80 % aufweist.
Unter einem Protein, das beispielsweise eine Identität von mindestens 80 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 2 aufweist, wird dementsprechend ein Protein verstanden, das bei einem Vergleich seiner Sequenz mit der Sequenz
SEQ ID NO: 2, insbesondere nach obigen Programmlogarithmus mit obigem Parametersatz eine Identität von mindestens 80 % aufweist.
Unter einem Protein, das beispielsweise eine Identität von mindestens 90 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 10 aufweist, wird dementsprechend ein Protein verstanden, das bei einem Vergleich seiner Sequenz mit der Sequenz SEQ ID NO: 10, insbesondere nach obigen Programmlogarithmus mit obigem Parametersatz eine Identität von mindestens 90 % aufweist.
Unter einem Protein, das beispielsweise eine Identität von mindestens 90 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 12 aufweist, wird dementsprechend ein Protein verstanden, das bei einem Vergleich seiner Sequenz mit der Sequenz SEQ ID NO: 12, insbesondere nach obigen Programmlogarithmus mit obigem Parametersatz eine Identität von mindestens 90 % aufweist.
Unter einem Protein, das beispielsweise eine Identität von mindestens 50 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 14 aufweist, wird dementsprechend ein Protein verstanden, das bei einem Vergleich seiner Sequenz mit der Sequenz SEQ ID NO: 14, insbesondere nach obigen Programmloga- rithmus mit obigem Parametersatz eine Identität von mindestens 50 % aufweist.
Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich. Bevorzugt werden dafür solche Codons verwendet, die entsprechend der organismusspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen leicht ermitteln.
In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO: 2 in den Organismus ein.
In einerweiteren, besonders bevorzugten Ausführungsform bringt man eine Nuklein- säure, enthaltend die Sequenz SEQ ID NO: 10 in den Organismus ein.
In einerweiteren, besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO: 12 in den Organismus ein.
In einer weiteren, besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO: 14 in den Organismus ein.
Alle vorstehend erwähnten Ketolase-Gene sind weiterhin in an sich bekannter Weise durch chemische Synthese aus den Nukleotidbausteinen wie beispielsweise durch Fragmentkondensation einzelner überlappender, komplementärer Nukleinsäurebau- steine der Doppelhelix herstellbar. Die chemische Synthese von Oligonukleotiden kann beispielsweise, in bekannter Weise, nach der Phosphoamiditmethode (Voet, Voet, 2. Auflage, Wiley Press New York, S. 896-897) erfolgen. Die Anlagerung synthetischer Oligonukleotide und Auffüllen von Lücken mithilfe des Klenow-Fragmentes der DNA- Polymerase und Ligationsreaktionen sowie allgemeine Klonierungsverfahren werden in Sambrook et al. (1989), Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press, beschrieben.
In einer bevorzugten Ausführungsform werden Pflanzen kultiviert, die gegenüber dem Wildtyp zusätzlich eine erhöhte oder verursachte Hydroxylase-Aktivität und/oder ß- Cyclase-Aktivität aufweisen.
Unter einer „im Vergleich zum Wildtyp veränderten ß-Cyclase-Aktivität" wird für den Fall, dass der Ausgangsorganismus oder Wildtyp keine ß-Cyclase-Aktivität aufweist, vorzugsweise eine „im Vergleich zum Wildtyp verursachte ß-Cyclase-Aktivität" verstanden.
Unter einer „im Vergleich zum Wildtyp veränderten ß-Cyclase-Aktivität" wird für den Fall, dass der Ausgangsorganismus oder Wildtyp eine ß-Cyclase-Aktivität aufweist, vorzugsweise eine „im Vergleich zum Wiidtyp erhöhte ß-Cyclase -Aktivität" verstanden.
Unter einer „im Vergleich zum Wildtyp veränderten Hydroxylase-Aktivität" wird für den Fall, dass der Ausgangsorganismus oder Wildtyp keine Hydroxylase -Aktivität aufweist, vorzugsweise eine „im Vergleich zum Wildtyp verursachte Hydroxylase -Aktivität" verstanden.
Unter einer „im Vergleich zum Wildtyp veränderten Hydroxylase -Aktivität" wird für den Fall, dass der Ausgangsorganismus oder Wildtyp eine Hydroxylase -Aktivität aufweist, vorzugsweise eine „im Vergleich zum Wildtyp erhöhte Hydroxylase-Aktivität" verstanden.
Unter Hydroxylase-Aktivität wird die Enzymaktivität einer Hydroxylase verstanden.
Unter einer Hydroxylase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, am, gegebenenfalls substituierten, ß-lonon-Ring von Carotinoiden eine Hydroxy-Gruppe einzuführen.
Insbesondere wird unter einer Hydroxylase ein Protein verstanden, das die enzymatische Aktivität aufweist, ß-Carotin in Zeaxanthin oder Canthaxanthin in Astaxanthin umzuwandeln.
Dementsprechend wird unter Hydroxyase-Aktivität die in einer bestimmten Zeit durch das Protein Hydroxylase umgesetzte Menge ß-Carotin oder Canthaxanthin bzw. gebil- dete Menge Zeaxanthin oder Astaxanthin verstanden.
Bei einer erhöhten Hydroxylase-Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein Hydroxylase die umgesetzte Menge ß-Carotin oder Canthaxantin bzw. die gebildete Menge Zeaxanthin oder Astaxanthin erhöht.
Vorzugsweise beträgt diese Erhöhung der Hydroxylase-Aktivität mindestens 5 %, weiter bevorzugt mindestens 20 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt mindestens 100 %, bevorzugter mindestens 300 %, noch bevorzugter mindestens 500 %, insbesondere mindestens 600 % der Hydroxylase-Aktivität des Wildtyps.
Unter ß-Cyclase-Aktivität wird die Enzymaktivität einer ß-Cyclase verstanden.
Unter einer ß-Cyclase wird ein Protein verstanden, das die enzymatische Aktivität auf- weist, einen endständigen, linearen Rest von Lycopin in einen ß-lonon-Ring zu über- führen.
Insbesondere wird unter einer ß-Cyclase ein Protein verstanden, das die enzymatische Aktivität aufweist, γ-Carotin in ß-Carotin umzuwandeln.
Dementsprechend wird unter ß-Cyclase-Aktivität die in einer bestimmten Zeit durch das Protein ß-Cyclase umgesetzte Menge γ-Carotin bzw. gebildete Menge ß-Carotin verstanden.
Bei einer erhöhten ß-Cyclase -Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein ß-Cyclase die umgesetzte Menge γ-Carotin bzw. die gebildete Menge ß-Carotin erhöht.
Vorzugsweise beträgt diese Erhöhung der ß-Cyclase-Aktivität mindestens 5 %, weiter bevorzugt mindestens 20 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt mindestens 100 %, bevorzugter mindestens 300 %, noch bevorzugter mindestens 500 %, insbesondere mindestens 600 % der ß-Cyclase-Aktivität des Wildtyps.
Die Bestimmung der Hydroxylase-Aktivität in erfindungsgemäßen genetisch veränder- ten Organismen und in Wildtyp- bzw. Referenzorganismen erfolgt vorzugsweise unter folgenden Bedingungen:
Die Aktivität der Hydroxylase wird nach Bouvier et al. (Biochim. Biophys. Acta 1391 (1998), 320-328) in vitro bestimmt. Es wird zu einer bestimmten Menge an Organisme- nextrakt Ferredoxin, Ferredoxin-NADP Oxidoreductase, Katalase, NADPH sowie beta- Carotin mit Mono- und Digalaktosylglyzeriden zugegeben.
Besonders bevorzugt erfolgt die Bestimmung der Hydroxylase-Aktivität unter folgenden Bedingungen nach Bouvier, Keller, d'Harlingue und Camara (Xanthophyll bio- synthesis: molecular and functional characterization of carotenoid hydroxylases from pepper fruits (Capsicum annuum L; Biochim. Biophys. Acta 1391 (1998), 320-328):
Der in-vitro Assay wird in einem Volumen von 0.250 ml Volumen durchgeführt. Der Ansatz enthält 50 mM Kaliumphosphat (pH 7.6), 0.025 mg Ferredoxin von Spinat, 0.5 Einheiten Ferredoxin-NADP+ Oxidoreduktase von Spinat, 0.25 mM NADPH, 0.010 mg beta-Carotin (in 0.1 mg Tween 80 emulgiert), 0.05 mM einer Mischung von Mono- und Digalaktosylglyzeriden (1:1), 1 Einheit Katalyse, 0.2 mg Rinderserumalbumin und Organismusextrakt in unterschiedlichem Volumen. Die Reaktionsmischung wird 2 Stunden bei 30°C inkubiert. Die Reaktionsprodukte werden mit organischem Lösungsmittel wie Aceton oder Chloroform/Methanol (2:1) extrahiert und mittels HPLC bestimmt. Die Bestimmung der ß-Cyclase-Aktivität in erfindungsgemäßen genetisch veränderten Organismen und in Wiidtyp- bzw. Referenzorganismen erfolgt vorzugsweise unter folgenden Bedingungen:
Die Aktivität der ß-Cyclase wird nach Fräser und Sandmann (Biochem. Biophys. Res. Comm. 185(1) (1992) 9-15)/n vitro bestimmt Es werden zu einer bestimmten Menge an Organismenextrakt Kaliumphosphat als Puffer (ph 7.6), Lycopin als Substrat, Stro- maprotein von Paprika, NADP+, NADPH und ATP zugegeben.
Besonders bevorzugt erfolgt die Bestimmung der ß-Cyclase-Aktivität unter folgenden Bedingungen nach Bouvier, d'Hariingue und Camara (Molecular Analysis of carotenoid cyclae inhibition; Arch. Biochem. Biophys. 346(1) (1997) 53-64):
Der in-vitro Assay wird in einem Volumen von 250 μl Volumen durchgeführt. Der An- satz enthält 50 mM Kaliumphosphat (pH 7.6), unterschiedliche Mengen an Pflanzenextrakt, 20 nM Lycopin, 250 μg an chromoplastidärem Stromaprotein aus Paprika, 0.2 mM NADP+, 0.2 mM NADPH und 1 mM ATP. NADP/NADPH und ATP werden in 10 μl Ethanol mit 1 mg Tween 80 unmittelbar vor der Zugabe zum Inkubationsmedium gelöst. Nach einer Reaktionszeit von 60 Minuten bei 30C wird die Reaktion durch Zugabe von Chloroform/Methanol (2:1) beendet. Die in Chlroform extrahierten Reaktionsprodukte werden mittels HPLC analysiert.
Ein alternativer Assay mit radioaktivem Substrat ist beschrieben in Fräser und Sand- mann (Biochem. Biophys. Res. Comm. 185(1) (1992) 9-15).
Die Erhöhung der Hydroxylase-Aktivität und/oder ß-Cyclase-Aktivität kann durch verschiedene Wege erfolgen, beispielsweise durch Ausschalten von hemmenden Regulationsmechanismen auf Expressions- und Proteinebene oder durch Erhöhung der Ge- nexpression von Nukleinsäuren kodierend eine Hydroxylase und/oder von Nukleinsäuren kodierend eine ß-Cyclase gegenüber dem Wildtyp.
Die Erhöhung der Genexpression der Nukleinsäuren kodierend eine Hydroxylase und/oder die Erhöhung der Genexpression der Nukleinsäure, kodierend eine ß- Cyclase, gegenüber dem Wildtyp kann ebenfalls durch verschiedene Wege erfolgen, beispielsweise durch Induzierung des Hydroxylase-Gens und/oder ß-Cyclase-Gens durch Aktivatoren oder durch Einbringen von einer oder mehrerer Hydroxylase- Genkopien und/oder ß-Cyclase-Genkopien, also durch Einbringen mindestens einer Nukleinsäure, kodierend eine Hydroxylas.e und/oder mindestens einer Nukleinsäure, kodierend eine ß-Cyclase, in den Organismus.
Unter Erhöhung der Genexpression einer Nukleinsäure, kodierend eine Hydroxylase und/oder ß-Cyclase, wird erfindungsgemäß auch die Manipulation der Expression der Organismen eigenen, endogenen Hydroxylase und/oder ß-Cyclase verstanden.
Dies kann beispielsweise durch Veränderung der Promotor DNA-Sequenz für Hydroxy- lasen und/oder ß-Cyclasen kodierende Gene erreicht werden. Eine solche Veränderung, die eine erhöhte Expressionsrate des Gens zur Folge hat, kann beispielsweise durch Deletion oder Insertion von DNA Sequenzen erfolgen.
Es ist, wie vorstehend beschrieben, möglich, die Expression der endogenen Hydroxylase und/oder ß-Cyclase durch die Applikation exogener Stimuli zu verändern. Dies kann durch besondere physiologische Bedingungen, also durch die Applikation von Fremdsubstanzen erfolgen.
Des weiteren kann eine veränderte bzw. erhöhte Expression eines endogenen Hydroxylase- und/oder ß-Cyclase-Gens dadurch erzielt werden, dass ein in dem nicht transformierten Organismus nicht vorkommendes Regulator-Protein mit dem Promotor die- ses Gens in Wechselwirkung tritt.
Solch ein Regulator kann ein chimäres Protein darstellen, welches aus einer DNA- Bindedomäne und einer Transkriptionsaktivator-Domäne besteht, wie beispielsweise in WO 96/06166 beschrieben.
In einer bevorzugten Ausführungsform erfolgt die Erhöhung der Genexpression einer Nukleinsäure, kodierend eine Hydroxylase, und/oder die Erhöhung der Genexpression einer Nukleinsäure, kodierend eine ß-Cyclase, durch Einbringen von mindestens einer Nukleinsäure, kodierend eine Hydroxylase, und/oder durch Einbringen von mindestens einer Nukleinsäure, kodierend eine ß-Cyclase, in den Organismus.
Dazu kann prinzipiell jedes Hydroxylase-Gen bzw. jedes ß-Cyclase-Gen, also jede Nukleinsäure, die eine Hydroxylase und jede Nukleinsäure, die eine ß-Cyclase kodiert, verwendet werden.
Bei genomischen Hydroxylase-bzw. ß-Cyclase-Nukleinsäure-Sequenzen aus eukary- ontischen Quellen, die Introns enthalten, sind für den Fal,l dass der Wirtsorganismus nicht in der Lage ist oder nicht in die Lage versetzt werden kann, die entsprechende Hydroxylase bzw. ß-Cyclase zu exprimieren, bevorzugt bereits prozessierte Nuklein- Säuresequenzen wie die entsprechenden cDNAs zu verwenden.
Beispiele für Hydroxylase-Gene sind Nukleinsäuren, kodierend eine Hydroxylase aus Haematococcus pluvialis, Accession AX038729, WO 0061764); (Nukleinsäure: SEQ ID NO: 15, Protein: SEQ ID NO: 16), sowie kodierend Hydroxylasen der folgenden Accession Nummern:
|emb|CAB55626.1 , CAA70427.1 , CAA70888.1 , CAB55625.1, AF499108 , AF315289 , AF296158_1 , AAC49443.1, NP_194300.1 , NP_200070.1, AAG10430.1, CAC06712.1 , AAM88619.1 , CAC95130.1 , AAL80006.1 , AF162276 , AAO53295.1 , AAN85601.1, CRTZ_ERWHE, CRTZ_PANAN, BAB79605.1, CRTZ_ALCSP, CRTZ_AGRAU, CAB56060.1 , ZP_00094836.1 , AAC44852.1 , BAC77670.1 , NP_745389.1 , NP_344225.1 , NP_849490.1 , ZP_00087019.1 , NP_503072.1 , NP_852012.1 , NP_115929.1 , ZP_00013255.1
Eine besonders bevorzugte Hydroxylase ist weiterhin die Hydroxylase aus Tomate (Nukleinsäure: SEQ. ID. No. 47; Protein: SEQ. ID. No. 48).
Beispiele für ß-Cyclase-Gene sind Nukleinsäuren, kodierend eine ß-Cyclase aus Tomate (Accession X86452). (Nukleinsäure: SEQ ID NO: 17, Protein: SEQ ID NO: 18), sowie ß-Cyclasen der folgenden Accesion Nummern:
S66350 lycopene beta-cyclase (EC 5.5.1.-) - tomato
CAA60119 lycopene synthase [Capsicum annuum] S66349 lycopene beta-cyclase (EC 5.5.1.-) - common tobacco
CAA57386 lycopene cyclase [Nicotiana tabacum]
AAM21152 lycopene beta-cyclase [Citrus sinensis]
AAD38049 lycopene cyclase [Citrus x paradisi]
AAN86060 . lycopene cyclase [Citrus unshiu] AAF44700 lycopene beta-cyclase [Citrus sinensis]
AAK07430 lycopene beta-cyclase [Adonis palaestina]
AAG 10429 beta cyclase [Tagetes erecta]
AAA81880 lycopene cyclase
AAB53337 Lycopene beta cyclase AAL92175 beta-lycopene cyclase [Sandersonia aurantiaca]
CAA67331 lycopene cyclase [Narcissus pseudonarcissus]
AAM45381 beta cyclase [Tagetes erecta]
AAO18661 lycopene beta-cyclase [Zea mays]
AAG21133 chromoplast-specific lycopene beta-cyclase [Lycopersicon esculentum] AAF18989 lycopene beta-cyclase [Daucus carota] ZP_001140 hypothetical protein [Prochlorococcus marinus str. MIT9313] ZP_001050 hypothetical protein [Prochlorococcus marinus subsp. pastoris str. CCMP1378]
ZP_001046 hypothetical protein [Prochlorococcus marinus subsp. pastoris str. CCMP1378]
ZP_001134 hypothetical protein [Prochlorococcus marinus str. MIT9313] ZP_001150 hypothetical protein [Synechococcus sp. WH 8102] AAF10377 lycopene cyclase [Deinococcus radiodurans] BAA29250 393aa long hypothetical protein [Pyrococcus horikoshii] BAC77673 lycopene beta-monocyclase [marine bacterium P99-3] AAL01999 lycopene cyclase [Xanthobacter sp. Py2] ZP_000190 hypothetical protein [Chloroflexus aurantiacus] ZP_000941 hypothetical protein [Novosphingobium aromaticivorans] AAF78200 lycopene cyclase [Bradyrhizobium sp. ORS278] BAB79602 crtY [Pantoea agglomerans pv. milletiae] CAA64855 lycopene cyclase [Streptomyces griseus] AAA21262 dycopene cyclase [Pantoea agglomerans] C37802 crtY protein - Erwinia uredovora BAB79602 crtY [Pantoea agglomerans pv. milletiae] AAA64980 lycopene cyclase [Pantoea agglomerans] AAC44851 lycopene cyclase BAA09593 Lycopene cyclase [Paracoccus sp. MBIC1143] ZP_000941 hypothetical protein [Novosphingobium aromaticivorans] CAB56061 .lycopene beta-cyclase [Paracoccus marcusii] BAA20275 lycopene cyclase [Erythrobacter longus] ZP_000570 hypothetical protein [Thermobifida fusca] ZP_000190 hypothetical protein [Chloroflexus aurantiacus] AAK07430 lycopene beta-cyclase [Adonis palaestina] CAA67331 lycopene cyclase [Narcissus pseudonarcissus] AAB53337 Lycopene beta cyclase BAC77673 lycopene beta-monocyclase. [marine bacterium P99-3]
Eine besonders bevorzugte ß-Cyclase ist weiterhin die chromoplastenspezifische ß- Cyclase aus Tomate (AAG21133) (Nukleinsäure: SEQ. ID. No. 49; Protein: SEQ. ID. No. 50)
In den erfindungsgemäßen bevorzugten transgenen Organismen liegt also in dieser bevorzugten Ausführungsform gegenüber dem Wildtyp mindestens ein weiteres Hydroxylase-Gen und/oder ß-Cyclase-Gen vor. In dieser bevorzugten Ausführungsform weist der genetisch veränderte Organismus beispielsweise mindestens eine exogene Nukleinsäure, kodierend eine Hydroxylase, oder mindestens zwei endogene Nukleinsäuren, kodierend eine Hydroxylase und/oder mindestens eine exogene Nukleinsäure, kodierend eine ß-Cyclase oder mindestens zwei endogene Nukleinsäuren, kodierend eine ß-Cyclase auf.
Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als Hydroxylase-Gene Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 16 oder 48 oder eine von diesen Sequenzen durch Substituti- on, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 30 %, vorzugsweise mindestens 50 %, bevorzugter mindestens 70%, noch bevorzugter mindestens 90 %, am bevorzugtesten mindestens 95 % auf Aminosäureebene mit den Sequenzen SEQ. ID. NO: 16 oder 48, und die die enzymatische Eigenschaft einer Hydroxylase aufweisen.
Weitere Beispiele für Hydroxylasen und Hydroxylase-Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, wie vorstehend beschrieben, durch Homologievergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit den Sequenzen SEQ. ID. NO: 16 oder 48 leicht auffinden.
Weitere Beispiele für Hydroxylasen und Hydroxylase-Gene lassen sich weiterhin beispielsweise ausgehend von den Sequenzen SEQ ID NO: 15 oder 47 aus verschiedenen Organismen deren genomische Sequenz nicht bekannt ist, wie vorstehend be- schrieben, durch Hybridisierungs- und PCR-Techniken in an sich bekannter Weise leicht auffinden.
In einer weiter besonders-bevorzugten Ausführungsform werden zur Erhöhung der Hydroxylase-Aktivität Nukleinsäuren in Organismen eingebracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der Hydroxylase der Sequenz SEQ ID NO: 16 oder 48.
Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.
Bevorzugt werden dafür solche Codons verwendet, die entsprechend der organismenspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich . anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen leicht ermitteln. In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ. ID. NO: 15 oder 47, in den Organismus ein.
Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als ß-Cyclase-Gene Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 18 oder 50 oder eine von diesen Sequenzen durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 30 %, vorzugsweise mindestens 50 %, bevorzugter mindestens 70 %, noch bevorzugter mindestens 90 %, am bevorzugtesten mindestens 95 % auf Amino- säureebene mit den jeweiligen Sequenzen SEQ ID NO: 18 oder 50, und die die enzymatische Eigenschaft einer ß-Cyclase aufweisen.
Weitere Beispiele für ß-Cyclasen und ß-Cyclase-Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, wie vorstehend beschrieben durch Homologievergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit der SEQ ID NO: 18 oder 50 leicht auffinden.
Weitere Beispiele für ß-Cyclasen und ß-Cyclase-Gene lassen sich weiterhin beispiels- weise ausgehend von der Sequenz SEQ ID NO: 17 oder 49 aus verschiedenen Organismen, deren genomische Sequenz nicht bekannt ist, durch Hybridisierungs- und ' PCR-Techniken in an sich bekannter Weise leicht auffinden.
In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der ß- Cyclase-Aktivität Nukleinsäuren in Organismen eingebracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der ß-Cyclase der Sequenz SEQ. ID. NO: 18 oder 50.
Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.
Bevorzugt werden dafür solche Codons verwendet, die entsprechend der organismenspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Orga- nismen leicht ermitteln.
In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ. ID. NO: 17 oder 49 in den Organismus ein. Alle vorstehend erwähnten Hydroxylase-Gene oder ß-Cyclase-Gene sind weiterhin in an sich bekannter Weise durch chemische Synthese aus den Nukleotidbausteinen wie beispielsweise durch Fragmentkondensation einzelner überlappender, komplementärer Nukleinsäurebausteine der Doppelhelix herstellbar. Die chemische Synthese von Oli- gonukleotiden kann beispielsweise, in bekannter Weise, nach der Phosphoamiditmethode (Voet, Voet, 2. Auflage, Wiley Press New York, Seite 896-897) erfolgen. Die Anlagerung synthetischer Oligonukleotide und Auffüllen von Lücken mithilfe des Kle- now-Fragmentes der DNA-Polymerase und Ligationsreaktionen sowie allgemeine Klonierungsverfahren werden in Sambrook et al. (1989), Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press, beschrieben.
In einer weiter bevorzugten Ausführungsform werden genetisch veränderte, nichthumane Organismen kultiviert, die zusätzlich gegenüber dem Wildtyp eine erhöhte Aktivität mindestens einer der Aktivitäten, ausgewählt aus der Gruppe HMG-CoA- Reduktase-Aktivität, (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase-Aktivität, 1 -Deoxy-D-Xylose-5-Phosphat-Synthase-Aktivität, 1 -Deoxy-D-Xylose-5-Phosphat- Reduktoisomerase-Aktivität, Isopentenyl-Diphosphat-Δ-Isomerase-Aktivität, Geranyl- Diphosphat-Synthase-Aktivität, Famesyl-Diphosphat-Synthase-Aktivität, Geranyl- Geranyl-Diphosphat-Synthase-Aktivität, Phytoen-Synthase-Aktivität, Phytoen- Desaturase-Aktivität, Zeta-Carotin-Desaturase-Aktivität, crtlSO-Aktivität, FtsZ-Aktivität und MinD-Aktivität aufweisen.
Unter HMG-CoA-Reduktase-Aktivität wird die Enzymaktivität einer HMG-CoA- Reduktase (3-Hydroxy-3-Methyl-Glutaryl-Coenzym-A-Reduktase) verstanden.
Unter einer HMG-CoA-Reduktase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, 3-Hydroxy-3-Methyl-Glutaryl-Coenzym-A in Mevalonat umzuwandeln.
Dementsprechend wird unter HMG-CoA-Reduktase-Aktivität die in einer bestimmten Zeit durch das Protein HMG-CoA-Reduktase umgesetzte Menge 3-Hydroxy-3-Methyl- Glutaryl-Coenzym-A bzw. gebildete Menge Mevalonat verstanden.
Bei einer erhöhten HMG-CoA-Reduktase-Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein HMG-CoA- Reduktase die umgesetzte Menge 3-Hydroxy-3-Methyl-Glutaryl-Coenzym-A bzw. die gebildete Menge Mevalonat erhöht.
Vorzusgweise beträgt diese Erhöhung der HMG-CoA-Reduktase-Aktivität mindestens 5 %, weiter bevorzugt mindestens 20 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt mindestens 100 %, bevorzugter mindestens 300 %, noch bevorzugter mindestens 500 %, insbesondere mindestens 600 % der HMG-CoA-Reduktase-Aktivität des Wildtyps.
Die Bestimmung der HMG-CoA-Reduktase-Aktivität in erfindungsgemäßen genetisch veränderten Organismus und in Wildtyp- bzw. Referenzorganismen erfolgt vorzugsweise unter folgenden Bedingungen:
Eingefrorenes Organismenmaterial wird durch intensives Mosern in flüssigem Stickstoff homogenisiert und mit Extraktionspuffer in einem Verhältnis von 1:1 bis 1 :20 extrahiert. Das jeweilige Verhältnis richtet sich nach den Enzymaktivitäten in dem verfügbaren Organismenmaterial, so dass eine Bestimmung und Quantifizierung der Enzymaktivitäten innerhalb des linearen Messbereiches möglicht ist. Typischerweise kann der Extraktionspuffer bestehen aus 50 mM HEPES-KOH (pH 7.4), 10 mM MgCI2, 10 mM KCI, 1 mM EDTA, 1 mM EGTA, 0.1% (v/v) Triton X-100, 2 mM ε-Aminocapronsäure, 10% Glyzerin, 5 mM KHCO3. Kurz vor der Extraktion wird 2 mM DTT und 0.5 mM PMSF zugegeben.
Die Aktivität der HMG-CoA-Reduktase kann nach veröffentlichen Beschreibungen ge- messen werden (z.B. Schaller, Grausem, Benveniste, Chye, Tan, Song und Chua, Plant Physiol. 109 (1995), 761-770; Chappell, Wolf, Proulx, Cuellar und Saunders, Plant Physiol. 109 (1995) 1337-1343). Organismengewebe kann in kaltem Puffer (100 mM Kaliumphosphat (pH 7.0), 4 mM MgCI2, 5 mM DTT) homogenisiert und extrahiert werden. Das Homogenisat wird 15 Minuten lang bei 10.000g bei 4C zentrifugiert. Der Überstand wird danach bei 100.000g für 45-60 Minuten nochmals zentrifugiert. Die Aktivität der HMG-CoA-Reduktase wird im Überstand und im Pellet der mikrosomalen Fraktion (nach dem Resuspendieren in 100 mM Kaliumphosphat (pH 7.0) und 50 mM DTT) bestimmt. Aliquots der Lösung und der Suspension (der Proteingehalt der Suspension entspricht etwa 1-10 ug) werden in 100 mM Kaliumphosphat-Puffer (pH 7,0 mit 3 mM NADPH und 20 μM (14C)HMG-CoA (58 μCi/μM) idealerweise in einem Volumen von 26 μl für 15-60 Minuten bei 30C inkubiert. Die Reaktion wird terminiert durch die Zugabe von 5 μl Mevalonatlacton (1 mg/ml) und 6 N HCI. Nach Zugabe wird die Mischung bei Raumtemperatur 15 Minuten inkubiert. Das in der Reaktion gebildete (14C)- Mevalonat wird quantifiziert, indem 125 μl einer gesättigten Kaliumphosphat-Lösung (pH 6.0) und 300 μl Ethylacetat zugegeben werden. Die Mischung wird gut vermischt und zentrifugiert. Mittels Szintillationsmessung kann die Radioaktivität bestimmt werden.
Unter (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase-Aktivität, auch lytB oder IspH bezeichnet, wird die Enzymaktivität einer (E)-4-Hydroxy-3-Methylbut-2-enyl- Diphosphat-Reduktase verstanden.
Unter einer (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, (E)-4-Hydroxy-3-Methylbut-2-enyl- Diphosphat in Isopentenyldiphosphat und Dimethylallyldiphosphate umzuwandeln.
Dementsprechend wird unter (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat- Reduktase-Aktivität die in einer bestimmten Zeit durch das Protein (E)-4-Hydroxy-3- Methylbut-2-enyl-Diphosphat-Reduktase umgesetzte Menge (E)-4-Hydroxy-3- Methylbut-2-enyl-Diphosphat bzw. gebildete Menge Isopentenyldiphosphat und/oder Dimethylallyldiphosphat verstanden.
Bei einer erhöhten (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase -Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein (EH-Hydröxy-S-Methylbut^-enyl-Diphosphat-Reduktase die umgesetzte Menge (E)-4-Hydroxy-3-MethyIbut-2-enyl-Diphosphat bzw. die gebildete Menge Isopentenyldiphosphat und/oder Dimethylallyldiphosphat erhöht.
Vorzugsweise beträgt diese Erhöhung der (E)-4-Hydroxy-3-Methylbut-2-enyl- Diphosphat-Reduktase-Aktivität mindestens 5 %, weiter bevorzugt mindestens 20 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt mindestens 100 %, bevorzugter mindestens 300 %, noch bevorzugter mindestens 500 %, insbesondere mindestens 600 % der (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase -Aktivität des Wildtyps.
Die Bestimmung der (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase- Aktivität in erfindungsgemäßen genetisch veränderten, nicht-humanen Organismen und in Wildtyp- bzw. Referenzorganismen erfolgt vorzugsweise unter folgenden Bedingungen:
Eingefrorenes Organismenmaterial wird durch intensives Mosern in flüssigem Stickstoff homogenisiert und mit Extraktionspuffer in einem Verhältnis von 1 :1 bis 1 :20 extrahiert. Das jeweilige Verhältnis richtet sich nach den Enzymaktivitäten in dem verfügbaren Organismenmaterial, sodaß eine Bestimmung und Quantifizierung der Enzymaktivitä- ten innerhalb des linearen Messbereiches möglicht ist. Typischerweise kann der Extraktionspuffer bestehen aus 50 mM HEPES-KOH (pH 7.4), 10 mM MgCI2, 10 mM KCI, 1 mM EDTA, 1 mM EGTA, 0.1 % (v/v) Triton X-100, 2 mM ε-Aminocapronsäure, 10 % Glyzerin, 5 mM KHCO3. Kurz vor der Extraktion wird 2 mM DTT und 0,5 mM PMSF zugegeben. Die Bestimmung der (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase- Aktivität kann über einen immunologischen Nachweis erbrächt werden. Die Herstellung spezifischer Antikörper ist durch Rohdich und Kollegen (Rohdich, Hecht, Gärtner, A- dam, Krieger, Amslinger, Arigoni, Bacher und Eisenreich: Studies on the nonmevalona- te terpene biosynthetic pathway: metabolic role of IspH (LytB) protein, Natl. Acad. Natl. Sei. USA 99 (2002), 1158-1163) beschrieben worden. Zur Bestimmung der katalyti- schen Aktivität bschreiben Altincicek und Kollegen (Altincicek, Duin, Reichenberg, Hedderich, Kollas, Hintz, Wagner, Wiesner, Beck und Jomaa: LytB protein catalyzes the terminal step of the 2-C-methyl-D-erythritol-4-phosphate pathway of isoprenoid biosynthesis; FEBS Letters 532 (2002,) 437-440) ein in vitro-System, welches die Reduktion von (E)-4-hydroxy-3-methyl-but-2-enyl diphosphat in die Isopentenyldiphosphat und Dimethylallyldiphosphat verfolgt.
Unter 1-Deoxy-D-Xylose-5-Phosphat-Synthase-Aktivität wird die Enzymaktivität einer 1-Deoxy-D-Xylose-5-Phosphat-Synthase verstanden.
Unter einer 1-Deoxy-D-Xylose-5-Phosphat-Synthase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, Hydroxyethyl-ThPP und Glycerinaldehyd-3- Phosphat in 1-Deoxy-D-Xylose-5-Phosphat umzuwandeln.
Dementsprechend wird unter 1-Deoxy-D-Xylose-5-Phosphat-Synthase -Aktivität die in einer bestimmten Zeit durch das Protein 1-Deoxy-D-Xylose-5-Phosphat-Synthase umgesetzte Menge Hydroxyethyl-ThPP und/oder Glycerinaldehyd-3-Phosphat bzw. gebildete Menge 1-Deoxy-D-Xylose-5-Phosphat verstanden.
Bei einer erhöhten 1-Deoxy-D-Xylose-5-Phosphat-Synthase -Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein 1-Deoxy-D-Xylose-5-Phosphat-Synthase die umgesetzte Menge Hydroxyethyl-ThPP und/oder GIycerinaldehyd-3-Phosphat bzw. die gebildete Menge -Deoxy-D-Xylose-5- Phosphat erhöht.
Vorzugsweise beträgt diese Erhöhung der 1-Deoxy-D-Xylose-5-Phosphat-Synthase - Aktivität mindestens 5 %, weiter bevorzugt mindestens 20 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt mindestens 100 %, bevorzugter mindestens 300 %, noch bevorzugter mindestens 500 %, insbesondere mindestens 600 % der 1-Deoxy-D- Xylose-5-Phosphat-Synthase-Aktivität des Wildtyps.
Die Bestimmung der 1-Deoxy-D-Xylose-5-Phosphat-Synthase-Aktivität in erfindungsgemäßen genetisch veränderten Organismen und in Wildtyp- bzw. Referenzorganis- men erfolgt vorzugsweise unter folgenden Bedingungen:
Eingefrorenes Organismenmaterial wird durch intensives Mörsern in flüssigem Stickstoff homogenisiert und mit Extraktionspuffer in einem Verhältnis von 1:1 bis 1 :20 ext- rahiert. Das jeweilige Verhältnis richtet sich nach den Enzymaktivitäten in dem verfügbaren Organismenmaterial, so dass eine Bestimmung und Quantifizierung der Enzymaktivitäten innerhalb des linearen Messbereiches möglicht ist. Typischerweise kann der Extraktionspuffer bestehen aus 50 mM HEPES-KOH (pH 7.4), 10 mM MgCI2, 10 mM KCI, 1 mM EDTA, 1 mM EGTA, 0,1 % (v/v) Triton X-100, 2 mM ε-Aminocapronsäure, 10 % Glyzerin, 5 mM KHCO3. Kurz vor der Extraktion wird 2 mM DTT und 0,5 mM PMSF zugegeben.
Die Reaktionslösung (50-200 ul) für die Bestimmung der D-1-Deoxyxylulose-5- Phosphat-Synthase-Aktivität (DXS) besteht aus 100 mM Tris-HCI (pH 8.0), 3 mM MgCI2, 3 mM MnCI2, 3 mM ATP, 1 mM Thiamindiphosphat, 0.1% Tween-60, 1 mM Ka- liumfluorid, 30 uM (2-14C)-Pyruvat (0.5 uCi), 0.6 mM DL-Glyerinaldehyd-3-phosphat. Der Organismenextrakt wird 1 bis 2 Stunden in der Reaktionslösung bei 37C. inkubiert. Danach wird die Reaktion durch Erhitzen auf 80C für 3 Minuten gestoppt. Nach Zentrifugation bei 13.000 Umdrehungen/Minute für 5 Minuten wird der Überstand evaporiert, der Rest in 50 ul Methanol resuspendiert, auf eine TLC-Platte für Dünnschichtchromatographie (Silica-Gel 60, Merck, Darmstadt) aufgetragen und in N- Propylalkohol/EthylacetatWasser (6:1 :3; v/v/v) aufgetrennt. Dabei trennt sich radioaktiv markiertes D-1-deoxyxyIulose-5-phosphat (oder D-1-deoxyxylulose) von (2-14C)- Pyruvat. Die Quantifizierung erfolgt mittels Scintillationszähler. Die Methode wurde beschrieben in Harker und Bramley (FEBS Letters 448 (1999) 115-119). Alternativ wurde ein fluorometrischer Assay zur Bestimmung der DXS-Synthaseaktivität von Que- rol und Kollegen beschrieben (Analytical Biochemistry 296 (2001) 101-105).
Unter 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase-Aktivität wird die Enzymaktivi- tat einer 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase, auch 1-Deoxy-D-Xylulose- 5-Phosphat-Reduktoisomerase genannt, verstanden.
Unter einer 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, 1 -Deoxy-D-Xylose-5-Phosphat in 2- C-methyl-D-erythritol 4-Phosphat umzuwandeln.
Dementsprechend wird unter 1 -Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase - Aktivität die in einer bestimmten Zeit durch das Protein 1-Deoxy-D-Xylose-5-Phosphat- Reduktoisomerase umgesetzte Menge 1-Deoxy-D-Xylose-5-Phosphat bzw. gebildete Menge 2-C-methyl-D-erythritol 4-Phosphat verstanden.
Bei einer erhöhten 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase-Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase die umgesetzte Menge 1-Deoxy-D-Xylose-5-Phosphat bzw. die gebildete Menge 2-C-methyl-D-erythritol 4- Phosphat erhöht.
Vorzugsweise beträgt diese Erhöhung der 1-Deoxy-D-Xylose-5-Phosphat- Reduktoisomerase -Aktivität mindestens 5 %, weiter bevorzugt mindestens 20 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt mindestens 100 %, bevorzugter mindestens 300 %, noch bevorzugter mindestens 500 %, insbesondere mindestens 600 % 1 -Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase-Aktivität des Wildtyps.
Die Bestimmung der 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase -Aktivität in erfindungsgemäßen genetisch veränderten Organismen und in Wildtyp- bzw. Referenzorganismen erfolgt vorzugsweise unter folgenden Bedingungen:
Eingefrorenes Organismenmaterial wird durch intensives Mörsern in flüssigem Stick- Stoff homogenisiert und mit Extraktionspuffer in einem Verhältnis von 1 :1 bis 1 :20 extrahiert. Das jeweilige Verhältnis richtet sich nach den Enzymaktivitäten in dem verfügbaren Organismenmaterial, sodaß eine Bestimmung und Quantifizierung der Enzymaktivitäten innerhalb des linearen Messbereiches möglicht ist. Typischerweise kann der Extraktionspuffer bestehen aus 50 mM HEPES-KOH (pH 7,4), 10 mM MgCI2, 10 mM KCI, 1 mM EDTA, 1 mM EGTA, 0,1 % (v/v) Triton X-100, 2 mM ε-Aminocapronsäure, 10 % Glyzerin, 5 mM KHCO3. Kurz vor der Extraktion wird 2 mM DTT und 0,5 mM PMSF zugegeben.
Die Aktivität der D-1-Deoxyxylulose-5-Phosphat-Reduktoisomerase (DXR) wird ge- messen in einem Puffer aus 100 mM Tris-HCI (pH 7,5), 1 mM MnCI2, 0,3 mM NADPH und 0,3 mM 1-Deoxy-D-Xylulose-4-Phosphat, welches z.B. enzymatisch synthetisiert werden kann (Kuzuyama, Takahashi, Watanabe und Seto: Tetrahedon letters 39 (1998) 4509-4512). Die Reaktion wird durch Zugabe des Organismenextraktes gestartet. Das Reaktionsvolumen kann typischerweis 0,2 bis 0,5 mL betragen; die Inkubation erfolgt bei 37C über 30-60 Minuten. Während dieser Zeit wird die Oxidation von NADPH photometrisch bei 340 nm verfolgt.
Unter Isopentenyl-Diphosphat-Δ-Isomerase -Aktivität wird die Enzymaktivität einer Iso- pentenyl-Diphosphat-Δ-lsomerase verstanden. Unter einer Isopentenyl-Diphosphat-Δ-Isomerase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, Isopentenyl-Diphosphat in Dimethylallylphosphat umzuwandeln.
Dementsprechend wird unter Isopentenyl-Diphosphat-Δ-Isomerase -Aktivität die in einer bestimmten Zeit durch das Protein Isopentenyl-Diphosphat-D-Δ-Isomerase umgesetzte Menge Isopentenyl-Diphosphat bzw. gebildete Menge Dimethylallylphosphat verstanden.
Bei einer erhöhten Isopentenyl-Diphosphat-Δ-Isomerase -Aktivität gegenüber dem
Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein Isopentenyl-Diphosphat-Δ-Isomerase die umgesetzte Menge Isopentenyl-Diphosphat bzw. die gebildete Menge Dimethylallylphosphat erhöht.
Vorzugsweise beträgt diese Erhöhung der Isopentenyl-Diphosphat-
Δ-Isomerase -Aktivität mindestens 5 %, weiter bevorzugt mindestens 20 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt mindestens 100 %, bevorzugter mindestens 300 %, noch bevorzugter mindestens 500 %, insbesondere mindestens 600 % der Isopentenyl-Diphosphat-Δ-Isomerase Aktivität des Wildtyps.
Die Bestimmung der Isopentenyl-Diphosphat-Δ-Isomerase-Aktivität in erfindungsgemäßen genetisch veränderten Organismen und in Wildtyp- bzw. Referenzorganismen erfolgt vorzugsweise unter folgenden Bedingungen:
Eingefrorenes Organismenmaterial wird durch intensives Mörtsem in flüssigem Stickstoff homogenisiert und mit Extraktionspuffer in einem Verhältnis von 1:1 bis 1 :20 extrahiert. Das jeweilige Verhältnis richtet sich nach den Enzymaktivitäten in dem verfügbaren Organismenmaterial, so dass eine Bestimmung und Quantifizierung der Enzymaktivitäten innerhalb des linearen Messbereiches möglicht ist. Typischerweise kann der Extraktionspuffer bestehen aus 50 mM HEPES-KOH (pH 7,4), 10 mM MgCI2, 10 mM KCI, 1 mM EDTA, 1 mM EGTA, 0,1 % (v/v) Triton X-100, 2 mM ε-Aminocapronsäure, 10 % Glyzerin, 5 mM KHCO3. Kurz vor der Extraktion wird 2 mM DTT und 0,5 mM PMSF zugegeben.
Aktivitätsbestimmungen der Isopentenyl-Diphosphat-Isomerase (IPP-lsomerase) können nach der von Fräser und Kollegen vorgestellten Methode (Fräser, Römer, Shipton, Mills, Kiano, Misawa, Drake, Schuch und Bramley: Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner; Proc. Natl. Acad. Sei. USA 99 (2002), 1092-1097, basierend auf Fräser, Pinto, Holloway und Bramley, Plant Journal 24 (2000), 551-558) durchgeführt werden. Für Enzymmessun- gen werden Inkubationen mit 0,5 uCi (1-14C)IPP (Isopentenylpyrophosphat) (56 mCi/mmol, Amersham plc) als Substrat in 0,4 M Tris-HCI (pH 8,0) mit 1 mM DTT, 4 mM MgCI2, 6 mM Mn Cl2, 3 mM ATP, 0,1 % Tween 60, 1 mM Kaliumfluorid in einem Volumen von etwa 150-500 ocl durchgeführt. Extrakte werden mit Puffer gemischt (z.B. im Verhältnis 1 :1) und für wenigstens 5 Stunden bei 28°C inkubiert. Danach wird etwa 200 ul Methanol zugegeben und durch Zugabe von konzentrierter Salzsäure (Endkonzentration 25 %) eine Säurehydrolyse für etwa 1 Stunde bei 37C durchgeführt. Anschließend erfolgt eine zweimalige Extraktion Geweils 500 μl) mit Petrolether (versetzt mit 10% Diethylether). Die Radioaktivität in einem Aliquot der Hyperphase wird mittels Szintillationszähler bestimmt. Die spezifische Enzymaktivität kann bei kurzer Inkubation von 5 Minuten bestimmt werden, da kurze Reaktionszeiten die Bildung von Reaktionsnebenprodukten unterdrückt (siehe Lützow und Beyer: The isopentenyl-diphosphate Δ-isomerase and its relation to the phytoene synthase complex in daffodil chromoplasts; Biochim. Biophys. Acta 959 (1988), 118-126)
Unter Geranyl-Diphosphat-Synthase -Aktivität wird die Enzymaktivität einer Geranyl- Diphosphat-Synthase verstanden.
Unter einer Geranyl-Diphosphat-Synthase wird ein Protein verstanden, das die enzy- matisehe Aktivität aufweist, Isopentenyl-Diphosphat und Dimethylallylphosphat in Ge- ranyl-Diphosphat umzuwandeln.
Dementsprechend wird unter Geranyl-Diphosphat-Synthase-Aktivität die in einer bestimmten Zeit durch das Protein Geranyl-Diphosphat-Synthase umgesetzte Menge Isopentenyl-Diphosphat und/oder Dimethylallylphosphat bzw. gebildete Menge Gera- nyl-Diphosphat verstanden.
Bei einer erhöhten Geranyl-Diphosphat-Synthase-Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein Gera- nyl-Diphosphat-Synthase die umgesetzte Menge Isopentenyl-Diphosphat und/oder Dimethylallylphosphat bzw. die gebildete Menge Geranyl-Diphosphat erhöht.
Vorzugsweise beträgt diese Erhöhung der Geranyl-Diphosphat-Synthase -Aktivität mindestens 5 %, weiter bevorzugt mindestens 20 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt mindestens 100 %, bevorzugter mindestens 300 %, noch bevorzugter mindestens 500 %, insbesondere mindestens 600 % der Geranyl- Diphosphat-Synthase-Aktivität des Wildtyps.
Die Bestimmung der Geranyl-Diphosphat-Synthase-Aktivität in erfindungsgemäßen genetisch veränderten Organsimen und in Wildtyp- bzw. Referenzorganismen erfolgt vorzugsweise unter folgenden Bedingungen:
Eingefrorenes Organismenmaterial wird durch intensives Mörsern in flüssigem Stickstoff homogenisiert und mit Extraktionspuffer in einem Verhältnis von 1 :1 bis 1 :20 ext- rahiert. Das jeweilige Verhältnis richtet sich nach den Enzymaktivitäten in dem verfügbaren Organismenmaterial, so dass eine Bestimmung und Quantifizierung der Enzymaktivitäten innerhalb des linearen Messbereiches möglicht ist. Typischerweise kann der Extraktionspuffer bestehen aus 50 mM HEPES-KOH (pH 7.4), 10 mM MgCI2, 10 mM KCI, 1 mM EDTA, 1 mM EGTA, 0,1 % (v/v) Triton X-100, 2 mM ε-Aminocapronsäure, 10 % Glyzerin, 5 mM KHCO3. Kurz vor der Extraktion wird 2 mM DTT und 0,5 mM PMSF zugegeben.
Die Aktivität der Geranyl-Diphosphat-Synthase (GPP-Synthase) kann in 50 mM Tris- HCI (pH 7.6), 10 mM MgCI2, 5 mM MnCI2, 2 mM DTT, 1 mM ATP, 0.2 % Tween-20, 5 μM (14C)IPP und 50 μM DMAPP (Dimethylallylpyrophosphat) nach Zugabe von Organismenextrakt bestimmt werden (nach Bouvier, Suire, d'Harlingue, Backhaus und Ca- mara: Meolcular cloning of geranyl diphosphate synthase and compartmentation of monoterpene synthesis in plant cells, Plant Journal 24 (2000) 241-252). Nach der Inkubation von z.B. 2 Stunden bei 37 °C werden die Reaktionsprodukte dephosphyryliert (nach Koyama, Fuji und Ogura: Enzymatic hydrolysis of polyprenyl pyrophosphats,
Methods Enzymol. 110 (1985), 153-155) und mittels Dünnschichtchromatographie und Messung der inkorporierten Radioaktivität analysiert (Dogbo, Bardat, Quennemet und Camara: Metabolism of plastid terpenoids: In vitrp inhibition of phytoene synthesis by phenethyl pyrophosphate derivates, FEBS Letters 219 (1987) 211-215).
Unter Famesyl-Diphosphat-Synthase-Aktivität wird die Enzymaktivität einer Farnesyl- Diphosphat-Synthase verstanden.
Unter einer Farnesyl-Diphosphat-Synthase wird ein Protein verstanden, das die enzy- matisehe Aktivität aufweist, sequentiell 2 Molekülelsopentenyl-Diphosphatmit Dimethy- lallyl-Diphosphat und dem resultierenden Geranyl-Diphosphat in Famesyl-Diphosphat umzuwandeln.
Dementsprechend wird unter Farnesyl-Diphosphat-Synthase-Aktivität die in einer be- stimmten Zeit durch das Protein Farnesyl-Diphosphat-Synthase umgesetzte Menge Dimethylallyl-Diphosphate und/oder Isopentenyl-Diphosphat bzw. gebildete Menge Famesyl-Diphosphat verstanden.
Bei einer erhöhten Farnesyl-Diphosphat-Synthase -Aktivität gegenüber dem Wildtyp wird somit im Vergleich zürn Wildtyp in einer bestimmten Zeit durch das Protein Farne- syl-Diphosphat-Synthase die umgesetzte Menge Dimethylallyl-Diphosphate und/oder Isopentenyl-Diphosphat bzw. die gebildete Menge Farnesyl-Diphosphat erhöht.
Vorzugsweise beträgt diese Erhöhung der Farnesyl-Diphosphat-Synthase -Aktivität mindestens 5 %, weiter bevorzugt mindestens 20 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt mindestens 100 %, bevorzugter mindestens 300 %, noch bevorzugter mindestens 500 %, insbesondere mindestens 600 % der Famesyl- Diphosphat-Synthase-Aktivität des Wildtyps.
Die Bestimmung der Farnesyl-Diphosphat-Synthase-Aktivität in erfindungsgemäßeri genetisch veränderten Organismen und in Wildtyp- bzw. Referenzorganismen erfolgt vorzugsweise unter folgenden Bedingungen:
Eingefrorenes Organismenmaterial wird durch intensives Mörsern in flüssigem Stick- stoff homogenisiert und mit Extraktionspuffer in einem Verhältnis von 1 : 1 bis 1 :20 extrahiert. Das jeweilige Verhältnis richtet sich nach den Enzymaktivitäten in dem verfügbaren Organismenmaterial, so dass eine Bestimmung und Quantifizierung der Enzymaktivitäten innerhalb des linearen Messbereiches möglicht ist. Typischerweise kann der Extraktionspuffer bestehen aus 50 mM HEPES-KOH (pH 7.4), 10 mM MgCI2, 10 mM KCI, 1 mM EDTA, 1 mM EGTA, 0,1 % (v/v) Triton X-100, 2 mM ε-Aminocapronsäure, 10 % Glyzerin, 5 mM KHCO3. Kurz vor der Extraktion wird 2 mM DTT und 0,5 mM PMSF zugegeben.
Die Aktivität der Farnesylpyrophosphat-Snthase (FPP-Synthase) kann nach einer Vor- schrift von Joly und Edwards (Journal of Biological Chemistry 268 (1993), 26983-
26989) bestimmt werden. Danach wird die Enzymaktivität in einem Puffer aus 10 mM HEPES (pH 7,2), 1 mM MgCI2, 1 mM Dithiothreitol, 20 uM Geranylpyrophosphat und 40 μM (1-14C) Isopentenylpyrophosphat (4 Ci/mmol) gemessen. Die Reaktionsmischung wird bei 37°C inkubiert; die Reaktion wird durch Zugabe von 2,5 N HCI (in 70 % Ethanol mit 19 μg/ml Farnesol) gestoppt. Die Reaktionsproduckte werden somit durch Säurehydrolyse bei 37C innerhalb von 30 Minuten hydrolysiert. Durch Zugabe von 10% NaOH wird die Mischung neutralisiert und mit Hexan ausgeschüttelt. Ein Aliquot der Hexanphase kann zur Bestimmung der eingebauten Radioaktivität mittels Szintillati- onszähler gemessen werden.
Alternativ können nach Inkubation von Organismenextrakt und radioaktiv markierten IPP die Reaktionsprodukte mittels Dünnschichtchromatographie (Silica-Gel SE60, Merck) in Benzol/Methanol (9:1) getrennt werden. Radioaktiv markierte Produkte werden eluiert und die Radioaktivität bestimmt (nach Gaffe, Bru, Causse, Vidal, Stamitti- Bert, Carde und Gallusci: LEFPS1 , a tomato farnesyl pyrophosphate gene highly ex- pressed during early fruit development; Plant Physiology 123 (2000) 1351-1362).
Unter Geranyl-Geranyl-Diphosphat-Synthase -Aktivität wird die Enzymaktivität einer Geranyl-Geranyl-Diphosphat-Synthase verstanden.
Unter einer Geranyl-Geranyl-Diphosphat-Synthase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, Famesyl-Diphosphat und Isopentenyl-Diphosphat in Geranyl-Geranyl-Diphosphat umzuwandeln.
Dementsprechend wird unter Geranyl-Geranyl-Diphosphat-Synthase-Aktivität die in einer bestimmten Zeit durch das Protein Geranyl-Geranyl-Diphosphat-Synthase umgesetzte Menge Farnesyl-Diphosphat und/oder Isopentenyl-Diphosphat bzw. gebildete Menge Geranyl-Geranyl-Diphosphat verstanden.
Bei einer erhöhten Geranyl-Geranyl-Diphosphat-Synthase -Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein Geranyl-Geranyl-Diphosphat-Synthase die umgesetzte Menge Farnesyl-Diphosphat und/oder Isopentenyl-Diphosphat bzw. die gebildete Menge Geranyl-Geranyl- Diphosphat erhöht.
Vorzugsweise beträgt diese Erhöhung der Geranyl-Geranyl-Diphosphat-Synthase - Aktivität mindestens 5 %, weiter bevorzugt mindestens 20 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt mindestens 100 %, bevorzugter mindestens 300 %, noch bevorzugter mindestens 500 %, insbesondere mindestens 600 % der Geranyl-Geranyl- Piphosphat-Synthase-Aktivität des Wildtyps.
Die Bestimmung der Geranyl-Geranyl-Diphosphat-Synthase -Aktivität in erfindungsgemäßen genetisch veränderten Organismen und in Wildtyp- bzw. Referenzorganismen erfolgt vorzugsweise unter folgenden Bedingungen:
Eingefrorenes Organismenmaterial wird durch intensives Mörsern in flüssigem Stickstoff homogenisiert und mit Extraktionspuffer in einem Verhältnis von 1 :1 bis 1 :20 extrahiert. Das jeweilige Verhältnis richtet sich nach den Enzymaktivitäten in dem verfügbaren Organismenmaterial, so dass eine Bestimmung und Quantifizierung der Enzym- aktivitäten innerhalb des linearen Messbereiches möglicht ist. Typischerweise kann der Extraktionspuffer bestehen aus 50 mM HEPES-KOH (pH 7,4), 10 mM MgCI2, 10 mM KCI, 1 mM EDTA, 1 mM EGTA, 0,1 % (v/v) Triton X-100, 2 mM ε-Aminocapronsäure, 10 % Glyzerin, 5 mM KHCO3. Kurz vor der Extraktion wird 2 mM DTT und 0,5 mM PMSF zugegeben. Aktivitätsmessungen der Geranylgeranylpyrophosphat-Synthase (GGPP-Synthase) können nach der von Dogbo und Camara beschriebenen Methode (in Biochim. Biophys. Acta 920 (1987), 140-148: Purification of isopentenyl pyrophosphate isomerase and geranylgeranyl pyrophosphate synthase from Capsicum chromoplasts by affinity chromatography) bestimmt werden. Dazu wird einem Puffer (50 mM Tris-HCI (pH 7,6), 2 mM MgCI2, 1 mM MnCI2, 2 mM Dithiothreitol, (1-14C)IPP (0,1 uCi, 10 uM), 15 uM DMAPP, GPP oder FPP) mit einem Gesamtvolumen von etwa 200 ul Organismenextrakt zugesetzt. Die Inkubation kann für 1-2 Stunden (oder länger) bei 30C erfolgen. Die Reaktion wird durch Zugabe von 0,5 ml Ethanol und 0,1 ml 6N HCI. Nach 10minütiger Inkubation bei 37°C wird die Reaktionsmischung mit 6N NaOH neutralisiert, mit 1 ml Wasser vermischt und mit 4 ml Diethylether ausgeschüttelt. In einem Aliquot (z.B. 0,2 mL) der Etherphase wird mittels Szintillationszählung die Menge an Radioaktivität bestimmt. Alternativ können nach Säurehydrolyse die radioaktiv markierten Prenylalkohole in Ether ausgeschüttelt werden und mit HPLC (25 cm-Säule Spheri- sorb ODS-1, 5um; Elution mit Methanol/Wasser (90:10; v/v) bei einer Flussrate von 1 ml/min) getrennt und mittels Radioaktivitätsmonitor quantifiziert werden (nach Wiede- mann, Misawa und Sandmann: Purification and enzymatic characterization of the geranylgeranyl pyrophosphate synthase from Erwinia uredovora after expression in E- scherichia coli; Archives Biochemistry and Biophysics 306 (1993), 152-157). Unter Phytoen-Synthase-Aktivität wird die Enzymaktivität einer Phytoen-Synthase verstanden.
Insbesondere wird unter einer Phytoen-Synthase ein Protein verstanden, das die enzymatische Aktivität aufweist, Geranyl-Geranyl-Diphosphat in Phytoen umzuwandeln.
Dementsprechend wird unter Phytoen-Synthase -Aktivität die in einer bestimmten Zeit durch das Protein Phytoen-Synthase umgesetzte Menge Geranyl-Geranyl-Diphosphat bzw. gebildete Menge Phytoen verstanden.
Bei einer erhöhten Phytoen-Synthase -Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein Phytoen-Synthase die umgesetzte Menge Geranyl-Geranyl-Diphosphat bzw. die gebildete Menge Phytoen erhöht.
Vorzugsweise beträgt diese Erhöhung der Phytoen-Synthase-Aktivität mindestens 5 %, weiter bevorzugt mindestens 20 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt mindestens 100 %, bevorzugter mindestens 300 %, noch bevorzugter mindestens 500 %, insbesondere mindestens 600 % der Phytoen-Synthase-Aktivität des Wildtyps. Die Bestimmung der Phytoen-Synthase-Aktivität in erfindungsgemäßen genetisch veränderten Organismen und in Wildtyp- bzw. Referenzorganismen erfolgt vorzugsweise unter folgenden Bedingungen:
Eingefrorenes Organismenmaterial wird durch intensives Mörsern in flüssigem Stickstoff homogenisiert und mit Extraktionspuffer in einem Verhältnis von 1:1 bis 1:20 extrahiert. Das jeweilige Verhältnis richtet sich nach den Enzymaktivitäten in dem verfügbaren Organismenmaterial, so dass eine Bestimmung und Quantifizierung der Enzymaktivitäten innerhalb des linearen Messbereiches möglicht ist. Typischerweise kann der Extraktionspuffer bestehen aus 50 mM HEPES-KOH (pH 7,4), 10 mM MgCI2, 10 mM KCI, 1 mM EDTA, 1 mM EGTA, 0,1 % (v/v) Triton X-100, 2 mM ε-Aminocapronsäure, 10 % Glyzerin, 5 mM KHCO3. Kurz vor der Extraktion wird 2 mM DTT und 0,5 mM PMSF zugegeben.
Aktivitätsbestimmungen der Phytoen-Synthase (PSY) können nach der von Fräser und Kollegen vorgestellten Methode (Fräser, Romer, Shipton, Mills, Kiano, Misawa, Drake, Schuch und Bramley: Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner; Proc. Natl. Acad. Sei. USA 99 (2002), 1092-1097, basierend auf Fräser, Pinto, Holloway und Bramley, Plant Journal 24 (2000) 551-558) durchgeführt werden. Für Enzymmessungen werden Inkubationen mit (3H)GeranyIgeranyl-pyrophosphat (15 mCi/mM, American Radiolabeled Chemicals, St. Louis) als Substrat in 0.4 M Tris-HCI (pH 8,0) mit 1 mM DTT, 4 mM MgCI2, 6 mM Mn Cl2, 3 mM ATP, 0,1 % Tween 60, 1 mM Kaliumfluorid durchgeführt. Organismenextrakte werden mit Puffer gemischt, z B. 295 ul Puffer mit Extrakt in einem Gesamtvolumen von 500 ul. Inkubiert wird für wenigstens 5 Stunden bei 28C. Anschließend wird Phytoene durch zweimaliges Ausschütteln 'eweils 500 ul) mit Chloroform extrahiert. Das während der Reaktion gebildete radioaktiv markierte Phytoene wird mittels Dünnschichtchromatographie auf Silicaplatten in Methanόl Wasser (95:5; v/v) getrennt. Phytoene kann in einer Jod-angereicherten Atmosphäre (durch Erhitzen weniger lodkristal- le) auf den Silicaplatten identifiziert werden. Ein Phytoene-Standard dient als Referenz. Die Menge an radioaktiv markiertem Produckt wird mittels Messung im Szintillations- zähler bestimmt. Alternativ kann Phytoene auch mittels HPLC, die mit einem Radioaktivitätsdetektor versehen ist, quantifiziert werden (Fräser, Albrecht und Sandmann: Development of high Performance liquid Chromatographie Systems for the Separation of radiolabeled carotenes and precursors formed in specific enzymatic reactions; J. Chromatogr. 645 (1993) 265-272).
Unter Phytoen-Desaturase-Aktivität wird die Enzymaktivität einer Phytoen-Desaturase verstanden. Unter einer Phytoen-Desaturase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, Phytoen in Phytofluen und/oder Phytofluen in ζ-Carotin (Zetacarotin) umzuwandeln.
Dementsprechend wird unter Phytoen-Desaturase-Aktivität die in einer bestimmten Zeit durch das Protein Phytoen-Desaturase umgesetzte Menge Phytoen bzw. Phytofluen bzw. gebildete Menge Phytofluen bzw. ζ-Carotin verstanden.
Bei einer erhöhten Phytoen-Desaturase-Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein Phytoen-Desaturase die μmgesetzte Menge Phytoen bzw. Phytofluen bzw. die gebildete Menge Phytofluen bzw. ζ-Carotin erhöht.
Vorzugsweise beträgt diese Erhöhung der Phytoen-Desaturase-Aktivität mindestens 5 %, weiter bevorzugt mindestens 20 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt mindestens 100 %, bevorzugter mindestens 300 %, noch bevorzugter mindestens 500 %, insbesondere mindestens 600 % der Phytoen-Desaturase-Aktivität des Wildtyps.
Die Bestimmung der Phytoen-Desaturase-Aktivität in erfindungsgemäßen genetisch veränderten Organismen und in Wildtyp- bzw. Referenzόrganismen erfolgt vorzugsweise unter folgenden Bedingungen:
Eingefrorenes Organismenmaterial wird durch intensives Mörsern in flüssigem Stick- stoff homogenisiert und mit Extraktionspuffer in einem Verhältnis von 1 :1 bis 1 :20 extrahiert. Das jeweilige Verhältnis richtet sich nach den Enzymaktivitäten in dem verfügbaren Organismenmaterial, so dass eine Bestimmung und Quantifizierung der Enzymaktivitäten innerhalb des linearen Messbereiches möglicht ist. Typischerweise kann der Extraktionspuffer bestehen aus 50 mM HEPES-KOH (pH 7,4), 10 mM MgCI2, 10 mM KCI, 1 mM EDTA, 1 mM EGTA, 0,1 % (v/v) Triton X-100, 2 mM ε-
Aminocapronsäure, 10 % Glyzerin, 5 mM KHCO3. Kurz vor der Extraktion wird 2 mM DTT und 0,5 mM PMSF zugegeben.
Die Aktivität der Phytoen-Desaturase (PDS) kann durch die Inkorporation von radioak- tiv markiertem (14C)-Phytoen in ungesättigte Carotine gemessen werden (nach Römer, Fräser, Kiano, Shipton, Misawa, Schuch und Bramley: Elevation of the provitamin A content of transgenic tomato plants; Nature Biotechnology 18 (2000) 666-669). Radioaktiv markiertes Phytoene kann synthetisiert werden nach Fräser (Fräser, De la Rivas, Mackenzie, Bramley: Phycomyces blakesleanus CarB mutants: their use in assays of phytoene desaturase; Phytochemistry 30 (1991), 3971-3976). Membranen von Plast- iden des Zielgewebes können mit 100 M MES-Puffer (pH 6,0) mit 10 mM MgCI2 und
1 mM Dithiothreitol in einem Gesamtvolumen von 1 mL inkubiert werden. In Aceton gelöstes (14C)-Phytoen (etwa 100.000 Zerfälle/Minute für jeweils eine Inkubation) wird zugegeben, wobei die Acetonkonzentration 5 % (v/v) nicht übersteigen sollte. Diese Mischung wird bei 28C für etwa 6 bis 7 Stunden im Dunklen unter Schütteln inkubiert.
Danach werden Pigmente dreimal mit etwa 5 mL Petrolether (mit 10 % Diethylether versetzt) extrahiert und mittels HPLC getrennt und quantifiziert.
Alternativ kann die Aktivität der Phytoen-Desaturase nach Fräser et al. (Fräser, Misa- wa, Linden, Yamano, Kobayashi und Sandmann: Expression in Escherichia coli, purification, and reactivation of the recombinant Erwinia uredovora phytoene desaturase, Journal of Biological Chemistry 267 (1992), 19891-9895) gemessen werden.
Unter Zeta-Carotin-Desaturase-Aktivität wird die Enzymaktivität einer Zeta-Carotin- Desaturase verstanden.
Unter einer Zeta-Carotin-Desaturase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, ζ-Carotin in Neurosporin und/oder Neurosporin in Lycopin umzuwandeln.
Dementsprechend wird unter Zeta-Carotin-Desaturase-Aktivität die in einer bestimmten Zeit durch das Protein Zeta-Carotin-Desaturase umgesetzte Menge ζ-Carotin oder Neurosporin bzw. gebildete Menge Neurosporin oder Lycopin verstanden.
Bei einer erhöhten Zeta-Carotin-Desaturase-Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein Zeta- Carotin-Desaturase die umgesetzte Menge ζ-Carotin oder Neurosporin bzw. die gebildete Menge Neurosporin oder Lycopin erhöht.
Vorzugsweise beträgt diese Erhöhung der Zeta-Carotin-Desaturase-Aktivität mindestens 5 %, weiter bevorzugt mindestens 20 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt mindestens 100 %, bevorzugter mindestens 300 %, noch bevorzugter mindestens 500 %, insbesondere mindestens 600 % der Zeta-Carotin-Desaturase - Aktivität des Wildtyps.
Die Bestimmung der Zeta-Carotin-Desaturase-Aktivität in erfindungsgemäßen genetisch veränderten Organismen und in Wildtyp- bzw. Referenzorganismen erfolgt vorzugsweise unter folgenden Bedingungen: Eingefrorenes Organsimenmaterial wird durch intensives Mörsern in flüssigem Stickstoff homogenisiert und mit Extraktionspuffer in einem Verhältnis von 1:1 bis 1:20 extrahiert. Das jeweilige Verhältnis richtet sich nach den Enzymaktivitäten in dem verfügbaren Organsimenmaterial, so dass eine Bestimmung und Quantifizierung der Enzym- aktivitäten innerhalb des linearen Messbereiches möglicht ist. Typischerweise kann der Extraktionspuffer bestehen aus 50 mM HEPES-KOH (pH 7,4), 10 mM MgCI2, 10 mM KCI, 1 mM EDTA, 1 mM EGTA, 0,1 % (v/v) Triton X-100, 2 mM ε-Aminocapronsäure, 10 % Glyzerin, 5 mM KHCO3. Kurz vor der Extraktion wird 2 mM DTT und 0,5 mM PMSF zugegeben.
Analysen zur Bestimmung der ξ-Carotin-Desaturase (ZDS-Desaturase) können in 0.2 M Kaliumphosphat (pH 7.8, Puffervolumen von etwa 1 ml) durchgeführt werden. Die Anlysemethode dazu wurde von Breitenbach und Kollegen (Breitenbach, Kuntz, Takai- chi und Sandmann: Catalytic properties of an expressed and purified higher plant type ξ-carotene desaturase from Capsicum annuum; European Journal of Biochemistry. 265(1 ):376-383, 1999 Oct ) publiziert. Jeder Analyseansatz enthält 3 mg Phosphytidyl- cholin, das in 0,4 M Kaliumphosphatpuffer (pH 7,8) suspendiert ist, 5 ocg ξ-Carotin oder Neurosporin, 0,02 % Butylhydroxytoluol, 10 ul Decyl-Plastochinon (1 mM methanolische Stammlösung) und Organismenextrakt. Das Volumen des Organismenextraktes muß der Menge an vorhandener ZDS-Desaturase-Aktivität angepasst werden, um Quantifizierungen in einem linearen Messbereich zu ermöglichen. Inkubationen erfolgen typischerweise für etwa 17 Stunden bei kräftigem Schütteln (200 Umdrehungen/Minute) bei etwa 28°C im Dunklen. Carotinoide werden durch Zugabe von 4 ml Aceton bei 50°C für 10 Minuten unter Schütteln extrahiert. Aus dieser Mischung werden die Carotinoide in eine Petroletherpahse (mit 10 % Diethylether) ü- berführt. Die Dethylether/Petroletherphase wird unter Stickstoff evaporiert, die Carotinoide wieder in 20 ul gelöst und mittels HPLC getrennt und quantifiziert.
Unter crtlSO -Aktivität wird die Enzymaktivität eines crtlSO-Proteins verstanden.
Unter einem crtlSO-Proteins wird ein Protein verstanden, das die enzymatische Aktivität aufweist, 7,9,7',9'-tetra-cis-Lycopin in all-trans-Lycopin umzuwandeln.
Dementsprechend wird unter crtlSO-Aktivität die in einer bestimmten Zeit durch das Protein crtlSO umgesetzte Menge 7,9,7', 9'-tetra-cis-Lycopin bzw. gebildete Menge all- trans-Lycopin verstanden.
Bei einer erhöhten crtlSO-Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das crtlSO-Proteins die umgesetzte Menge 7,9,7',9'-tetra-cis-Lycopin bzw. die gebildete Menge all-trans-Lycopin erhöht.
Vorzugsweise beträgt diese Erhöhung der crtlSO-Aktivität mindestens 5 %, weiter bevorzugt mindestens 20 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt min- destens 100 %, bevorzugter mindestens 300 %, noch bevorzugter mindestens 500 %, insbesondere mindestens 600 % der crtlSO-Aktivität des Wildtyps.
Unter FtsZ-Aktivität wird die physiologische Aktivität eines FtsZ-Proteins verstanden.
Unter einem FtsZ-Protein wird ein Protein verstanden, das eine Zellteilungs und Plasti- denteilungs-fördemde Wirkung hat und Homologien zu Tubulinproteinen aufweist.
Unter MinD -Aktivität wird die physiologische Aktivität eines MinD -Proteins verstanden.
Unter einem MinD -Protein wird ein Protein verstanden, das eine multifunktionele Rolle bei der Zellteilung aufweist. Es ist eine Membran-assoziierte ATPase und kann innerhalb der Zelle eine oszillierende Bewegung von Pol zu Pol zeigen.
Weiterhin kann die Erhöhung der Aktivität von Enzymen des Nicht-Mevalonatweges zu einer weiteren Erhöhung des gewünschten Ketocarotenoid-Endproduktes führen. Bei- piele hierfür sind die 4-Diphosphocytidyl-2-C-Methyl-D-Erythritol-Synthase, die 4- Diphosphocytidyl-2-C-Methyl-D-Erythritol-Kinase und die 2-C-Methyl-D-Erythritol-2,4- cyclodiphoshat-Synthase. Durch Änderungen der Genexpression der entsprechenden Gene kann die Aktivität der genannten Enzyme erhöht werden. Die veränderten Kon- zentrationen der relavanten Proteine können standardgemäß mittels Antikörpern und entsprechenden Blotting-techniken nachgewiesen werden.
Die Erhöhung der HMG-CoA-Reduktase-Aktivität und/oder (E)-4-Hydroxy-3-Methylbut- 2-enyl-Diphosphat-Reduktase-Aktivität und/oder 1 -Deoxy-D-Xylose-5-Phosphat- Synthase-Aktivität und/oder 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase-Aktivität und/oder Isopentenyl-Diphosphat-Δ-Isomerase-Aktivität und/oder Geranyl-Diphosphat- Synthase-Aktivität und/oder Farnesyl-Diphosphat-Synthase-Aktivität und/oder Geranyl- geranyl-Diphosphat-Synthase-Aktivität und/oder Phytoen-Synthase-Aktivität und/oder Phytoen-Desaturase-Aktivität und/oder Zeta-Carotin-Desaturase-Aktivität und/oder crtlSO-Aktivität und/oder FtsZ-Aktivität und/oder MinD-Aktivität kann durch verschiedene Wege erfolgen, beispielsweise durch Ausschalten von hemmenden Regulationsmechanismen auf Expressions- und Proteinebene oder durch Erhöhung der Genexpression von Nukleinsäuren kodierend eine HMG-CoA-Reduktase und/oder Nukleinsäuren kodierend eine (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase und/oder Nukleinsäuren kodierend eine 1-Deoxy-D-Xylose-5-Phosphat-Synthase und/oder Nuk- leinsäuren kodierend eine 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase und/oder Nukleinsäuren kodierend eine Isopentenyl-Diphosphat-Δ-Isomerase und/oder Nukleinsäuren kodierend eine Geranyl-Diphosphat-Synthase und/oder Nukleinsäuren kodierend eine Farnesyl-Diphosphat-Synthase und/oder Nukleinsäuren kodierend eine Ge- ranyl-geranyl-Diphosphat-Synthase und/oder Nukleinsäuren kodierend eine Phytoen- Synthase und/oder Nukleinsäuren kodierend eine Phytoen-Desaturase und/oder Nukleinsäuren kodierend eine Zeta-Carotin-Desaturase und/oder Nukleinsäuren kodierend ein crtlSO-Protein und/oder Nukleinsäuren kodierend ein FtsZ-Protein und/oder Nukleinsäuren kodierend ein MinD-Protein gegenüber dem Wildtyp.
Die Erhöhung der Genexpression der Nukleinsäuren kodierend eine HMG-CoA- Reduktase und/oder Nukleinsäuren kodierend eine (E)-4-Hydroxy-3-Methylbut-2-enyl- Diphosphat-Reduktase und/oder Nukleinsäuren kodierend eine 1 -Deoxy-D-Xylose-5- Phosphat-Synthase und/oder Nukleinsäuren kodierend eine 1-Deoxy-D-Xylose-5- Phosphat-Reduktoisomerase und/oder Nukleinsäuren kodierend eine Isopentenyl-
Diphosphat-Δ-Isomerase und/oder Nukleinsäuren kodierend eine Geranyl-Diphosphat- Synthase und/oder Nukleinsäuren kodierend eine Farnesyl-Diphosphat-Synthase und/oder Nukleinsäuren kodierend eine Geranyl-geranyl-Diphosphat-Synthase und/oder Nukleinsäuren kodierend eine Phytoen-Synthase und/oder Nukleinsäuren kodierend eine Phytoen-Desaturase und/oder Nukleinsäuren kodierend eine Zeta- Carotin-Desaturase und/oder Nukleinsäuren kodierend ein crtlSO-Protein und/oder Nukleinsäuren kodierend ein FtsZ-Protein und/oder Nukleinsäuren kodierend ein MinD- Protein gegenüber dem Wildtyp kann ebenfalls durch verschiedene Wege erfolgen, beispielsweise durch Induzierung des HMG-CoA-Reduktase-Gens und/oder (E)-4- Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase-Gens und/oder 1-Deoxy-D-Xylose- 5-
Phosphat-Synthase-Gens und/oder 1 -Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase- Gens und/oder Isopentenyl-Diphosphat-Δ-Isomerase-Gens und/oder Geranyl- Diphosphat-Synthase-Gens und/oder Famesyl-Diphosphat-Synthase-Gens und/oder Geranyl-geranyl-Diphosphat-Synthase-Gens und/oder Phytoen-Synthase-Gens und/oder Phytoen-Desaturase-Gens und/oder Zeta-Carotin-Desaturase-Gens und/oder crtlSO-Gens und/oder FtsZ-Gens und/oder MinD-Gens durch Aktivatoren oder durch Einbringen von einer oder mehrerer Kopien des HMG-CoA-Reduktase-Gens und/oder (E)-4-Hydroxy-3-Methylbut-2- enyl-Diphosphat-Reduktase-Gens und/oder 1-Deoxy-D-Xylose-5-Phosphat-Synthase- Gens und/oder 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase-Gens und/oder Iso- pentenyl-Diphosphat-Δ-lsomerase-Gens und/oder Geranyl-Diphosphat-Synthase-Gens und/oder Farnesyl-Diphosphat-Synthase-Gens und/oder Geranyl-geranyl-Diphosphat- Synthase-Gens und/oder Phytoen-Synthase-Gens und/oder Phytoen-Desaturase-Gens und/oder Zeta-Carotin-Desaturase-Gens und/oder crtlSO-Gens und/oder FtsZ-Gens und/oder MinD-Gens, also durch Einbringen mindestens einer Nukleinsäure kodierend eine HMG-CoA-Reduktase und/oder mindestens einer Nukleinsäure kodierend eine
(E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase und/oder mindestens einer
Nukleinsäure kodierend eine 1-Deoxy-D-Xylose-5-Phosphat-Synthase und/oder min- destens einer Nukleinsäure kodierend eine 1-Deoxy-D-Xylose-5-Phosphat-
Reduktoisomerase und/oder mindestens einer Nukleinsäure kodierend eine Isopente- nyl-Diphosphat-Δ-lsomerase und/oder mindestens einer Nukleinsäure kodierend eine
Geranyl-Diphosphat-Synthase und/oder mindestens einer Nukleinsäure kodierend eine
Farnesyl-Diphosphat-Synthase und/oder mindestens einer Nukleinsäure kodierend eine Geranyl-geranyl-Diphösphat-Synthase und/oder mindestens einer Nukleinsäure kodierend eine Phytoen-Synthase und/oder mindestens einer Nukleinsäure kodierend eine Phytoen-Desaturase und/oder mindestens einer Nukleinsäure kodierend eine Zeta-Carotin-Desaturase und/oder mindestens einer Nukleinsäure kodierend ein crtlSO- Protein und/oder mindestens einer Nukleinsäure kodierend ein FtsZ-Protein und/oder mindestens einer Nukleinsäure kodierend ein MinD-Protein in den Organismus.
Unter Erhöhung der Genexpression einer Nukleinsäure kodierend eine HMG-CoA- Reduktase und/oder (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase und/oder 1-Deoxy-D-Xylose-5-Phosphat-Synthase Und/oder 1-Deoxy-D-Xylose-5- Phosphat-Reduktoisomerase und/oder Isopentenyl-Diphosphat-Δ-Isomerase und/oder Geranyl-Diphosphat-Synthase und/oder Farnesyl-Diphosphat-Synthase und/oder Ge- ranyl-geranyl-Diphosphat-Synthase und/oder Phytoen-Synthase und/oder Phytoen- Desaturase und/oder Zeta-Carotin-Desaturase und/oder ein crtlSO-Protein und/oder FtsZ-Protein und/oder MinD-Protein wird erfindungsgemäß auch die Manipulation der Expression der Organismen eigenen, endogenen HMG-CoA-Reduktase und/oder (E)- 4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase und/oder 1 -Deoxy-D-Xylose-5- Phosphat-Synthase und/oder i-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase und/oder Isopentenyl-Diphosphat-Δ-Isomerase und/oder Geranyl-Diphosphat- Synthase und/oder Farnesyl-Diphosphat-Synthase und/oder Geranyl-geranyl- Diphosphat-Synthase und/oder Phytoen-Synthase und/oder Phytoen-Desaturase und/oder Zeta-Carotin-Desaturase und/oder des Organismen eigenen crtlSO-Proteins und/oder FtsZ-Proteins und/oder MinD-Proteins verstanden.
Dies kann beispielsweise durch Veränderung der entsprechenden Promotor DNA- Sequenz erreicht werden. Eine solche Veränderung, die eine erhöhte Expressionsrate des Gens zur Folge hat, kann beispielsweise durch Deletion oder Insertion von DNA Sequenzen erfolgen.
In einer bevorzugten Ausführungsform erfolgt die Erhöhung der Genexpression einer Nukleinsäure kodierend eine HMG-CoA-Reduktase und/oder die Erhöhung der Ge- nexpression einer Nukleinsäure kodierend eine (E)-4-Hydroxy-3-Methylbut-2-enyl- Diphosphat-Reduktase und/oder die Erhöhung der Genexpression einer Nukleinsäure kodierend eine 1-Deoxy-D-Xyiose-5-Phosphat-Synthase und/oder die Erhöhung der Genexpression einer Nukleinsäure kodierend eine 1-Deoxy-D-Xylose-5-Phosphat- Reduktoisomerase und/oder die Erhöhung der Genexpression einer Nukleinsäure kodierend eine Isopentenyl-Diphosphat-Δ-Isomerase und/oder die Erhöhung der Genexpression einer Nukleinsäure kodierend eine Geranyl-Diphosphat-Synthase und/oder die Erhöhung der Genexpression einer Nukleinsäure kodierend eine Farnesyl-Diphosphat-Synthase und/oder die Erhöhung der Genexpression einer Nukleinsäu- re kodierend eine Geranyl-geranyl-Diphosphat-Synthase und/oder die Erhöhung der Genexpression einer Nukleinsäure kodierend eine Phytoen-Synthase und/oder die Erhöhung der Genexpression einer Nukleinsäure kodierend eine Phytoen-Desaturase und/oder die Erhöhung der Genexpression einer Nukleinsäure kodierend eine Zeta- Carotin-Desaturase und/oder die Erhöhung der Genexpression einer Nukleinsäure kodierend ein crtlSO-Protein und/oder die Erhöhung der Genexpression einer Nukleinsäure kodierend ein FtsZ-Protein und/oder die Erhöhung der Genexpression einer Nukleinsäure kodierend ein MinD-Protein durch Einbringen von mindestens einer Nukleinsäure kodierend eine HMG-CoA-Reduktase und/oder durch Einbringen von mindestens einer Nukleinsäure kodierend eine (E)-4-Hydroxy- 3-Methylbut-2-enyl-Diphosphat-Reduktase und/oder durch Einbringen von mindestens einer Nukleinsäure kodierend eine 1-Deoxy-D-
Xylose-5-Phosphat-Synthase und/oder durch Einbringen von mindestens einer Nukleinsäure kodierend eine 1-Deoxy-D-Xylose-5- Phosphat-Reduktoisorherase und/oder durch Einbringen von mindestens einer Nuk- leinsäure kodierend eine Isopentenyl-Diphosphat-Δ-Isomerase und/oder durch Einbringen von mindestens einer Nukleinsäure kodierend eine Geranyl-Diphosphat-Synthase und/oder durch Einbringen von mindestens einer Nukleinsäure kodierend eine Farnesyl-Diphosphat-Synthase und/oder durch Einbringen von mindestens einer Nukleinsäure kodierend eine Geranyl-geranyl-Diphosphat-Synthase und/oder durch Einbrin- gen von mindestens einer Nukleinsäure kodierend eine Phytoen-Synthase und/oder durch Einbringen von mindestens einer Nukleinsäure kodierend eine Phytoen- Desaturase und/oder durch Einbringen von mindestens einer Nukleinsäure kodierend eine Zeta-Carotin-Desaturase und/oder durch Einbringen von mindestens einer Nuk- - leinsäure kodierend ein crtlSO-Protein und/oder durch Einbringen von mindestens ei- ner Nukleinsäure kodierend ein FtsZ-Protein und/oder durch Einbringen von mindestens einer Nukleinsäure kodierend ein MinD-Protein in den Organismus.
Dazu kann prinzipiell jedes HMG-CoA-Reduktase-Gen bzw. (E)-4-Hydroxy-3- Methylbut-2-enyl-Diphosphat-Reduktase-Gen bzw. 1 -Deoxy-D-Xyiose-5-Phosphat- Synthase-Gen bzw. 1-Deόxy-D-Xylose- 5-Phosphat-Reduktoisomerase-Gen bzw. Isopentenyl-Diphosphat-
Δ-Isomerase-Gen bzw. Geranyl-Diphosphat-Synthase-Gen bzw. Famesyl-Diphosphat-
Synthase-Gen bzw. Geranyl-geranyl-Diphosphat-Synthase-Gen bzw. Phytoen-
Synthase-Gen bzw. Phytoen-Desaturase-Gen bzw. Zeta-Carotin-Desaturase-Gen bzw. crtlSO-Gen bzw. FtsZ-Gen bzw. MinD-Gen verwendet werden.
Bei genomischen HMG-CoA-Reduktase-Sequenzen bzw. (E)-4-Hydroxy- 3-Methylbut-2-enyl-Diphosphat-Reduktase-Sequenzen bzw. 1 -Deoxy-D-Xylose-5- Phosphat-Synthase-Sequenzen bzw. 1-Deoxy-D-Xylose- 5-Phosphat-Reduktoisomerase-Sequenzen bzw. Isopentenyl-Diphosphat-Δ-Isomerase- Sequenzen bzw. Geranyl-Diphosphat-Synthase-Sequenzen bzw. Farnesyl-Diphosphat- Synthase-Sequenzen bzw. Geranyl-geranyl-Diphosphat-Synthase-Sequenzen bzw. Phytoen-Synthase-Sequenzen bzw. Phytoen-Desaturase-Sequenzen bzw. Zeta- Carotin-Desaturase-Sequenzen bzw. crtlSO-Sequenzen bzw. FtsZ-Sequenzen bzw. MinD-Sequenzen aus eukaryontischen Quellen, die Introns enthalten, sind für den Fall das der Wirtsorganismus nicht in der Lage ist oder nicht in die Lage versetzt werden kann, die entsprechenden Proteine zu exprimieren, bevorzugt bereits prozessierte Nukleinsäuresequenzen, wie die entsprechenden cDNAs zu verwenden.
In den erfindungsgemäßen bevorzugten transgenen Organismen liegt also in dieser bevorzugten Ausführungsform gegenüber dem Wildtyp mindestens ein weiteres HMG- CoA-Reduktase-Gen und/oder (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat- Reduktase-Gen und/oder 1-Deoxy-D-Xylose-5-Phosphat-Synthase-Gen und/oder 1- Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase-Gen und/oder Isopentenyl- Diphosphat-Δ-Isomerase-Gen und/oder Geranyl-Diphosphat-Synthase-Gen und/oder Farnesyl-Diphosphat-Synthase-Gen und/oder Geranyl-geranyl-Diphosphat-Synthase- Gen und/oder Phytoen-Synthase-Gen und/oder Phytoen-Desaturase-Gen und/oder Zeta-Carotin-Desaturase-Gen und/oder crtlSO-Gen und/oder FtsZ-Gen und/oder MinD-Gen vor.
In dieser bevorzugten Ausführungsform weist der genetisch veränderte Organismus beispielsweise mindestens eine exogene Nukleinsäure, kodierend eine HMG-CoA- Reduktase oder mindestens zwei endogene Nukleinsäuren, kodierend eine HMG-CoA- Reduktase und/oder mindestens eine exogene Nukleinsäure, kodierend eine (E)-4- Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase oder mindestens zwei endogene Nukleinsäuren, kodierend eine (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat- Reduktase und/oder mindestens eine exogene Nukleinsäure, kodierend eine 1-Deoxy- D-Xylose-5-Phosphat-Synthase oder mindestens zwei endogene Nukleinsäuren, kodierend eine 1-Deoxy-D-Xyiose-5-Phosphat-Synthase und/oder mindestens eine exogene Nukleinsäure, kodierend eine 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase oder mindestens zwei endogene Nukleinsäuren, kodierend eine 1-Deoxy-D-Xylose- 5-Phosphat-Reduktoisomerase und/oder mindestens eine exogene Nukleinsäure, kodierend eine Isopentenyl-Diphosphat-Δ-Isomerase oder mindestens zwei endogene Nukleinsäuren, kodierend eine Isopentenyl-Diphosphat-Δ-Isomerase und/oder mindes- tens eine exogene Nukleinsäure, kodierend eine Geranyl-Diphosphat-Synthase oder mindestens zwei endogene Nukleinsäuren, kodierend eine Geranyl-Diphosphat- Synthase und/oder mindestens eine exogene Nukleinsäure, kodierend eine Farnesyl- Diphosphat-Synthase oder mindestens zwei endogene Nukleinsäuren, kodierend eine Farnesyl-Diphosphat-Synthase und/oder mindestens eine exogene Nukleinsäure, kodierend eine Geranyl-geranyl-Diphosphat-Synthase oder mindestens zwei endogene Nukleinsäuren, kodierend eine Geranyl-geranyl-Diphosphat-Synthase und/oder mindestens eine exogene Nukleinsäure, kodierend eine Phytoen-Synthase oder mindestens zwei endogene Nukleinsäuren, kodierend eine Phytoen-Synthase und/oder mindestens eine exogene Nukleinsäure, kodierend eine Phytoen-Desaturase oder mindes- tens zwei endogene Nukleinsäuren, kodierend eine Phytoen-Desaturase und/oder mindestens eine exogene Nukleinsäure, kodierend eine Zeta-Carotin-Desaturase oder mindestens zwei endogene Nukleinsäuren, kodierend eine Zeta-Carotin-Desaturase und/oder mindestens eine exogene Nukleinsäure, kodierend ein crtlSO-Protein oder mindestens zwei endogene Nukleinsäuren, kodierend ein crtlSO-Protein und/oder min- destens eine exogene Nukleinsäure, kodierend ein FtsZ-Protein oder mindestens zwei endogene Nukleinsäuren, kodierend eine FtsZ-Protein und/oder mindestens eine exogene Nukleinsäure, kodierend ein MinD-Protein oder mindestens zwei endogene Nukleinsäuren, kodierend ein MinD-Protein auf.
Beispiele für HMG-CoA-Reduktase-Gene sind:
Eine Nukleinsäure, kodierend eine HMG-CoA-Reduktase aus Arabidopsis thaliana, Accession NM_106299; (Nukleinsäure: SEQ ID NO: 19, Protein: SEQ ID NO: 20),
sowie weitere HMG-CoA-Reduktase -Gene aus anderen Organismen mit den folgenden Accession Nummern:
P54961 , P54870, P54868, P54869, O02734, P22791 , P54873, P54871, P23228, P13704, P54872, Q01581 , P17425, P54874, P54839, P14891, P34135, 064966, P29057, P48019, P48020, P12683, P43256, Q9XEL8, P34136, 064967, P29058, P48022, Q41437, P12684, Q00583, Q9XHL5, Q41438, Q9YAS4, 076819, O28538, Q9Y7D2, P54960, 051628, P48021, Q03163, P00347, P14773, Q12577, Q59468, P04035, 024594, P09610, Q58116, O26662, Q01237, Q01559, Q12649, O74164, 059469, P51639, Q10283, O08424, P20715, P13703, P13702, Q96UG4, Q8SQZ9, 015888, Q9TUM4, P935Ϊ4, Q39628, P93081 , P93080, Q944T9, Q40148, Q84MM0, Q84LS3, Q9Z9N4, Q9KLM0
Beispiele für (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase-Gene sind:
Eine Nukleinsäure, kodierend eine (E)-4-Hydroxy-3-Methylbut-
2-enyl-Diphosphat-Reduktase aus Arabidopsis thaliana (lytB/ISPH), ACCESSION AY168881, (Nukleinsäure: SEQ ID NO: 21, Protein: SEQ ID NO:22),
sowie weitere (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase -Gene aus anderen Organismen mit den folgenden Accession Nummern:
T04781, AF270978 , NP_485028.1, NP_442089.1, NP_681832.1, ZP_00110421.1, ZP_00071594.1, ZP_00114706.1, ISPH_SYNY3, ZP_00114087.1, ZP_00104269.1, AF398145_1, AF398146_1, AAD55762.1, AF514843 , NP_622970.1, NP_348471.1, NP_562001.1, NP_223698.1, NP_781941.1, ZP_00080042.1 , NP_859669.1, NP_214191.1, ZP_00086191.1, ISPH_VIBCH, NP_230334.1, NP^742768.1, NP_302306.1, ISPH_MYCLE, NP_602581.1, ZP_00026966.1 , NP_520563.1, NP_253247.1, NP_282047.1, ZP_00038210.1, ZP_00064913.1, CAA61555.1, ZP_00125365.1, ISPH_ACICA, EAA24703.1, ZP_00013067.1, ZP_00029164.1, NP_790656.1,NP_217899.1, NP_641592.1, NP_636532.1, NP_719076.1, NP_660497.1, NP_422155.1, NP_715446.1, ZP_00090692.1 , NP_759496.1, ISPH_BURPS, ZP_00129657.1, NP_215626.1, NP_335584.1, ZP_00135016.1, NP_789585.1 , NP_787770.1 , NP_769647.1 , ZP__00043336.1 , NP_242248.1 , ZP_00008555.1, NP_246603.1, ZP_00030951.1, NP_670994.1, NP_404120.1, NP_540376.1, NP_733653.1, NP_697503.1, NP_840730.1, NP_274828.1,
NP_796916.1, ZP_00123390.1, NP_824386.1, NP_737689.1, ZP_00021222.1, NP_757521.1, NP_390395.1, ZP_00133322.1, CAD76178.1, NP_600249.1, NP_454660.1, NP_712601.1, NP_385018.1, NP_751989.1
Beispiele für 1-Deoxy-D-Xylose-5-Phosphat-Synthase -Gene sind:
Eine Nukleinsäure, kodierend eine 1-Deoxy-D-Xylose-5-Phosphat-Synthase aus Lycopersicon esculentum, ACCESSION #AF143812 (Nukleinsäure: SEQ ID NO:23, Protein: SEQ ID NO: 24),
sowie weitere 1-Deoxy-D-Xylose-5-Phosphat-Synthase -Gene aus anderen Organismen mit den folgenden Accession Nummern:
AF143812_1, DXS_CAPAN, CAD22530.1, AF182286 , NP 93291.1, T52289, AAC49368.1, AAP14353.1, D71420, DXSJDRYSA, AF443590 , BAB02345.1, CAA09804.2, NP_850620.1, CAD22155.2, AAM65798.1, NP_566686.1, CAD22531.1, AAC33513.1, CAC08458.1, AAG10432.1, T081 0, AAP14354.1, AF428463_1,
ZP_00010537.1 , NP_769291.1 , AAK59424.1 , NP_107784.1 , NP_697464.1 ,
NP_540415.1, NP_196699.1, NP_384986.1, ZP_00096461.1, ZP_00013656.1,
NP_353769.1, BAA83576.1, ZP_00005919.1, ZP_00006273.1, NP_420871.1, AAM48660.1, DXS_RHOCA, ZP_00045608.1 , ZP_00031686.1, NP_841218.1,
ZP_00022174.1, ZP_00086851.1, NP_742690.1, NP_520342.1, ZPJD0082120.1,
NP_790545.1, ZP_00125266.1, CAC17468.1, NP_252733.1, ZP_00092466.1,
NP_439591.1, NP_414954.1, NP_752465.1, NP_622918.1, NP_286162.1,
NP_836085.1, NP_706308.1, ZP_00081148.1, NP_797065.1, NP_213598.1, NP_245469.1, ZP_00075029.1 , NP_455016.1, NP_230536.1, NP_459417.1, NP_274863.1, NP_283402.1, NP_759318.1, NP_406652.1, DXS_SYNLE, DXS_SYNP7, NP_440409.1, ZP_00067331.1, ZP_00122853.1, NP_717142.1, ZP_00104889.1, NP_243645.1, NP_681412.1, DXS_SYNEL, NP_637787.1, DXS_CHLTE, ZP_00129863.1, NP_661241.1, DXS_XANCP, NP_470738.1, NP_484643.1, ZP_00108360.1, NP_833890.1, NP_846629.1, NP_658213.1,
NP_642879.1, ZP_00039479.1 , ZP_00060584.1, ZP_00041364.1, ZP_00117779.1,
NP_299528.1
Beispiele für 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase-Gene sind:
Eine Nukleinsäure, kodierend eine 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase aus Arabidopsis thaliana, ACCESSION #AF148852, (Nukleinsäure: SEQ ID NO: 25 , Protein: SEQ ID NO: 26),
sowie weitere 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase-Gene aus anderen Organismen mit den folgenden Accession Nummern:
AF148852, AY084775, AY054682, AY050802, AY045634, AY081453, AY091405, AY098952, AJ242588, AB009053, AY202991, NP_201085.1, T52570, AF331705_1, BAB16915.1 , AF367205_1 , AF250235_1 , CAC0358.1.1 , CAD22156.1 , AF182287_1 , DXR_MENPI, ZP_00071219.1 , NP_488391.1 , ZP_00111307.1 , DXR_SYNLE, AAP56260.1, NP_681831.1, NP_442113.1, ZP_00115071.1, ZP_00105106.1, ZP_00113484.1, NP_833540.1, NP_657789.1, NP_661031.1, DXR_BACHD, NP_833080.1, NP_845693.1, NP_562610.1, NP_623020.1, NP_810915.1, NP_243287.1, ZP_00118743.1, NP_464842.1, NP_470690.1, ZP_00082201.1, NP_781898.1, ZP_00123667.1, NP_348420.1, NP_604221.1, ZP_00053349.1, ZP_00064941.1, NP_246927.1, NP_389537.1, ZP_00102576.1, NP_519531.1, AF124757_19, DXR_ZYMMO, NP_713472.1, NP_459225.1, NP_454827.1, ZPJ30045738.1, NP_743754.1, DXR_PSEPK, ZP_00130352.1, NP_702530.1, NP_841744.1, NP_438967.1, AF514841J, NP_706118.1, ZP_00125845.1, NP_404661.1, NP_285867.1, NP_240064.1, NP_414715.1, ZP_00094058.1 , NP_791365.1 , ZP_00012448.1 , ZPJD0015132.1, ZP_00091545.1 , NP_629822.1 ,
NP_771495.1, NP_798691.1 , NP_231885.1 , NP_252340.1 , ZP_00022353.1 ,
NP_355549.1 , NP_420724.1 , ZP_00085169.1, EAA17616.1 , NP_273242.1 ,
NP_219574.1 , NP_387094.1 , NP_296721.1 , ZP_00004209.1 , NP_823739.1 , NP_282934.1 , BAA77848.1 , NP_660577.1 , NP_760741.1 , NP_641750.1 ,
NP_636741.1 , NP_829309.1 , NP_298338.1 , NP_444964.1 , NP_717246.1 ,
NP_224545.1 , ZP_00038451.1 , DXR_KITGR, NP_778563.1.
Beispiele für Isopentenyl-Diphosphat-Δ-Isomerase-Gene sind:
Eine Nukleinsäure, kodierend eine Isopentenyl-Diphosphat-Δ-Isomerase aus Adonis palaestina clone AplPI28, (ipiAal), ACCESSION #AF188060, veröffentlicht durch Cun- ningham,F.X. Jr. and Gantt.E.: Identification of multi-gene families encoding isopente- nyl diphosphate isomerase in plants by heterologous complementation in Escherichia coli, Plant Cell Physiol. 41 (1), 119-123 (2000) (Nukleinsäure: SEQ ID NO: 27, Protein: SEQ ID NO: 28),
sowie weitere Isopentenyl-Diphosphat-Δ-Isomerase-Gene aus anderen Organismen mit den folgenden Accession Nummern:
Q38929, 048964, Q39472, Q13907, 035586, P58044, 042641 , O35760, Q10132, P15496, Q9YB30, Q8YNH4, Q42553, O27997, P50740, 051627, 048965, Q8KFR5, Q39471 , Q39664, Q9RVE2, Q01335, Q9HHE4, Q9BXS1, Q9KWF6, Q9CIF5, Q88WB6, Q92BX2, Q8Y7A5, Q8TT35 Q9KK75, Q8NN99, Q8XD58, Q8FE75, Q46822, Q9HP40, P72002, P26173, Q9Z5D3, Q8Z3X9, Q8ZM82, Q9X7Q6, O13504, Q9HFW8, Q8NJL9, Q9UUQ1 , Q9NH02, Q9M6K9, Q9M6K5, Q9FXR6, O81691 , Q9S7C4, Q8S3L8, Q9M592, Q9M6K3, Q9M6K7, Q9FV48, Q9LLB6, Q9AVJ1 , Q9AVG8, Q9M6K6, Q9AVJ5, Q9M6K2, Q9AYS5, Q9M6K8, Q9AVG7, Q8S3L7, Q8W250, Q94IE1 , Q9AVI8, Q9AYS6, Q9SAY0, Q9M6K4, Q8GVZ0, Q84RZ8, Q8KZ12, Q8KZ66, Q8FND7, Q88QC9, Q8BFZ6, BAC26382, CAD94476.
Beispiele für Geranyl-Diphosphat-Synthase -Gene sind:
Eine Nukleinsäure, kodierend eine Geranyl-Diphosphat-Synthase aus Arabidopsis tha- liana, ACCESSION #Y17376, Bouvier.F., Suire.C, d'HarlingueΛ, Backhaus.R.A. and Camara.B.; Molecular cloning of geranyl diphosphate synthase and compartmenfation of monoterpene synthesis in plant cells, Plant J. 24 (2), 241-252 (2000) (Nukleinsäure: SEQ ID NO: 29, Protein: SEQ ID NO: 30), sowie weitere Geranyl-Diphosphat-Synthase-Gene aus anderen Organismen mit den folgenden Accession Nummern:
Q9FT89, Q8LKJ2, Q9FSW8, Q8LKJ3, Q9SBR3, Q9SBR4, Q9FET8, Q8LKJ1 , Q84LG1. Q9JK86
Beispiele für Farnesyl-Diphosphat-Synthase-Gene sind:
Eine Nukleinsäure, kodierend eine Farnesyl-Diphosphat-Synthase aus Arabidopsis thaliana (FPS1), ACCESSION #U80605, veröffentlicht durch Cunillera.N., Arro.M., De- lourme.D., Karst.F., Boronat.A. und Ferrer.A.: Arabidopsis thaliana contains two diffe- rentially expressed famesyl-diphosphate synthase genes, J. Biol. Chem. 271 (13), 7774-7780 (1996), (Nukleinsäure: SEQ ID NO: 31 , Protein: SEQ ID NO: 32),
sowie weitere Famesyl-Diphosphat-Synthase-Gene aus anderen Organismen mit den folgenden Accession Nummern:
P53799, P37268, Q02769, Q09152, P49351 , 024241 , Q43315, P49352, 024242, P49350, P08836, P14324, P49349, P08524, 066952, Q08291 , P54383, Q45220, P57537, Q8K9A0, P22939, P45204, 066126, P55539, Q9SWH9, Q9AVI7, Q9FRX2, Q9AYS7, Q94IE8, Q9FXR9, Q9ZWF6, Q9FXR8, Q9AR37, O50009,Q94IE9,Q8RVK7, Q8RVQ7, O04882, Q93RA8, Q93RB0, Q93RB4, Q93RB5,Q93RB3, Q93RB1, Q93RB2, Q920E5.
Beispiele für Geranyl-geranyl-Diphosphat-Synthase -Gene sind:
Eine Nukleinsäure, kodierend eine Geranyl-geranyl-Diphosphat-Synthase aus Sinaps alba, ACCESSION #X98795, veröffentlicht durch Bonk.M., Hoffmann.B., Von Lintig.J., Schledz.M., AI-Babili,S., Hobeika.E., Kleinig, H. and Beyer.P.: Chloroplast import of four carotenoid biosynthetic enzymes in vitro reveals differential fates prior to membrane binding and oligomeric assembly, Eur. J. Biochem. 247 (3), 942-950 (1997), (Nukleinsäure: SEQ ID NO: 33, Protein: SEQ ID NO: 34),
sowie weitere Geranyl-geranyl-Diphosphat-Synthase-Gene aus anderen Organismen mit den folgenden Accession Nummern:
P22873, P34802 ,P56966, P80042, Q42698, Q92236, 095749, Q9WTN0, Q50727, P24322, P39464, Q9FXR3, Q9AYN2, Q9FXR2, Q9AVG6, Q9FRW4, Q9SXZ5, Q9AVJ7, Q9AYN1 , Q9AVJ4, Q9FXR7, Q8LSC5, Q9AVJ6, Q8LSC4, Q9AVJ3, Q9SSU0, Q9SXZ6, Q9SST9, Q9AVJ0, Q9AVI9, Q9FRW3, Q9FXR5, Q94IF0, Q9FRX1, Q9K567, Q93RA9, Q93QX8, CAD95619, EAA31459
Beispiele für Phytoen-Synthase-Gene sind: Eine Nukleinsäure, kodierend eine Phytoen-Synthase aus Erwinia uredovora, ACCESSION # D90087; veröffentlicht durch Misawa.N., Nakagawa,M., Kobayashi.K., Yama- no,S., lzawa,Y.,Nakamura,K. und Harashima.K.: Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli; J. Bacteriol. 172 (12), 6704-6712 (1990), (Nukleinsäure: SEQ ID NO: 35, Protein: SEQ ID NO: 36), sowie weitere Phytoen-Synthase -Gene aus anderen Organismen mit den folgenden Accession Nummern: CAB39693, BAC69364, AAF10440, CAA45350, BAA20384, AAM72615, BAC09112, CAA48922, P_001091 , CAB84588, AAF41518, CAA48155, AAD38051 , AAF33237, AAG10427, AAA34187, BAB73532, CAC19567, AAM62787, CAA55391, AAB65697, AAM45379, CAC27383, AAA32836, AAK07735, BAA84763, P_000205, AAB60314, P_001163, P_000718, AAB71428, AAA34153, AAK07734, CAA42969, CAD76176, CAA68575, PJD00130, P_001142, CAA47625, CAA85775, BAC14416, CAA79957, BAC76563, P_000242, P_000551 , AAL02001 , AAK15621 , CAB94795, AAA91951 , P 000448
Beispiele für Phytoen-Desaturase-Gene sind:
Eine Nukleinsäure, kodierend eine Phytoen-Desaturase aus Erwinia uredovora, ACCESSION # D90087; veröffentlicht durch Misawa.N., Nakagawa.M., Kobayashi,K., Yamano.S., lzawa,Y.,Nakamura,K. und Harashima.K.: Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products ex- pressed in Escherichia coli; J. Bacteriol. 172 (12), 6704-6712 (1990), (Nukleinsäure: SEQ ID NO: 37, Protein: SEQ ID NO: 38),
" sowie weitere Phytoen-Desaturase -Gene aus anderen Organismen mit den folgenden Accession Nummern:
AAL15300, A39597, CAA42573, AAK51545, BAB08179, CAA48195, BAB82461 , AAK92625, CAA55392, AAG10426, AAD02489, AAO24235, AAC12846, AAA99519, AAL38046, CAA60479, CAA75094, ZP_001041 , ZP_001163, CAA39004, CAA44452, ZP_001142, ZP_000718, BAB82462, AAM45380, CAB56040, ZP_001091, BAC09113, AAP79175, AAL80005, AAM72642, AAM72043, ZP_000745, ZP_001141 , BAC07889, CAD55814, ZP_001041 , CAD27442, CAE00192, ZP_001163, ZP_000197, BAA18400, AAG10425, ZP_001119, AAF13698, 2121278A, AAB35386, AAD02462, BAB68552, CAC85667, AAK51557, CAA12062, AAG51402, AAM63349, AAF85796, BAB74081 , AAA91161, CAB56041, AAC48983, AAG14399, CAB65434, BAB73487, ZP_001117, ZP_000448, CAB39695, CAD76175, BAC69363, BAA17934, ZP_000171, AAF65586, ZP_000748, BAC07074, ZP_001133, CAA64853, BAB74484, ZP_001156, AAF23289, AAG28703, AAP09348, AAM71569, BAB69140, ZP_000130, AAF41516, AAG18866, CAD95940, NP_656310, AAG10645, ZP_000276, ZP_000192, ZP_000 86, AAM94364, EAA31371 , ZP_000612, BAC75676, AAF65582
Beispiele für Zeta-Carotin-Desaturase-Gene sind:
Eine Nukleinsäure, kodierend eine Zeta-Carotin-Desaturase aus Narcissus pseudonarcissus, ACCESSION #AJ224683, veröffentlicht durch AI-Babili,S., Oelschlegel.J. and Beyer.P.: A cDNA encoding for beta carotene desaturase (Accession No.AJ224683) from Narcissus pseudonarcissus L. (PGR98-103), Plant Physiol. 117, 719-719 (1998), (Nukleinsäure: SEQ ID NO: 39, Protein: SEQ ID NO: 40),
sowie weitere Zeta-Carotin-Desaturase-Gene aus anderen Organismen mit den fol- genden Accession Nummern:
Q9R6X4, Q38893, Q9SMJ3, Q9SE20, Q9ZTP4, O49901 , P74306, Q9FV46, Q9RCT2, ZDS_NARPS, BAB68552.1 , CAC85667.1 , AF372617 , ZDS_TARER, CAD55814.1 , CAD27442.1 , 2121278A, ZDS_CAPAN, ZDS_LYCES, NP_187138.1, AAM63349.1 , ZDS_ARATH, AAA91161.1 , ZDS_MAIZE, AAG14399.1 , NP_441720.1 , NP_486422.1 , ZP_00111920.1, CAB56041.1 , ZP D0074512.1, ZP_00116357.1 , NP_681127.1 , ZP__00114185.1 , ZP_00104126.1 , CAB65434.1, NP_662300.1
Beispiele für crtlSO-Gene sind:
Eine Nukleinsäure, kodierend eine crtlSO aus Lycopersicon esculentum; ACCESSION #AF416727, veröffentlicht durch IsaacsonT., Ronen,G., Zamir.D. and Hirschberg, J.: Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of beta-carotene and xanthophylls in plants; Plant Cell 14 (2), 333-342 (2002), (Nukleinsäure: SEQ ID NO: 41 , Protein: SEQ ID NO:42),
sowie weitere crtlSO -Gene aus anderen Organismen mit den folgenden Accession Nummern: AAM53952
Beispiele für FtsZ-Gene sind:
Eine Nukleinsäure, kodierend eine FtsZ aus Tagetes erecta, ACCESSION #AF251346, veröffentlicht durch Moehs.C.P., Tian.L, Osteryoung,K.W. and Dellapenna.D.: Analysis of carotenoid biosynthetic gene expression during marigold petal development Plant Mol. Biol.45 (3), 281-293 (2001), (Nukleinsäure: SEQ ID NO: 43, Protein: SEQ ID NO: 44),
sowie weitere FtsZ -Gene aus anderen Organismen mit den folgenden Accession Nummern:
CAB89286.1, AF205858 , NP_200339.1, CAB89287.1, CAB41987.1, AAA82068.1, T06774,AF383876_1, BAC57986.1, CAD22047.1, BAB91150.1, ZP_00072546.1 , NP_440816.1, T51092, NP_683172.1, BAA85116.1, NP_487898.1, JC4289, BAA82871.1, NP_781763.1, BAC57987.1, ZP_00111461.1, T51088, NP 90843.1, ZP_00060035.1, NP_846285.1, AAL07180.1, NP_243424.1, NP_833626.1, AAN04561.1, AAN04557.1, CAD22048.1, T51089, NP_692394.1, NP_623237.1, NP_565839.1, T51090, CAA07676.1, NP 13397.1, T51087, CAC44257.1, E84778, ZP_00105267.1, BAA82091.1, ZP_00112790.1, BAA96782.1, NP_348319.1, NP_471472.1, ZP_00115870.1, NP_465556.1, NP_389412.1, BAA82090.1, NP_562681.1, AAM22891.1, NP_371710.1, NP_764416.1, CAB95028.1, FTSZ__STRGR, AF120117_1, NP_827300.1, JE0282, NP_626341.1, AAC45639.1, NP_785689.1 , NP_336679.1 , NP_738660.1 , ZP_00057764.1 , AAC32265.1 , NP_814733.1, FTSZ_MYCKA, NP_216666.1, CAA75616.1, NP_301700.1, NP_601357.1, ZP_00046269.1, CAA70158.1, ZP_00037834.1, NP_268026.1, FTSZ_ENTHR, NP_787643.1, NP_346105.1, AAC32264.1, JC5548, AAC95440.1, NP_710793.1, NP_687509.1, NP_269594.1, AAC32266.1, NP_720988.1, NP_657875.1, ZP_00094865.1, ZP_00080499.1, ZP_00043589.1, JC7087, NP_660559.1, AAC46069.1, AF179611 4, AAC44223.1, NP_404201.1.
Beispiele für MinD -Gene sind:
Eine Nukleinsäure, kodierend eine MinD aus Tagetes erecta, ACCESSION
#AF251019, veröffentlicht durch Moehs.C.P., Tian.L., Osteryoung,K.W. und Dellapen- na,D.: Analysis of carotenoid biosynthetic gene expression during marigold petal development; Plant Mol. Biol.45 (3), 281-293 (2001), (Nukleinsäure: SEQ ID NO: 45, Protein: SEQ ID NO: 46), sowie weitere MinD -Gene mit den folgenden Accession Nummern:
NP 97790.1, BAA90628.1, NP_038435.1, NP_045875.1, AAN33031.1, NP_050910.1, CAB53105.1, NP_050687.1, NP_682807.1, NP_487496.1, ZP_00111708.1, ZP_00071109.1, NP_442592.1, NP_603083.1, NP_782631.1, ZP_00097367.1, ZP_00104319.1, NP_294476.1, NP_622555.1, NP_563054.1, NP_347881.1, ZP_001 3908.1, NP_834154.1, NP_658480.1, ZP_00059858.1, NP_470915.1, NP_243893.1, NP_465069.1, ZP_00116155.1, NP_390677.1, NP_692970.1, NP_298610.1, NP_207129.1, ZP_00038874.1, NP_778791.1, NP_223033.1, NP_641561.1, NP__636499.1, ZP_0008871 .1, NP_213595.1, NP_743889.1, NP_231594.1, ZP_00085067.1, NP_797252.1, ZP_00136593.1, NP_251934.1, NP_405629.1, NP_759144.1, ZP_00102939.1, NP_793645.1, NP_699517.1, NP_460771.1, NP_860754.1, NP_456322.1, NP_718163.1, NP_229666.1, NP_357356;1, NP_541904.1, NP_287414.1, NP_660660.1, ZP_00128273.1, NPJ03411.1, NP_785789.1, NP_715361.1, AF149810 , NP_841854.1, NP_437893.1, ZP_00022726.1, EAA24844.1, ZP_00029547.1, NP_521484.1, NP_240148.1, NP_770852.1, AF345908_2, NP_777923.1, ZP_00048879.1, NP_579340.1, NP_143455.1, NP_126254.1, NP_142573.1, NP_613505.1, NP 27112.1, NP_712786.1, NP_578214.1, NP_069530.1, NP_247526.1, AAA85593.1, NP_212403.1, NP_782258.1, ZP_00058694.1, NP_247137.1, NP_219149.1, NP_276946.1, NP_614522.1, ZP_00019288.1, CAD78330.1
Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als HMG-CoA-Reduktase-Gene Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 20 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 30 %, vorzugsweise mindestens 50 %, bevorzugter mindestens 70 %, noch bevorzugter mindestens 90 %, am bevorzugtesten mindestens 95 % auf Amino- säureebene mit der Sequenz SEQ ID NO: 20, und die die enzymatische Eigenschaft einer HMG-CoA-Reduktase aufweisen.
Weitere Beispiele für HMG-CoA-Reduktasen und HMG-CoA-Reduktase-Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, wie vorstehend beschrieben, durch Homologievergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit der SeQ ID NO: 20 leicht auffinden.
Weitere Beispiele für HMG-CoA-Reduktasen und HMG-CoA-Reduktase-Gene lassen sich weiterhin beispielsweise ausgehend von der Sequenz SEQ ID NO: 19 aus ver- schiedenen Organismen, deren genomische Sequenz nicht bekannt ist, wie vorstehend beschrieben, durch Hybridisierungs- und PCR-Techniken in an sich bekannter Weise leicht auffinden.
In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der HMG-CoA-Reduktase-Aktivität Nukleinsäuren in Organismen eingebracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der HMG-CoA-Reduktase der Sequenz SEQ ID NO: 20 .
Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.
Bevorzugt werden dafür solche Codons verwendet, die entsprechend der Organismenspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen leicht ermitteln.
In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO: 19 in den Organismus ein.
Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase-Gene Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 22 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleite- te Sequenz, die eine Identität von mindestens 30 %, vorzugsweise mindestens 50 %, bevorzugter mindestens 70%, noch bevorzugter mindestens 90 %, am bevorzugtesten mindestens 95 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 22 , und die die enzymatische Eigenschaft einer (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat- Reduktase aufweisen.
Weitere Beispiele für (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktasen und (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase-Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, wie vorstehend beschrieben, durch Homologievergleiche derAminosäure-sequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit der SeQ ID NO: 22 leicht auffinden.
Weitere Beispiele für (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktasen und (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase-Gene lassen sich weiterhin beispielsweise ausgehend von der Sequenz SEQ ID NO: 21 aus verschiedenen Orga- nismen deren genomische Sequenz nicht bekannt ist, wie vorstehend beschrieben, durch Hybridisierungs- und PCR-Techniken in an sich bekannter Weise leicht auffinden.
In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der (E)- 4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Redüktase-Aktivität Nukleinsäuren in Organismen eingebracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der (E)- 4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase der Sequenz SEQ ID NO: 22 .
Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.
Bevorzugt werden dafür solche Codons verwendet, die entsprechend der Organismenspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen leicht ermitteln.
In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO: 21 in den Organismus ein.
Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als (1-Deoxy-D-Xylose-5-Phosphat-Synthase-Gene Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 24 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 30 %, vorzugsweise mindestens 50 %, bevorzugter mindestens 70%, noch bevorzugter mindestens 90 %, am bevorzugtesten mindestens 95 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 24 , und die die enzymatische Eigenschaft einer (1-Deoxy-D-Xylose-5-Phosphat-Synthase aufweisen.
Weitere Beispiele für (1-Deoxy-D-Xylose-5-Phosphat-Synthasen und (1-Deoxy-D- Xylose-5-Phosphat-Synthase-Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, wie vorstehend beschrieben, durch Homologievergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit der SeQ ID NO: 24 leicht auffinden.
Weitere Beispiele für (1-Qeoxy-D-Xylose-5-Phosphat-Synthasen und (1-Deoxy-D- Xylose-5-Phosphat-Synthase-Gene lassen sich weiterhin beispielsweise ausgehend von der Sequenz SEQ ID NO: 23 aus verschiedenen Organismen deren genomische Sequenz nicht bekannt ist, wie vorstehend beschrieben, durch Hybridisierungs- und PCR-Techniken in an sich bekannter Weise leicht auffinden.
In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der (1- Deoxy-D-Xylose-5-Phosphat-Synthase-Aktivität Nukleinsäuren in Organismen eingebracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der (1-Deoxy-D- Xylose-5-Phosphat-Synthase der Sequenz SEQ ID NO: 24 .
Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.
Bevorzugt werden dafür solche Codons verwendet, die entsprechend der Organismenspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen leicht ermitteln.
In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO: 23 in den Organismus ein.
Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase-Gene Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 26 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 30 %, vorzugsweise mindestens 50 %, bevorzugter mindestens 70 %, noch bevorzugter mindestens 90 %, am bevorzugtesten min- destens 95 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 26 , und die die enzymatische Eigenschaft einer 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase aufweisen.
Weitere Beispiele für 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerasen und 1-Deoxy- D-Xylose-5-Phosphat-Reduktoisomerase-Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, wie vorstehend beschrieben, durch Homologievergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit der SeQ ID NO: 26 leicht auffinden.
Weitere Beispiele für 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerasen und 1-Deoxy- D-Xylose-5-Phosphat-Reduktoisomerase-Gene lassen sich weiterhin beispielsweise ausgehend von der Sequenz SEQ ID NO: 25 aus verschiedenen Organismen deren genomische Sequenz nicht bekannt ist, wie vorstehend beschrieben, durch Hybridisie- rungs- und PCR-Techniken in an sich bekannter Weise leicht auffinden.
In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der 1- Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase-Aktivität Nukleinsäuren in Organismen eingebracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der 1-Deoxy-D- Xylose-5-Phosphat-Reduktoisomerase der Sequenz SEQ ID NO: 26 .
Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich. . -
Bevorzugt werden dafür solche Codons verwendet, die entsprechend der Organismenspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen leicht ermitteln.
In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO: 25 in den Organismus ein.
Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als Isopentenyl-D-Isomerase-Gene Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 28 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 30 %, Vorzugsweise mindestens 50 %, bevorzugter mindestens 70 %, noch bevorzugter mindestens 90 %, am bevorzugtesten mindestens 95 % auf Amino- säureebene mit der Sequenz SEQ ID NO: 28, und die die enzymatische Eigenschaft einer Isopentenyl-D-Isornerase aufweisen.
Weitere Beispiele für Isopentenyl-D-Isomerasen und Isopentenyl-D-Isomerase-Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Se- quenz bekannt ist, wie vorstehend beschrieben, durch Homologievergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit der SeQ ID NO: 28 leicht auffinden.
Weitere Beispiele für Isopentenyl-D-Isomerasen und Isopentenyl-D-Isomerase-Gene lassen sich weiterhin beispielsweise ausgehend von der Sequenz SEQ ID NO: 27 aus verschiedenen Organismen deren genomische Sequenz nicht bekannt ist, wie vorstehend beschrieben, durch Hybridisierungs- und PCR-Techniken in an sich bekannter Weise leicht auffinden. In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der Isopentenyl-D-Isomerase-Aktivität Nukleinsäuren in Organismen eingebracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der Isopentenyl-D-Isomerase der Sequenz SEQ ID NO: 28 .
Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.
Bevorzugt werden dafür solche Codons verwendet, die entsprechend der Organis- menspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen leicht ermitteln.
In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, ent- haltend die Sequenz SEQ ID NO: 27 in den Organismus ein.
Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als Geranyl-Diphosphat-Synthase-Gene,Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 30 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 30 %, vorzugsweise mindestens 50 %, bevorzugter mindestens 70 %, noch bevorzugter mindestens 90 %, am bevorzugtesten mindestens 95 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 30, und die die enzymatische Eigenschaft einer Geranyl-Diphosphat-Synthase aufweisen.
Weitere Beispiele für Geranyl-Diphosphat-Synthasen und Geranyl-Diphosphat- Synthase-Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, wie vorstehend beschrieben, durch Homologievergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nuk- leinsäuresequenzen aus Datenbanken mit der SeQ ID NO: 30 leicht auffinden.
Weitere Beispiele für Geranyl-Diphosphat-Synthasen und Geranyl-Diphosphat- Synthase-Gene lassen sich weiterhin beispielsweise ausgehend von der Sequenz SEQ ID NO: 29 aus verschiedenen Organismen deren genomische Sequenz nicht be- kannt ist, wie vorstehend beschrieben, durch Hybridisierungs- und PCR-Techniken in an sich bekannter Weise leicht auffinden.
In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der Geranyl-Diphosphat-Synthase-Aktivität Nukleinsäuren in Organismen eingebracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der Geranyl-Diphosphat- Synthase der Sequenz SEQ ID NO: 30.
Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.
Bevorzugt werden dafür solche Codons verwendet, die entsprechend der Organismenspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen leicht ermitteln.
In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO: 29 in den Organismus ein.
Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als Famesyl-Diphosphat-Synthase-Gene Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 32 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 30 %, vorzugsweise mindestens 50 %, bevorzugter mindestens 70 %, noch bevorzugter mindestens 90 %, am bevorzugtesten mindestens 95 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 32, und die die enzymatische Eigenschaft einer Farnesyl-Diphosphat-Synthase aufweisen.
Weitere Beispiele für Famesyl-Diphosphat-Synthasen und Farnesyl-Diphosphat- Synthase-Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, wie vorstehend beschrieben, durch Homologievergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit der SeQ ID NO: 32 leicht auffinden.
Weitere Beispiele für Famesyl-Diphosphat-Synthasen und Famesyl-Diphosphat- Synthase-Gene lassen sich weiterhin beispielsweise ausgehend von der Sequenz SEQ ID NO: 31 aus verschiedenen Organismen deren genomische Sequenz nicht bekannt ist, wie vorstehend beschrieben, durch Hybridisierungs- und PCR-Techniken in an sich bekannter Weise leicht auffinden.
In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der
Famesyl-Diphosphat-Synthase-Aktivität Nukleinsäuren in Organismen eingebracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der Farnesyl-Diphosphat- Synthase der Sequenz SEQ ID NO: 32. Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.
Bevorzugt werden dafür solche Codons verwendet, die entsprechend der Organis- menspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen leicht ermitteln.
In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, ent- haltend die Sequenz SEQ ID NO: 31 in den Organismus ein.
Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als Geranyl-geranyl-Diphosphat-Synthase-Gene Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 34 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 30 %, vorzugsweise mindestens 50 %, bevorzugter mindestens 70 %, noch bevorzugter mindestens 90 %, am bevorzugtesten mindestens 95 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 34, und die die enzymatische Eigenschaft einer Geranyl-geranyl-Diphosphat-Synthase aufweisen.
Weitere Beispiele für Geranyl-geranyl-Diphosphat-Synthasen und Geranyl-geranyl- Diphosphat-Synthase-Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, wie vorstehend beschrieben, durch Homologievergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetz- ten Nukleinsäuresequenzen aus Datenbanken mit der SeQ ID NO: 22 leicht auffinden.
Weitere Beispiele für Geranyl-geranyl-Diphosphat-Synthasen und Geranyl-geranyl- Diphosphat-Synthase-Gene lassen sich weiterhin beispielsweise ausgehend von der Sequenz SEQ ID NO: 33 aus verschiedenen Organismen deren genomische Sequenz nicht bekannt ist, wie vorstehend beschrieben, durch Hybridisierungs- und PCR- Techniken in an sich bekannter Weise leicht auffinden.
In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der Geranyl-geranyl-Diphosphat-Synthase-Aktivität Nukleinsäuren in Organismen einge- bracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der Geranyl-geranyl- Diphosphat-Synthase der Sequenz SEQ ID NO: 34.
Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich. Bevorzugt werden dafür solche Codons verwendet, die entsprechend der Organismenspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen leicht ermitteln.
In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO: 33 in den Organismus ein.
Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als Phytoen-Synthase-Gene Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 36 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 30 %, vorzugsweise mindestens 50 %, bevorzugter mindestens 70 %, noch bevorzugter mindestens 90 %, am bevorzugtesten mindestens 95 % auf Amino- säureebene mit der Sequenz SEQ ID NO: 36, und die die enzymatische Eigenschaft einer Phytoen-Synthase aufweisen.
Weitere Beispiele für Phytoen-Synthasen und Phytoen-Synthase-Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, wie vorstehend beschrieben, durch Homologievergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit der SeQ ID NO: 36 leicht auffinden.
Weitere Beispiele für Phytoen-Synthasen und Phytoen-Synthase-Gene lassen sich weiterhin beispielsweise ausgehend von der Sequenz SEQ ID NO: 35 aus verschiedenen Organismen deren genomische Sequenz nicht bekannt ist, wie vorstehend beschrieben, durch Hybridisierungs- und PCR-Techniken in an sich bekannter Weise leicht auffinden.
In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der Phytoen-Synthase-Aktivität Nukleinsäuren in Organismen eingebracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der Phytoen-Synthase der Sequenz SEQ ID NO: 36.
Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.
Bevorzugt werden dafür solche Codons verwendet, die entsprechend der Organismenspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Orga- nismen leicht ermitteln.
In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO: 35 in den Organismus ein.
Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als Phytoen-Desaturase-Gene Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 38 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 30 %, vorzugsweise mindestens 50 %, bevorzugter mindestens 70 %, noch bevorzugter mindestens 90 %, am bevorzugtesten mindestens 95 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 38, und die die enzymatische Eigenschaft einer Phytoen-Desaturase aufweisen.
Weitere Beispiele für Phytoen-Desaturasen und Phytoen-Desaturase-Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, wie vorstehend beschrieben, durch Homologievergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit der SeQ ID NO: 38 leicht auffinden.
Weitere Beispiele für Phytoen-Desaturasen und Phytoen-Desaturase-Gene lassen sich weiterhin beispielsweise ausgehend von der Sequenz SEQ ID NO: 37 aus verschiedenen Organismen deren genomische Sequenz nicht bekannt ist, wie vorstehend beschrieben, durch Hybridisierungs- und PCR-Techniken in an sich bekannter Weise leicht auffinden.
In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der Phytoen-Desaturase-Aktivität Nukleinsäuren in Organismen eingebracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der Phytoen-Desaturase der Sequenz SEQ ID NO: 38.
Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.
Bevorzugt werden dafür solche Codons verwendet, die entsprechend der Organismenspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen leicht ermitteln. In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO: 37 in den Organismus ein.
Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als Zeta-Carotin-Desaturase-Gene Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 40 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 30 %, vorzugsweise mindestens 50 %, bevorzugter mindestens 70 %, noch bevorzugter mindestens 90 %, am bevorzugtesten mindestens 95 % auf Amino- säureebene mit der Sequenz SEQ ID NO: 40, und die die enzymatische Eigenschaft einer Zeta-Carotin-Desaturase aufweisen.
Weitere Beispiele für Zeta-Carotin-Desaturasen und Zeta-Carotin-Desaturase-Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Se- quenz bekannt ist, wie vorstehend beschrieben, durch Homologievergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit der SEQ ID NO: 40 leicht auffinden.
Weitere Beispiele für Zeta-Carotin-Desaturasen und Zeta-Carotin-Desaturase-Gene lassen sich weiterhin beispielsweise ausgehend von der Sequenz SEQ ID NO: 39 aus verschiedenen Organismen deren genomische Sequenz nicht bekannt ist, wie vorstehend beschrieben, durch Hybridisierungs- und PCR-Techniken in an sich bekannter Weise leicht auffinden.
In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der Zeta-Carotin-Desaturase-Aktivität Nukleinsäuren in Organismen eingebracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der Zeta-Carotin-Desaturase der Sequenz SEQ ID NO: 40.
Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.
Bevorzugt werden dafür solche Codons verwendet, die entsprechend der Organismenspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen leicht ermitteln.
In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO: 39 in den Organismus ein. DO
Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als CrtlSO-Gene Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 42 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 30 %, vorzugsweise mindestens 50 %, bevorzugter mindestens 70 %, noch bevorzugter mindestens 90 %, am bevorzugtesten mindestens 95 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 42, und die die enzymatische Eigenschaft einer Crtlso aufweisen.
Weitere Beispiele für CrtlSO und CrtlSO-Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, wie vorstehend beschrieben, durch Homologievergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit der SeQ ID NO: 42 leicht auffinden.
Weitere Beispiele für CrtlSO und CrtlSO-Gene lassen sich weiterhin beispielsweise ausgehend von der Sequenz SEQ ID NO: 41 aus verschiedenen Organismen deren genomische Sequenz nicht bekannt ist, wie vorstehend beschrieben, durch Hybridisierungs- und PCR-Techniken in an sich bekannter Weise leicht auffinden.
In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der CrtlSO-Aktivität Nukleinsäuren in Organismen eingebracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der CrtlSO der Sequenz SEQ ID NO: 42.
Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.
Bevorzugt werden dafür solche Codons verwendet, die entsprechend der Organismenspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen leicht ermitteln.
In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO: 41 in den Organismus ein.
Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als FtsZ-Gene Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 44 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 30 %, vorzugsweise mindestens 50 %, bevorzugter mindestens 70 %, noch bevorzugter mindestens 90 %, am bevorzugtesten mindestens 95 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 44, und die die enzymatische Eigenschaft einer FtsZ aufweisen.
Weitere Beispiele für FtsZn und FtsZ-Gene lassen sich beispielsweise aus verschie- denen Organismen, deren genomische Sequenz bekannt ist, wie vorstehend beschrieben, durch Homologievergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit der SeQ ID NO: 44 leicht auffinden.
Weitere Beispiele für FtsZn und FtsZ-Gene lassen sich weiterhin beispielsweise ausgehend von der Sequenz SEQ ID NO: 43 aus verschiedenen Organismen deren genomische Sequenz nicht bekannt ist, wie vorstehend beschrieben, durch Hybridisierungs- und PCR-Techniken in an sich bekannter Weise leicht auffinden.
In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der
FtsZ-Aktivität Nukleinsäuren in Organismen eingebracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der FtsZ der Sequenz SEQ ID NO: 44
Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.
Bevorzugt werden dafür solche Codons verwendet, die entsprechend der Organismenspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Orga- nismen leicht ermitteln.
In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO: 43 in den Organismus ein.
Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als MinD-Gene Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 46 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 30 %, vorzugsweise mindestens 50 %, bevorzugter mindestens 70 %, noch bevorzugter mindestens 90 %, am bevorzugtesten mindestens 95 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 46, und die die enzymatische Eigenschaft einer MinD aufweisen.
Weitere Beispiele für MinDn und MinD-Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, wie vorstehend beschrie- ben, durch Homologievergleiche der Aminosäuresequenzen oder der entsprechenden DO rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit der SeQ ID NO: 46 leicht auffinden.
Weitere Beispiele für MinDn und MinD-Gene lassen sich weiterhin beispielsweise aus- gehend von der Sequenz SEQ ID NO: 45 aus verschiedenen Organismen deren genomische Sequenz nicht bekannt ist, wie vorstehend beschrieben, durch Hybridisierungs- und PCR-Techniken in an sich bekannter Weise leicht auffinden.
In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der MinD-Aktivität Nukleinsäuren in Organismen eingebracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der MinD der Sequenz SEQ ID NO: 46.
Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.
Bevorzugt werden dafür solche Codons verwendet, die entsprechend der Organismenspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen leicht ermitteln.
In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO: 45 in den Organismus ein.
Alle vorstehend erwähnten HMG-CoA-Reduktase-Gene, (E)-4-Hydroxy- 3-Methylbut-2-enyl-Diphosphat-Reduktase-Gene, 1 -Deoxy-D-Xylose-
5-Phosphat-Synthase-Gene, 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase-Gene, Isopentenyl-Diphosphat-Δ-Isomerase-Gene, Geranyl-Diphosphat-Synthase-Gene, Far- nesyl-Diphosphat-Synthase-Gene, Geranyl-geranyl-Diphosphat-Synthase-Gene, Phytoen-Synthase-Gene, Phytoen-Desaturase-Gene, Zeta-Carotin-Desaturase-Gene, crtl- SO-Gene, FtsZ-Gene oder MinD-Gene sind weiterhin in an sich bekannter Weise durch chemische Synthese aus den Nukleotidbausteinen wie beispielsweise durch Fragmentkondensation einzelner überlappender, komplementärer Nukleinsäurebau- steine der Doppelhelix herstellbar. Die chemische Synthese von Oligonukleotiden kann beispielsweise, in bekannter Weise, nach der Phosphoamiditmethode (Voet, Voet, 2. Auflage, Wiley Press New York, Seite 896-897) erfolgen. Die Anlagerung synthetischer Oligonukleotide und Auffüllen von Lücken mithilfe des Klenow-Fragmentes der DNA- Polymerase und Ligationsreaktionen sowie allgemeine Klonierungsverfahren werden in Sambrook et al. (1989), Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press, beschrieben. Die Nukleinsäuren, kodierend eine Ketolase, ausgewählt aus der Gruppe
A Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 80 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist,
B Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 10 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 90 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 10 aufweist,
C Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 12 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 90 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 12 aufweist oder
D Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 14 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 50 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 14 aufweist, sowie
Nukleinsäuren kodierend eine ß-Hydroxylase, Nukleinsäuren kodierend eine ß- Cyclase, Nukleinsäuren kodierend eine HMG-CoA-Reduktase, Nukleinsäuren kodie- rend eine (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase, Nukleinsäuren kodierend eine 1-Deoxy-D-Xylose-5-Phosphat-Synthase, Nukleinsäuren kodierend eine 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase, Nukleinsäuren kodierend eine Isopentenyl-Diphosphat-Δ-Isomerase, Nukleinsäuren kodierend eine Geranyl- Diphosphat-Synthase, Nukleinsäuren kodierend eine Farnesyl-Diphosphat-Synthase, Nukleinsäuren kodierend eine Geranyl-Geranyl-Diphosphat-Synthase, Nukleinsäuren kodierend eine Phytoen-Synthase, Nukleinsäuren kodierend eine Phytoen-Desaturase, Nukleinsäuren kodierend eine Zeta-Carotin-Desaturase, Nukleinsäuren kodierend ein crtlSO Protein, Nukleinsäuren kodierend ein FtsZ Protein und/oder Nukleinsäuren kodierend ein MinD Protein werden im folgenden auch "Effektgene" genannt.
Die Herstellung der genetisch veränderten, nicht-humanen Organismen kann, wie nachstehend beschrieben, beispielsweise durch Einbringen einzelner Nukleinsäurekonstrukte (Expressionskassetten), enthaltend ein Effektgen, oder durch Einbringen von Mehrfachkonstrukten erfolgen, die bis zu zwei oder drei oder meherere der Effekt- gene enthalten.
Unter Organismen werden erfindungsgemäß vorzugsweise Organismen verstanden, die als Wildtyp- oder Ausgangsorganismen natürlicherweise oder durch genetische Komplementierung und/oder Umregulierung der Stoffwechselwege in der Lage sind, Carotinoide, insbesondere ß-Carotin und/oder Zeaxanthin und/oder Neoxanthin und/oder Violaxanthin und/oder Lutein herzustellen.
Weiter bevorzugte Organismen weisen als Wildtyp- oder Ausgangsorganismen bereits eine Hydroxylase-Aktivität auf und sind somit als Wildtyp- oder Ausgangsorganismen in der Lage, Zeaxanthin herzustellen.
Bevorzugte Organismen sind Pflanzen oder Mikroorganismen, wie beispielsweise Bakterien, Hefen, Algen oder Pilze.
Als Bakterien können sowohl Bakterien verwendet werden, die aufgrund des Einbringens von Genen der Carotinoidbiosynthese eines Carotinoid-produzierenden Organismus in der Lage sind, Xanthophylle zu synthetisieren, wie beispielsweise Bakterien der Gattung Escherichia, die beispielsweise crt-Gene aus Erwinia enthalten, als auch Bak- terien, die von sich aus in der Lage sind, Xanthophylle zu synthetisieren wie beispielsweise Bakterien der Gattung Erwinia, Agrobacterium, Flavobacterium, Alcaligenes, Paracoccus, Nostoc oder Cyanobakterien der Gattung Synechocystis.
Bevorzugte Bakterien sind Escherichia coli, Erwinia herbicola, Erwinia uredovora, Agrobacterium aurantiacum, Alcaligenes sp. PC-1, Flavobacterium sp. strain R1534, das Cyanobacterium Synechocystis sp. PCC6803, Paracoccus marcusii oder Paracoccus carotinifaciens.
Bevorzugte Hefen sind Candida, Saccharomyces, Hansenula, Pichia oder Phaffia. Be- sonders bevorzugte Hefen sind Xanthophyllomyces dendrorhous oder Phaffia rhodo- zyma.
Bevorzugte Pilze sind Aspergillus, Trichoderma, Ashbya, Neurospora, Blakeslea, insbesondere Blakeslea trispora, Phycomyces, Fusarium oder weitere in Indian Chem. Engr. Section B. Vol. 37, No. 1 , 2 (1995) auf Seite 15, Tabelle 6 beschriebene Pilze.
Bevorzugte Algen sind Grünalgen, wie beispielsweise Algen der Gattung Haematococcus, Phaedactylum tricornatum, Volvox oder Dunaliella. Besonders bevorzugte Algen sind Haematococcus puvialis oder Dunaliella bardawil. Weitere brauchbare Mikroorganismen und deren Herstellung zur Durchführung des erfindungsgemäßen Verfahrens sind beispielsweise aus der DE-A-199 16 140 bekannt, worauf hiermit Bezug genommen wird.
In einer besonder bevorzugten Ausführungsform werden als nicht-humane Organismen Pflanzen verwendet.
In einer besonderes bevorzugten Ausführungsform der erfindungsgemäßen Verfahrens verwendet man genetisch veränderte Pflanzen, die in Blüten die höchste Expressions- rate einer erfindungsgemäßen Ketolase aufweisen.
Vorzugsweise wird dies dadurch erreicht, das die Genexpression der erfindungsgemäßen Ketolase unter Kontrolle eines blütenspezifischen Promotors erfolgt. Beispielsweise werden dazu die vorstehend beschriebenen Nukleinsäuren, wie nachstehend aus- führiich beschrieben, in einem Nukleinsäurekonstrukt, funktionell verknüpft mit einem blütenspezifischen Promotor in die Pflanze eingebracht.
In einer weiter bevorzugten Ausführungsform des Verfahrens unter Verwendung von Pflanzen weisen die genetisch veränderten Pflanzen gegenüber dem Wildtyp zusätz- lieh eine reduzierte ε-Cyclase-Aktivität auf.
Unter ε-Cyclase-Aktivität wird die Enzymaktivität einer ε-Cyclase verstanden.
Unter einer ε-Cyclase wird ein Protein verstanden, das die enzymatische Aktivität auf- weist, einen endständigen, linearen Rest von Lycopin in einen ε-lonon-Ring zu überführen.
Unter einer ε-Cyclase wird daher insbesondere ein Protein verstanden, das die enzymatische Aktivität aufweist, Lycopin in δ-Carotin umzuwandeln.
Dementsprechend wird unter ε-Cyclase-Aktivität die in einer bestimmten Zeit durch das Protein ε-Cyclase umgesetzte Menge Lycopin bzw. gebildete Menge δ-Carotin verstanden.
Bei einer reduzierten ε-Cyclase-Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein ε-Cyclase die umgesetzte Menge Lycopin bzw. die gebildete Menge δ-Carotin reduziert.
Unter einer reduzierten ε-Cyclase-Aktivität wird vorzugsweise die teilweise oder im wesentlichen vollständige, auf unterschiedliche zellbiologische Mechanismen beruhen- de Unterbindung oder Blockierung der Funktionalität einer ε-Cyclase in einer pflanzlichen Zelle, Pflanze oder einem davon abgeleiteten Teil, Gewebe, Organ, Zellen oder Samen verstanden.
Die Reduzierung der ε-Cyclase-Aktivität in Pflanzen gegenüber dem Wildtyp kann beispielsweise durch Reduzierung der ε-Cyclase-Proteinmenge, oder der ε-Cyclase- mRNA-Menge in der Pflanze erfolgen. Dementsprechend kann eine gegenüber dem Wildtyp reduzierte ε-Cyclase-Aktivität direkt bestimmt werden oder über die Bestimmung der ε-Cyclase-Proteinmenge oder der ε-Cyclase-mRNA-Menge der erfindungs- gemäßen Pflanze im Vergleich zum Wildtyp erfolgen.
Eine Reduzierung der ε-Cyclase-Aktivität umfasst eine mengenmäßige Verringerung einer ε-Cyclase bis hin zu einem im wesentlichen vollständigen Fehlen der ε-Cyclase (d.h. fehlende Nachweisbarkeit von ε-Cyclase-Aktivität oder fehlende immunologische Nachweisbarkeit der ε-Cyclase). Vorzugsweise wird die ε-Cyclase-Aktivität (bzw. die ε- Cyclase-Proteinmenge oder die ε-Cyclase-mRNA-Menge) in der Pflanze, besonders bevorzugt in Blüten im Vergleich zum Wildtyp um mindestens 5 %, weiter bevorzugt um mindestens 20 %, weiter bevorzugt um mindestens 50 %, weiter bevorzugt um 100 % reduziert. Insbesondere meint "Reduzierung" auch das vollständigen Fehlen der ε-Cyclase-Aktivität (bzw. des ε-Cyclase-Proteins oder der ε-Cyclase-mRNA).
Die Bestimmung der ε-Cyclase-Aktivität in erfindungsgemäßen genetisch veränderten Pflanzen und in Wildtyp- bzw. Referenzpflanzen erfolgt vorzugsweise unter folgenden Bedingungen:
Die ε-Cyclase-Aktivität kann nach Fräser und Sandmann (Biochem. Biophys. Res. Comm. 185(1) (1992) 9-15)/n vitro bestimmt werden, wenn zu einer bestimmten Menge an Pflanzenextrakt Kaliumphosphat als Puffer (ph 7.6), Lycopin als Substrat, Stro- maprotein von Paprika, NADP+, NADPH und ATP zugegeben werden.
Die Bestimmung der ε-Cyclase-Aktivität in erfindungsgemäßen genetisch veränderten Pflanzen und in Wildtyp- bzw. Referenzpflanzen erfolgt besonders bevorzugt nach Bouvier, dΗarlingue und Camara (Molecular Analysis of carotenoid cyclase inhibition; Arch. Biochem. Biophys. 346(1) (1997) 53-64):
Der in-vitro Assay wird in einem Volumen von 0.25 ml durchgeführt. Der Ansatz enthält 50 mM Kaliumphosphat (pH 7.6),unterschiedliche Mengen an Pflanzenextrakt, 20 nM Lycopin, 0.25 mg an chromoplastidärem Stromaprotein aus Paprika, 0.2 mM NADP+, 0.2 mM NADPH und 1 mM ATP. NADP/NADPH und ATP werden in 0.01 ml Ethanol mit 1 mg Tween 80 unmittelbar vor der Zugabe zum Inkubationsmedium gelöst. Nach einer Reaktionszeit von 60 Minuten bei 30C wird die Reaktion durch Zugabe von Chloroform/Methanol (2:1) beendet. Die in Chloroform extrahierten Reaktionsprodukte werden mittels HPLC analysiert.
Ein alternativer Assay mit radioaktivem Substrat ist beschrieben in Fräser und Sandmann (Biochem. Biophys. Res. Comm. 185(1) (1992) 9-15). Eine weitere analytische Methode ist beschrieben in Beyer, Kröncke und Nievelstein (On the mechanism of the lycopene isomerase/cyclase reaction in Narcissus pseudonarcissus L. chromopast,; J. Biol. Chem. 266(26) (1991) 17072-17078).
Vorzugsweise erfolgt die Reduzierung der ε-Cyclase-Aktivität in Pflanzen durch mindestens eines der nachfolgenden Verfahren:
a) Einbringen mindestens einer doppelsträngigen ε-Cyclase Ribonukleinsäurese- quenz, nachstehend auch ε-Cyclase-dsRNA genannt, oder einer deren Expression gewährleistenden Expressionskassette oder Expressionskassetten. Umfasst sind solche Verfahren, bei denen die ε-Cyclase-ds.RNA gegen ein ε-Cyclase-Gen (also genomische DNA-Sequenzen wie die Promotorsequenz) oder ein ε-Cyclase-Transkript (also mRNA-Sequenzen) gerichtet ist,
b) Einbringen mindestens einer ε-Cyclase antisense-Ribonukleinsäuresequenz, nachstehend auch ε-Cyclase-antisenseRNA genannt, oder einer deren Expression gewährleistenden Expressionskassette. Umfasst sind solche Verfahren, bei denen die ε-Cyclase-antisenseRNA gegen ein ε-Cyclase-Gen (also genomische DNA- Sequenzen) oder ein ε-Cyclase-Gentranskript (also RNA-Sequenzen) gerichtet ist. Umfasst sind auch α-anomere Nukleinsäuresequenzen,
c) Einbringen mindestens einer ε-Cyclase-antisenseRNA kombiniert mit einem Ribo- zym oder einer deren Expression gewährleistenden Expressionskassette
d) Einbringen mindestens einer ε-Cyclase sense-Ribonukleinsäuresequenz , nachstehend auch ε-Cyclase-senseRNA genannt, zur Induktion einer Kosuppression oder einer deren Expression gewährleistenden Expressionskassette
e) Einbringen mindestens eines DNA- oder Protein-bindenden Faktors gegen ein ε-Cyclase-Gen, -RNA oder -Protein oder einer dessen Expression gewährleistenden Expressionskassette f)Einbringen mindestens einer den ε-Cyclase RNA-Abbau bewirkenden viralen Nukleinsäuresequenz oder einer deren Expression gewährleistenden Expressionskassette
g) Einbringen mindestens eines Konstruktes zur Erzeugung eines Funktionsverlustes, wie beispielsweise die Generierung von Stopp-Kodons oder eine Verschiebungen im Leseraster, an einem ε-Cyclase-Gen beispielsweise durch Erzeugung einer Insertion, Deletion, Inversion oder Mutation in einem ε-Cyclase-Gen. Bevorzugt können Knockout-Mutanten mittels gezielter Insertion in besagtes ε-Cyclase-Gen durch homologe Rekombination oder Einbringen von sequenzspezifischen Nukleasen gegen ε-Cyclase-Gensequenzen generiert werden.
Dem Fachmann ist bekannt, dass auch weitere Verfahren im Rahmen der vorliegenden Erfindung zur Verminderung einer ε-Cyclase bzw. seiner Aktivität oder Funktion eingesetzt werden können. Beispielsweise kann auch das Einbringen einer dominant- negativen Variante einer ε-Cyclase oder einer deren Expression gewährleistenden Expressionskassette vorteilhaft sein. Dabei kann jedes einzelne dieser Verfahren eine Verminderung der Proteinmenge, mRNA-Menge und/oder Aktivität einer ε-Cyclase bewirken. Auch eine kombinierte Anwendung ist denkbar. Weitere Methoden sind dem Fachmann bekannt und können die Behinderung oder Unterbindung der Prozessierung der ε-Cyclase, des Transports der ε-Cyclase oder dessen mRNA, Hemmung der Ri- bosomenanlagerung, Hemmung des RNA-Spleißens, Induktion eines ε-Cyclase-RNA abbauenden Enzyms und/oder Hemmung der Translationselongation oder -termination umfassen.
Die einzelnen bevorzugten Verfahren seien infolge durch beispielhafte Ausführungsformen beschrieben:
a) Einbringen einer doppelsträngigen ε-Cyclase-Ribonukleinsäuresequenz (ε-Cyclase-dsRNA)
Das Verfahren der Genregulation mittels doppelsträngiger RNA ("double-stranded RNA interference"; dsRNAi) ist bekannt und beispielsweise in Matzke MA et al. (2000) Plant Mol Biol 43:401-415; Fire A. et al (1998) Nature 391 :806-811; WO 99/32619; WO 99/53050; WO 00/68374; WO 00/44914; WO 00/44895; WO 00/49035 oder WO 00/63364 beschrieben. Auf die in den angegebenen Zitaten beschriebenen Verfahren und Methoden wird hiermit ausdrücklich Bezug genommen.
Unter "Doppelsträngiger Ribonukleinsäuresequenz" wird erfindungsgemäß eine oder mehr Ribonukleinsäuresequenzen, die aufgrund komplementärer Sequenzen theore- tisch, beispielsweise gemäß den Basenpaarregeln von Waston und Crick und/oder faktisch, beispielsweise aufgrund von Hybridisierungsexperimenten, in vitro und/oder in vivo in der Lage sind, doppelsträngige RNA-Strukturen auszubilden.
Dem Fachmann ist bewusst, dass die Ausbildung von doppelsträngigen RNA- Strukturen, einen Gleichgewichtszustand darstellt. Bevorzugt ist das Verhältnis von doppelsträngigen Molekülen zu entsprechenden dissozierten Formen mindestens 1 zu 10, bevorzugt 1:1 , besonders bevorzugt 5:1 , am meisten bevorzugt 10:1.
Unter einer doppelsträngigen ε-Cyclase-Ribonukleinsäuresequenz oder auch ε-Cyclase-dsRNA wird vorzugsweise ein RNA-Molekül verstanden, das einen Bereich mit Doppel-Strang-Struktur aufweist und in diesem Bereich eine Nukleinsäuresequenz enthält, die
a) mit mindestens einem Teil des Pflanze eigenen ε-Cyclase-Transkripts identisch ist und/oder
b) mit mindestens einem Teil der Pflanze eigenen ε-Cyclase-Promotor-Sequenz identisch ist.
Im erfindungsgemäßen Verfahren bringt man daher zur Reduzierung der ε-Cyclase- Aktivität bevorzugt in die Pflanze eine RNA ein, die einen Bereich mit Doppel-Strang- Struktur aufweist und in diesem Bereich eine Nukleinsäuresequenz enthält, die
a) mit mindestens einem Teil des Pflanze eigenen ε-Cyclase-Transkripts identisch ist und/oder
b) mit mindestens einem Teil der Pflanze eigenen ε-Cyclase-Promotor-Sequenz identisch ist.
Unter dem Begriff "ε-Cyclase-Transkript" wird der transkripierte Teil eines ε-Cyclase- Gens verstanden, der neben der ε-Cyclase kodierenden Sequenz beispielsweise auch nichtkodierende Sequenzen, wie beispielsweise auch UTRs enthält.
Unter einer RNA, die "mit mindestens einem Teil der Pflanze eigenen ε-Cyclase- Promotor-Sequenz identisch ist", ist vorzugsweise gemeint, dass die RNA-Sequenz mit mindestens einem Teil des theoretischen Transkriptes der ε-Cyclase-Promotor- Sequenz, also der entsprechenden RNA-Sequenz, identisch ist. Unter "einem Teil" des Pflanze eigenen ε-Cyclase-Transkripts bzw. der Pflanze eigenen ε-Cyclase-Promotor-Sequenz werden Teilsequenzen verstanden, die von wenigen Basenpaaren bis hin zu vollständigen Sequenzen des Transkripts bzw. der Promotorssequenz reichen können. Die optimale Länger der Teilsequenzen kann der Fachmann durch Routineversuche leicht ermitteln.
In der Regel beträgt die Länge der Teilsequenzen mindestens 10 Basen und höchstens 2 kb, bevorzugt mindestens 25 Basen und höchstens 1 ,5 kb, besonders bevorzugt mindestens 50 Basen und höchstens 600 Basen, ganz besonders bevorzugt mindes- tens 100 Basen und höchstens 500, am meisten bevorzugt mindestens 200 Basen oder mindestens 300 Basen und höchstens 400 Basen.
Vorzugsweise werden die Teilsequenzen so ausgesucht, dass eine möglichst hohe Spezifität erreicht wird und nicht Aktivitäten anderer Enzyme reduziert werden, deren Verminderung nicht erwünscht ist. Es ist daher vorteilhaft für die Teilsequenzen der ε- Cyclase-dsRNA Teile des ε-Cyclase Transkripts und/oder Teilsequenzen der ε- Cyclase-Promotor-Sequenzen zu wählen, die nicht in anderen Aktivitäten auftreten.
In einer besonders bevorzugten Ausführungsform enthält daher die ε-Cyclase-dsRNA eine Sequenz, die mit einem Teil der Pflanze eigenen ε-Cyclase-Transkripts identisch ist und das 5'-Ende oder das 3'-Ende der Pflanze eigenen Nukleinsäure, codierend eine ε-Cyclase enthält. Insbesondere sind nichttranslatierte Bereiche im 5' oder 3' des Transkriptes geeignet, selektive Doppel-Strang-Strukturen herzustellen.
Ein weiterer Gegenstand der Erfindung bezieht sich auf doppelsträngige RNA-Moleküle (dsRNA-Moleküle), die bei Einbringen in einen pflanzlichen Organismus (oder eine davon abgeleitete Zelle, Gewebe, Organ oder Vermehrungsmaterial) die Verminderung einer ε-Cyclase bewirken.
Ein doppelsträngige RNA-Molekül zur Reduzierung der Expression einer ε-Cyclase (ε-Cyclase-dsRNA) umfasst dabei bevorzugt
a) einen "sense"-RNA-Strang umfassend mindestens eine Ribonukleotidsequenz, die im wesentlichen identisch ist zu mindestens einem Teil eines "sense"-RNA-ε-Cy ase Transkriptes, und
b) einen "antisense"-RNA-Strang, der zu dem RNA-"sense"-Strang unter a) im wesentlichen, bevorzugt vollständig, komplementären ist. Zur Transformation der Pflanze mit einer ε-Cyclase-dsRNA wird bevorzugt ein Nukleinsäurekonstrukt verwendet, das in die Pflanze eingebracht wird und das in der Pflanze in die ε-Cyclase-dsRNA transkripiert wird.
Daher betrifft die vorliegende Erfindung auch ein Nukleinsäurekonstrukt, transkripierbar in
a) einen "sense"-RNA-Strang umfassend mindestens eine Ribonukleotidsequenz, die im wesentlichen identisch ist zu mindestens einem Teil des "sense"-RNA-ε-Cyclase Transkriptes, und
b) einen "antisense"-RNA-Strang, der zu dem RNA-sense-Strang unter a) im wesentlichen - bevorzugt vollständig - komplementär ist.
Diese Nukleinsäurekonstrukte werden im folgenden auch Expressionskassetten oder Expressionsvektoren genannt.
In Bezug auf die dsRNA-Moleküle wird unter ε-Cyclase-Nukleinsäuresequenz, bzw. das entsprechende Transkript bevorzugt die Sequenz gemäß SEQ ID NO: 38 oder ein Tel derselben verstanden.
"Im wesentlichen identisch" meint, dass die dsRNA Sequenz auch Insertionen, Deletio- nen sowie einzelne Punktmutationen im Vergleich zu der ε-Cyclase Zielsequenz aufweisen kann und dennoch eine effizient Verminderung der Expression bewirkt. Bevor- zugt beträgt die Homologie mindestens 75 %, bevorzugt mindestens 80 %, ganz besonders bevorzugt mindestens 90 % am meisten bevorzugt 100 % zwischen dem "sense"-Strang einer inhibitorischen dsRNA und mindestens einem Teil des "sense"- RNA-Transkriptes eines ε-Cyclase-Geπs, bzw. zwischen dem "antisense"-Strang dem komplementären Strang eines ε-Cyclase-Gens.
Eine 100%ige Sequenzidentität zwischen dsRNA und einem ε-Cyclase Gentranskript ist nicht zwingend erforderlich, um eine effiziente Verminderung der ε-Cyclase Expression zu bewirken. Demzufolge besteht der Vorteil, dass das Verfahren tolerant ist gegenüber Sequenzabweichungen, wie sie infolge genetischer Mutationen, Poly- morphismen oder evolutionärer Divergenzen vorliegen können. So ist es beispielsweise möglich mit der dsRNA, die ausgehend von der ε-Cyclase Sequenz des einen Organismus generiert wurde, die ε-Cyclase Expression in einem anderen Organismus zu unterdrücken. Zu diesem Zweck umfasst die dsRNA bevorzugt Sequenzbereiche von ε-Cyclase-Gentranskripten, die konservierten Bereichen entsprechen. Besagte konservierte Bereiche können aus Sequenzvergleichen leicht abgeleitet werden.
Alternativ, kann eine "im wesentlichen identische" dsRNA auch als Nukleinsäuresequenz definiert werden, die befähigt ist, mit einem Teil eines ε-Cyclase Gentranskrip- tes zu hybridisieren (z.B. in 400 mM NaCI, 40 mM PIPES pH 6,4, 1 mM EDTA bei 50°C oder 70°C für 12 bis 16 h).
"Im wesentlichen komplementär" meint, dass der "antisense"-RNA-Strang auch Inserti- onen, Deletionen sowie einzelne Punktmutationen im Vergleich zu dem Komplement des "sense"-RNA-Stranges aufweisen kann. Bevorzugt beträgt die Homologie mindestens 80 %, bevorzugt mindestens 90 %, ganz besonders bevorzugt mindestens 95 %, am meisten bevorzugt 100 % zwischen dem "antisense"-RNA-Strang und dem Komplement des "sense"-RNA-Stranges.
In einerweiteren Ausführungsform umfasst die ε-Cyclase-dsRNA
a) einen "sense"-RNA-Strang umfassend mindestens eine Ribonukleotidsequenz, die im wesentlichen identisch ist zu mindestens einem Teil des "sense"-RNA-Transkriptes des Promotorbereichs eines ε-Cyclase-Gens, und
b) einen "antisense"-RNA-Strang, der zu dem RNA-"sense"-Strang unter a) im wesentlichen - bevorzugt vollständig - komplementären ist.
Das entsprechende, bevorzugt zur Transformation der Pflanzen zu verwendende, Nuk- leinsäurekonstrukt, umfasst
a) einen "sense"-DNA-Strang der im wesentlichen identisch ist zu mindestens einem Teil des Promotorbereichs eines ε-Cyclase-Gens, und
b) einen "antisense"-DNA-Strang, der zu dem DNA-"sense"-Strang unter a) im wesentlichen - bevorzugt vollständig - komplementär ist.
Vorzugsweise wird unter dem Promotorbereich einer ε-Cyclase eine Sequenz gemäß SEQ ID NO: 51 oder ein Teil der selben verstanden.
Zur Herstellung der ε-Cyclase-dsRNA-Sequenzen zur Reduzierung der ε-Cyclase- Aktivität werden, insbesondere für Tagetes erecta, besonders bevorzugt die folgenden Teil-Sequenzen verwendet: SEQ ID NO: 52: Sense-Fragment der 5'terminalen Region der ε-Cyclase
SEQ ID NO: 53: Antisense-Fragment der 5'terminalen Region der ε-Cyclase
SEQ ID NO: 54: Sense-Fragment der 3'terminalen Region der ε-Cyclase
SEQ ID NO: 55: Antisense-Fragment der 3'terminalen Region der ε-Cyclase
SEQ ID NO: 56: Sense-Fragment des ε-Cyclase-Promotors
SEQ ID NO: 57: Antisense-Fragment des ε-Cyclase-Promotors
Die dsRNA kann aus einem oder mehr Strängen von Polyribonukleotiden bestehen. Natürlich können, um den gleichen Zweck zu erreichen, auch mehrere individuelle dsRNA Moleküle, die jeweils einen der oben definierten Ribonukleotidsequen- zabschnitte umfassen, in die Zelle oder den Organismus eingebracht werden.
Die doppelsträngige dsRNA-Struktur kann ausgehend von zwei komplementären, separaten RNA-Strängen oder - bevorzugt - ausgehend von einem einzelnen, selbstkom- plementären RNA-Strang gebildet werden. In diesem Fall sind "sense"-RNA-Strang und "antisense"-RNA-Strang bevorzugt kovalent in Form eines invertierten "Repeats" miteinander verbunden.
Wie z.B. in WO 99/53050 beschrieben, kann die dsRNA auch eine Haarnadelstruktur umfassen, indem "sense"- und "antisense"-Strang durch eine verbindende Sequenz ("Linker"; beispielsweise ein Intron) verbunden werden. Die selbstkomplementären dsRNA-Strukturen sind bevorzugt, da sie lediglich die Expression einer RNA-Sequenz erfordern und die komplementären RNA-Stränge stets in einem äquimolaren Verhältnis umfassen. Bevorzugt ist die verbindende Sequenz ein Intron (z.B. ein Intron des ST- LS1 Gens aus Kartoffel; Vancänneyt GF et al. (1990) Mol Gen Genet 220(2):245-250).
Die Nukleinsäuresequenz kodierend für eine dsRNA kann weitere Elemente beinhal- . ten, wie beispielsweise Transkriptionsterminationssignale oder Polyadenylierungssignale.
Ist die dsRNA jedoch gegen die Promotorsequenz einer ε-Cyclase gerichtet, so umfasst sie bevorzugt keine Transkriptionsterminationssignale oder Polyadenylierungssignale. Dies ermöglicht eine Retention der dsRNA im Nukleus der Zelle und verhindert eine Verteilung der dsRNA in der gesamten Pflanze "Spreadinng"). Sollen die zwei Stränge der dsRNA in einer Zelle oder Pflanze zusammengebracht werden, so kann dies beispielhaft auf folgende Art geschehen:
a) Transformation der Zelle oder Pflanze mit einem Vektor, der beide Expressionskas- setten umfasst,
b) Kotransformation der Zelle oder Pflanze mit zwei Vektoren, wobei der eine die Expressionskassetten mit dem "sense"-Strang, der andere die Expressionskassetten mit dem "antisense"-Strang umfasst.
c) Kreuzung von zwei individuellen Pflanzenlinien, wobei die eine die Expressionskassetten mit dem "sense"-Strang, die andere die Expressionskassetten mit dem "anti- sense"-Strang umfasst.
Die Bildung der RNA Duplex kann entweder außerhalb der Zelle oder innerhalb derselben initiiert werden.
Die dsRNA kann entweder in vivo oder in vitro synthetisiert werden. Dazu kann eine DNA-Sequenz kodierend für eine dsRNA in eine Expressionskassette unter Kontrolle mindestens eines genetischen Kontrollelementes (wie beispielsweise einem Promotor) gebracht werden. Eine Polyadenylierung ist nicht erforderlich, ebenso müssen keine Elemente zur Initiierung einer Translation vorhanden sein. Bevorzugt ist die Expressionskassette für die MP-dsRNA auf dem Transformationskonstrukt oder dem Transformationsvektor enthalten.
In einer besonders bevorzugten Auführungsform erfolgt die Expression der dsRNA ausgehend von einem Expressionskonstrukt unter funktioneller Kontrolle eines blütenspezifischen Promotors.
Die Expressionskassetten kodierend für den "antisense"- und/oder den "sense"-Strang einer ε-Cyclase -dsRNA oder für den selbstkomplementären-Strang der dsRNA, werden dazu bevorzugt in einen Transformationsvektor insertiert und mit den unten beschriebenen Verfahren in die pflanzliche Zelle eingebracht. Für das erfindungsgemäße Verfahren ist eine stabile Insertion in das Genom vorteilhaft.
Die dsRNA kann in einer Menge eingeführt werden, die zumindest eine Kopie pro Zelle ermöglicht. Höhere Mengen (z.B. mindestens 5, 10, 100, 500 oder 1000 Kopien pro Zelle) können ggf. eine effizienter Verminderung bewirken. b) Einbringen einer antisense-Ribonukleinsäuresequenz einer ε-Cyclase (ε-Cyclase- antisenseRNA)
Verfahren zur Verminderung eines bestimmten Proteins durch die "antisense" - Technologie sind vielfach - auch in Pflanzen - beschrieben (Sheehy et al. (1988) Proc Natl Acad Sei USA 85: 8805-8809; US 4,801 ,340; Mol JN et al. (1990) FEBS Lett 268 (2): 427-430). Das antisense Nukleinsäuremolekül hybridisiert bzw. bindet mit der zellulären mRNA und/oder genomischen DNA kodierend für das zu vermindernde ε-Cyclase. Dadurch wird die Transkription und/oder Translation der ε-Cyclase unter- drückt. Die Hybridisierung kann auf konventionelle Art über die Bildung einer stabilen Duplex oder - im Fall von genomischer DNA - durch Bindung des antisense Nuklein- säuremoleküls mit der Duplex der genomischen DNA durch spezifische Wechselwirkung in der großen Furche der DNA-Helix entstehen.
Eine ε-Cyclase-antisenseRNA kann unter Verwendung der für diese ε-Cyclase kodierenden Nukleinsäuresequenz, beispielsweise der Nukleinsäuresequenz gemäß SEQ ID NO: 58 nach den Basenpaarregeln von Watson und Crick abgeleitet werden. Die ε-Cyclase-antiseπseRNA kann zu der gesamten transkribierten mRNA der ε-Cyclase komplementär sein, sich auf die kodierende Region beschränken oder nur aus einem Oligonukleotid bestehen, das zu einem Teil der kodierenden oder nicht-kodierenden Sequenz der mRNA komplementär ist. So kann das Oligonukleotid beispielsweise komplementär zu der Region sein, die den Translationsstart für die ε-Cyclase umfasst. Die ε-Cyclase-antisenseRNA kann eine Länge von zum Beispiel 5, 10, 15, 20, 25, 30, 35, 40, 45 oder 50 Nukleotide haben, kann aber auch länger sein und mindestens 100, 200, 500, 1000, 2000 oder 5000 Nukleotide umfassen. ε-Cyclase-antisenseRNAs werden im Rahmen des erfindungsgemäßen Verfahrens bevorzugt rekombinant in der Zielzelle exprimiert..
Ein weiterer Gegenstand der Erfindung betrifft transgene Expressionskassetten enthal- tend eine Nukleinsäuresequenz kodierend für zumindest einen Teil einer ε-Cyclase, wobei besagte Nukleinsäuresequenz mit einem in pflanzlichen Organismen funktionel- len Promotor in antisense-Orientierung funktionell verknüpft ist. In einer besonders bevorzugten Auführungsform erfolgt die Expression der antisenseRNA ausgehend von einem Expressionskonstrukt unter funktioneller Kontrolle eines blütenspezifischen Promotors.
Besagte Expressionskassetten können Teil eines Transformationskonstruktes oder Transformationsvektors sein, oder aber auch im Rahmen einer Kotransformation eingeführt werden. In einer weiteren bevorzugten Ausführungsform kann die Expression einer ε-Cyclase durch Nukleotidsequenzen inhibiert werden, die komplementär zu der regulatorischen
Region eines ε-Cyclase-Gens (z.B. einem ε-Cyclase Promotor und/oder Enhancer) sind und triple-helikale Strukturen mit der dortigen DNA-Doppelhelix ausbilden, so dass die Transkription des ε-Cyclase-Gens reduziert wird. Entsprechende Verfahren sind beschrieben (Helene C (1991) Anticancer Drug Res 6(6):569-84; Helene C et al.
(1992) Ann NY Acad Sei 660:27-36; Mäher LJ (1992) Bioassays 14(12):807- 815).
In einer weiteren Ausführungsform kann die ε-Cyclase-antisenseRNA eine α-anomere Nukleinsäure sein. Derartige α-anomere Nukleinsäuremoieküle bilden spezifische doppelsträngige Hybride mit komplementärer RNA in denen, - im Unterschied zu den konventionellen ß-Nukleinsäuren - die beiden Stränge parallel zueinander verlaufen (Gautier C et al. (1987) Nucleic Acids Res 15:6625-6641 ).
c) Einbringen einer ε-Cyclase-antisenseRNA kombiniert mit einem Ribozym
Vorteilhaft kann die oben beschriebene antisense-Strategie mit einem Ribozym- Verfahren gekoppelt werden. Katalytische RNA-Moleküle oder Ribozyme können an jede beliebige Ziel-RNA angepasst werden und spalten das Phosphodiester-Gerüst an spezifischen Positionen, wodurch die Ziel-RNA funktionell deaktiviert wird (Tanner NK (1999) FEMS Microbiol Rev 23(3):257-275). Das Ribozym wird dadurch nicht selber modifiziert, sondern ist in der Lage, weitere Ziel-RNA-Moleküle analog zu spalten, wodurch es die Eigenschaften eines Enzyms erhält. Der Einbau von Ribozymsequenzen in "antisense"-RNAs verleiht eben diesen "antisense"-RNAs diese enzymähnliche, RNA-spaltende Eigenschaft und steigert so deren Effizienz bei der Inaktivierung der Ziel-RNA. Die Herstellung und Verwendung entsprechender Ribozym-"antisense"- RNA-Moleküle ist beschrieben (u.a. bei Haseloff et al. (1988) Nature 334: 585-591); Haselhoff und Gerlach (1988) Nature 334:585-591 ; Steinecke P et al. (1992) EMBO J 11 (4): 1525-1530; de Feyter R et al. (1996) Mol Gen Genet. 250(3):329-338).
Auf diese Art können Ribozyme (z.B. "Hammerhead"-Ribozyme; Haselhoff und Gerlach (1988) Nature 334:585-591) verwendet werden, um die mRNA eines zu vermindernden ε-Cyclases katalytisch zu spalten und so die Translation zu verhindern. Die Ribo- zym-Technologie kann die Effizienz einer antisense-Strategie erhöhen. Verfahren zur Expression von Ribozymen zur Verminderung bestimmter Proteine sind beschrieben in (EP 0 291 533, EP 0 321 201, EP 0 360 257). In pflanzlichen Zellen ist eine Ribozym- Expression ebenfalls beschrieben (Steinecke P et al. (1992) EMBO J 11 (4): 1525-1530; de Feyter R et al. (1996) Mol Gen Genet. 250(3):329-338). Geeignete Zielsequenzen und Ribozyme können zum Beispiel wie bei "Steinecke P, Ribozymes, Methods in Cell Biology 50, Galbraith et al. eds, Academic Press, Inc. (1995), S. 449-460" be- schrieben, durch Sekundärstrukturberechnungen von Ribozym- und Ziel-RNA sowie durch deren Interaktion bestimmt werden (Bayley CC et al. (1992) Plant Mol Biol. 18(2):353-361; Lloyd AM and Davis RW et al. (1994) Mol Gen Genet. 242(6):653-657). Beispielsweise können Derivate der Tetrahymena L-19 IVS RNA konstruiert werden, die komplementäre Bereiche zu der mRNA des zu supprimierenden ε-Cyclases aufweisen (siehe auch US 4,987,071 und US 5,116,742). Alternativ können solche Ribozyme auch über einen Selektionsprozess aus einer Bibliothek diverser Ribozyme identifiziert werden (Bartel D und Szostak JW (1993) Science 261 :1411-1418).
d) Einbringen einer sense-Ribonukleinsäuresequenz einer ε-Cyclase (ε-Cyclase- senseRNA) zur Induktion einer Kosuppression
Die Expression einer ε-Cyclase Ribonukleinsäuresequenz (oder eines Teils derselben) in sense-Orientierung kann zu einer Kosuppression des entsprechen- den ε-Cyclase-Gens führen. Die Expression von sense-RNA mit Homologie zu einem endogenen ε-Cyclasegen kann die Expression desselben vermindern oder ausschalten, ähnlich wie es für antisense Ansätze beschrieben wurde (Jorgensen et al. (1996) Plant Mol Biol 31 (5):957-973; Goring et al. (1991) Proc Natl Acad Sei USA 88:1770- 1774; Smith et al. (1990) Mol Gen Genet 224:447-481 ; Napoli et al. (1990) Plant Cell 2:279-289; Van der Krol et al. (1990) Plant Cell 2:291-99). Dabei kann das eingeführte Konstrukt das zu vermindernde, homologe Gen ganz oder nur teilweise repräsentieren. Die Möglichkeit zur Translation ist nicht erforderlich. Die Anwendung dieser Technologie auf Pflanzen ist beschrieben (z.B. Napoli et al. (1990) Plant Cell 2:279-289; in US 5,034,323.
Bevorzugt wird die Kosuppression unter Verwendung einer Sequenz realisiert, die im wesentlichen identisch ist zu zumindest einem Teil der Nukleinsäuresequenz kodierend für eine ε-Cyclase, beispielsweise der Nukleinsäuresequenz gemäß SEQ ID NO: 38. Bevorzugt ist die ε-Cyclase-senseRNA so gewählt, dass es nicht zu einer Translation der ε-Cyclase oder eines Teils desselben kommen kann. Dazu kann beispielsweise der δ'-untranslatierte oder 3'-untranslatierte Bereich gewählt oder aber das ATG- Startkodon deletiert oder mutiert werden.
e) Einbringen von DNA-oder Protein-bindende Faktoren gegen ε-Cyclase Gene, - RNAs oder Proteine
Eine Verminderung einer ε-Cyclase Expression ist auch mit spezifischen DNA- bindenden Faktoren z.B. mit Faktoren vom Typ der Zinkfingertranskriptionsfaktoren möglich. Diese Faktoren lagern sich an die genomische Sequenz des endoge- nen Zielgens, bevorzugt in den regulatorischen Bereichen, an und bewirken eine Ver- minderung der Expression. Entsprechende Verfahren zur Herstellung entsprechender Faktoren sind beschrieben (Dreier B et al. (2001) J Biol Chem 276(31 ):29466-78; Dreier B et al. (2000) J Mol Biol 303(4) :489-502; Beerli RR et al. (2000) Proc Natl Acad Sei USA 97 (4): 1495-1500; Beerli RR et al. (2000) J Biol Chem 275(42):32617-32627; Segal DJ and Barbas CF 3rd. (2000) Curr Opin Chem Biol 4(1):34-39; Kang JS and Kim JS (2000) J Biol Chem 275(12):8742-8748; Beerli RR et al. (1998) Proc Natl Acad Sei USA 95(25):14628- 14633; Kim JS et al. (1997) Proc Natl Acad Sei USA 94(8):3616 -3620; Klug A (1999) J Mol Biol 293(2):215-218; Tsai SY et al. (1998) Adv Drug Deliv Rev 30(1-3):23-31 ; Mapp AK et al. (2000) Proc Natl Acad Sei USA 97(8):3930-3935; Sharrocks AD et al. (1997) Int J Biochem Cell Biol 29(12):1371-1387; Zhang L et al. (2000) J Biol Chem 275(43): 33850-33860).
Die Selektion dieser Faktoren kann unter Verwendung eines beliebigen Stückes eines ε-Cyciase-Gens erfolgen. Bevorzugt liegt dieser Abschnitt im Bereich der Promotorre- gion. Für eine Genunterdrückung kann er aber auch im Bereich der kodierenden Exons oder Introns liegen.
Ferner können Faktoren in eine Zelle eingebracht werden, die die ε-Cyclase selber inhibieren. Diese proteinbindenden Faktoren können z.B. Aptamere (Famulok M und Mayer G (1999) Curr Top Microbiol Immunol 243: 123-36) oder Antikörper bzw. Antikörperfragmente oder einzelkettige Antikörper sein. Die Gewinnung dieser Faktoren ist beschrieben (Owen M et al. (1992) Biotechnology (N Y) 10(7):790-794; Franken E et al. (1997) Curr Opin Biotechnol 8(4):411-416; Whitelam (1996) Trend Plant Sei 1 :286- 272).
f) Einbringen von den ε-Cyclase RNA-Abbau bewirkenden viralen Nukleinsäuresequenzen und Expressionskonstrukten
Die ε-Cyclase Expression kann effektiv auch durch Induktion des spezifischen ε-Cyclase RNA-Abbaus durch die Pflanze mit Hilfe eines viralen Expressionssystems (Amplikon; Angell SM et al. (1999) Plant J 20(3):357-362) realisiert werden. Diese Systeme - auch als "VIGS" (viral induced gene silencing) bezeichnet - bringen Nukleinsäuresequenzen mit Homologie zu dem Transkript einer zu vermindernden ε-Cyclase mittels viraler Vektoren in die Pflanze ein. Die Transkription wird sodann - vermutlich mediiert durch pflanzliche Abwehrmechanismen gegen Viren - abgeschaltet. Entsprechende Techniken und Verfahren sind beschrieben (Ratcliff F et al. (2001) Plant J 25(2):237-45; Fagard M und Vaucheret H (2000) Plant Mol Biol 43(2-3):285-93; Anan- dalakshmi R et al. (1998) Proc Natl Acad Sei USA 95(22): 13079-84; Ruiz MT (1998) Plant Cell 10(6):937-46). Bevorzugt wird die VIGS-vermittelte Verminderung unter Verwendung einer Sequenz realisiert, die im wesentlichen identisch ist zu zumindest einem Teil der Nukleinsäuresequenz kodierend für ein ε-Cyclase, beispielsweise der Nukleinsäuresequenz gemäß SEQ ID NO: 1 .
g) Einbringen von Konstrukten zur Erzeugung eines Funktionsverlustes oder einer Funktionsminderung an ε-Cyclase-Genen
Dem Fachmann sind zahlreiche Verfahren bekannt, wie genomische Sequenzen ge- zielt modifiziert werden können. Dazu zählen insbesondere Verfahren wie die Erzeugung von Knockout-Mutanten mittels gezielter homologen Rekombination z.B. durch Generierung von Stopp-Kodons, Verschiebungen im Leseraster etc. (Hohn B und Puchta H (1999) Proc Natl Acad Sei USA 96:8321-8323) oder die gezielte Deletion oder Inversion von Sequenzen mittels z.B. sequenzspezifischer Rekombinasen oder Nukleasen (s.u.)
Die Verminderung der ε-Cyclase-Menge, -Funktion und/oder
-Aktivität kann auch durch eine gezielte Insertion von Nukleinsäuresequenzen (z.B. der im Rahmen der erfindungsgemäßen Verfahrens zu insertierenden Nukleinsäurese- quenz) in die Sequenz kodierend für eine ε-Cyclase (z.B. mittels intermolekularer homologer Rekombination) realisiert werden. Im Rahmen dieser Ausführungsform verwendet man bevorzugt ein DNA-Konstrukt, das zumindest einen Teil der Sequenz eines ε-Cyclasegens oder benachbarter Sequenzen umfasst, und so mit diesen in der Zielzelle gezielt rekombinieren kann, so dass durch eine Deletion, Addition oder Substi- tution mindestens eines Nukleotids das ε-Cyclase-Gen so verändert wird, dass die Funktionalität des ε-Cyclase-Gens reduziert oder gänzlich aufgehoben wird. Die Veränderung kann auch die regulativen Elemente (z.B. den Promotor) des ε-Cyclase- Gens betreffen, so dass die kodierende Sequenz unverändert bleibt, eine Expression (Transkription und/oder Translation) jedoch unterbleibt und reduziert wird. Bei der kon- ventionellen homologen Rekombination ist die zu insertierende Sequenz an ihrem 5'- und/oder 3'-Ende von weiteren Nukleinsäuresequenzen (A1 bzw. B') flankiert, die eine ausreichende Länge und Homologie zu entsprechenden Sequenzen des ε-Cyclase- Gens (A bzw. B) für die Ermöglichung der homologen Rekombination aufweisen. Die Länge liegt in der Regel in einem Bereich von mehreren hundert Basen bis zu mehre- ren Kilobasen (Thomas KR und Capecchi MR (1987) Cell 51 :503; Strepp et al. (1998) Proc Natl Acad Sei USA 95(8):4368-4373). Für die homologe Rekombination wird die pflanzliche Zelle mit dem Rekombinationskonstrukt unter Verwendung der unten beschriebenen Verfahren transformiert und erfolgreich rekombinierte Klone basierend auf der infolge inaktivierten ε-Cyclase selektioniert. In einer weiteren bevorzugten Ausführungsform wird die Effizienz der Rekombination gesteigert durch Kombination mit Verfahren, die die homologe Rekombination fördern. Solche Verfahren sind beschrieben und umfassen beispielhaft die Expression von Proteinen wie RecA oder die Behandlung mit PARP-Inhibitoren. Es konnte gezeigt wer- den, dass die intrachromosomale homologe Rekombination in Tabakpflanzen durch die Verwendung von PARP-Inhibitoren erhöht werden kann (Puchta H et al. (1995) Plant J 7:203-210). Durch den Einsatz dieser Inhibitoren kann die Rate der homologen Rekombination in den Rekombinationskonstrukten nach Induktion des sequenzspezifischen DNA-Doppelstrangbruches und damit die Effizienz der Deletion der Transgen- Sequenzen weiter erhöht werden. Verschiedene PARP Inhibitoren können dabei zum Einsatz kommen. Bevorzugt umfasst sind Inhibitoren wie 3-Aminobenzamid, 8- Hydroxy-2-methyiquinazolin-4-on (NU1025), 1,11 b-Dihydro-[2H]benzopyrano- [4,3,2-de]isoquinolin-3-on (GPI 6150), 5-Aminoisoquinolinon, 3,4-Dihydro-5-[4-(1- piperidinyl)butoxy]-1(2H)-isoquinolinon oder die in WO 00/26192, WO 00/29384, WO 00/32579, WO 00/64878, WO 00/68206, WO 00/67734, WO 01/23386 und WO 01/23390 beschriebenen Substanzen.
Weitere geeignete Methoden sind die Einführung von Nonsense-Mutationen in endogene Markerprotein Gene zum Beispiel mittels Einführung von RNA/DNA- Oligonukleotiden in die Pflanze (Zhu et al. (2000) Nat Biotechnol 18(5):555-558) oder die Generierung von Knockout-Mutanten mit Hilfe von z.B. T-DNA-Mutagenese (Koncz et al., Plant Mol. Biol. 1992, 20(5):963-976). Punktmutationen können auch mittels DNA-RNA Hybriden erzeugt werden, die auch als "chimeraplasty" bekannt sind (Cole- Strauss et al. (1999) Nucl Acids Res 27(5): 1323-1330; Kmiec (1999) Gene therapy American Scientist 87(3):240-247).
Die Methoden der dsRNAi, der Kosuppression mittels sense-RNA und der "VIGS" ("vi- rus induced gene silencing") werden auch als "post-transcriptional gene silencing" (PTGS) oder transcriptional gene silencing" (TGS) bezeichnet. PTGS/TGS-Verfahren sind besonders vorteilhaft, weil die Anforderungen an die Homologie zwischen dem zu vermindernden Markerprotein-Gen und der transgen exprimierten sense- oder dsRNA-Nukleinsäuresequenz geringer sind als beispielsweise bei einem klassischen antisense-Ansatz. So kann man unter Verwendung der Markerprotein- Nukleinsäuresequenzen aus einer Art auch die Expression von homologen Markerpro- tein-Proteinen in anderen Arten effektiv vermindern, ohne, dass die Isolierung und
Strukturaufklärung der dort vorkommenden Markerprotein-Homologen zwingend erforderlich wäre. Dies erleichtert erheblich den Arbeitsaufwand. In einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens erfolgt die Reduzierung der ε-Cyclase-Aktivität gegenüber dem Wildtyp durch:
a) Einbringen mindestens einer doppelsträngigen ε-Cyclase Ribonukleinsäuresequenz oder einer deren Expression gewährleistenden Expressionskassette oder Expressionskassetten in Pflanzen und/oder
b) Einbringen mindestens einer ε-Cyclase antisense-Ribonukleinsäuresequenzen oder einer deren Expression gewährleistenden Expressionskassette in Pflanzen.
In einer ganz besonders bevorzugten Ausführungsform erfolgt die Reduzierung der ε- Cyclase-Aktivität gegenüber dem Wildtyp durch Einbringen mindestens einer doppelsträngigen ε-Cyclase Ribonukleinsäuresequenz oder einer deren Expression gewährleistenden Expressionskassette oder Expressionskassetten in Pflanzen.
In einer bevorzugten Ausführungsform werden genetisch veränderte Pflanzen verwendet, die in Blüten die geringste Expressionsrate einer ε-Cyclase aufweisen.
Dies wird bevorzugt dadurch erreicht, dass die Reduzierung der ε-Cyclase-Aktivität blütenspezifisch, besonders bevorzugt blütenblattspezifisch erfolgt.
In der vorstehend beschriebenen, besonders bevorzugten Ausführungsform wird dies dadurch erreicht, dass die Transkription der ε-Cyclase-dsRNA-Sequenzen unter Kontrolle eines blütenspezifischen Promotors oder noch bevorzugter unter Kontrolle eines blütenblattspezifischen Promotors erfolgt.
Besonders bevorzugte Pflanzen sind Pflanzen ausgewählt aus den Familien Ama- ranthaceae, Amaryllidaceae, Apocynaceae, Asteraceae, Balsaminaceae, Begonia- ceae, Berberidaceae, Brassicaceae, Cannabaceae, Caprifoliaceae, Caryophyllaceae, Chenopodiaceae, Compositae, Cucurbitaceae, Crueiferae, Euphorbiaceae, Fabaceae, Gentianaceae, Geraniaceae, Graminae, llliaceae, Labiatae, Lamiaceae, Leguminosae, Liliaceae, Linaceae, Lobeliaceae, Malvaceae, Oleaceae, Orchidaceae, Papaveraceae , Plumbaginaceae, Poaceae, Polemoniaceae, Primulaceae, Ranunculaceae, Rosaceae, Rubiaceae, Scrophulariaceae, Solanaceae, Tropaeolaceae, Umbelliferae, Verbana- ceae, Vitaceae und Violaceae.
Ganz besonders bevorzugte Pflanzen sind ausgewählt aus der Gruppe der Pflanzengattungen Marigold, Tagetes erreeta, Tagetes patula, Acacia, Aconitum, Adonis, Arni- ca, Aquilegia, Aster, Astragalus, Bignonia, Calendula, Caltha, Campanula, Canna, Centaurea, Cheiranthus, Chrysanthemum, Citrus, Crepis, Crocus, Curcurbita, Cytisus, Delonia, Delphinium, Dianthus, Dimorphotheca, Doronicum, Eschscholtzia, Forsythia, Fremontia, Gazania, Gelsemium, Genista, Gentiana, Geranium, Gerbera, Geum, Gre- villea, Helenium, Helianthus, Hepatica, Heracleum, Hisbiscus, Heliopsis, Hypericum, Hypochoeris, Impatiens, Iris, Jacaranda, Kenia, Laburnum, Lathyrus, Leontodon, Lili- um, Linum, Lotus, Lycopersicon, Lysimachia, Maratia, Medicago, Mimulus, Narcissus, Oenothera, Osmanthus, Petunia, Photinia, Physalis, Phyteuma, Potentilla, Pyracantha, Ranunculus, Rhododendron, Rosa, Rudbeckia, Senecio, Silene, Silphium, Sinapsis, Sorbus, Spartium, Tecoma, Torenia, Tragopogon, Trollius, Tropaeolum, Tulipa, Tussi- lago, Ulex, Viola oder Zinnia, besonders bevorzugt ausgewählt aus der Gruppe der Pflanzengattungen Marigold, Tagetes erecta, Tagetes patula, Lycopersicon, Rosa,
Calendula, Physalis, Medicago, Helianthus, Chrysanthemum, Aster, Tulipa, Narcissus, Petunia, Geranium, Tropaeolum oder Adonis.
Im erfindungsgemäßen Verfahren zur Hersteilung von Ketocarotinoiden wird vorzugs- weise dem Kultivierungsschritt der genetisch veränderten Organismen ein Ernten der Organismen und weiter bevorzugt zusätzlich ein Isolieren von Ketocarotinoiden aus den Organismen angeschlossen.
Das Ernten der Organismen erfolgt in an sich bekannter Weise dem jeweiligen Orga- nismus entsprechend. Mikroorganismen, wie Bakterien, Hefen, Algen oder Pilze oder Pflanzenzellen, die durch Fermentation in flüßigen Nährmedien kultiviert werden, können beispielsweise durch Zentrifugieren, Dekantieren oder Filtrieren abgetrennt werden. Pflanzen werden in an sich bekannter Weise auf Nährböden gezogen und entsprechend geerntet.
Die Kultivierung der genetisch veränderten Mikroorganismen erfolgt bevorzugt in Gegenwart von Sauerstoff bei einer Kultivierungstemperatur von mindestens etwa 20°C, wie z.B. 20°C bis 40 °C, und einem pH-Wert von etwa 6 bis 9. Bei genetisch veränderten Mikroorganismen erfolgt vorzugsweise zunächst die Kultivierung der Mikroorga- nismen in Gegenwart von Sauerstoff und in einem Komplexmedium, wie z.B. TB- oder LB- Medium bei einer Kultivierungstemperatur von etwa 20 °C oder mehr, und einem pH-Wert von etwa 6 bis 9, bis eine ausreichende Zelldichte erreicht ist. Um die Oxidati- onsreaktion besser steuern zu können, bevorzugt man die Verwendung eines induzierbaren Promotors. Die Kultivierung wird nach Induktion der Ketolaseexpression in Ge- genwart von Sauerstoff, z.B. 12 Stunden bis 3 Tage, fortgesetzt.
Die Isolierung der Ketocarotinoide aus der geernteten Biomasse erfolgt in an sich bekannter Weise, beispielsweise durch Extraktion und gegebenenfalls weiterer chemische oder physikalischer Reinigungsprozesse, wie beispielsweise Fällungsmethoden, Kristallographie, thermische Trennverfahren, wie Rektifizierverfahren oder physikali- sehe Trennverfahren, wie beispielsweise Chromatographie.
Wie nachstehend erwähnt, können die Ketocarotinoide in den erfindungsgemäßen, genetisch veränderten Pflanzen vorzugsweise in verschiedenen Pflanzengeweben, wie beispielsweise Samen, Blätter, Früchte, Blüten, insbesondere in Blütenblättern spezifisch hergestellt werden.
Die Isolierung von Ketocarotinoiden aus den geernteten Blütenblättern erfolgt in an sich bekannter Weise, beispielsweise durch Trocknung und anschließender Extraktion und gegebenenfalls weiterer chemischer oder physikalischer Reinigungsprozesse, wie beispielsweise Fällungsmethoden, Kristallographie, thermische Trennverfahren, wie Rektifizierverfahren oder physikalische Trennverfahren, wie beispielsweise Chromatographie. Die Isolierung von Ketocarotinoiden aus den Blütenblättern erfolgt beispielsweise bevorzugt durch organische Lösungsmittel wie Aceton, Hexan, Ether oder tert.-Methylbutyiether.
Weitere Isolierverfahren von Ketocarotinoiden, insbesondere aus Blütenblättern, sind beispielsweise in Egger und Kleinig (Phytochemistry (1967) 6, 437-440) und Egger (Phytochemistry (1965) 4, 609-618) beschrieben.
Vorzugsweise sind die Ketocarotinoide ausgewählt aus der Gruppe Astaxanthin, Canthaxanthin, Echinenon, 3-Hydroxyechinenon, 3'-Hydroxyechinenon, Adonirubin und Adonixanthin.
Ein besonders bevorzugtes Ketocarotinoid ist Astaxanthin.
Je nach verwendetem Organismus fallen die Ketocarotinoide in freier Form oder als Fettsäureester oder als Diglucoside an.
In Blütenblättern von Pflanzen fallen die Ketocarofinlide im erfindungsgemäßen Verfahren in Form ihrer Mono- oder Diester mit Fettsäuren an. Einige nachgewiesene Fettsäuren sind z.B. Myristinsäure, Palmitinsäure, Stearinsäure, Ölsäure, Linolensäure, und Laurinsäure (Kamata und Simpson (1987) Comp. Biochem. Physiol. Vol. 86B(3), 587-591).
Die Herstellung der Ketocarotinoide kann in der ganzen Pflanze oder in einer bevorzugten Ausführungsform spezifisch in Pflanzengeweben, die Chromoplasten enthalten, erfolgen. Bevorzugte Pflanzengewebe sind beispielsweise Wurzeln, Samen, Blätter, Früchte, Blüten und insbesondere Nektarien und Blütenblätter, die auch Petalen be- zeichnet werden.
In einer weiteren, besonderes bevorzugten Ausführungsform der erfindungsgemäßen Verfahrens verwendet man genetisch veränderte Pflanzen, die in Früchten die höchste Expressionsrate einer Ketolase aufweisen.
Vorzugsweise wird dies dadurch erreicht, dass die Genexpression der Ketolase unter Kontrolle eines fruchtspezifischen Promotors erfolgt. Beispielsweise werden dazu die vorstehend beschriebenen Nukleinsäuren, wie nachstehend ausführlich beschrieben, in einem Nukleinsäurekonstrukt funktionell verknüpft mit einem fruchtspezifischen Promotor in die Pflanze eingebracht.
In einer weiteren, besonderes bevorzugten, Ausführungsform der erfindungsgemäßen Verfahrens verwendet man genetisch veränderte Pflanzen, die in Samen die höchste Expressionsrate einer Ketolase aufweisen.
Vorzugsweise wird dies dadurch erreicht, dass die Genexpression der Ketolase unter Kontrolle eines samenspezifischen Promotors erfolgt. Beispielsweise werden dazu die vorstehend beschriebenen Nukleinsäuren, wie nachstehend ausführlich beschrieben, in einem Nukleinsäurekonstrukt funktionell verknüpft mit einem samenspezifischen Promotor in die Pflanze eingebracht.
Das Targeting in die Chromplasten erfolgt durch ein funktionell verknüpftes plastidäres Transitpeptid.
Im folgenden wird exemplarisch die Herstellung genetisch veränderter Pflanzen mit erhöhter oder verursachter Ketolase-Aktivität beschrieben, wobei die veränderte Ketolase-Aktivität durch eine Ketolase verursacht wird, ausgewählt aus der Gruppe A Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 80 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist, B Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 10 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 90 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 10 aufweist, . C Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 12 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 90 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 12 aufweist oder
D Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 14 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 50 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 14 aufweist.
Die Erhöhung weiterer Aktivitäten, wie beispielsweise der ß-Cyclase-Aktivität, Hydroxylase-Aktivität, HMG-CoA-Reduktase-Aktivität, (E)-4-Hydroxy-3-Methylbut-2-enyl- Diphosphat-Reduktase-Aktivität, 1 -Deoxy-D-Xylose-5-Phosphat-Synthase-Aktivität, 1 - Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase-Aktivität, Isopentenyl-Diphosphat-Δ- Isomerase-Aktivität, Geranyl-Diphosphat-Synthase-Aktivität, Farnesyl-Diphosphat-
Synthase-Aktivität, Geranyl-geranyl-Diphosphat-Synthase-Aktivität, Phytoen-Synthase- Aktivität, Phytoen-Desaturase-Aktivität, Zeta-Carotin-Desaturase-Aktivität, crtlSO- Aktivität, FtsZ-Aktivität und/oder MinD-Aktivität kann analog unter Verwendung der entsprechenden Effektgene erfolgen.
Die Transformation kann bei den Kombinationen von genetischen Veränderungen einzeln oder durch Mehrfachkonstrukte erfolgen.
Die Herstellung der transgenen Pflanzen erfolgt vorzugsweise durch Transformation der Ausgangspflanzen, mit einem Nukleinsäurekonstrukt, das mindestens eins der vorstehend beschriebenen Effektgene enthält, die mit einem oder mehreren Regulationssignalen funktionell verknüpft sind, die die Transkription und Translation in Pflanzen gewährleisten.
Diese Nukleinsäurekonstrukte, in denen die Effektgene mit einem oder mehreren Regulationssignalen funktionell verknüpft sind, die die Transkription und Translation in Pflanzen gewährleisten, werden im folgenden auch Expressionskassetten genannt.
Vorzugsweise enthalten die Regulationssignale einen oder mehrere Promotoren, die die Transkription und Translation in Pflanzen gewährleisten.
Die Expressionskassetten beinhalten Regulationssignale, also regulative Nukleinsäuresequenzen, welche die Expression der Effektgene in der Wirtszelle steuern. Gemäß einer bevorzugten Ausführungsform umfasst eine Expressionskassette stromaufwärts, d.h. am 5'-Ende der kodierenden Sequenz, einen Promotor und stromabwärts, d.h. am 3'-Ende, ein Polyadenylierungssignal und gegebenenfalls weitere regulatorische Elemente, welche mit der dazwischenliegenden kodierenden Sequenz des Effektgens für mindestens eines der vorstehend beschriebenen Gene operativ verknüpft sind. Unter einer operativen Verknüpfung versteht man die sequenzielle Anordnung von Promotor, kodierender Sequenz, Terminator und ggf. weiterer regulativer Elemente derart, das jedes der regulativen Elemente seine Funktion bei der Expression der kodierenden Sequenz bestimmungsgemäß erfüllen kann.
Im folgenden werden beispielhaft die bevorzugten Nukleinsäurekonstrukte, Expressi- onskassetten und Vektoren für Pflanzen und Verfahren zur Herstellung von transgenen Pflanzen,, sowie die transgenen Pflanzen selbst beschrieben.
Die zur operativen Verknüpfung bevorzugten, aber nicht darauf beschränkten Sequenzen, sind Targeting-Sequenzen zur Gewährleistung der subzellulären Lokalisation im Apoplasten, in der Vakuole, in Piastiden, im Mitochondrium, im Endoplasmatischen Retikuium (ER), im Zellkern, in Ölkörperchen oder anderen Kompartimenten und Translationsverstärkern wie die 5'-Führungssequenz aus dem Tabak-Mosaik-Virus (Gallie et al., Nucl. Acids Res. 15 (1987), 8693 -8711).
Als Promotor der Expressionskassette ist grundsätzlich jeder Promotor geeignet, der die Expression von Fremdgenen in Pflanzen steuern kann.
"Konstitutiver" Promotor meint solche Promotoren, die eine Expression in zahlreichen, bevorzugt allen, Geweben über einen größeren Zeitraum der Pflanzenentwicklung, bevorzugt zu allen Zeitpunkten der Pflanzenentwicklung, gewährleisten.
Vorzugsweise verwendet man insbesondere einen pflanzlichen Promotor oder einen Promόtor, der einem Pflanzenvirus entstammt. Insbesondere bevorzugt ist der Promotor des 35S-Transkript.es des CaMV Blumenkohlmosaikvirus (Franck et al. (1980) Cell 21 :285-294; Odell et al. (1985) Nature 313:810-812; Shewmaker et al. (1985) Virology 140:281-288; Gardner et al. (1986) Plant Mol Biol 6:221-228), der 19S CaMV Promotor (US 5,352,605; WO 84/02913; Benfey et al. (1989) EMBO J 8:2195-2202), den Triose- Phosphat Translokator (TPT) Promotor aus Arabidopsis thaliana Acc.-No. AB006698 , Basenpaar 53242 bis 55281 ; das Gen beginnend ab bp 55282 ist mit "phos- phate/triose-phosphate translocator" annotiert, oder den 34S Promotor aus Figwort mosaic virus Acc.-No. X16673, Basenpaar 1 bis 554.
Ein weiterer geeigneter konstitutiver Promotor ist der pds Promotor (Pecker et al. (1992) Proc. Natl. Acad. Sei USA 89: 4962-4966) oder der "Rubisco small subunit (SSU)"-Promotor (US 4,962,028), der LeguminB-Promotor (GenBank Acc.-Nr. X03677), der Promotor der Nopalinsynthase aus Agrobacterium, der TR- Doppelpromotor, der OCS (Octopin Synthase) Promotor aus Agrobacterium, der Ubi- quitin Promotor (Holtorf S et al. (1995) Plant Mol Biol 29:637-649), der Ubiquitin 1 Promotor (Christensen et al. (1992) Plant Mol Biol 18:675-689; Bruce et al. (1989) Proc Natl Acad Sei USA 86:9692-9696), der Smas Promotor, der Cinnamylalkoholdehydro- genase-Promotor (US 5,683,439), die Promotoren der vakuolärer ATPase Untereinheiten oder der Promotor eines prolinreichen Proteins aus Weizen (WO 91/13991), der Pnit-Promotor (Y07648.L, Hillebrand et al. (1998), Plant. Mol. Biol. 36, 89-99, Hille- brand et al. (1996), Gene, 170, 197-200) sowie weitere Promotoren von Genen, deren konstitutive Expression in Pflanzen dem Fachmann bekannt ist.
Die Expressionskassetten können auch einen chemisch induzierbaren Promotor enthalten (Übersichtsartikel: Gatz et al. (1997) Annu Rev Plant Physiol Plant Mol Biol 48:89-108), durch den die Expression der Effektgene in der Pflanze zu einem bestimm- ten Zeitpunkt gesteuert werden kann. Derartige Promotoren, wie z.B. der PRP1 Promotor (Ward et al. (1993) Plant Mol Biol 22:361-366), ein durch Salicylsäure induzierbarer Promotor (WO 95/19443), ein durch Benzolsulfonamid-induzierbarer Promotor (EP 0 388 186), ein durch Tetrazyklin-induzierbarer Promotor (Gatz et al. (1992) Plant J 2:397-404), ein durch Abscisinsäure induzierbarer Promotor (EP 0 335 528) bzw. ein durch Ethanol- oder Cyclohexanon-induzierbarer Promotor (WO 93/21334) können ebenfalls verwendet werden.
Ferner sind Promotoren bevorzugt, die durch biotischen oder abiotischen Stress induziert werden wie beispielsweise der pathogen-induzierbare Promotor des PRP1-Gens (Ward et al. (1993) Plant Mol Biol 22:361-366), der hitzeinduzierbare hsp70- oder hsp80-Promotor aus Tomate (US 5,187,267), der kälteinduzierbare alpha-Amylase Promotor aus der Kartoffel (WO 96/12814), der licht-induzierbare PPDK Promotor oder der verwundungsinduzierte pinll-Promotor (EP375091).
Pathogen-induzierbare Promotoren umfassen die von Genen, die infolge eines Patho- genbefalls induziert werden wie beispielsweise Gene von PR-Proteinen, SAR- Proteinen, b-1 ,3-Glucanase, Chitinase usw. (beispielsweise Redolfi et al. (1983) Neth J Plant Pathol 89:245-254; Uknes, et al. (1992) The Plant Cell4:645-656; Van Loon
(1985) Plant Mol Viral 4:111-116; Marineau et al. (1987) Plant Mol Biol 9:335-342; Mat- ton et al. (1987) Molecular Plant-Microbe Interactions 2:325-342; Somssich et al.
(1986) Proc Natl Acad Sei USA 83:2427-2430; Somssich et al. (1988) Mol Gen Genet- ics 2:93-98; Chen et al. (1996) Plant J 10:955-966; Zhang and Sing (1994) Proc Natl Acad Sei USA 91 :2507-2511 ; Warner, et al. (1993) Plant J 3:191-201; Siebertz et al. (1989) Plant Cell 1 :961-968(1989). Umfasst sind auch verwundungsinduzierbare Promotoren wie der des pinll-Gens (Ryan (1990) Ann Rev Phytopath 28:425-449; Duan et al. (1996) Nat Biotech 14:494-498), des wunl und wun2-Gens (US 5,428,148), des winl- und win2-Gens (Stanford et al. (1989) Mol Gen Genet 215:200-208), des Systemin-Gens (McGurl et al. (1992) Science 225: 1570-1573), des WIP1 -Gens (Rohmeier et al. (1993) Plant Mol Biol
22:783-792; Ekelkamp et al. (1993) FEBS Letters 323:73-76), des MPI-Gens (Corderok et al. (1994) The Plant J 6(2):141-150) und dergleichen.
Weitere geeignete Promotoren sind beispielsweise fruchtreifung-spezifische Promoto- ren, wie beispielsweise der fruchtreifung-spezifische Promotor aus Tomate (WO
94/21794, EP 409 625). Entwicklungsabhängige Promotoren schließt zum Teil die gewebespezifischen Promotoren ein, da die Ausbildung einzelner Gewebe naturgemäß entwicklungsabhängig erfolgt.
Weiterhin sind insbesondere solche Promotoren bevorzugt, die die Expression in Geweben oder Pflanzenteilen sicherstellen, in denen beispielsweise die Biosynthese von Ketocarotinoiden bzw. dessen Vorstufen stattfindet. Bevorzugt sind beispielsweise Promotoren mit Spezifitäten für die Antheren, Ovarien, Petalen, Sepalen, Blüten, Blätter, Stengel, Samen und Wurzeln und Kombinationen hieraus.
Knollen-, Speicherwurzel- oder Wurzel-spezifische Promotoren sind beispielsweise der Patatin-Promotor Klasse I (B33) oder der Promotor des Cathepsin D Inhibitors aus Kartoffel.
Blattspezifische Promotoren sind beispielsweise der Promotor der cytosolischen
FBPase aus Kartoffel (WO 97/05900), der SSU Promotor (small subunit) der Rubisco (Ribulose-1 ,5-bisphosphatcarboxylase) oder der ST-LSI Promotor aus Kartoffel (Stockhaus et al. (1989) EMBO J 8:2445-2451).
Blütenspezifische Promotoren sind beispielsweise der Phytoen-Synthase Promotor (WO 92/16635) oder der Promotor des P-rr Gens (WO 98/22593), der AP3 Promotor aus Arabidopsis thaliana (siehe Beispiel 5), der CHRC-Promotor (Chromoplast-specific carotenoid-associated protein (CHRC) gene promoter aus Cucumis sativus Acc.-No. AF099501 , Basenpaar 1 bis 1532), der EPSP_Synthase Promotor (5- enolpyruvylshikimate-3-phosphate synthase gene promoter aus Petunia hybrida, Acc.- No. M37029, Basenpaar 1 bis 1788), der PDS Promotor (Phytoene desaturase gene promoter aus Solanum lycopersicum, Acc.-No. U46919, Basenpaar 1 bis 2078), der DFR-A Promotor (Dihydroflavonol 4-reductase gene A promoter aus Petunia hybrida, Acc.-No. X79723, Basenpaar 32 bis 1902) oder der FBP1 Promotor (Floral Binding Protein 1 gene promoter aus Petunia hybrida, Acc.-No. L10115, Basenpaar 52 bis 1069).
Antheren-spezifische Promotoren sind beispielsweise der 5126- Promotor (US 5,689,049, US 5,689,051), der glob-l Promotor oder der g-Zein Promo- tor.
Samen-spezifische Promotoren sind beispielsweise der ACP05-Promotor (Acyl-carrier- Protein Gen, WO9218634), die Promotoren AtS1 und AtS3 von Arabidopsis (WO 9920775), der LeB4-Promotor von Vicia faba (WO 9729200 und US 06403371), der Napin-Promotor von Brassica napus (US 5608152; EP 255378; US 5420034), der
SBP-Promotor von Vicia faba (DE 9903432) oder die Maispromotoren End1 und End2 (WO 0011177).
Weitere zur Expression in Pflanzen geeignete Promotoren sind beschrieben in Rogers et al. (1987) Meth in Enzymol 153:253-277; Schardl et al. (1987) Gene 61 : 1 -11 und Berger et al. (1989) Proc Natl Acad Sei USA 86:8402-8406).
Besonders bevorzugt im erfindungsgemäßen Verfahren sind konstitutive, samenspezifische, fruchtspezifische, blütenspezifische und insbesondere blütenblattspezifische Promotoren.
Die Herstellung einer Expressionskassette erfolgt vorzugsweise durch Fusion eines geeigneten Promotors mit mindestens einem der vorstehend beschriebenen Effektgene, und vorzugsweise einer zwischen Promotor und Nukleinsäure-Sequenz inserierten Nukleinsäure, die für ein plastidenspezifisches Transitpeptid kodiert, sowie einem Polyadenylierungssignal nach gängigen Rekombinations- und Klonierungstechniken, wie sie beispielsweise in T. Maniatis, E.F. Fritsch und J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989) sowie in T.J. Silhavy, M.L. Berman und L.W. Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) und in Ausubel, F.M. et al., Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley- Interscience (1987), beschrieben sind.
Die vorzugsweise insertierte Nukleinsäuren, kodierend ein plastidäres Transitpeptid, gewährleisten die Lokalisation in Piastiden und insbesondere in Chromoplasten.
Es können auch Expressionskassetten verwendet werden, deren Nukleinsäure- Sequenz für ein Effektgen-Produkt-Fusionsprotein kodiert, wobei ein Teil des Fusionsproteins ein Transitpeptid ist, das die Translokation des Polypeptides steuert. Bevor- zugt sind für die Chromoplasten spezifische Transitpeptide, welche nach Translokation der Effektgene in die Chromoplasten vom Effektgenprodukt-Teil enzymatisch abgespalten werden.
Insbesondere bevorzugt ist das Transitpeptid, das von der plastidären Nicotiana taba- cum Transketolase oder einem anderen Transitpeptid (z.B. dem Transitpeptid der kleinen Untereinheit der Rubisco (rbcS) oder der Ferredoxin NADP Oxidoreduktase als auch der Isopentenylpyrophosphat lsomerase-2) oder dessen funktionellem Äquivalent abgeleitet ist.
Besonders bevorzugt sind Nukleinsäure-Sequenzen von drei Kassetten des Plastiden- Transitpeptids der plastidären Transketolase aus Tabak in drei Leserastern als Kpnl/BamHI Fragmente mit einem ATG-Codon in der Ncol Schnittstelle:
pTP09
Kpnl_GGTACCATGGCGTCTTCTTCTTCTCTCACTCTCTCTCAAGCTATCCTCTCTC GTTCTGTCCCTCGCCATGGCTCTGCCTCTTCTTCTCAACTTTCCCCTTCTTCTCT- CAC I I I I I CCGGCCTTAAATCCAATCCCAATATCACCACCTCCCGCCGCCG- TACTCCTTCCTCCGCCGCCGCCGCCGCCGTCGTAAGGTCACCGGC- GATTCGTGCCTCAGCTGCAACCGAAACCATAGAGAAAACTGAGACTGCGG- GATCC_BamHI
pTP10
Kpnl_GGTACCATGGCGTCTTCTTCTTCTCTCACTCTCTCTCAAGCTATCCTCTCTC GTTCTGTCCCTCGCCATGGCTCTGCCTCTTCTTCTCAACTTTCCCCTTCTTCTCT- CAC I I I I I CCGGCCTTAAATCCAATCCCAATATCACCACCTCCCGCCGCCG- TACTCCTTCCTCCGCCGCCGCCGCCGCCGTCGTAAGGTCACCGGC- GATTCGTGCCTCAGCTGCAACCGAAACCATAGAGAAAACTGAGACTGCGCTG- GATCC_BamHI
pTP11
Kpnl_GGTACCATGGCGTCTTCTTCTTCTCTCACTCTCTCTCAAGCTATCCTCTCTC GTTCTGTCCCTCGCCATGGCTCTGCCTCTTCTTCTCAACTTTCCCCTTCTTCTCT- CAC I I I I I CCGGCCTTAAATCCAATCCCAATATCACCACCTCCCGCCGCCG- TACTCCTTCCTCCGCCGCCGCCGCCGCCGTCGTAAGGTCACCGGC- GATTCGTGCCTCAGCTGCAACCGAAACCATAGAGAAAACTGAGACTGCGGG- GATCC_BamHI Weitere Beispiele für ein plastidäres Transitpeptid sind das Transitpeptid der plastidären Isopentenyl-pyrophosphat lsomerase-2 (IPP-2) aus Arabisopsis thaliana und das Transitpeptid der kleinen Untereinheit der Ribulosebisphosphat Carboxylase (rbcS) aus Erbse (Guerineau, F, Woolston, S, Brooks, L, Mullineaux, P (1988) An expression cas- sette fortargeting foreign proteins into the chloroplasts. Nucl. Acids Res. 16: 11380).
Die erfindungsgemäßen Nukleinsäuren können synthetisch hergestellt oder natürlich gewonnen sein oder eine Mischung aus synthetischen und natürlichen Nukleinsäure- Bestandteilen enthalten, sowie aus verschiedenen heterologen Genabschnitten ver- schiedener Organismen bestehen.
Bevorzugt sind, wie vorstehend beschrieben, synthetische Nukleotid-Sequenzen mit Kodons, die von Pflanzen bevorzugt werden. Diese von Pflanzen bevorzugten Kodons können aus Kodons mit der höchsten Proteinhäufigkeit bestimmt werden, die in den meisten interessanten Pflanzenspezies exprimiert werden.
Bei der Präparation einer Expressionskassette können verschiedene DNA-Fragmente manipuliert werden, um eine Nukleotid-Sequenz zu erhalten, die zweckmäßigerweise in der korrekten Richtung liest und die mit einem korrekten Leseraster ausgestattet ist. Für die Verbindung der DNA-Fragmente miteinander können an die Fragmente Adap- toren oder Linker angesetzt werden.
Zweckmäßigerweise können die Promotor- und die Terminator-Regionen in Transkriptionsrichtung mit einem Linker oder Polylinker, der eine oder mehrere Restriktionsstel- len für die Insertion dieser Sequenz enthält, versehen werden. In der Regel hat der Linker 1 bis 10, meistens 1 bis 8, vorzugsweise 2 bis 6 Restriktionsstellen. Im allgemeinen hat der Linker innerhalb der regulatorischen Bereiche eine Größe von weniger als 100 bp, häufig weniger als 60 bp, mindestens jedoch 5 bp. Der Promotor kann sowohl nativ bzw. homolog als auch fremdartig bzw. heterolog zur Wirtspflanze sein. Die Expressionskassette beinhaltet vorzugsweise in der 5'-3'-Transkriptionsrichtung den Promotor, eine kodierende Nukleinsäuresequenz oder ein Nukleinsäurekonstrukt und eine Region für die transkriptionale Termination. Verschiedene Terminationsbereiche sind gegeneinander beliebig austauschbar.
Beispiele für einen Terminator sind der 35S-Terminator (Guerineau et al. (1988) Nucl Acids Res. 16: 11380), der nos Terminator (Depicker A, Stachel S, Dhaese P, Zambryski P, Goodman HM. Nopaline synthase: transcript mapping and DNA sequen- ce. J Mol Appl Genet. 1982;1 (6):561-73) oder der ocs Terminator (Gielen, J, de Beuckeleer, M, Seurinck, J, Debroek, H, de Greve, H, Lemmers, M, van Montagu, M, Schell, J (1984) The complete sequence of the TL-DNA of the Agrobacterium tumefaciens plasmid pTiAchδ. EMBO J. 3: 20 35-846).
Ferner können Manipulationen, die passende Restriktionsschnittstellen bereitstellen oder die überflüssige DNA oder Restriktionsschnittstellen entfernen, eingesetzt wer- den. Wo Insertionen, Deletionen oder Substitutionen wie z.B. Transitionen und Transversionen in Frage kommen, können in wϊro-Mutagenese, "primer-repair", Restriktion oder Ligation verwendet werden.
Bei geeigneten Manipulationen, wie z.B. Restriktion, "chewing-back" oder Auffüllen von Überhängen für "bluntends", können komplementäre Enden der Fragmente für die Ligation zur Verfügung gestellt werden.
Bevorzugte Polyadenylierungssignale sind pflanzliche Polyadenylierungssignale, vorzugsweise solche, die im wesentlichen T-DNA-Polyadenylierungssignale aus Agrobac- terium tumefaciens, insbesondere des Gens 3 der T-DNA (Octopin Synthase) des Ti- Plasmids pTiACH5 entsprechen (Gielen et al., EMBO J. 3 (1984), 835 ff) oder funktioneile Äquivalente.
Die Übertragung von Fremdgenen in das Genom einer Pflanze wird als Transformation bezeichnet.
Dazu können an sich bekannte Methoden zur Transformation und Regeneration von Pflanzen aus Pflanzengeweben oder Pflanzenzellen zur transienten oder stabilen Transformation genutzt werden.
Geeignete Methoden zur Transformation von Pflanzen sind die Protoplastentransfor- mation durch Polyethylenglykol-induzierte DNA-Aufnahme, das biolistische Verfahren mit der Genkanone - die sogenannte "particle bombardment" Methode, die Elektropo- ration, die Inkubation trockener Embryonen in DNA-haltiger Lösung, die Mikroinjektion und der, vorstehend beschriebene, durch Agrobacterium vermittelte Gentransfer. Die genannten Verfahren sind beispielsweise in B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1 , Engineering and Utilization, herausgegeben von S.D. Kung und R. Wu, Academic Press (1993), 128-143 sowie in Potrykus, Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991), 205-225) beschrieben.
Vorzugsweise wird das zu exprimierende Konstrukt in einen Vektor kloniert, der geeignet ist, Agrobacterium tumefaciens zu transformieren, beispielsweise pBin19 (Bevan et al., Nucl. Acids Res. 12 (1984), 8711) oder besonders bevorzugt pSUN2, pSUN3, pSUN4 oder pSUN5 (WO 02/00900). Mit einem Expressionsplasmid transformierte Agrobakterien können in bekannter Weise zur Transformation von Pflanzen verwendet werden, z.B. indem verwundete Blätter oder Blattstücke in einer Agrobakterienlösung gebadet und anschließend in geeigneten Medien kultiviert werden.
Zur bevorzugten Herstellung von genetisch veränderten Pflanzen, im folgenden auch transgene Pflanzen bezeichnet, wird die fusionierte Expressionskassette in einen Vektor, beispielsweise pBin19 oder insbesondere pSUN5 und pSUN3 kloniert, der geeignet ist, in Agrobacterium tumefaciens transformiert zu werden. Mit einem solchen Vek- tor transformierte Agrobakterien können dann in bekannter Weise zur Transformation von Pflanzen, insbesondere von Kulturpflanzen verwendet werden, indem beispielsweise verwundete Blätter oder Blattstücke in einer Agrobakterienlösung gebadet und anschließend in geeigneten Medien kultiviert werden.
Die Transformation von Pflanzen durch Agrobakterien ist unter anderem bekannt aus F.F. White, Vectors for Gene Transfer in Higher Plants; in Transgenic Plants, Vol. 1 , Engineering and Utilization, herausgegeben von S.D. Kung und R. Wu, Academic Press, 1993, S. 15-38. Aus den transformierten Zellen der verwundeten Blätter bzw. Blattstücke können in bekannter Weise transgene Pflanzen regeneriert werden, die ein oder mehrere in die Expressionskassette integrierte Gene enthalten.
Zur Transformation einer Wirtspflanze mit einem oder mehreren erfindungsgemäßen Effektgenen wird eine Expressionskassette als Insertion in einen rekombinanten Vektor eingebaut, dessen Vektor-DNA zusätzliche funktioneile Regulationssignale, beispiels- weise Sequenzen für Replikation oder Integration enthält. Geeignete Vektoren sind unter anderem in "Methods in Plant Molecular Biology and Biotechnology" (CRC Press), Kap. 6/7, S. 71-119 (1993) beschrieben.
Unter Verwendung der oben zitierten Rekombinations- und Klonierungstechniken kön- nen die Expressionskassetten in geeignete Vektoren kloniert werden, die ihre Vermehrung, beispielsweise in E. coli, ermöglichen. Geeignete Klonierungsvektoren sind u.a. pJIT117 (Guerineau et al. (1988) Nucl. Acids Res.16 :11380), pBR332, pUC-Serien, M13mp-Serien und pACYC184. Besonders geeignet sind binäre Vektoren, die sowohl in E. coli als auch in Agrobakterien replizieren können.
Im folgenden wird exemplarisch die Herstellung erfindungsgemäßer, genetisch veränderter Mikroorganismen mit erhöhter oder verursachter Ketolase-Aktivität beschrieben, wobei die die veränderte Ketolase-Aktivität durch eine Ketolase verursacht wird, ausgewählt aus der Gruppe A Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 80 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist,
B Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 10 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 90 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 10 aufweist,
C Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 12 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 90 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 12 aufweist oder
D Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 14. oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 50 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 14 aufweist.
Die Erhöhung weiterer Aktivitäten, wie beispielsweise der ß-Cyclase-Aktivität, Hydroxylase-Aktivität, HMG-CoA-Reduktase-Aktivität, (E)-4-Hydroxy-3-Methylbut-2-enyl- Diphosphat-Reduktase-Aktivität, 1 -Deoxy-D-XyIose-5-Phosphat-Synthase-Aktivität, 1 - Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase-Aktivität, Isopentenyl-Diphosphat-Δ- Isomerase-Aktivität, Geranyl-Diphosphat-Synthase-Aktivität, Farnesyl-Diphosphat-
Synthase-Aktivität, Geranyl-geranyl-Diphosphat-Synthase-Aktivität, Phytoen-Synthase- Aktivität, Phytoen-Desaturase-Aktivität, Zeta-Carotin-Desaturase-Aktivität, crtlSO- Aktivität, FtsZ-Aktivität und/oder MinD-Aktivität kann analog unter Verwendung der entsprechenden Effektgene erfolgen.
Die vorstehend beschriebenen Nukleinsäuren, kodierend eine Ketolase, ß-Hydroxylase oder ß-Cyclase, sowie die Nukleinsäuren kodierend eine HMG-CoA-Reduktase, Nukleinsäuren kodierend eine (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat- Reduktase, Nukleinsäuren kodierend eine 1-Deoxy-D-Xylose-5-Phosphat-Synthase, Nukleinsäuren kodierend eine 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase, Nukleinsäuren kodierend eine Isopentenyl-Diphosphat-Δ-Isomerase, Nukleinsäuren kodierend eine Geranyl-Diphosphat-Synthase, Nukleinsäuren kodierend eine Farnesyl- Diphosphat-Synthase, Nukleinsäuren kodierend eine Geranyl-Geranyl-Diphosphat- Synthase, Nukleinsäuren kodierend eine Phytoen-Synthase, Nukleinsäuren kodierend eine Phytoen-Desaturase, Nukleinsäuren kodierend eine Zeta-Carotin-Desaturase, Nukleinsäuren kodierend ein crtlSO Protein, Nukleinsäuren kodierend ein FtsZ Protein kodierend ein crtlSO Protein, Nukleinsäuren kodierend ein FtsZ Protein und/oder Nukleinsäuren kodierend ein MinD Protein sind vorzugsweise in Expressionskonstrukte eingebaut, enthaltend unter der genetischen Kontrolle regulativer Nukleinsäuresequenzen eine für ein erfindungsgemäßes Enzym kodierende Nukleinsäuresequenz; sowie Vektoren, umfassend wenigstens eines dieser Expressionskonstrukte.
Vorzugsweise umfassen solche erfindungsgemäßen Konstrukte 5'-stromaufwärts von der jeweiligen kodierenden Sequenz einen Promotor und 3'-stromabwärts eine Terminatorsequenz sowie gegebenenfalls weitere übliche regulative Elemente, und zwar jeweils operativ verknüpft mit dem Effektgen. Unter einer "operativen Verknüpfung" versteht man die sequentielle Anordnung von Promotor, kodierender Sequenz (Effektgen), Terminator und gegebenenfalls weiterer regulativer Elemente derart, dass jedes der regulativen Elemente seine Funktion bei der Expression der kodierenden Sequenz bestimmungsgemäß erfüllen kann.
Beispiele für operativ verknüpfbare Sequenzen sind Targeting-Sequenzen sowie . Translationsverstärker, Enhancer, Polyadenylierungssignale und dergleichen. Weitere regulative Elemente umfassen selektierbare Marker, Amplifikationssignale, Replikati- onsursprünge und dergleichen.
Zusätzlich zu den artifiziellen Regulationssequenzen kann die natürliche Regulationssequenz vor dem eigentlichen Effektgen noch vorhanden sein. Durch genetische Veränderung kann diese natürliche Regulation gegebenenfalls ausgeschaltet und die Expression der Gene erhöht oder erniedrigt werden. Das Genkonstrukt kann aber auch einfacher aufgebaut sein, das heißt es werden keine zusätzlichen Regulationssignale vor das Strukturgen insertiert und der natürliche Promotor mit seiner Regulation wird nicht entfernt. Statt dessen wird die natürliche Regulationssequenz so mutiert, dass keine Regulation mehr erfolgt und die Genexpression gesteigert oder verringert wird. Die Nukleinsäuresequenzen können in einer oder mehreren Kopien im Genkonstrukt enthalten sein.
Beispiele für brauchbare Promotoren in Mikroorganismen sind: cos-, tac-, trp-, tet-, trp- tet-, Ipp-, lac-, Ipp-lac-, laclq-, T7-, T5-, T3-, gal-, trc-, ara-, SP6-, lambda-PR- oder im lambda-PL-Promotor, die vorteilhafterweise in gram-negativen Bakterien Anwendung finden; sowie die gram-positiven Promotoren amy und SPO2 oder die Hefepromotoren ADC1 , MFa , AC, P-60, CYC1, GAPDH. Besonders bevorzugt ist die Verwendung induzierbarer Promotoren, wie z.B. licht- und insbesondere temperaturinduzierbarer Promotoren, wie der PrPrPromotor. Prinzipiell können alle natürlichen Promotoren mit ihren Regulationssequenzen verwendet werden. Darüber hinaus können auch synthetische Promotoren vorteilhaft verwendet werden.
Die genannten regulatorischen Sequenzen sollen die gezielte Expression der Nukleinsäuresequenzen und die Proteinexpression ermöglichen. Dies kann beispielsweise je nach Wirtsorganismus bedeuten, dass das Gen erst nach Induktion exprimiert oder überexprimiert wird, oder dass es sofort exprimiert und/oder überexprimiert wird.
Die regulatorischen Sequenzen bzw. Faktoren können dabei vorzugsweise die Expression positiv beeinflussen und dadurch erhöhen oder erniedrigen. So kann eine Verstärkung der regulatorischen Elemente vorteilhafterweise auf der Transkriptionsebene erfolgen, indem starke Transkriptionssignale wie Promotoren und/oder "Enhancer" verwendet werden. Daneben ist aber auch eine Verstärkung der Translation möglich, in- dem beispielsweise die Stabilität der mRNA verbessert wird.
Die Herstellung einer Expressionskassette erfolgt durch Fusion eines geeigneten Promotors mit den vorstehend beschriebenen Nukleinsäuresequenzen, kodierend eine Ketolase, ß-Hydroxylase, ß-Cyclase, HMG-CoA-Reduktase, (E)-4-Hydroxy-3- Methylbut-2-enyl-Diphosphat-Reduktase, 1-Deoxy-D-Xylose-5-Phosphat-Synthase, 1- Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase, Isopentenyl-Diphosphat-Δ-Isomerase, Geranyl-Diphosphat-Synthase, Farnesyl-Diphosphat-Synthase, Geranyl-Geranyl- Diphosphat-Synthase, Phytoen-Synthase, Phytoen-Desaturase, Zeta-Carotin- Desaturase, crtlSO Protein, FtsZ Protein und/oder ein MinD Protein sowie einem Ter- minator- oder Polyadenylierungssignal. Dazu verwendet man gängige Rekombinationsund Klonierungstechniken, wie sie beispielsweise in T. Maniatis, E.F. Fritsch und J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989) sowie in T.J. Silhavy, M.L. Berman und L.W. Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) und in Ausubel, F.M. et al., Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley Interscience (1987) beschrieben sind.
Das rekombinante Nukleinsäurekonstrukt bzw. Genkonstrukt wird zur Expression in einem geeigneten Wirtsorganismus vorteilhafterweise in einen wirtsspezifischen Vektor insertiert, der eine optimale Expression der Gene im Wirt ermöglicht. Vektoren sind dem Fachmann wohl bekannt und können beispielsweise aus "Cloning Vectors" (Pou- wels P. H. et al., Hrsg, Elsevier, Amsterdam-New York-Oxford, 1985) entnommen werden. Unter Vektoren sind außer Plasmiden auch alle anderen dem Fachmann bekannte Vektoren, wie beispielsweise Phagen, Viren, wie SV40, CMV, Baculovirus und Ade- novirus, Transposons, IS-Elemente, Phasmide, Cosmide, und lineare oder zirkuläre DNA zu verstehen. Diese Vektoren können autonom im Wirtsorganismus repliziert oder chromosomal repliziert werden.
Als Beispiele für geeignete Expressionsvektoren können genannt werden:
Übliche Fusionsexpressionsvektoren, wie pGEX (Pharmacia Biotech Ine; Smith, D.B. und Johnson, K.S. (1988) Gene 67:31-40), pMAL (New England Biolabs, Beverly, MA) und pRIT 5 (Pharmacia, Piscataway, NJ), bei denen Glutathion-S-Transferase (GST), Maltose E-bindendes Protein bzw. Protein A an das rekombinante Zielprotein fusioniert wird.
Nicht-Fusionsprotein-Expressionsvektoren wie pTrc (Amann et al., (1988) Gene 69:301-315) und pET 11d (Studier et al. Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Kalifornien (1990) 60-89) oder pBluesc- ript und pUC-Vektoren.
Hefe-Expressionsvektor zur Expression in der Hefe S. cerevisiae , wie pYepSed (Bal- dari et al., (1987) Embo J. 6:229-234), pMFa (Kurjan und Herskowitz (1982) Cell 30:933-943), pJRY88 (Schultz et al. (1987) Gene 54:113-123) sowie pYES2 (Invitrogen Corporation, San Diego, CA).
Vektoren und Verfahren zur Konstruktion von Vektoren, die sich zur Verwendung in anderen Pilzen, wie filamentösen Pilzen, eignen, umfassen diejenigen, die eingehend beschrieben sind in: van den Hondel, C.A.M.J.J. & Punt, P.J. (1991) "Gene transfer Systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, J.F. Peberdy et al., Hrsg., S. 1-28, Cambridge University Press: Cambridge.
Baculovirus-Vektoren, die zur Expression von Proteinen in gezüchteten Insektenzellen (bspw. Sf9-Zellen) verfügbar sind, umfassen die pAc-Reihe (Smith et al., (1983) Mol. Cell Biol.. 3:2156-2165) und die pVL-Reihe (Lucklow und Summers (1989) Virology 170:31-39).
Weitere geeignete Expressionssysteme für prokaryontische und eukaryotische Zellen sind in Kapitel 16 und 17 von Sambrook, J., Fritsch, E.F. und Maniatis, T, Molecular cloning: A Laboratory Manual, 2. Auflage, Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989 beschrieben.
Mit Hilfe der erfindungsgemäßen Expressionskonstrukte bzw. Vektoren sind genetisch veränderte Mikroorganismen herstellbar, welche beispielsweise mit wenigstens einem erfindungsgemäßen Vektor transformiert sind.
Vorteilhafterweise werden die oben beschriebenen erfindungsgemäßen rekombinanten Konstrukte in ein geeignetes Wirtssystem eingebracht und exprimiert. Dabei werden vorzugsweise dem Fachmann bekannte geläufige Klonierungs- und Transfektions- methoden, wie beispielsweise Co-Präzipitation, Protoplastenfusion, Elektroporation, retrovirale Transfektion und dergleichen, verwendet, um die genannten Nukleinsäuren im jeweiligen Expressionssystem zur Expression zu bringen. Geeignete Systeme werden beispielsweise in Current Protocols in Molecular Biology, F. Ausubel et al., Hrsg., Wiley Interscience, New York 1997, beschrieben.
Die Selektion erfolgreich transformierter Organismen kann durch Markergene erfolgen, die ebenfalls im Vektor oder in der Expressionskassette enthalten sind. Beispiele für solche Markergene sind Gene für Antibiotikaresistenz und für Enzyme, die eine farb- gebende Reaktion katalysieren, die ein Anfärben der transformierten Zelle bewirkt. Diese können dann mittels automatischer Zellsortierung selektiert werden.
Erfolgreich mit einem Vektor transformierte Mikroorganismen, die ein entsprechendes Antibiotikaresistenzgen (z.B. G418 oder Hygromycin) tragen, lassen sich durch ent- sprechende Antibiofika-enthaltende Medien oder Nährböden selektieren. Markerproteine, die an der Zelloberfläche präsentiert werden, können zur Selektion mittels Affinitätschromatographie genutzt werden.
Die Kombination aus den Wirtsorganismen und den zu den Organismen passenden Vektoren, wie Plasmide, Viren oder Phagen, wie beispielsweise Plasmide mit dem RNA-Polymerase/Promotor-System, die Phagen 8 oder andere temperente Phagen oder Transposons und/oder weiteren vorteilhaften regulatorischen Sequenzen bildet ein Expressionssystem.
Die Erfindung betrifft ferner die genetisch veränderten, nicht-humanen Organismusen, wobei die genetische Veränderung die Aktivität einer Ketolase
E für den Fall, dass der Wildtyporganismus bereits eine Ketolase-Aktivität aufweist, gegenüber dem Wildtyp erhöht und
F für den Fall, dass der Wildtyporganismus keine Ketolase-Aktivitätaufweist, gegenüber dem Wildtyp verursacht und die nach E erhöhte oder nach F verursachte Ketolase-Aktivität durch eine Ketolase verursacht wird, ausgewählt aus der Gruppe
A Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 80 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist,
B Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 10 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 90 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 10 aufweist,
C Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 12 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 90 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 12 aufweist oder
D Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 14 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 50 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 14 aufweist.
Wie vorstehend ausgeführt erfolgt die Erhöhung (gemäß E) oder Verursachung (gemäß F) der Ketolase-Aktivität gegenüber dem Wildtyp vorzugsweise durch die
Erhöhung der Genexpression einer Nukleinsäure, kodierend eine Ketolase, ausgewählt aus der Gruppe
A Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 80 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist,
B Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 10 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 90 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 10 aufweist,
C Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 12 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 90 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 12 aufweist oder
D Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 14 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 50 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 14 aufweist.
In einer weiter bevorzugten Ausführungsform erfolgt die Erhöhung der Genexpres- sion einer Nukleinsäure kodierend eine Ketolase durch Einbringen in den Organismus von Nukleinsäuren, die Ketolasen kodieren, ausgewählt aus der Gruppe
A Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 80 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist,
B Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 10 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 90 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 10 aufweist,
C Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 12 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 90 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 12 aufweist oder
D Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 14 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 50 % auf Aminosäu- reebene mit der Sequenz SEQ. ID. NO. 14 aufweist.
In den erfindungsgemäßen transgenen Organismen liegt also in dieser Ausführungsform gegenüber dem Wildtyp mindestens ein weiteres erfindungsgemäßes Ketolase- Gen vor. In dieser Ausführungsform weist der erfindungsgemäße genetisch veränderte Organismus vorzusgweise mindestens eine exogene (=heterologe) erfindungsgemäße Nukleinsäure, kodierend eine Ketolase, auf oder mindestens zwei endogene erfindungsgemäße Nukleinsäuren, kodierend eine Ketolase, auf:
Bevorzugte Ausführungsformen der Organismen und Nukleinsäuren, kodierend eine Ketolase sind vorstehend bei den erfindungsgemäßen Verfahren beschrieben.
Besonders bevorzugte, genetisch veränderte Organismen weisen, wie vorstehend erwähnt, zusätzlich eine erhöhte oder verusrsachte Hydroxlase-Aktivität und/oder ß- Cyclase-Aktivität gegenüber dem Wildtyp auf. Weiter bevorzugte Ausführungsformen sind vorstehend im erfindungsgemäßen Verfahren beschrieben.
Weitere, besonders bevorzugte, genetisch veränderte nicht-humane Organismen weisen, wie vorstehend erwähnt, zusätzlich gegenüber dem Wildtyp mindestens eine wei- tere erhöhte Aktivität, ausgewählt aus der Gruppe HMG-CoA-Reduktase-Aktivität, (E)- 4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase-Aktivität, 1 -Deoxy-D-Xylose-5- Phosphat-Synthase-Aktivität, 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase- Aktivität, Isopentenyl-Diphosphat-Δ-Isomerase-Aktivität, Geranyl-Diphosphat-Synthase- Aktiyität, Farnesyl-Diphosphat-Synthase-Aktivität, Geranyl-geranyl-Diphosphat- Synthase-Aktivität, Phytoen-Synthase-Aktivität, Phytoen-Desaturase-Aktivität, Zeta- Carotin-Desaturase-Aktivität, crtlSO-Aktivität, FtsZ-Aktivität und MinD-Aktivität auf. Weiter bevorzugte Ausführungsformen sind vorstehend im erfindungsgemäßen Verfahren beschrieben.
Weiter bevorzugte, genetisch veränderte Pflanzen weisen, wie vorstehend erwähnt, zusätzlich eine reduzierte ε-Cyclase-Aktivität gegenüber einer Wiidtyppflanze auf. Weiter bevorzugte Ausführungsformen sind vorstehend im erfindungsgemäßen Verfahren beschrieben.
Unter Organismen werden erfindungsgemäß vorzugsweise Organismen verstanden, die als Wildtyp- oder Ausgangsorganismen natürlicherweise oder durch genetische Komplementierung und/oder Umregulierung der Stoffwechselwege in der Lage sind, Carotinoide, insbesondere ß-Carotin und/oder Zeaxanthin und/oder Neoxanthin und/oder Violaxanthin und/oder Lutein herzustellen. Weiter bevorzugte Organismen weisen als Wildtyp- oder Ausgangsorganismen bereits eine Hydroxylase-Aktivität auf und sind somit als Wildtyp- oder Ausgangsorganismen in der Lage, Zeaxanthin herzustellen.
Bevorzugte Organismen sind Pflanzen oder Mikroorganismen, wie beispielsweise Bakterien, Hefen, Algen oder Pilze.
Als Bakterien können sowohl Bakterien verwendet werden, die aufgrund des Einbringens von Genen der Carotinoidbiosynthese eines Carotinoid-produzierenden Organis- mus in der Lage sind, Xanthophylle zu synthetisieren, wie beispielsweise Bakterien der Gattung Escherichia, die beispielsweise crt-Gene aus Erwinia enthalten, als auch Bakterien, die von sich aus in der Lage sind, Xanthophylle zu synthetisieren wie beispielsweise Bakterien der Gattung Erwinia, Agrobacterium, Flavobacterium, Alcaligenes, Paracoccus, Nostoc oder Cyanobakterien der Gattung Synechocystis.
Bevorzugte Bakterien sind Escherichia coli, Erwinia herbicola, Erwinia uredovora, Agrobacterium aurantiacum, Alcaligenes sp. PC-1 , Flavobacterium sp. strain R1534, das Cyanobacterium Synechocystis sp. PCC6803, Paracoccus marcusii oder Paracoccus carotinifaciens.
Bevorzugte Hefen sind Candida, Saccharomyces, Hansenula, Pichia oder Phaffia. Besonders bevorzugte Hefen sind Xanthophyllomyces dendrorhous oder Phaffia rhodo- zyma.
Bevorzugte Pilze sind Aspergillus, Trichoderma, Ashbya, Neurospora, Blakeslea, insbesondere Blakeslea trispora, Phycomyces, Fusarium oder weitere in Indian Chem. Engr. Section B. Vol. 37, No. 1, 2 (1995) auf Seite 15, Tabelle 6 beschriebene Pilze.
Bevorzugte Algen sind Grünalgen, wie beispielsweise Algen der Gattung Haematococ- cus, Phaedactylum tricornatum, Volvox oder Dunaliella. Besonders bevorzugte Algen sind Haematococcus puvialis oder Dunaliella bardawil.
Weitere brauchbare Mikroorganismen und deren Herstellung zur Durchführung des erfindungsgemäßen Verfahrens sind beispielsweise aus der DE-A-199 16 140 bekannt, worauf hiermit Bezug genommen wird.
Besonders bevorzugte Pflanzen sind Pflanzen ausgewählt aus den Familien Ama- ranthaceae.Amaryllidaceae, Apocynaceae, Asteraceae, Balsaminaceae, Begoniaceae, Berberidaceae, Brassicaceae, Cannabaceae, Caprifoliaceae, Caryophyllaceae, Che- nopodiaceae, Compositae, Cucurbitaceae, Crueiferae, Euphorbiaceae, Fabaceae, Gentianaceae, Geraniaceae, Graminae, llliaceae, Labiatae, Lamiaceae, Leguminosae, Liliaceae, Linaceae, Lobeliaceae, Malvaceae, Oleaceae, Orchidaceae, Papaveraceae , Plumbaginaceae, Poaceae, Polemoniaceae, Primulaceae, Ranunculaceae, Rosaceae, Rubiaceae, Scrophulariaceae, Solanaceae, Tropaeolaceae, Umbelliferae, Verbana- ceae, Vitaceae und Violaceae.
Ganz besonders bevorzugte Pflanzen sind ausgewählt aus der Gruppe der Pflanzengattungen Marigold, Tagetes errecta, Tagetes patula, Acacia, Aconitum, Adonis, Arni- ca, Aquilegia, Aster, Astragalus, Bignonia, Calendula, Caltha, Campanula, Canna, Centaurea, Cheiranthus, Chrysanthemum, Citrus, Crepis, Crocus, Curcurbita, Cytisus, Delonia, Delphinium, Dianthus, Dimorphotheca, Doronicum, Eschscholtzia, Forsythia, Fremontia, Gazania, Gelsemium, Genista, Gentiana, Geranium, Gerbera, Geum, Gre- villea, Helenium, Helianthus, Hepatica, Heracleum, Hisbiscus, Heliopsis, Hypericum, Hypochoeris, Impatiens, Iris, Jacaranda, Kenia, Laburnum, Lathyrus, Leontodon, Lili- um, Linum, Lotus, Lycopersicon,' Lysimachia, Maratia, Medicago, Mimulus, Narcissus, Oenothera, Osmanthus, Petunia, Photinia, Physalis, Phyteuma, Potentilla, Pyracantha, Ranunculus, Rhododendron, Rosa, Rudbeckia, Senecio, Silene, Silphium, Sinapsis, Sorbus, Spartium, Tecoma, Torenia, Tragopogon, Trollius, Tropaeolum, Tulipa, Tussi- lago, Ulex, Viola oder Zinnia, besonders bevorzugt ausgewählt aus der Gruppe der Pflanzengattungen Marigold, Tagetes erecta, Tagetes patula, Lycopersicon, Rosa,
Calendula, Physalis, Medicago, Helianthus, Chrysanthemum, Aster, Tulipa, Narcissus, Petunia, Geranium, Tropaeolum oder Adonis.
Ganz besonders bevorzugte genetisch veränderte Pflanzen sind ausgewählt aus den Pflanzengattungen Marigold, Tagetes erecta, Tagetes patula, Adonis, Lycopersicon, Rosa, Calendula, Physalis, Medicago, Helianthus, Chrysanthemum, Aster, Tulipa, Narcissus, Petunia, Geranium oder Tropaeolum, wobei die genetisch veränderte Pflanze mindestens eine transgene Nukleinsäure, kodierend eine Ketolase, enthält.
Die transgenen Pflanzen, deren Vermehrungsgut, sowie deren Pflanzenzellen, - gewebe oder -teile, insbesondere deren Früchte, Samen, Blüten und Blütenblätter sind ein weiterer Gegenstand der vorliegenden Erfindung.
Die genetisch veränderten Pflanzen können, wie vorstehend beschrieben, zur Herstel- lung von Ketocarotinoiden, insbesondere Astaxanthin verwendet werden.
Von Menschen und Tieren verzehrbare erfindungsgemäße, genetisch veränderte Organismen, insbesondere Pflanzen oder Pflanzenteile, wie insbesondere Blütenblätter mit erhöhtem Gehalt an Ketocarotinoiden, insbesondere Astaxanthin können auch bei- spielsweise direkt oder nach an sich bekannter Prozessierung als Nahrungsmittel oder Futtermittel oder als Futter- und Nahrungsergänzungsmittel verwendet werden.
Ferner können die genetisch veränderten Organismen zur Herstellung von Ketocaroti- noid-haltigen Extrakten der Organismen und/oder zur Herstellung von Futter- und Nah- rungsergänzungsmitteln verwendet werden.
Die genetisch veränderten Organismen weisen im Vergleich zum Wildtyp einen erhöhten Gehalt an Ketocarotinoiden auf.
Unter einem erhöhten Gehalt an Ketocarotinoiden wird in der Regel ein erhöhter Gehalt an Gesamt-Ketocarotinoid verstanden.
Unter einem erhöhten Gehalt an Ketocarotinoiden wird aber auch insbesondere ein veränderter Gehalt der bevorzugten Ketocarotinoide verstanden, ohne dass zwangs- läufig der Gesamt-Carotinoidgehalt erhöht sein muss.
In einer besonders bevorzugten Ausführungsform weisen die erfindungsgemäßen, genetisch veränderten Pflanzen im Vergleich zum Wildtyp einen erhöhten Gehalt an Astaxanthin auf.
Unter einem erhöhten Gehalt wird in diesem Fall auch ein verursachter Gehalt an Ketocarotinoiden, bzw. Astaxanthin verstanden.
Die Erfindung betrifft ferner eine Ketolase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 80 %, vorzugsweise mindestens 85%, bevorzugter mindstens 90%, bevorzugter mindestens 95%, bevorzugter mindestens 97%, besonders bevorzugt mindestens 99% auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist.
Bevorzugte Ketolasen enthalten die Sequenz SEQ. ID. NO. 2, 4, 6 oder 8. Besonders bevorzugte Ketolasen sind Ketolasen mit der Sequenzen SEQ. ID. NO. 2, 4, 6 oder 8.
Die Erfindung betrifft ferner Nukleinsäuren, kodierend vorstehend beschriebene Keto- lasen.
Bevorzugte Nukleinsäuren enthalten die Sequenz SEQ. ID. NO. 1, 3, 5 oder 7. Besonders bevorzugte Nukleinsäuren sind Nukleinsäuren mit der Sequenz SEQ. ID. NO. 1, 3, 5 oder 7. Die Erfindung betrifft ferner eine Ketolase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 10 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 90 %, vorzugsweise mindestens 92%, bevorzugter mindstens 95%, bevorzugter mindestens 97%, bevorzugter mindestens 98%, besonders bevorzugt mindestens 99% auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 10 aufweist.
Bevorzugte Ketolasen enthalten die Sequenz SEQ. ID. NO. 10. Besonders bevorzugte Ketolasen sind Ketolasen der Sequenz SEQ. ID. NO. 10.
Die Erfindung betrifft ferner Nukleinsäuren, kodierend eine vorstehend beschriebene Ketolase.
Bevorzugte Nukleinsäuren enthalten die Sequenz SEQ. ID. NO. 9. Besonders bevor- zugte Nukleinsäuren sind Nukleinsäuren der Sequenz SEQ. ID. NO. 9.
Die Erfindung betrifft ferner Ketolasen, enthaltend die Aminosäuresequenz SEQ. ID. NO. 12 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 90 %, vorzugs- weise mindestens 92%, bevorzugter mindstens 95%, bevorzugter mindestens 97%, bevorzugter mindestens 98%, besonders bevorzugt mindestens 99% auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 12 aufweist.
Bevorzugte Ketolasenenthalten die Sequenz SEQ. ID. NO. 12. Besonders bevorzugte Ketolasen sind Ketolasen der Sequenz SEQ. ID. NO. 12.
Die Erfindung betrifft ferner Nukleinsäuren, kodierend eine vorstehend beschriebene Ketolase.
Bevorzugte Nukleinsäuren enthalten die Sequenz SEQ. ID. NO. 11. Besonders bevorzugte Nukleinsäuren sind Nukleinsäuren der Sequenz SEQ. ID. NO. 11.
Die Erfindung wird durch die nun folgenden Beispiele erläutert, ist aber nicht auf diese beschränkt:
Allgemeine Experimentelle Bedingungen: Sequenzanalyse rekombinanter DNA Die Sequenzierung rekombinanter DNA-Moleküle erfolgte mit einem Laserfluoreszenz- DNA-Sequenzierer der Firma Licor (Vertrieb durch MWG Biotech, Ebersbach) nach der Methode von Sanger (Sanger et al., Proc. Natl. Acad. Sei. USA 74 (1977), 5463-5467).
Beispiel 1 :
Amplifikation einer DNA, die die gesamte Primärsequenz der Ketolase NP60.79:BKT aus Nostoc punctiforme SAG 60.79 kodiert
Die DNA, die für die Ketolase NP60.79:BKT kodiert, wurde mittels PCR aus Nostoc punctiforme SAG 60.79 (SAG: Sammlung von Algenkulturen Göttingen) amplifiziert.
Für die Präparation von genomischer DNA aus einer Suspensionskultur von Nostoc punctiforme SAG 60.79, die 1 Woche mit Dauerlicht und konstantem Schütteln (150 rpm) at 25°C in BG 7 -/-Medium (1.5 g/l NaNO3, 0.04 g/l K2PO4x3H2O, 0.075 g/l MgSO4xH2O, 0.036 g/l CaCI2x2H2O, 0.006 g/l citric acid, 0.006 g/l Ferric ammonium citrate, 0.001 g/l EDTA disodium magnesium, 0.04 g/l Na2CO3, 1ml trace metal mix A5+Co (2.86 g/l H3BO3, 1.81 g/l MnCI2x4H2o, 0.222 g/l ZnSO4x7H2o,0.39 g/l Na- MoO4X2H2o, 0.079 g/l CuSO4x5H2O, 0.0494 g/l Co(NO3)2x6H2O)) gewachsen war, wurden die Zellen durch Zentrifugation geerntet, in flüssigem Stickstoff eingefroren und im Mörser pulverisiert.
Protokoll für DNA Isolation aus Nostoc punctiforme SAG 60.79 :
Aus einer 10 ml Flüssigkultur wurden die Bakterienzellen durch 10minütige Zentrifuga- tion bei 8 000 rpm pelletiert. Anschließend wurden die Bakterienzellen in flüssigem Stickstoff mit einem Mörser zerstoßen und gemahlen. Das Zellmaterial wurde in 1 ml 10mM Tris HCI (pH 7.5) resuspendiert und in ein Eppendorf Reaktionsgefäß (2ml Volumen) überführt. Nach Zugabe von 100 μl Proteinase K (Konzentration: 20 mg/ml) wurde die Zellsuspension für 3 Stunden bei 37°C inkubiert. Anschließend wurde die Suspension mit 500 μl Phenol extrahiert. Nach δminütiger Zentrifugation bei 13 000 Upm wurde die obere, wässrige Phase in ein neues 2 ml-Eppendorf Reaktionsgefäß überführt. Die Extraktion mit Phenol wurde 3mal wiederholt. Die DNA wurde durch Zugabe von 1/10 Volumen 3 M Natriumacetat (pH 5.2) und 0.6 Volumen Isopropanol gefällt und anschließend mit 70% Ethanol gewaschen. Das DNA-Pellet wurde bei Raum- temperatur getrocknet, in 25 μl Wasser aufgenommen und unter Erhitzung auf 65°C gelöst.
Die Nukleinsäure, kodierend für die Ketolase NP60.79:BKT aus Nostoc punctiforme SAG 60.79, wurde mittels "polymerase chain reaction" (PCR) aus Nostoc punctiforme SAG 60.79 unter Verwendung eines sense-spezifischen Primers (NP196-1 , SEQ ID No. 59) und eines antisense-spezifischen Primers (NP196-2 SEQ ID No. 60) amplifiziert.
Die PCR-Bedingungen waren die folgenden:
Die PCR zur Amplifikation der DNA, die für ein Ketolase Protein bestehend aus der gesamten Primärsequenz kodiert, erfolgte in einem 50 ul Reaktionsansatz, in dem enthalten war:
- 1 ul einer Nostoc punctiforme SAG 60.79 DNA (hergestellt wie oben beschrieben)
- 0.25 mM dNTPs
- 0.2 mM NP196-1 (SEQ ID No. 59)
- 0.2 mM NP196-2 (SEQ ID No. 60)
- 5 ul 10X PCR-Puffer (TAKARA) - 0.25 ul R Taq Polymerase (TAKARA)
- 25.8 ul Aq. Dest.
Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:
1X94°C 2 Minuten 35X94°C 1 Minute 55°C 1 Minuten 72°C 3 Minuten 1X72°C 10 Minuten
Die PCR-Amplifikation mit SEQ ID No. 59 und SEQ ID No. 60 resultierte in einem 792 Bp-Fragment, das für ein Protein bestehend aus der gesamten Primärsequenz kodiert (SEQ ID No. 61). Unter Verwendung von Standardmethoden wurde das Amplifikat in den PCR-Klonierungsvektor pCR 2.1-TOPO (Invitrogen) kloniert und der Klon pNP60.79 erhalten.
Beispiel 2:
Herstellung von Expressionsvektoren zur konstitutiven Expression der Ketolase NP60.79:BKT aus Nostoc punctiforme SAG 60.79 in Lycopersicon esculentum und Tagetes erecta
Die Expression der Ketolase aus Nostoc punctiforme SAG 60.79 in Lycopersicon esculentum und in Tagetes erecta erfolgte unter Kontrolle des konstitutiven Promoters FNR (Ferredoxin NADPH Oxidoreduetase) aus Arabidopsis thaliana. Die Expression erfolgte mit dem Transitpeptid rbcS aus Erbse (Anderson et al. 1986, Biochem J. 240:709-715). Das DNA Fragment, das die FNR Promotorregion -635 bis -1 aus Arabidopsis thaliana beinhaltet (SEQ ID No. 65), wurde mittels PCR unter Verwendung genomischer DNA (nach Standardmethoden aus Arabidopsis thaliana isoliert) sowie der Primer FNR-1 (SEQ ID No.63) und FNR-2 (SEQ ID No. 64) hergestellt.
Die PCR-Bedingungen waren die folgenden:
Die PCR zur Amplifikation der DNA, die das FNR-Promotorfragment (-635 bis -1) be- inhaltet, erfolgte in einem 50 ul Reaktionsansatz, in dem enthalten war:
- 100 ng genomischer DNA aus A.thaliana
- 0.25 mM dNTPs
- 0.2 mM FNR-1 (SEQ ID No. 63) - 0.2 mM FNR-2 (SEQ ID No. 64)
- 5 ul 10X PCR-Puffer (Stratagene)
- 0.25 ul Pfu Polymerase (Stratagene)
- 28.8 ul Aq. Dest.
Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:
1X 94°C 2 Minuten 35X94°C 1 Minute 50°C 1 Minute 72°C 1 Minute
1X 72°C 10 Minuten
Das 653 bp Amplifikat (SEQ ID No. 65) wurde unter Verwendung von Standardmethoden in den PCR-Klonierungsvektor pCR 2.1-TOPO (Invitrogen) kloniert und das Plas- mid pFNR erhalten.
Sequenzierung des Klons pFNR bestätigte eine Sequenz, die mit einem Sequenzabschnitt auf Chromosom 5 von Arabidopsis thaliana (Datenbankeintrag AB011474) von Position 70127 bis 69493 übereinstimmt. Das Gen beginnt bei Basenpaar 69492 und ist mit "Ferredoxin-NADP+ Reductase" annotiert.
Der Klon pFNR wurde daher für die Klonierung in den Expressionsvektor pJIT117 (Guerineau et al. 1988, Nucl. Acids Res. 16: 11380) verwendet. Die Klonierung erfolgte durch Isolierung des 637 bp Kpnl-Hindlll Fragmentes aus pFNR und Ligierung in den Kpnl-Hindlll geschnittenen Vektor pJIT117. Der Klon, der den Promoter FNR anstelle des ursprünglichen Promoters d35S, heisst pJFNR.
Der Klon pNP60.79 wurde für die Klonierung in den Expressionsvektor pJFNR (Beispiel 2) verwendet. Die Klonierung erfolgte durch Isolierung des 790 Bp Sphl- Fragmentes aus pNP60.79 und Ligierung in den Sphl geschnittenen Vektor pJFNR. Der Klon, der die Ketolase von Nostoc punctiforme SAG 60.79 in der korrekten Orientierung als N-terminale translationale Fusion mit dem rbcS Transitpeptid enthält, heisst pJFNRNP60.79.
Die Herstellung einer Expressionskassette für die Agrobacterium vermittelte Transformation der Ketolase NP60.79:BKT aus Nostoc punctiforme SAG 60.79 in Lycopersicon esculentum erfolgte unter der Verwendung des binären Vektors pSUN3 (WO02/00900).
Zur Herstellung des Expressionsvektors pS3FNRNP60.79 wurde das 2.4 Kb Kpnl Fragment aus pJFNRNP60.79 mit dem Kpnl geschnittenen Vektor pSUN3 ligiert. Dieser Klon heisst MSP1.
Die Herstellung einer Expressionskassette für die Transformation des Expressionsvektor mit der Ketolase NP60.79:BKT aus Nostoc punctiforme SAG 60.79 in Tagetes erecta erfolgte unter der Verwendung des binären Vektors pSUN5 (WO02/00900).
Zur Herstellung des Expressionsvektors pS5FNRNP60.69 wurde das 2.4 Kb Kpnl Fragment aus pJFNRNP60.79 mit dem Kpnl geschnittenen Vektor pSUN5 ligiert. Dieser Klon heisst MSP2.
Beispiel 3:
Amplifikation einer DNA, die die gesamte Primärsequenz der Ketolase NP60.79:BKT aus Nostoc punctiforme SAG 71.79 kodiert
Die DNA, die für die Ketolase NP71.79:BKT kodiert, wurde mittels PCR aus Nostoc punctiforme SAG 71.79 (SAG: Sammlung von Algenkulturen Göttingen) amplifiziert.
Für die Präparation von genomischer DNA aus einer Suspensionskultur von Nostoc punctiforme SAG 71.79, die 1 Woche mit Daueriicht und konstantem Schütteln (150 rpm) at 25°C in BG 77-Medium (1.5 g/l NaNO3, 0.04 g/l K2PO4x3H2O, 0.075 g/l MgSO4xH2O, 0.036 g/l CäCI2x2H2O, 0.006 g/l citric acid, 0.006 g/l Ferric ammonium citrate, 0.001 g/l EDTA disodium magnesium, 0.04 g/l Na2CO3, 1 mi trace metal mix A5+Co (2.86 g/l H3BO3, 1.81 g/l MnCI2x4H2o, 0.222 g/l ZnSO4x7H2o,0.39 g/l Na- MoO4X2H2o, 0.079 g/l CuSO4x5H2O, 0.0494 g/l Co(NO3)2x6H2O)) gewachsen war, wurden die Zellen durch Zentrifugation geerntet, in flüssigem Stickstoff eingefroren und im Mörser pulverisiert.
Protokoll für DNA Isolation aus Nostoc punctiforme SAG 71.79 :
Aus einer 10 ml Flüssigkultur wurden die Bakterienzellen durch 10 minütige Zentrifuga- tion bei 8 000 rpm pelletiert. Anschließend wurden die Bakterienzellen in flüssigem Stickstoff mit einem Mörser zerstoßen und gemahlen. Das Zellmaterial wurde in 1 ml 10mM Tris HCI (pH 7.5) resuspendiert und in ein Eppendorf Reaktionsgefäß (2ml Volumen) überführt. Nach Zugabe von 100 μl Proteinase K (Konzentration: 20 mg/ml) wurde die Zellsuspension für 3 Stunden bei 37°C inkubiert. Anschließend wurde die Suspension mit 500 μl Phenol extrahiert. Nach δminütiger Zentrifugation bei 13 000 upm wurde die obere, wässrige Phase in ein neues 2 ml-Eppendorf Reaktionsgefäß überführt. Die Extraktion mit Phenol wurde 3mal wiederholt. Die DNA wurde durch Zugabe von 1/10 Volumen 3 M Natriumacetat (pH 5.2) und 0.6 Volumen Isopropanol gefällt und anschließend mit 70% Ethanol gewaschen. Das DNA-Pellet wurde bei Raum- temperatur getrocknet, in 25 μl Wasser aufgenommen und unter Erhitzung auf 65°C gelöst.
Die Nukleinsäure, kodierend für die Ketolase NP71.79:BKT aus Nostoc punctiforme SAG 71.79, wurde mittels "polymerase chain reaction" (PCR) aus Nostoc punctiforme SAG 71.79 unter Verwendung eines sense-spezifischen Primers (NP196-1, SEQ ID No. 59) und eines antisense-spezifischen Primers (NP196-2 SEQ ID No. 60) amplifiziert.
Die PCR-Bedingungen waren die folgenden:
Die PCR zur Amplifikation der DNA, die für ein Ketolase Protein bestehend aus der gesamten Primärsequenz kodiert, erfolgte in einem 50 ul Reaktionsansatz, in dem enthalten war:
- 1 ul einer Nostoc punctiforme SAG 71.79 DNA (hergestellt wie oben beschrieben)
- 0.25 mM dNTPs
- 0.2 mM NP196-1 (SEQ ID Nό. 59)
- 0.2 mM NP196-2 (SEQ ID No. 60)
- 5 ul 10X PCR-Puffer (TAKARA) - 0.25 ul R Taq Polymerase (TAKARA) - 25.8 ul Aq. Dest.
Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:
1X94°C 2 Minuten 35X94°C 1 Minute 55°C 1 Minuten 72°C 3 Minuten 1X72°C 10 Minuten
Die PCR-Amplifikation mit SEQ ID No. 59 und SEQ ID No. 60 resultierte in einem 792 Bp-Fragment, das für ein Protein bestehend aus der gesamten Primärsequenz kodiert (SEQ ID No. 66). Unter Verwendung von Standardmethoden wurde das Amplifikat in den PCR-Klonierungsvektor pCR 2.1-TOPO (Invitrogen) kloniert und der Klon pNP71, 79 erhalten.
Beispiel 4:
Herstellung von Expressionsvektoren zur konstitutiven Expression der Ketolase NP71.79:BKT aus Nostoc punctiforme SAG 71.79 in Lycopersicon esculentum und Tagetes erecta
Die Expression der Ketolase aus Nostoc punctiforme SAG 71.79 in Lycopersicon esculentum und in Tagetes erecta erfolgte unter Kontrolle des konstitutiven Promoters FNR (Ferredoxin NADPH Oxidoreduetase) aus Arabidopsis thaliana. Die Expression erfolgte mit dem Transitpeptid rbcS aus Erbse (Anderson et al. 1986, Biochem J. 240:709-715).
Der Klon pNP71.79 wurde für die Klonierung in den Expressionsvektor pJFNR (Beispiel 2) verwendet. Die Klonierung erfolgte durch Isolierung des 790 Bp Sphl- Fragmentes. aus pNP71.79 und Ligierung in den Sphl geschnittenen Vektor pJFNR. Der Klon, der die Ketolase von Nostoc punctiforme SAG 71.79 in der korrekten Orientierung als N-terminale translationale Fusion mit dem rbcS Transitpeptid enthält, heisst pJFNRNP71.79.
Die Herstellung einer Expressionskassette für die Agrobacterium vermittelte Transfor- mation der Ketolase NP71.79:BKT aus Nostoc punctiforme SAG 71.79 in Lycopersicon esculentum erfolgte unter der Verwendung des binären Vektors pSUN3 (WO02/00900). Zur Herstellung des Expressionsvektors pS3FNRNP71.79 wurde das 2.4 Kb Kpnl Fragment aus pJFNRNP71.79 mit dem Kpnl geschnittenen Vektor pSUN3 ligiert. Dieser Klon heisst MSP3.
Die Herstellung einer Expressionskassette für die Transformation des Expressionsvektor mit der Ketolase NP71.79:BKT aus Nostoc punctiforme SAG 71.79 in Tagetes erecta erfolgte unter der Verwendung des binären Vektors pSUN5 (WO02/00900).
Zur Herstellung des Expressionsvektors pS5FNRNP71.69 wurde das 2.4 Kb Kpnl
Fragment aus pJFNRNP71.79 mit dem Kpnl geschnittenen Vektor pSUN5 ligiert. Dieser Klon heisst MSP4.
Beispiel 5: Amplifikation einer DNA, die die gesamte Primärsequenz der Ketolase NS037:BKT aus Nodularia spumigena CCAUV 01-037 kodiert
Die DNA, die für die Ketolase NS037:BKT kodiert, wurde mittels PCR aus Nodularia spumigena CCAUV 01-037 (CCAlN.Culture Collection ofAlgae at the University of Vienna) amplifiziert.
Für die Präparation von genomischer DNA aus einer Suspensionskultur von Nodularia spumigena CCAUV 01-037 , die 1 Woche mit Dauerlicht und konstantem Schütteln (150 rpm) at 25°C in BG 1 -/-Medium (1.5 g/l NaNO3, 0.04 g/l K2PO4x3H2O, 0.075 g/l MgSO4xH2O, 0.036 g/l CaCI2x2H2O, 0.006 g/l citric acid, 0.006 g/l Ferric ammonium citrate, 0.001 g/l EDTA disodium magnesium, 0.04 g/l Na2CO3, 1ml trace metal mix A5+Co (2.86 g/l H3BO3, 1.81 g/l MnCI2x4H2o, 0.222 g/l ZnSO4x7H2o,0.39 g/l Na- MoO4X2H2o, 0.079 g/l CuSO4x5H2O, 0.0494 g/l Co(NO3)2x6H2O)) gewachsen war, wurden die Zellen durch Zentrifugation geerntet, in flüssigem Stickstoff eingefroren und im Mörser pulverisiert.
Protokoll für DNA Isolation aus Nodularia spumigena CCAUV 01-037 :
Aus einer 10 ml Flüssigkultur wurden die Bakterienzellen durch 10 minütige Zentrifuga- tion bei 8 000 rpm pelletiert. Anschließend wurden die Bakterienzellen in flüssigem Stickstoff mit einem Mörser zerstoßen und gemahlen. Das Zellmaterial wurde in 1 ml 10mM Tris HCI (pH 7.5) resuspendiert und in ein Eppendorf Reaktionsgefäß (2ml Volumen) überführt. Nach Zugabe von 100 μl Proteinase K (Konzentration: 20 mg/ml) wurde die Zellsuspension für 3 Stunden bei 37°C inkubiert. Anschließend wurde die Suspension mit 500 μl Phenol extrahiert. Nach δminütiger Zentrifugation bei 13 000 upm wurde die obere, wässrige Phase in ein neues 2 ml-Eppendorf Reaktionsgefäß überführt. Die Extraktion mit Phenol wurde 3mal wiederholt. Die DNA wurde durch Zugabe von 1/10 Volumen 3 M Natriumacetat (pH 5.2) und 0.6 Volumen Isopropanol gefällt und anschließend mit 70% Ethanol gewaschen. Das DNA-Pellet wurde bei Raum- temperatur getrocknet, in 25 μl Wasser aufgenommen und unter Erhitzung auf 65°C gelöst.
Die Nukleinsäure, kodierend für die Ketolase NS037:BKT aus Nodularia spumigena CCAUV 01-037 , wurde mittels "polymerase chain reaction" (PCR) aus Nodularia spu- migena CCAUV 01-037 unter Verwendung eines sense-spezifischen Primers (NP196- 1 , SEQ ID No. 59) und eines antisense-spezifischen Primers (NSK-2 SEQ ID No. 68) amplifiziert.
Die PCR-Bedingungen waren die folgenden:
Die PCR zur Amplifikation der DNA, die für ein Ketolase Protein bestehend aus der gesamten Primärsequenz kodiert, erfolgte in einem 50 ul Reaktionsansatz, in dem enthalten war:
- 1 ul einer Nodularia spumigena CCAUV 01-037 DNA (hergestellt wie oben beschrieben)
- 0.25 mM dNTPs
- 0.2 M NP196-1 (SEQ ID No. 59)
- 0.2 mM NSK-2 (SEQ ID No. 68) - 5 ul 10X PCR-Puffer (TAKARA)
- 0.25 ul R Taq Polymerase (TAKARA)
- 25.8 ul Aq. Dest.
Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:
1X 94°C 2 Minuten 35X94°C 1 Minute 55°C 1 Minuten 72°C 3 Minuten 1X 72°C 10 Minuten
Die PCR-Amplifikation mit SEQ ID No. 59 und SEQ ID No. 68 resultierte in einem 807 Bp-Fragment, das für ein Protein bestehend aus der gesamten Primärsequenz kodiert (SEQ ID No. 69). Unter Verwendung von Standardmethoden wurde das Amplifikat in den PCR-Klonierungsvektor pCR 2.1-TOPO (Invitrogen) kloniert und der Klon pNS037 erhalten.
Beispiel 6: Herstellung von Expressionsvektoren zur konstitutiven Expression der Ketolase
NS037:BKT aus Nodularia spumigena CCAUV 01-037 in Lycopersicon esculentum und Tagetes erecta
Die Expression der Ketolase aus Nodularia spumigena CCAUV 01-037 in Lycopersicon esculentum und in Tagetes erecta erfolgte unter Kontrolle des konstitutiven Promoters FNR (Ferredoxin NADPH Oxidoreduetase) aus Arabidopsis thaliana. Die Expression erfolgte mit dem Transitpeptid rbcS aus Erbse (Anderson et al. 1986, Biochem J. 240:709-715).
Der Klon pNS037 wurde für die Klonierung in den Expressionsvektor pJFNR (Beispiel 2) verwendet. Die Klonierung erfolgte durch Isolierung des 797 Bp Sphl-Fragmentes aus pNS037 und Ligierung in den Sphl geschnittenen Vektor pJFNR. Der Klon, der die Ketolase von Nodularia spumigena CCAUV 01-037 in der korrekten Orientierung als N- terminale translationale Fusion mit dem rbcS Transitpeptid enthält, heisst pJFNRNS037.
Die Herstellung einer Expressionskassette für die Agrobacterium vermittelte Transformation der Ketolase NS037:BKT aus Nodularia spumigena CCAUV 01-037 in Lycopersicon esculentum erfolgte unter der Verwendung des binären Vektors pSUN3 (WO02/00900).
Zur Herstellung des Expressionsvektors pS3FNRNS037 wurde das 2.4 Kb Kpnl Fragment aus pJFNRNS037 mit dem Kpnl geschnittenen Vektor pSUN3 ligiert. Dieser Klon heisst MSP5.
Die Herstellung einer. Expressionskassette für die Λgroόacteräm-vermittelte Transformation des Expressionsvektor mit der Ketolase NS037:BKT aus Nodularia spumigena CCAUV 01-037 in Tagetes erecta erfolgte unter der Verwendung des binären Vektors pSUN5 (WO02/00900).
Zur Herstellung des Expressionsvektors pS5FNRNS037 wurde das 2.4 Kb Kpnl Fragment aus pJFNRNS037 mit dem Kpnl geschnittenen Vektor pSUN5 ligiert. Dieser Klon heisst MSP6.
Beispiel 7: Λ njt 121
Amplifikation einer DNA, die die gesamte Primärsequenz der Ketolase NS053:BKT aus
Nodularia spumigena CCAUV 01-053 kodiert
Die DNA, die für die Ketolase NS053:BKT kodiert, wurde mittels PCR aus Nodularia spumigena CCAUV 01-053 (CCAUV: Culture Collection ofAlgae at the University of Vienna) amplifiziert.
Für die Präparation von genomischer DNA aus einer Suspensionskultur von Nodularia spumigena CCAUV 01-053 , die 1 Woche mit Dauerlicht und konstantem Schütteln (150 rpm) at 25°C in BG 17-Medium (1.5 g/l NaNO3, 0.04 g/l K2PO4x3H2O, 0.075 g/l MgSO4xH2O, 0.036 g/l CaCI2x2H2O, 0.006 g/l citric acid, 0.006 g/l Ferric ammonium citrate, 0.001 g/I EDTA disodium magnesium, 0.04 g/l Na2CO3, 1ml trace metal mix A5+Co (2.86 g/l H3BO3, 1.81 g/l MnCI2x4H2o, 0.222 g/l ZnSO4x7H2o,0.39 g/l Na- MoO4X2H2o, 0.079 g/l CuSO4x5H2O, 0.0494 g/l Co(NO3)2x6H2O)) gewachsen war, wurden die Zellen durch Zentrifugation geerntet, in flüssigem Stickstoff eingefroren und im Mörser pulverisiert.
Protokoll für DNA Isolation aus Nodularia spumigena CCAUV 01-053 :
Aus einer 10 ml Flüssigkultur wurden die Bakterienzellen durch 10 minütige Zentrifugation bei 8 000 rpm pelletiert. Anschließend wurden die Bakterienzellen in flüssigem Stickstoff mit einem Mörser zerstoßen und gemahlen. Das Zellmaterial wurde in 1 ml 10mM Tris HCI (pH 7.5) resuspendiert und in ein Eppendorf Reaktionsgefäß (2ml Volumen) überführt. Nach Zugabe von 100 μl Proteinase K (Konzentration: 20 mg/ml) wurde die Zellsuspension für 3 Stunden bei 37°C inkubiert. Anschließend wurde die Suspension mit 500 μl Phenol extrahiert. Nach δminütiger Zentrifugation bei 13 000 upm wurde die obere, wässrige Phase in ein neues 2 ml-Eppendorf Reaktionsgefäß überführt. Die Extraktion mitPhenol wurde 3mal wiederholt. Die DNA wurde durch Zugabe von 1/10 Volumen 3 M Natriu acetat (pH 5.2) und 0.6 Volumen Isopropanol ge- fällt und anschließend mit 70% Ethanol gewaschen. Das DNA-Pellet wurde bei Raumtemperatur getrocknet, in 25 μl Wasser aufgenommen und unter Erhitzung auf 65°C gelöst.
Die Nukleinsäure, kodierend für die Ketolase NS053:BKT aus Nodularia spumigena CCAUV 01-053 , wurde mittels "polymerase chain reaction" (PCR) aus Nodularia spumigena CCAUV 01-053 unter Verwendung eines sense-spezifischen Primers (NP196- 1, SEQ ID No. 59) und eines antisense-spezifischen Primers (NSK-2 SEQ ID No. 68) amplifiziert. Die PCR-Bedingungen waren die folgenden:
Die PCR zur Amplifikation der DNA, die für ein Ketolase Protein bestehend aus der gesamten Primärsequenz kodiert, erfolgte in einem 50 ul Reaktionsansatz, in dem ent- halten war:
- 1 ul einer Nodularia spumigena CCAUV 01-053 DNA (hergestellt wie oben beschrieben)
- 0.25 mM dNTPs - 0.2 mM NP196-1 (SEQ ID No. 59)
- 0.2 mM NSK-2 (SEQ ID No. 68)
- 5 ul 10X PCR-Puffer (TAKARA)
- 0.25 ul R Taq Polymerase (TAKARA)
- 25.8 ul Aq. Dest.
Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:
1X 94°C 2 Minuten 35X94°C 1 Minute 55°C 1 Minuten 72°C 3 Minuten 1X 72°C 10 Minuten
Die PCR-Amplifikation mit SEQ ID No. 59 und SEQ ID No. 68 resultierte in einem 807 Bp-Fragment, das für ein Protein bestehend aus der gesamten Primärsequenz kodiert (SEQ ID No. 71). Unter Verwendung von Standardmethoden wurde das Amplifikat in den PCR-Klonierungsvektor pCR 2.1-TOPO (Invitrogen) kloniert und der Klon pNS053 erhalten.
Beispiel 8:
Herstellung von Expressionsvektoren zur konstitutiven Expression der Ketolase NS053:BKT aus Nodularia spumigena CCAUV 01-053 in Lycopersicon esculentum und Tagetes erecta
Die Expression der Ketolase aus Nodularia spumigena CCAUV 01-053 in Lycopersicon esculentum und in Tagetes erecta erfolgte unter Kontrolle des konstitutiven Promoters FNR (Ferredoxin NADPH Oxidoreduetase) aus Arabidopsis thaliana. Die Expression erfolgte mit dem Transitpeptid rbcS aus Erbse (Anderson et al. 1986, Biochem J. 240:709-715). Der Klon pNS053 wurde für die Klonierung in den Expressionsvektor pJFNR (Beispiel
2) verwendet. Die Klonierung erfolgte durch Isolierung des 797 Bp Sphl-Fragmentes aus pNS053 und LIigierung in den SphI geschnittenen Vektor pJFNR. Der Klon, der die
Ketolase von Nodularia spumigena CCAUV 01-053 in der korrekten Orientierung als N- terminale translationale Fusion mit dem rbcS Transitpeptid enthält, heisst pJFNRNS053.
Die Herstellung einer Expressionskassette für die Agrobacterium vermittelte Transformation der Ketolase NS053:BKT aus Nodularia spumigena CCAUV 01-053 in Lycoper- sicon esculentum erfolgte unter der Verwendung des binären Vektors pSUN3 (WO02/00900).
Zur Herstellung des Expressionsvektors pS3FNRNS053 wurde das 2.4 Kb Kpnl Fragment aus pJFNRNS053 mit dem Kpnl geschnittenen Vektor pSUN3 ligiert. Dieser Klon heisst MSP7.
Die Herstellung einer Expressionskassette für die Agro )acteΛ/'um-vermittelte Transformation des Expressionsvektor mit der Ketolase NS053:BKT aus Nodularia spumigena CCAUV 01-053 in Tagetes erecta erfolgte unter der Verwendung des binären Vektors pSUN5 (WO02/00900).
Zur Herstellung des Expressionsvektors pS5FNRNS053 wurde das 2.4 Kb Kpnl Fragment aus pJFNRNS053 mit dem Kpnl geschnittenen Vektor pSUN5 ligiert. Dieser Klon heisst MSP8.
Beispiel 9:
Amplifikation einer DNA, die die gesamte Primärsequenz der Ketolase GV35.87:BKT aus Gloeobacter violaceus SAG 35.87codiert
Die DNA, die für die Ketolase GV35.87.BKT kodiert, wurde mittels PCR aus Gloeobacter violaceus SAG 35.87(SAG: Sammlung von Algenkulturen Göttingen) amplifiziert.
Für die Präparation von genomischer DNA aus einer Suspensionskultur von Gloeobacter violaceus SAG 35.87 , die 1 Woche mit Dauerlicht und konstantem Schütteln (150 rpm) at 25°C in BG 17-Medium (1.5 g/l NaNO3, 0.04 g/l K2PO4x3H2O, 0.075 g/l
MgSO4xH2O, 0.036 g/l CaCI2x2H2O, 0.006 g/l citric acid, 0.006 g/l Ferric ammonium citrate, 0.001 g/l EDTA disodium magnesium, 0.04 g/l Na2CO3, 1ml trace metal mix A5+Co (2.86 g/l H3BO3, 1.81 g/l MnCI2x4H2o, 0.222 g/l ZnSO4x7H2o,0.39 g/l Na- MoO4X2H2o, 0.079 g/l CuSO4x5H2O, 0.0494 g/l Co(NO3)2x6H2O)) gewachsen war, wurden die Zellen durch Zentrifugation geerntet, in flüssigem Stickstoff eingefroren und im Mörser pulverisiert.
Protokoll für DNA Isolation aus Gloeobacter violaceus SAG 35.87 :
Aus einer 10 ml Flüssigkultur wurden die Bakterienzellen durch 10 minütige Zentrifugation bei 8 000 rpm pelletiert. Anschließend wurden die Bakterienzellen in flüssigem Stickstoff mit einem. Mörser zerstoßen und gemahlen. Das Zellmaterial wurde in 1 ml 10mM Tris HCI (pH 7.5) resuspendiert und in ein Eppendorf Reaktionsgefäß (2ml Vo- lumen) überführt. Nach Zugabe von 100 μl Proteinase K (Konzentration: 20 mg/ml) wurde die Zellsuspension für 3 Stunden bei 37°C inkubiert. Anschließend wurde die Suspension mit 500 μl Phenol extrahiert. Nach δminütiger Zentrifugation bei 13 000 upm wurde die obere, wässrige Phase in ein neues 2 ml-Eppendorf Reaktionsgefäß überführt. Die Extraktion mit Phenol wurde 3mal wiederholt. Die DNA wurde durch Zu- gäbe von 1/10 Volumen 3 M Natriumacetat (pH 5.2) und 0.6 Volumen Isopropanol gefällt und anschließend mit 70% Ethanol gewaschen. Das DNA-Pellet wurde bei Raumtemperatur getrocknet, in 25 μl Wasser aufgenommen und unter Erhitzung auf 65°C gelöst.
Die Nukleinsäure, kodierend für die Ketolase GV35.87.BKT aus Gloeobacter violaceus SAG 35.87 , wurde mittels "polymerase chain reaction" (PCR) aus Gloeobacter violaceus SAG 35.87 unter Verwendung eines sense-spezifischen Primers (GVK-F1, SEQ ID No. 73) und eines antisense-spezifischen Primers (GVK-R1 SEQ ID No. 74) amplifiziert.
Die PCR-Bedingungen waren die folgenden:
Die PCR zur Amplifikation der DNA, die für ein Ketolase Protein bestehend aus der gesamten Primärsequenz kodiert, erfolgte in einem 50 ul Reaktionsansatz, in dem ent- halten war:
- 1 ul einer Gloeobacter violaceus SAG 35.87 DNA (hergestellt wie oben beschrieben)
- 0.25 mM dNTPs
- 0.2 mM GVK-F1 (SEQ ID No. 73) - 0.2 mM GVK-R1 (SEQ ID No. 74)
- 5 ul 10X PCR-Puffer (TAKARA)
- 0.25 ul R Taq Polymerase (TAKARA)
- 25.8 ul Aq. Dest. Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:
1X94°C 2 Minuten 35X94°C 1 Minute 55°C 1 Minuten 72°C 3 Minuten 1X72°C 10 Minuten
Die PCR-Amplifikation mit SEQ ID No. 73 und SEQ ID No. 74 resultierte in einem 785 Bp-Fragment, das für ein Protein bestehend aus der gesamten Primärsequenz kodiert (SEQ ID No. 75). Unter Verwendung von Standardmethoden wurde das Amplifikat in den PCR-Klonierungsvektor pCR 2.1-TOPO (Invitrogen) kloniert und der Klon pGV35.87 erhalten.
Beispiel 10:
Herstellung von Expressionsvektoren zur konstitutiven Expression der Ketolase GV35.87:BKT aus Gloeobacter violaceus SAG 35.87 in Lycopersicon esculentum und Tagetes erecta
Die Expression der Ketolase aus Gloeobacter violaceus SAG 35.87 m Lycopersicon esculentum und in Tagetes erecta erfolgte unter Kontrolle des konstitutiven Promoters FNR (Ferredoxin NADPH Oxidoreduetase) aus Arabidopsis thaliana. Die Expression erfolgte mit dem Transitpeptid rbcS aus Erbse (Anderson et al. 1986, Biochem J. 240:709-715).
Der Klon pGV35.87 wurde für die Klonierung in den Expressionsvektor pJFNR (Beispiel 2) verwendet. Die Klonierung erfolgte durch Isolierung des 797 Bp Sphl- Fragmentes aus pGV35.87 und Ligierung in den SphI geschnittenen Vektor pJFNR. Der Klon, der die Ketolase von Gloeobacter violaceus SAG 35.87 in der korrekten Ori- entierung als N-terminale translationale Fusion mit dem rbcS Transitpeptid enthält, heisst pJFNRGV35.87.
Die Herstellung einer Expressionskassette für die Agrobacterium vermittelte Transformation der Ketolase GV35.87: BKT aus Gloeobacter violaceus SAG 35.87 in Lycoper- sicon esculentum erfolgte unter der Verwendung des binären Vektors pSUN3 (WO02/00900).
Zur Herstellung des Expressionsvektors pS3FNRGV35.87 wurde das 2.4 Kb Kpnl Fragment (partialle Kpnl Hydrolyse) aus pJFNRGV35.87 mit dem Kpnl geschnittenen Vektor pSUN3 ligiert. Dieser Klon heisst MSP9. Die Herstellung einer Expressionskassette für die >4groώacter/-/m-vermittelte Transformation des Expressionsvektor mit der Ketolase GV35.87;ßKT aus Gloeobacter violaceus SAG 35.87 in Tagetes erecta erfolgte unter der Verwendung des binären Vektors pSUNδ (WO02/00900).
Zur Herstellung des Expressionsvektors pS5FNRGV35.87 wurde das 22.4 Kb Kpnl Fragment (partialle Kpnl Hydrolyse) aus pJFNRGV35.87 mit dem Kpnl geschnittenen Vektor pSUNδ ligiert. Dieser Klon heisst MSP10.
Beispiel 11
Konstruktion des Plasmides pMCL-CrtYlBZ/idi/gps für die Synthese von Zeaxanthin in
£. coli
Die Konstruktion von pMCL-CrtYlBZ/idi/gps erfolgte in drei Schritten über die Zwischenstufen pMCL-CrtYlBZ und pMCL-CrtYlBZ/idi. Als Vektor wurde das mit high- copy-number Vektoren kompatible Plasmid pMCL200 verwendet (Nakano, Y., Yoshida, Y., Yamashita, Y. und Koga, T.; Construction of a series of pACYC-derived plasmid vectors; Gene 162 (1995), 157-168).
Beispiel 11.1.: Konstruktion von pMCL-CrtYlBZ
Die Biosynthesegene crtY, crtB, crtl und crtZ entstammen dem Bakterium Erwinia uredovora und wurden mittels PCR amplifiziert. Genomische DNA von Erwinia uredovora (DSM 30080)wi/rcfe von der Deutschen Sammlung von Mikroorganismen und Zellkutu- ren (DSMZ, Braunschweig) innerhalb eines Service-Dienstes präpariert. Die PCR-
Reaktion wurde entsprechend den Angaben des Herstellers durchgeführt (Röche, Long Template PCR: Procedure for amplification of 5-20 kb targets with the expand long template PCR System). Die PCR-Bedingungen für die Amplifikation des Biosynthesec- lusters von Erwinia uredovora waren die folgenden:
Master Mix 1 :
- 1.75 ul dNTPs (Endkonzentration 3δ0 μM)
- 0.3 μM Primer Crt1 (SEQ ID No. 77) - 0.3 μM Primer Crt2 (SEQ ID No. 78)
- 260 - 500 ng genomische DNA von DSM 30080 Aq. Dest. bis zu einem Gesamtvolumen von 50 μl
Master Mix 2:
- 5 ul 10x PCR Puffer 1 (Endkonzentration 1x, mit 1.75 mM Mg2+) - 10x PCR Puffer 2 (Endkonzentration 1x, mit 2.25 mM Mg2+) - 10x PCR Puffer 3 (Eπdkonzentration 1x, mit 2.25 mM Mg2+) - 0.75 ul Expand Long Template Enzyme Mix (Endkonzentration 2.6 Units) Aq. Dest. bis zu einem Gesamtvolumen von 60 μl δ
Die beiden Ansätze "Master Mix 1" und "Master Mix 2" wurden zusammenpipetiert. Die PCR wurde in einem Gesamtvolumen von δO ul unter folgenden Zyklusbeding ungeri durchgeführt:0 1X 94°C 2 Minuten 30X94°C 30 Sekunden 58°C 1 Minute 68°C 4 Minuten5 1X 72°C 10 Minuten
Die PCR-Amplifikation mit SEQ ID No. 77 und SEQ ID No. 78 resultierte in einem Fragment (SEQ ID NO. 79), das für die Gene CrtY (Protein: SEQ ID NO. 80), Crtl (Protein: SEQ ID NO. 81), crtB (Protein: SEQ ID NO. 82) und CrtZ (iDNA) kodiert. Unter0 Verwendung von Standardmethoden wurde das Amplifikat in den PCR- Klonierungsvektor pCR2.1 (Invitrogen) kloniert und der Klon pCR2.1-CrtYIBZ erhalten.
Das Plasmid pCR2.1-CrtYIBZ wurde Sall und Hindlll geschnitten, das resultierende Sall/Hindlll-Fragment isoliert und durch Ligierung in den Sall/Hindlll geschnittenenδ Vektor pMCL200 transferiert. Das in pMCL 200 klonierte Sall/Hindlll Fragment aus pCR2.1-CrtYIBZ ist 4624 Bp lang, kodiert für die Gene CrtY, Crtl, crtB und CrtZ und entspricht der Sequenz von Position 229δ bis 6918 in D90087 (SEQ ID No. 79). Das Gen CrtZ wird entgegen der Leserichtung der Gene CrtY, Crtl und CrtB mittels seines endogenen Promotors transkribiert. Der resultierende Klon heisst pMCL-CrtYlBZ.0
Beispiel 11.2.: Konstruktion von pMCL-CrtYlBZ/idi Das Gen idi (Isopentenyldiphosphat-Isomerase; IPP-lsomerase) wurde aus E. coli mittels PCR amplifiziert. Die Nukleinsäure, kodierend das gesamte idi Gen mit idi-5 Promotor und Ribosomenbindestelle, wurde aus E coli mittels "polymerase chain reac- tion" (PCR) unter Verwendung eines sense-spezifischen Primers (5'-idi SEQ ID No. 81) und eines antisense-spezifischen Primers (3'-idi SEQ ID No. 82) amplifiziert.
Die PCR-Bedingungen waren die folgenden:0 Die PCR zur Amplifikation der DNA erfolgte in einem 50 μl Reaktionsansatz, in dem enthalten war:
- 1 ul einer E coli TOP10- Suspension - 0.25 mM dNTPs
- 0.2 mM 5 -idi (SEQ ID No. 81)
- 0.2 mM 3'-idi (SEQ ID No. 82)
- 5 ul 10X PCR-Puffer (TAKARA)
- 0.25 ul R Taq Polymerase (TAKARA) - 28.8 ul Aq. Dest.
Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:
1X 94°C 2 Minuten 20X94°C 1 Minute 62°C 1 Minute 72°C 1 Minute 1X 72°C 10 Minuten
Die PCR-Amplifikation mit SEQ ID No. 81 und SEQ ID No. 82 resultierte in einem 679 Bp-Fragment, das für ein Protein bestehend aus der gesamten Primärsequenz kodiert (SEQ ID No. 83). Unter Verwendung von Standardmethoden wurde das Amplifikat in den PCR-Klonierungsvektor pCR2.1 (Invitrogen) kloniert und der Klon pCR2.1-idi erhalten.
Sequenzierung des Klons pCR2.1-idi bestätigte eine Sequenz, die sich nicht von der publizierten Sequenz AE000372 in Position 8774 bis Position 9440 unterscheidet. Diese Region umfaßt die Promotor-Region, die potentielle Ribosomenbindestelle und den gesamten "open reading frame" für die IPP-lsomerase. Das in pCR2.1-idi klonierte Fragment hat durch das Einfügen einer Xhol-Schnittstelle am 5'-Ende und einer Sall- Schnittstelle am 3'-Ende des /'oY-Gens eine Gesamtlänge von 679 Bp.
Dieser Klon wurde daher für die Klonierung des / /-Gens in den Vektor pMCL-CrtYIBZ verwendet. Die Klonierung erfolgte durch Isolierung des Xhol/Sall-Fragmentes aus pCR2.1-idi und Ligierung in den Xhol/Sall geschnittenen Vektor pMCL-CrtYIBZ. Der resultierende Klon heisst pMCL-CrtYlBZ/idi.
Beispiel 11.3.: Konstruktion von pMCL-CrtYlBZ idi/gps
Das Gen gps (Geranylgeranylpyrophosphat-Synthase; ; GGPP-Synthase) wurde aus Archaeoglobus fulgidus mittels PCR amplifiziert. Die Nukleinsäure, kodierend gps aus Archaeoglobus fulgidus, wurde mittels "polymerase chain reaction" (PCR) unter Verwendung eines sense-spezifischen Primers (5'-gps SEQ ID No. 85) und eines anti- sense-spezifischen Primers (3'-gps SEQ ID No. 86) amplifiziert.
Die DNA von Archaeoglobus fulgidus wurde von der Deutschen Sammlung von Mikroorganismen und Zellkulturen (DSMZ, Braunschweig) innerhalb eines Service-Dienstes präpariert. Die PCR-Bedingungen waren die folgenden:
Die PCR zur Amplifikation der DNA, die für ein GGPP-Synthase Protein bestehend aus der gesamten Primärsequenz kodiert, erfolgte in einem δO μl Reaktionsansatz, in dem enthalten war:
- 1 ul einer Archaeoglobus fulgidus-D A
- 0.2δ mM dNTPs - 0.2 mM δ'-gps (SEQ ID No. 85)
- 0.2 mM 3'-gps (SEQ ID No. 86)
- 5 ul 10X PCR-Puffer (TAKARA)
- 0.2δ ul R Taq Polymerase (TAKARA)
- 28.8 ul Aq. Dest.
Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:
1X 94°C 2 Minuten 20X94°C 1 Minute δ6°C 1 Minute 72°C 1 Minute 1X 72°C 10 Minuten
Das mittels PCR und den Primern SEQ ID No. 86 und SEQ ID No. 86 amplifizierte DNA-Fragment wurde mit an sich bekannten Methoden aus dem Agarosegel eluiert und mit den Restriktionsenzymen Ncol und Hindlll geschnitten. Daraus resultiert ein 962 Bp-Fragment, das für ein Protein bestehend aus der gesamten Primärsequenz kodiert (SEQ ID No. 87). Unter Verwendung von Standardmethoden wurde das Ncol/Hindlll geschnittene Amplifikat in den Vektor pCB97-30 kloniert und der Klon pCB-gps erhalten.
Sequenzierung des Klons pCB-gps bestätigte eine Sequenz für die GGPP-Synthase aus A. fulgidus, die sich von der publizierten Sequenz AF120272 in einem Nukleotid unterscheidet. Durch das Einfügen einer Ncol-Schnittstelle im gps-Gen wurde das zweite Kodon der GGPP-Synthase verändert. In der publizierten Sequenz AF120272 kodiert CTG (Position 4-6) für Leucin. Durch die Amplifikation mit den beiden Primern SEQ ID No. 85 und SEQ ID No. 86 wurde dieses zweite Kodon in GTG verändert, welches für Valin kodiert.
Der Klon pCB-gps wurde daher für die Klonierung des g/ps-Gens in den Vektor pMCL- CrtYlBZ/idi verwendet. Die Klonierung erfolgte durch Isolierung des Kpnl/Xhol-
Fragmentes aus pCB-gps und Ligierung in den Kpnl und Xhol geschnittenen Vektor pMCL-CrtYlBZ/idi. Das klonierte Kpnl/Xhol-Fragment trägt den Prm16-Promotor zusammen mit einer minimalen 5'-UTR-Sequenz von rbcL, den ersten 6 Kodons von rbcL, die die GGPP-Synthase N-terminal verlängern, und 3' vom gps-Gen die psbA- Sequenz. Der N-Terminus der GGPP-Synthase hat somit anstelle der natürlichen Aminosäure-Abfolge mit Met-Leu-Lys-Glu (Aminosäure 1 bis 4 aus AF120272) die veränderte Aminosäure-Abfolge Met-Thr-Pro-Gln-Thr-Ala-Met-Val-Lys-GIu. Daraus resultiert, dass die rekombinante GGPP-Synthase, beginnend mit Lys in Position 3 (in AF120272) identisch ist und keine weiteren Änderungen in der Aminosäuresequenz aufweist. Die rbcL- und psbA-Sequenzen wurden gemäß einer Referenz nach EibI et al. (Plant J. 19. (1999), 1-13) verwendet. Der resultierende Klon heisst pMCL- CrtYlBZ/idi/gps.
Beispiel 12: Biotransformation von Zeaxanthin in rekombinanten E. coli-Stämmen
Zur Zeaxanthin-Biotransformation wurden rekombinante E. co//-Stämme hergestellt, welche durch heterologe Komplementation zur Zeaxanthin-Produktion befähigt sind. Stämme von E. coli TOP10 wurden als Wirtszellen für die Komplementations- Experimente mit den Plasmiden i) pNP60.79:BKT, oder ii) pNP71.79:BKT oder iii) pNS037:BKT und pMCL-CrtYlBZ/idi/gps als zweitem Plasmid verwendet.
Um E. co/-Stämme herzustellen, die die Synthese von Zeaxanthin in hoher Konzentration ermöglichen, wurde das Plasmid pMCL-CrtYlBZ/idi/gps konstruiert. Das Plasmid trägt die Bioynthesegene crtY, crtB, crtl und crtY von Erwinia uredovora, das Gen gps (für Geranylgeranylpyrophoshat-Synthastase) aus Archaeoglobus fulgidus und das Gen idi (Isopentenyldiphosphat-Isomerase) aus E. coli. Mit diesem Konstrukt wurden limitierende Schritte für eine hohe Akkumulation von Carotinoiden und deren bio- synthtischen Vorstufen beseitigt. Dies wurde zuvor von Wang et al. in ähnlicher Weise mit mehreren Plasmiden beschrieben (Wang, C.-W., Oh, M.-K. und Liao, J.C.; Engi- neered isoprenoid pathway enhances astaxanthin production in Escherichia coli, Biotechnology and Bioengineering 62 (1999), 235-241).
Kulturen von E.coli TOP10 wurden in an sich bekannter Weise mit den Plasmiden pMCL-CrtYlBZ/idi/gps und i) pNP60.79:BKT, oder ii) pNP71.79:BKT oder iii) pNS037:BKT transformiert und in LB-Medium bei 30°C bzw. 37°C über Nacht kultiviert. Ampicilün (50 μg/ml), Chloramphenicol (50 μg/ml) und Isopropyl-ß-thiogalactosid (1 mmol) wurden in an sich üblicher Weise ebenfalls über Nacht zugegeben. Die E. coli- Kulturen trugen damit jeweils ein low-copy-number and ein high-copy-number Plasmid.
Zur Isolierung der Carotinoide aus den rekombinanten Stämmen wurden die Zellen mit Aceton extrahiert, das organische Lösungsmittel zur Trockne eingedampft und die Carotinoide mittels HPLC über eine C30-Säule aufgetrennt. Folgende Verfahrensbedingungen wurden eingestellt.
Trennsäule: Prontosil C30-Säule, 2δ0 x 4,6 mm, (Bischoff, Leonberg) Flussrate: 1.0 ml/min Eluenten: Laufmittel A - 100% Methanol Laufmittel B - 80% Methanol, 0.2% Ammoniumacetat Laufmittel C - 100% t-Butyl-methylether
Gradientprofil:
Detektion: 300 - 500 nm
Die Spektren wurden direkt aus den Elutionspeaks unter Verwendung eines Photodio- denarraydetektors bestimmt. Die isolierten Substanzen wurden über ihre Absorptionsspektren und ihre Retentionszeiten im Vergleich zu Standardproben identifiziert.
Die Expression der Ketolase aus Nostoc punctiforme 71.79 erfolgte mit Plasmid pNP71.79:BKT, die Expression der Ketolase aus Nostoc punctiforme 60.79 erfolgte mit Plasmid pNP60.79:BKT und die Expression der Ketolase aus Nodularia spumigena erfolgte mit pNS037:BKT. Vor Extraktion der Carotinoide wurde für E.coli/ pNP71.79:BKT die Gesamtzellzahl mit 6,1 x 109, für E.coli/ pNP60.79:BKT die Gesamtzellzahl mit 6,3 x 109 und für E.coli/ pNS037:BKT die Gesamtzellzahl mit 6,2 x 109 bei der Wellenlänge von 600 nm bestimmt. Tabelle 1 zeigt einen Vergleich der bakteriell produzierten Carotinoidmengen:
Tabelle 1 : Konzentration der aus E.coli extrahierten Carotinoide in ng/ ml Kultur, Abkürzungen: Cantha für Canthaxanthin, Adonir für Adonirubin, Adonix für Adonixanthin, Astafür Astaxanthin, Zea für Zeaxanthin, Crypto für beta-Cryptoxanthin, Beta- C für beta-Carotin, Gesamt für Gesamtcarotinoidgehalt, Gesamt Ketocaro: Summe aller Ketocarotinoide Die Konzentration der Gesamtcarotinoide war nach etwa 18 Stunden Inkubation in E.coli/pNP60.79:BKT etwa 1/3 höher als in E.coli/pNP71.79:BKT. Die Menge an Ketocarotinoiden (Canthaxanthin, Adonirubin, Adonixanthin und Astaxanthin) war in E.coli/pNP60.79:BKT bei gleicher Zellzahl mit 1966 ng deutlich höher als in E.coli/p NP71.79:BKT mit 284 ng. Der Anteil der Ketocarotinoide beträgt δ8% in E.coli/pNP60.79:BKT und nur 13% in E.coli/pNP71.79:BKT, jeweils bezogen auf den Gesamtcarotinoidgehalt. Der Anteil der Ketocarotinoide beträgt δ6% in E.coli/pNs037:BKT, bezogen auf den Gesamtcarotinoidgehalt.
Beispiel 13: Herstellung transgener Lycopersicon esculentum Pflanzen
Transformation und Regeneration von Tomatenpflanzen erfolgte nach der publizierten Methode von Ling und Mitarbeitern (Plant Cell Reports (1998), 17:843-847). Für die Varietät Microtom wurde mit höherer Kanamycin-Konzentration (100mg/L) selektioniert.
Als Ausgangsexplantat für die Transformation dienten Kotyledonen und Hypokotyle sieben bis zehn Tage alter Keimlinge der Linie Microtom. Für die Keimung wurde das Kulturmedium nach Murashige und Skoog (1962: Murashige and Skoog, 1962, Physiol. Plant 15, 473-) mit 2% Saccharose, pH 6,.1 verwendet. Die Keimung fand bei 21°C bei wenig Licht (20 - 100 μE) statt. Nach sieben bis zehn Tagen wurden die Kotyledonen quer geteilt und die Hypokotyle in ca. 5 - 10 mm lange Abschnitte geschnitten und auf das Medium MSBN (MS, pH 6,1 , 3% Saccharose + 1 mg/l BAP, 0,1 mg/l NAA) gelegt, das am Vortag mit suspensionskultivierten Tomatenzellen beschickt wurde. Die Tomatenzellen wurden luftblasenfrei mit sterilem Filterpapier abgedeckt. Die Vorkultur der Explantate auf dem beschriebenen Medium erfolgte für drei bis fünf Tage. Zellen des Stammes Agrobakterium tumefaciens LBA4404 wurden einzeln mit den Plasmiden pS3FNRNP60.79, pS3FNRNP71.79, pS3FNRNS037, pS3FNRNS063, pS3FNRGV3δ.87 transformiert. Von den einzelnen mit den Binärvektoren pS3FNRNP60.79, pS3FNRNP71.79, pS3FNRNS037, pS3FNRNS053, pS3FNRGV35.87 transformierten Agrobakterium-Stämmen wurde jeweils eine Über- δ nachtkultur in YEB Medium mit Kanamycin (20 mg/l) bei 28 °C kultiviert und die Zellen zentrifugiertDas Bakterienpellet wurde mit flüssigem MS Medium (3% Saccharose, pH 6,1) resuspendiert und auf eine optische Dichte von 0,3 (bei 600 nm) eingestellt. Die vorkultivierten Explantate wurden in die Suspension überführt und für 30 Minuten bei Zimmertemperatur unter leichtem Schütteln inkubiert. Anschließend wurden die 0 Explantate mit sterilem Filterpapier getrocknet und für die dreitägige Co-Kultur (21 °C) auf ihr Vorkulturmedium zurück gelegt.
Nach der Co-kultur wurden die Explantate auf MSZ2 Medium (MS pH 6,1 + 3% Saccharose, 2 mg/I Zeatin, 100 mg/l Kanamycin, 160 mg/l Timentin) transferiert und für dieδ selektive Regeneration bei 21 °C unter Schwachlicht Bedingungen (20 - 100 μE, Lichtrhythmus 16h/8h) aufbewahrt. Aller zwei bis drei Wochen erfolgte der Transfer der Explantate bis sich Sprosse bilden. Kleine Sprosse konnten vom Explantat abgetrennt werden und auf MS (pH 6,1 + 3% Saccharose) 160 mg/l Timentin, 30 mg/l Kanamycin, 0,1 mg/l IAA bewurzelt werden. Bewurzelte Pflanzen wurden ins Gewächshaus über-0 führt.
Gemäß der oben beschriebenen Transformationsmethode wurden mit folgenden Ex- pressionskonstrukten folgende Linien erhalten: δ Mit pS3FNRNP60.79 wurde erhalten: MSP1-1 , MSP1-2, MSP1-3 Mit pS3FNRNP71.79 wurde erhalten: MSP3-1 , MSP3-2, MSP3-3 Mit pS3FNRNS037wurde erhalten: MSP5-1 , MSP5-2, MSPδ-3 Mit pS3FNRNS0δ3 wurde erhalten: MSP7-1 , MSP7-2, MSP7-3 Mit pS3FNRGV3δ.87 wurde erhalten: MSP9-1 , MSP9-2, MSP9-30
Beispiel 14: Herstellung transgener Tagetes Pflanzen δ Tagetessamen werden sterilisiert und auf Keimungsmedium (MS-Medium; Murashige and Skoog, Physiol. Plant. 1δ(1962), 473-497) pH δ,8, 2% Saccharose) aufgelegt. Die Keimung erfolgt in einem Temperatur/Licht/Zeitintervall von 18-28°C/20-200 μE/3 - 16 Wochen, bevorzugt jedoch bei 21 °C, 20-70 μE, für 4-8 Wochen. Alle Blätter der sich bis dahin entwickelten in vitro Pflanzen werden geerntet und quer zur Mittelrippe geschnitten. Die dadurch entstehenden Blattexplantate mit einer Größe von 10 - 60 mm2 werden im Verlaufe der Präparation in flüssigem MS - Medium bei
Raumtemperatur für maximal 2 h aufbewahrt.
Ein beliebiger Agrobakterium tumefaciens Stamm, bevorzugt aber ein supervirulenter Stamm, wie z.B. EHA106 mit einem entsprechenden Binärplasmid, das ein Selekti- onsmarkergen (bevorzugt bar oder pat) sowie ein oder mehrere Trait- oder Reportergene tragen kann wird (pS6FNRNP60.79, pS5FNRNP71.79, pS5FNRNS037, pSδFNRNS053, pS5FNRGV35.87), über Nacht angezogen und für die Co-Kultivierung mit dem Blattmaterial verwendet. Die Anzucht des Bakterienstammes kann wie folgt erfolgen: Eine Einzelkolonie des entsprechenden Stammes wird in YEB (0,1 % Hefeextrakt, 0,5 % Rindfleischextrakt, 0,5 % Pepton, 0,5 % Saccharose, 0,5 % Magnesiumsulfat x 7 H20) mit 25 mg/l Kanamycin angeimpft und bei 28°C für 16 bis 20 h angezogen. Anschließend wird die Bakteriensuspension durch Zentrifugation bei 6000 g für 10 min geerntet und derart in flüssigem MS Medium resuspendiert, daß eine OD600 von ca. 0,1 bis 0,8 entstand. Diese Suspension wird fuer die C-Kultivierung mit dem Blattmaterial verwendet.
Unmittelbar vor der Co-Kultivierung wird das MS-Medium, in dem die Blätter aufbewahrt worden sind, durch die Bakteriensuspension ersetzt. Die Inkubation der Blättchen in der Agrobakteriensuspension erfolgte für 30 min unter leichtem Schütteln bei Raumtemperatur. Anschließend werden die infizierten Explantate auf ein mit Agar (z.B. 0,8 % Plant Agar (Duchefa, NL) verfestigtes MS-Medium mit Wachstumsregulatoren, wie beispielsweise 3 mg/l Benzylaminopurin (BAP) sowie 1 mg/l Indolylessigsäure (IAA) aufgelegt. Die Orientierung der Blätter auf dem Medium ist bedeutungslos. Die Kultivierung der Explantate findet für 1 bis 8 Tage, bevorzugt aber für 6 Tage statt, dabei können folgende Bedingungen angewendet werden: Lichtintensität: 30 - 80 μMol/m2 x sec, Temperatur: 22 - 24°C, hell/dunkel Wechsel von 16/8 Stunden. An- schließend werden die co-kultivierten Explantate auf frisches MS-Medium, bevorzugt mit den gleichen Wachstumsregulatoren übertragen, wobei dieses zweite Medium zusätzlich ein Antibiotikum zur Unterdrückung des Bakterienwachstums enthält. Timentin in einer Konzentration von 200 bis 500 mg/l ist für diesen Zweck sehr geeignet. Als zweite selektive Komponente wird eine für die Selektion des Transformationserfolges eingesetzt. Phosphinothricin in einer Konzentration von 1 bis 5 mg/l selektiert sehr effizient, aber auch andere selektive Komponenten gemäß des zu verwendenden Verfahrens sind denkbar.
Nach jeweils ein bis drei Wochen erfolgt der Transfer der Explantate auf frisches Medi- um bis sich Sproßknospeή und kleine Sprosse entwickeln, die dann auf das gleiche Basalmedium einschließlich Timentin und PPT oder alternative Komponenten mit Wachstumsregulatoren, nämlich z.B. 0,5 mg/l Indolylbuttersäure (IBA) und 0,5 mg/l Gibberillinsäure GA3, zur Bewurzelung übertragen werden. Bewurzelte Sprosse können ins Gewächshaus überführt werden.
Zusätzlich zu der beschriebenen Methode sind folgende vorteilhafte Modifikationen möglich:
Bevor die Explantate mit den Bakterien infiziert werden, können sie für 1 bis 12 Tage, bevorzugt 3 - 4, auf das oben beschriebene Medium für die Co-Kultur vorinkubiert werden. Anschließend erfolgt die Infektion, Co-Kultur und selektive Regeneration wie oben beschrieben.
Der pH Wert für die Regeneration (normalerweise 5,8) kann auf pH 5,2 gesenkt wer- den. Dadurch wird die Kontrolle des Agrobakterienwachstums verbessert.
Die Zugabe von AgNO3 (3 - 10 mg/l) zum Regenerationsmedium verbessert den Zustand der Kultur einschließlich der Regeneration selbst.
Komponenten, die die Phenolbildung reduzieren und dem Fachmann bekannt sind, wie z.B. Zitronensäure, Ascorbinsäure, PVP u.v.a.m., wirken sich positiv auf die Kultur aus.
Für das gesamte Verfahren kann auch flüssiges Kulturmedium Verwendung finden. Die Kultur kann auch auf handelsüblichen Trägern, die auf dem flüssigen Medium positio- niert werden inkubiert werden.
Gemäß der oben beschriebenen Transformationsmethode wurden mit folgenden Ex- pressionskonstrukten folgende Linien erhalten:
Mit pS5FNRNP60.79 wurde erhalten: MSP2-1 , MSP2-2, MSP2-3
Mit pS5FNRNP71.79 wurde erhalten: MSP4-1 , MSP4-2, MSP4-3
Mit pS5FNRNS037wurde erhalten: MSP6-1 , MSP6-2, MSP6-3
Mit pS6FNRNS0δ3 wurde erhalten: MSP8-1 , MSP8-2, MSP8-3
Mit pSδFNRGV35.87 wurde erhalten: MSP10-1, MSP10-2, MSP10-3
Beispiel 15: Enzymatische Lipase-katalysierte Hydrolyse von Carotinoidestern aus Pflanzenmaterial und Identifizierung der Carotinoide
Allgemeine Arbeitsvorschrift a) Gemörsertes Pflanzenmaterial (z.B. Petalenrηaterial) (30-100 mg Frischgewicht) wird mit 100% Aceton (dreimal 500μl; jeweils etwa 15 Minuten schütteln) extrahiert. Das Lösungsmittel wird evaporiert. Carotinoide werden anschließend in 495 μl Aceton aufgenommen, 4,95 ml Kaliumphosphatpuffer (100 mM, pH7.4) zugegeben und gut gemischt. Danach erfolgt die Zugabe von ca. 17 mg Bile-Salze (Sigma) und 149 μl einer NaCI/CaCI2-Lösung (3M NaCI und 7δ mM CaCI2). Die Suspension wird für 30 Minuten bei 37°C inkubiert. Für die enzymatische Hydrolyse der Carotinoidester wird 695 μl einer Lipaselösung (50 mg/ml Lipase Typ7 von Candida rugosa (Sigma)) zugegeben und unter Schütteln bei 37C inkubiert. Nach etwa 21 Stunden erfolgte nochmals eine Zugabe von 596 μl Lipase mit erneuter Inkubation von mindestens δ Stunden bei 37°C. Anschließend werden etwa ca. 700 mg Na2SO4 in der Lösung gelöst. Nach Zugabe von 1800 μl Petrolether werden die Carotinoide durch kräftig Mischen in die organische Phase extrahiert. Dieses Ausschütteln wird solange wiederholt, bis die organische Phase farblos bleibt. Die Petroletherfraktionen werden vereinigt und der Petrolether evaporiert. Freie Carotinoide werden in 100-120 μl Aceton aufgenommen. Mittels HPLC und C30-reverse phase-Säule können freie Carotinoide aufgrund von Retentionszeit und UV-VIS-Spektren identifiziert werden.
Die verwendeten Bile-Salze oder Gallensäuresalze sind 1 :1 Mischungen von Cholat und Desoxycholat.
b) Arbeitsvorschrift für Aufarbeitung, wenn nur geringe Mengen an Carotinoidestern im Pflanzenmaterial vorhanden sind
Alternativ kann die Hydrolyse der Carotinoidester durch Lipase aus Candida rugosa nach Trennung mittels Dünnschichtchromatographie erreicht werden. Dazu werden 50- 100mg Pflanzenmaterial dreimal mit etwa 750μl Aceton extrahiert. Der Lösungsmittelextrakt wird im Vakuum einrotiert (erhöhte Temperaturen von 40-50°C sind tolera- bel). Danach erfolgt Zugabe von 300μl PetroletherAceton (Verhältnis 6:1) und gute Durchmischung. Schwebstoffe werden durch Zentrifugation (1-2 Minuten) sedimentiert.
Die obere Phase wird in ein neues Reaktionsgefäß überführt. Das verbleibende Rest wird erneut mit 200μl PetroletheπAceton (Verhältnis δ:1) extrahiert und Schwebstoffe werden durch Zentrifugation entfernt. Die beiden Extrakte werden zusammengeführt (Volumen 500μl) und die Lösungsmittel evaporiert. Der Rückstand wird in 30μl Petrol- ether:Aceton (Verhältnis δ:1) resuspendiert und auf eine Dünnschichtplatte (Silica-Gel 60, Merck) aufgetragen. Falls mehr als eine Auftragung für präparativ-analytische Zwecke erforderlich ist, sollten mehrere Aliquots mit jeweils δ0-100 mg Frischgewicht in der beschriebenen Weise für die dünnschichtchromatographische Trennung aufbereitet werden. Die Dünnschichtplatte wird in PetroletheπAceton (Verhältnis δ:1) entwickelt. Caroti- noidbanden können visuell aufgrund ihrer Farbe identifiziert werden. Einzelne Caroti- noidbanden werden ausgekratzt und können für präparativ-analytische Zwecke gepoolt werden. Mit Aceton werden die Carotinoide vom Silica-Material eluiert; das Lösungs- δ mittel wird im Vakuum evaporiert. Zur Hydrolyse der Carotinoidester wird der Rückstand in 49δμl Aceton gelöst, 17mg Bile-Salze (Sigma), 4,9δml 0.1M Kaliumphosphatpuffer (pH 7,4) und 149μl (3M NaCI, 7δmM CaCI2) zugegeben. Nach guter Durchmischung wird 30min bei 37°C äquilibriert. Danach erfolgt die Zugabe von δθδμl Lipase von Candida rugosa (Sigma, Stammlösung von δOmg/ml in δmM CaCI2). Über Nacht0 erfolgt die Inkubation mit Lipase unter Schütteln bei 37°C. Nach etwa 21 Stunden wird nochmals die gleiche Menge an Lipase zugegeben; für mindestens δ Stunden wird nochmals bei 37°C unter Schütteln inkubiert. Dann erfolgt die Zugabe von 700mg Na2SO4 (wasserfrei); mit 1800μl Petrolether wird für ca. 1 Minute ausgeschüttelt und die Mischung bei 3600 Umdrehungen/Minute für δ Minuten zentrifugiert. Die obere δ Phase wird in ein neues Reaktionsgefäß überführt und das Ausschütteln so lange wiederholt, bis die obere Phase farblos ist. Die vereinigte Petrolether-Phase wird im Vakuum eingeengt (Temperaturen von 40-δ0°C sind möglich). Der Rückstand wird in 120μl. Aceton, eventuell mittels Ultraschall, gelöst. Die gelösten Carotinoide können mittels HPLC unter Verwendung einer C30-Säule getrennt und anhand von Referenzsubstan-0 zen quantifiziert werden.
Beispiel 16: HPLC-Analyse freier Carotinoide
Die Analyse der nach der Arbeitsvorschriften in Beispiel 1 δ erhaltenen Proben erfolgt6 unter folgenden Bedingungen:
Folgende HPLC-Bedingungen wurden eingestellt. Trennsäule: Prontosil C30-Säule, 2δ0 x 4,6 mm, (Bischoff, Leonberg, Germany) Flussrate: 1.0 ml/min0 Eluenten Laufmittel A 100% Methanol Lauf mittel B 80% Methanol, 0.2% Ammoniumacetat Lauf mittel C 100% t-Butyl-methylether Detektion: 300-630 nm 5 Gradientenprofil:
Einige typische Retentionszeiten für erfindungsgemäß gebildete Carotinoide sind z.B. Violaxanthin 11 , 7 min, Astaxanthin 17,7 min, Adonixanthin 19 min, Adonirubin 19,9 min, Zeaxanthin 21 min.

Claims

Patentansprüche
1. Verfahren zur Herstellung von Ketocarotinoiden durch Kultivierung von genetisch veränderten, nicht-humanen Organismen, die im Vergleich zum Wildtyp eine ver- änderte Ketolase-Aktivität aufweisen, und die veränderte Ketolase-Aktivität durch eine Ketolase verursacht wird, ausgewählt aus der Gruppe
A Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 80 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist,
B Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 10 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 90 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 10 aufweist,
C Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 12 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 90 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 12 aufweist oder
D Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 14 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens δO % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 14 aufweist.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass man nicht-humane Organismen verwendet, die als Wildtyp bereits eine Ketolase-Aktivität aufweisen, und die genetische Veränderung eine Erhöhung der Ketolase-Aktivität im Vergleich zum Wildtyp bewirkt.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass man zur Erhöhung der Ketolase-Aktivität die Genexpression einer Nukleinsäure, kodierend eine Ketolase, ausgewählt aus der Gruppe A Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 80 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist,
B Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 10 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 90 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 10 aufweist,
C Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 12 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 90 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 12 aufweist oder
D Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 14 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 60 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 14 aufweist, gegenüber dem Wildtyp erhöht.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass man zur Erhöhung der Genexpression Nukleinsäuren in den Organismus einbringt, die eine Ketolase kodieren, ausgewählt aus der Gruppe .
A Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz,, die eine Identität von mindestens 80 % auf Aminosäu- reebene mit der Sequenz SEQ. ID. NO. 2 aufweist,
B Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 10 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 90 % auf Aminosäu- reebene mit der Sequenz SEQ. ID. NO. 10 aufweist,
C Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 12 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 90 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 12 aufweist oder
D Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 14 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 50 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 14 aufweist.
5. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass man nicht-humane Organismen verwendet, die als Wildtyp keine Ketolase-Aktivität aufweisen und die genetische Veränderung eine Ketolase-Aktivität im Vergleich zum Wildtyp verursacht.
6. Verfahren nach Anspruch δ, dadurch gekennzeichnet, dass man genetisch veränderte Organismen verwendet, die transgen eine Ketolase exprimieren, ausgewählt aus der Gruppe
A Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 80 % auf Aminosäu- reebene mit der Sequenz SEQ. ID. NO. 2 aufweist,
B Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 10 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 90 % auf Aminosäu- reebene mit der Sequenz SEQ. ID. NO. 10 aufweist,
C Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 12 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 90 % auf Aminosäu- reebene mit der Sequenz SEQ. ID. NO. 12 aufweist oder
D Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 14 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens δO % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 14 aufweist.
7. Verfahren nach Anspruch δ oder 6, dadurch gekennzeichnet, dass man zur Verursachung der Genexpression Nukleinsäuren in die Organismen einbringt, die Keto- lasen kodieren, ausgewählt aus der Gruppe
A Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 80 % auf Aminosäu- reebene mit der Sequenz SEQ. ID. NO. 2 aufweist,
B Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 10 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 90 % auf Aminosäu- reebene mit der Sequenz SEQ. ID. NO. 10 aufweist,
C Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 12 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 90 % auf Aminosäu- reebene mit der Sequenz SEQ. ID. NO. 12 aufweist oder
D Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 14 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens δO % auf Aminosäu- reebene mit der Sequenz SEQ. ID. HO. 14 aufweist.
8. Verfahren nach Anspruch 5 oder 7, Merkmal A, dadurch gekennzeichnet, dass man Nukleinsäuren, enthaltend die Sequenz SEQ. ID. NO. 1, 3, 5 oder 7 einbringt.
9. Verfahren nach Anspruch 5 oder 7, Merkmal B, dadurch gekennzeichnet, dass man Nukleinsäuren, enthaltend die Sequenz SEQ. ID. NO. 9 einbringt.
10. Verfahren nach Anspruch 5 oder 7, Merkmal C, dadurch gekennzeichnet, dass man Nukleinsäuren, enthaltend die Sequenz SEQ. ID. NO. 11 einbringt.
11. Verfahren nach Anspruch 5 oder 7, Merkmal D, dadurch gekennzeichnet, dass man Nukleinsäuren, enthaltend die Sequenz SEQ. ID. NO. 13 einbringt.
12. Verfahren nach einem der Ansprüche 1 bis 11 , dadurch gekennzeichnet, dass die genetisch veränderten Organismen zusätzlich gegenüber dem Wildtyp eine erhöhte oder verursachte Aktivität mindestens einer der Aktivitäten, ausgewählt aus der Gruppe Hydroxylase-Aktivität und ß-Cyclase-Aktivität, aufweisen.
13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass man zur zusätzlichen Erhöhung mindestens einer der Aktivitäten, die Genexpression mindestens einer Nukleinsäure ausgewählt aus der Gruppe Nukleinsäuren, kodierend eine Hydroxylase, und Nukleinsäuren, kodierend eine ß-Cyclase, gegenüber dem Wildtyp erhöht.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass man zur Erhöhung der Genexpression mindestens eine Nukleinsäure ausgewählt aus der Gruppe, Nukleinsäuren kodierend eine Hydroxylase und Nukleinsäuren kodierend eine ß- Cyclase in den Organismus einbringt.
1δ. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass man als Nukleinsäure, kodierend eine Hydroxylase, Nukleinsäuren einbringt, die eine Hydroxylase kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 16 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 16 aufweist.
16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, dass man Nukleinsäuren, enthaltend die Sequenz SEQ ID NO: 15 einbringt.
17. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass man als Nukleinsäure, kodierend eine ß-Cyclase, Nukleinsäuren einbringt, die eine ß-Cyclase kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 18 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 18 aufweist.
18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, dass man Nukleinsäuren, enthaltend die Sequenz SEQ ID NO: 17 einbringt.
19. Verfahren nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass die genetisch veränderten Organismen zusätzlich gegenüber dem Wildtyp eine erhöhte oder verursachte Aktivität mindestens einer der Aktivitäten, ausgewählt aus der Gruppe HMG-CoA-Reduktase-Aktivität, (E)-4-Hydroxy-3-Methylbut-2-enyl- Diphosphat-Reduktase-Aktivität, 1 -Deoxy-D-Xylose-5-Phosphat-Synthase-Aktivität, 1 -Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase-Aktivität, Isopentenyl- Diphosphat-Δ-Isomerase-Aktivität, Geranyl-Diphosphat-Synthase-Aktivität, Farne- syl-Diphosphat-Synthase-Aktivität, Geranyl-geranyl-Diphosphat-Synthase-Aktivität, Phytoen-Synthase-Aktivität, Phytoen-Desaturase-Aktivität, Zeta-Carotin- Desaturase-Aktivität, crtlSO-Aktivität, FtsZ-Aktivität und MinD-Aktivität aufweisen.
20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, dass man zur zusätzlichen Erhöhung oder Verursachung mindestens einer der Aktivitäten, die Genexpression mindestens einer Nukleinsäure ausgewählt aus der Gruppe, Nukleinsäuren kodie- rend eine HMG-CoA-Reduktase, Nukleinsäuren kodierend eine (E)-4-Hydroxy-3- Methylbut-2-enyl-Diphosphat-Reduktase, Nukleinsäuren kodierend eine 1-Deoxy- D-Xylose-δ-Phosphat-Synthase, Nukleinsäuren kodierend eine 1-Deoxy-D-Xylose- δ-Phosphat-Reduktoisomerase, Nukleinsäuren kodierend eine Isopentenyl- Diphosphat-Δ-Isomerase, Nukleinsäuren kodierend eine Geranyl-Diphosphat- Synthase, Nukleinsäuren kodierend eine Farnesyl-Diphosphat-Synthase, Nukleinsäuren kodierend eine Geranyl-Geranyl-Diphosphat-Synthase, Nukleinsäuren kodierend eine Phytoen-Synthase, Nukleinsäuren kodierend eine Phytoen- Desaturase, Nukleinsäuren kodierend eine Zeta-Carotin-Desaturase, Nukleinsäuren kodierend ein crtlSO Protein, Nukleinsäuren kodierend ein FtsZ Protein und Nukleinsäuren kodierend ein MinD Protein gegenüber dem Wildtyp erhöht.
21. Verfahren nach Anspruch 20, dadurch gekennzeichnet, dass man zur Erhöhung oder Verursachung der Genexpression mindestens einer der Nukleinsäuren, min- destens eine Nukleinsäure ausgewählt aus der Gruppe, Nukleinsäuren kodierend eine HMG-CoA-Reduktase, Nukleinsäuren kodierend eine (E)-4-Hydroxy-3- Methylbut-2-enyl-Diphosphat-Reduktase, Nukleinsäuren kodierend eine 1-Deoxy- D-Xylose-δ-Phosphat-Synthase, Nukleinsäuren kodierend eine 1-Deoxy-D-Xylose-r 5-Phosphat-Reduktoisomerase, Nukleinsäuren kodierend eine Isopentenyl- Diphosphat-Δ-Isomerase, Nukleinsäuren kodierend eine Geranyl-Diphosphat- Synthase, Nukleinsäuren kodierend eine Farnesyl-Diphosphat-Synthase, Nukleinsäuren kodierend eine Geranyl-Geranyl-Diphosphat-Synthase, Nukleinsäuren kodierend eine Phytoen-Synthase, Nukleinsäuren kodierend eine Phytoen- Desaturase, Nukleinsäuren kodierend eine Zeta-Carotin-Desaturase, Nukleinsäu- ren kodierend ein crtlSO Protein, Nukleinsäuren kodierend ein FtsZ Protein und Nukleinsäuren kodierend ein MinD Protein in die nicht-humanen Organismen einbringt.
22. Verfahren nach Anspruch 21 , dadurch gekennzeichnet, dass man als Nukleinsäu- re kodierend eine HMG-CoA-Reduktase, Nukleinsäuren einbringt die eine HMG- CoA-Reduktase kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 20 o- der eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 20 aufweist.
23. Verfahren nach Anspruch 22, dadurch gekennzeichnet, dass man Nukleinsäuren, enthaltend die Sequenz SEQ ID NO: 19 einbringt.
24. Verfahren nach Anspruch 21 , dadurch gekennzeichnet, dass man als Nukleinsäure kodierend eine (E)-4-Hydroxy-3-Methylbut- 2-enyl-Diphosphat-Reduktase, Nukleinsäuren einbringt die eine (E)-4-Hydroxy-3- Methyibut-2-enyl-Diphosphat-Reduktase kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 22 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von min- destens 20 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 22 aufweist.
25. Verfahren nach Anspruch 24, dadurch gekennzeichnet, dass man Nukleinsäuren, enthaltend die Sequenz SEQ ID NO: 21 einbringt.
26. Verfahren nach Anspruch 21, dadurch gekennzeichnet, dass man als Nukleinsäure kodierend eine 1-Deoxy-D-Xylose-5-Phosphat-Synthase, Nukleinsäuren einbringt die eine 1-Deoxy-D-Xylose-5-Phosphat-Synthase kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 24 oder eine von dieser Sequenz durch Substi- tution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine I- dentität von mindestens 20 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 24 aufweist.
27. Verfahren nach Anspruch 36, dadurch gekennzeichnet, dass man Nukleinsäuren, enthaltend die Sequenz SEQ ID NO: 23 einbringt.
28. Verfahren nach Anspruch 21, dadurch gekennzeichnet, dass man als Nukleinsäure kodierend eine 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase, Nukleinsäuren einbringt die eine 1-Deoxy-D-Xylose-5-Phosphat~Reduktoisomerase kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 26 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 26 aufweist.
29. Verfahren nach Anspruch 28, dadurch gekennzeichnet, dass man Nukleinsäuren, enthaltend die Sequenz SEQ ID . NO: 25 einbringt.
30. Verfahren nach Anspruch 21 , dadurch gekennzeichnet, dass man als Nukleinsäure kodierend eine Isopentenyl-Diphosphat-Δ-Isomerase, Nukleinsäuren einbringt die eine Isopentenyl-Diphosphat-Δ-Isomerase kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 28 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 28 aufweist.
31. Verfahren nach Anspruch 30, dadurch gekennzeichnet, dass man Nukleinsäuren, enthaltend die Sequenz SEQ ID NO: 27 einbringt.
32. Verfahren nach Anspruch 21 , dadurch gekennzeichnet, dass man als Nukleinsäure kodierend eine Geranyl-Diphosphat-Synthase, Nukleinsäuren einbringt die eine Geranyl-Diphosphat-Synthase kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 30 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 30 aufweist.
33. Verfahren nach Anspruch 32, dadurch gekennzeichnet, dass man Nukleinsäuren, enthaltend die Sequenz SEQ ID NO: 29 einbringt.
34. Verfahren nach Anspruch 21 , dadurch gekennzeichnet, dass man als Nukleinsäu- re kodierend eine Farnesyl-Diphosphat-Synthase, Nukleinsäuren einbringt die eine Farnesyl-Diphosphat-Synthase kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 32 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 32 aufweist.
35. Verfahren nach Anspruch 34, dadurch gekennzeichnet, dass man Nukleinsäuren, enthaltend die Sequenz SEQ ID NO: 31 einbringt.
36. Verfahren nach Anspruch 21, dadurch gekennzeichnet, dass man als Nukleinsäu- re kodierend eine Geranyl-Geranyl-Diphosphat-Synthase, Nukleinsäuren einbringt die eine Geranyl-Geranyl-Diphosphat-Synthase kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 34 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 34 auf- weist.
37. Verfahren nach Anspruch 36, dadurch gekennzeichnet, dass man Nukleinsäuren, enthaltend die Sequenz SEQ ID NO: 23 einbringt.
38. Verfahren nach Anspruch 21 , dadurch gekennzeichnet, dass man als Nukleinsäure kodierend eine Phytoen-Synthase, Nukleinsäuren einbringt die eine Phytoen- Synthase kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 36 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 36 aufweist.
39. Verfahren nach Anspruch 38, dadurch gekennzeichnet, dass man Nukleinsäuren, enthaltend die Sequenz SEQ ID NO: 35 einbringt.
40. Verfahren nach Anspruch 21 , dadurch gekennzeichnet, dass man als Nukleinsäure kodierend eine Phytoen-Desaturase, Nukleinsäuren einbringt die eine Phytoen- Desaturase kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 38 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäu- ren abgeleitete Sequenz, die eine Identität von mindestens 20 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 38 aufweist.
41. Verfahren nach Anspruch 40, dadurch gekennzeichnet, dass man Nukleinsäuren, enthaltend die Sequenz SEQ ID NO: 37 einbringt.
42. Verfahren nach Anspruch 21 , dadurch gekennzeichnet, dass man als Nukleinsäure kodierend eine Zeta-Carotin-Desaturase, Nukleinsäuren einbringt die eine Zeta-Carotin-Desaturase kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 40 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 40 aufweist.
43. Verfahren nach Anspruch 42, dadurch gekennzeichnet, dass man Nukleinsäuren, enthaltend die Sequenz SEQ ID NO: 39 einbringt.
44. Verfahren nach Anspruch 21, dadurch gekennzeichnet, dass man als Nukleinsäure kodierend ein crtlSO Protein, Nukleinsäuren einbringt die ein crtlSO Protein kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 42 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 42 aufweist.
45. Verfahren nach Anspruch 44, dadurch gekennzeichnet, dass man Nukleinsäuren, enthaltend die Sequenz SEQ ID NO: 41 einbringt.
46. Verfahren nach Anspruch 21 , dadurch gekennzeichnet, dass man als Nukleinsäure kodierend ein FtsZ Protein, Nukleinsäuren einbringt die ein FtsZ Protein kodieren, enthaltend die Aminosäuresequenz SEQ ID NO; 44 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 44 aufweist.
47. Verfahren nach Anspruch 46, dadurch gekennzeichnet, dass man Nukleinsäuren, enthaltend die Sequenz SEQ ID NO: 43 einbringt.
48. Verfahren nach Anspruch 21 , dadurch gekennzeichnet, dass man als Nukleinsäure kodierend ein MinD Protein, Nukleinsäuren einbringt die ein MinD Protein kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 46 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 46 aufweist.
49. Verfahren nach Anspruch 48, dadurch gekennzeichnet, dass man Nukleinsäuren, enthaltend die Sequenz SEQ ID NO: 45 einbringt.
50. Verfahren nach einem der Ansprüche 1 bis 49, dadurch gekennzeichnet, dass man nach dem Kultivieren die genetisch veränderten Organismen erntet und anschließend die Ketocarotinoide aus den Organismen isoliert.
51. Verfahren nach einem der Ansprüche 1 bis 50, dadurch gekennzeichnet daß man als Organismus einen Organismus verwendet, der als Ausgangsorganismus natürlicherweise oder durch genetische Komplementierung oder Umregulierung von Stoffwecheselwegen in der Lage ist, Carotinoide herzustellen.
52. Verfahren nach einem der Ansprüche 1 bis 51 , dadurch gekennzeichnet, daß man als Organismen Mikroorganismen oder Pflanzen verwendet.
53. Verfahren nach Anspruch 52, dadurch gekennzeichnet, daß man als Mikroorga- nismen Bakterien, Hefen, Algen oder Pilze verwendet.
54. Verfahren nach Anspruch 53, dadurchgekennzeichnet, daß die Mikroorganismen ausgwählt sind aus der Gruppe Escherichia, Erwinia, Agrobacterium, Flavobacterium, Alcaligenes, Paracoccus, Nostoc, Cyanobakterien der Gattung Synecho- cystis, Candida, Saccharomyces, Hansenula, Phaffia, Pichia, Aspergillus, Tricho- derma, Ashbya, Neurospora, Blakeslea, Phycomyces, Fusarium, Haematococcus, Phaedactylum tricornatum, Volvox oder Dunaliella.
5δ. Verfahren nach Anspruch δ2, dadurch gekennzeichnet, dass man als Organismus Pflanzen verwendet.
56. Verfahren nach Anspruch 50, dadurch gekennzeichnet, dass man genetisch veränderte Pflanzen verwendet, die in Blüten die höchste Expressionsrate einer Ketolase gemäß Anspruch 1 aufweisen.
57. Verfahren nach Anspruch 66, dadurch gekennzeichnet, dass die Genexpression der Ketolase gemäß Anspruch 1 unter Kontrolle eines blütenspezifischen Promotors erfolgt.
68. Verfahren nach einem der Ansprüche δδ bis 57, dadurch gekennzeichnet, dass die Pflanzen gegenüber dem Wildtyp zusätzlich eine reduzierte ε-Cyclase-Aktivität aufweisen.
59. Verfahren nach Anspruch 58, dadurch gekennzeichnet, dass man die Reduzierung der ε-Cyclase-Aktivität in Pflanzen durch mindestens eines der nachfolgenden Verfahren erreicht: a) Einbringen mindestens einer doppelsträngigen ε-Cyclase Ribonukleinsäuresequenz oder einer deren Expression gewährleistenden Expressionskassette oder Expressionskassetten in Pflanzen, b) Einbringen mindestens einer ε-Cyclase antisense-Ribonukleinsäuresequenzen oder einer deren Expression gewährleistenden Expressionskassette in Pflanzen, c) Einbringen mindestens einer ε-Cyclase antisense-Ribonukleinsäuresequenze kombiniert mit einem Ribozym oder einer deren Expression gewährleistenden Expressionskassette oder Expressionskassetten in Pflanzen, d) Einbringen mindestens einer ε-Cyclase sense-Ribonukleinsäuresequenzen zur Induktion einer Kosuppression oder einer deren Expression gewährleistenden Expressionskassette in Pflanzen, e) Einbringen mindestens eines DNA-oder Protein-bindenden Faktors gegen ein ε-Cyclase -Gen, -RNA oder -Protein oder einer dessen Expression gewährleistenden Expressionskassette in Pflanzen, f) Einbringen mindestens einer den ε-Cyclase RNA-Abbau bewirkenden viralen Nukleinsäuresequenz oder einer deren Expression gewährleistenden Expressionskassette in Pflanzen, g) Einbringen mindestens eines Konstruktes zur Erzeugung einer Insertion, Deletion, Inversion oder Mutation in einem ε-Cyclase-Gen in Pflanzen.
60. Verfahren nach einem der Ansprüche 55 bis 59, dadurch gekennzeichnet, dass man als Pflanze eine Pflanze verwendet, die in Blütenblättern Chromoplasten aufweist.
61. Verfahren nach einem der Ansprüche 55 bis 60, dadurch gekennzeichnet, dass man als Pflanze eine Pflanze, ausgewählt aus den Familien Amarantha- ceae,Amaryllidaceae, Apocynaceae, Asteraceae, Balsaminaceae, Begoniaceae, Berberidaceae, Brassicaceae, Cannabaceae, Caprifoliaceae, Caryophyllaceae, Chenopodiaceae, Compositae, Cucurbitaceae, Crueiferae, Euphorbiaceae, Faba- ceae, Gentianaceae, Geraniaceae, Graminae, llliaceae, Labiatae, Lamiaceae, Le- guminosae, Liliaceae, Linaceae, Lobeliaceae, Malvaceae, Oleaceae, Orchidaceae, Papaveraceae , Plumbaginaceae, Poaceae, Polemoniaceae, Primulaceae, Ra- nunculaceae, Rosaceae, Rubiaceae, Scrophulariaceae, Solanaceae, Tropaeola- ceae, Umbelliferae, Verbanaceae, Vitaceae oder Violaceae verwendet.
62. Verfahren nach Anspruch 61 , dadurch gekennzeichnet, dass man als Pflanze eine Pflanze, ausgewählt aus den Pflanzengattungen Marigold, Tagetes erecta, Tagetes patula, Acacia, Aconitum, Adonis, Arnica, Aqulegia, Aster, Astragalus, Bigno- nia, Calendula, Caltha, Campanula, Canna, Centaurea, Cheiranthus, Chrysanthe- mum, Citrus, Crepis, Crocus, Curcurbita, Cytisus, Delonia, Delphinium, Dianthus, Dimorphotheca, Doronicum, Eschscholtzia, Forsythia, Fremontia, Gazania, Gel- semium, Genista, Gentiana, Geranium, Gerbera, Geum, Grevillea, Helenium, Helianthus, Hepatica, Heracleum, Hisbiscus, Heliopsis, Hypericum, Hypochoeris, Im- patiens, Iris, Jacaranda, Kerria, Laburnum, Lathyrus, Leontodon, Lilium, Linum, Lotus, Lycopersicon, Lysimachia, Maratia, Medicago, Mimulus, Narcissus, Oe- nothera, Osmanthus, Petunia, Photinia, Physalis, Phyteuma, Potentilla, Pyra- cantha, Ranunculus, Rhododendron, Rosa, Rudbeckia, Senecio, Silene, Silphium, Sinapsis, Sorbus, Spartium, Tecoma, Torenia, Tragopogon, Trollius, Tropaeolum, Tulipa, Tussilago, Ulex, Viola oder Zinnia verwendet.
63. Verfahren nach einem der Ansprüche 1 bis 62, dadurch gekennzeichnet, dass die Ketocarotinoide ausgewählt sind aus der Gruppe Astaxanthin, Canthaxanthin, E- chinenon, 3-Hydroxyechinenon, 3'-Hydroxyechinenon, Adonirubin und Adonixanthin.
64. Genetisch veränderter, nicht-humaner Organismus, wobei die genetische Veränderung die Aktivität einer Ketolase
E für den Fall, dass der Wildtyporganismus bereits eine Ketolase-Aktivität auf- weist, gegenüber dem Wildtyp erhöht und
F für den Fall, dass der Wildtyporganismus keine Ketolase-Aktivitätaufweist, gegenüber dem Wildtyp verursacht und die nach E erhöhte oder nach F verursachte Ketolase-Aktivität durch eine Ketolase verursacht wird, ausgewählt aus der Gruppe
A Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 80 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist,
B Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 10 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 90 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 10 aufweist,
C Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 12 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 90 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 12 aufweist oder
D Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 14 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 50 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 14 aufweist.
65. Genetisch veränderter Organismus nach Anspruch 25, dadurch gekennzeichnet, dass die Erhöhung oder Verursachung der Ketolase-Aktivität durch eine Erhöhung oder Verursachung der Genexpression einer Nukleinsäure, kodierend eine Ketolase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 42 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist, gegenüber dem Wildtyp bewirkt wird.
66. Genetisch veränderter Organismus nach Anspruch 65, dadurch gekennzeichnet, dass man zur Erhöhung oder Verursachung der Genexpression Nukleinsäuren in den Organismus einbringt, die Ketolasen kodieren, ausgewählt aus der Gruppe A Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 80 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist,
B Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 10 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 90 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 10 aufweist,
C Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 12 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 90 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 12 aufweist oder
D Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 14 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 50 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 14 aufweist..
67. Genetisch veränderter Organismus, enthaltend mindestens eine transgene Nukleinsäure, kodierend eine Ketolase, ausgewählt aus der Gruppe
A Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 80 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist,
B Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 10 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 90 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 10 aufweist,
C Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 12 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 90 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 12 aufweist oder
D Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 14 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 50 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 14 aufweist.
68. Gehetisch veränderter Organismus, enthaltend mindestens zwei endogene Nuk- leinsäuren, kodierend eine Ketolase, ausgewählt aus der Gruppe
A Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 80 % auf Aminosäu- reebene mit der Sequenz SEQ. ID. NO. 2 aufweist,
B Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 10 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 90 % auf Aminosäu- reebene mit der Sequenz SEQ. ID. NO. 10 aufweist,
C Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 12 oder eine von. dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 90 % auf Aminosäu- reebene mit der Sequenz SEQ. ID. NO. 12 aufweist oder
D Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 14 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 50 % auf Aminosäu- reebene mit der Sequenz SEQ. ID. NO. 14 aufweist.
69. Genetisch veränderter Organismus nach einem der Ansprüche 64 bis 68, ausgewählt aus der Gruppe Mikroorganismen oder Pflanzen.
70. Genetisch veränderter Mikroorganismus nach Anspruch 69, dadurch gekennzeichnet, daß die Mikroorganismen ausgewählt sind aus der Gruppe Bakterien, Hefen, Algen oder Pilze.
71. Genetisch veränderter Mikroorganismus nach Anspruch 70, dadurch gekennzeichnet, daß die Mikroorganismen ausgwählt sind aus der Gruppe Escherichia, Erwinia, Agrobacterium, Flavobacterium, Alcaligenes, Paracoccus, Nostoc, Cya- nobakterien der Gattung Synechocystis, Candida, Saccharomyces, Hansenula, Pi- chia, Aspergillus, Trichoderma, Ashbya, Neurospora, Blakeslea, Phycomyces, Fu- sarium, Haematococcus, Phaedactylum tricornatum, Volvox oder Dunaliella.
72. Genetisch veränderte Pflanze nach Anspruch 69, dadurch gekennzeichnet, dass die Pflanzen ausgewählt sind aus den Familien Amaranthaceae,Amaryllidaceae, Apocynaceae, Asteraceae, Balsaminaceae, Begoniaceae, Berberidaceae, Brassi- caceae, Cannabaceae, Caprifoliaceae, Caryophyllaceae, Chenopodiaceae, Compositae, Cucurbitaceae, Crueiferae, Euphorbiaceae, Fabaceae, Gentianaceae, Ge- raniaceae, Graminae, llliaceae, Labiatae, Lamiaceae, Leguminosae, Liliaceae, Li- naceae, Lobeliaceae, Malvaceae, Oleaceae, Orchidaceae, Papaveraceae , Plum- baginaceae, Poaceae, Polemoniaceae, Primulaceae, Ranuncuiaceae, Rosaceae, Rubiaceae, Scrophulariaceae, Solanaceae, Tropaeolaceae, Umbelliferae, Verba- naceae, Vitaceae und Violaceae.
73. Genetisch veränderte Pflanze nach Anspruch 72 , dadurch gekennzeichnet, dass Pflanzen ausgewählt sind aus den Pflanzengattungen Marigold, Tagetes erecta, Tagetes patula, Acacia, Aconitum, Adonis, Arnica, Aqulegia, Aster, Astragalus, Bignonia, Calendula, Caltha, Campanula, Canna, Centaurea, Cheiranthus, Chrysanthemum, Citrus, Crepis, Crocus, Curcurbita, Cytisus, Delonia, Delphinium, Di- anthus, Dimorphotheca, Doronicum, Eschscholtzia, Forsythia, Fremontia, Gazania, Gelsemium, Genista, Gentiana, Geranium, Gerbera, Geum, Grevillea, Helenium, Helianthus, Hepatica, Heracleum, Hisbiscus, Heliopsis, Hypericum, Hypochoeris, Impatiens, Iris, Jacaranda, Kerria, Labumum, Lathyrus, Leontodon, Lilium, Linum, Lotus, Lycopersicon, Lysimachia, Maratia, Medicago, Mimulus, Narcissus, Oe- nothera, Osmanthus, Petunia, Photinia, Physalis, Phyteuma, Potentilla, Pyra- cantha, Ranunculus, Rhododendron, Rosa, Rudbeckia, Senecio, Silene, Silphium, Sinapsis, Sorbus, Spartium, Tecoma, Torenia, Tragopogon, Trollius, Tropaeolum, Tulipa, Tussilago, Ulex, Viola oder Zinnia verwendet.
74. Verwendung der genetisch veränderten Organismen nach einem der Ansprüche 64 bis 68 als Futter- oder Nahrungsmittel.
75. Verwendung der genetisch veränderten Organismen nach einem der Ansprüche 64 bis 68 zur Herstellung von Ketocarotinoid-haltigen Extrakten oder zur Herstellung von Futter- und Nahrungsergänzungsmittel.
76. Ketolase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 80 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist.
77. Ketolase gemäß Anspruch 76, enthaltend die Sequenz SEQ. ID. NO. 2, 4, 6 oder 8.
78. Nukleinsäure, kodierend eine Ketolase gemäß Anspruch 76 oder 77.
79. Nukleinsäure gemäß Anspruch 78, enthaltend die Sequenz SEQ. ID. NO. 1 , 3, 5 oder 7.
80. Ketolase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 10 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgelei- tete Sequenz, die eine Identität von mindestens 90 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 10 aufweist.
81. Ketolase gemäß Anspruch 80, enthaltend die Sequenz SEQ. ID. NO. 10.
82. Nukleinsäure, kodierend eine Ketolase gemäß Anspruch 80 oder 81.
83. Nukleinsäure gemäß Anspruch 82, enthaltend die Sequenz SEQ. ID. NO. 9.
84. Ketolase enthaltend die Aminosäuresequenz SEQ. ID. NO. 12 oder eine von die- ser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgelei- tete Sequenz, die eine Identität von mindestens 90 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 12 aufweist.
85. Ketolase gemäß Anspruch 84, enthaltend die Sequenz SEQ. ID. NO. 12.
86. Nukleinsäure, kodierend eine Ketolase gemäß Anspruch 84 oder 85.
87. Nukleinsäure gemäß Anspruch 86, enthaltend die Sequenz SEQ. ID. NO. 11.
EP04763696A 2003-08-18 2004-07-31 Ketolasen und verfahren zur herstellung von ketocarotinoiden Withdrawn EP1658372A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP04763696A EP1658372A2 (de) 2003-08-18 2004-07-31 Ketolasen und verfahren zur herstellung von ketocarotinoiden

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
PCT/EP2003/009101 WO2004018688A1 (de) 2002-08-20 2003-08-18 VERFAHREN ZUR HERSTELLUNG VON β-CAROTINOIDEN
PCT/EP2003/009106 WO2004018694A2 (de) 2002-08-20 2003-08-18 Verfahren zur herstellung von ketocarotinoiden in genetisch veränderten organismen
PCT/EP2003/009109 WO2004017749A2 (de) 2002-08-20 2003-08-18 Verwendung von astaxanthinhaltigen pflanzen oder pflanzenteilen der gattung tagetes als futtermittel
PCT/EP2003/009105 WO2004018385A2 (de) 2002-08-20 2003-08-18 Verfahren zur herstellung von zeaxanthin und/oder dessen biosynthetischen zwischen- und/oder folgeprodukten
PCT/EP2003/009107 WO2004018695A2 (de) 2002-08-20 2003-08-18 Verfahren zur herstellung von ketocarotinoiden in früchten von pflanzen
PCT/EP2003/009102 WO2004018693A2 (de) 2002-08-20 2003-08-18 Verfahren zur herstellung von ketocarotinoiden in blütenblättern von pflanzen
DE102004007624A DE102004007624A1 (de) 2004-02-17 2004-02-17 Neue Ketolasen und Verfahren zur Herstellung von Ketocarotinoiden
PCT/EP2004/008625 WO2005019461A2 (de) 2003-08-18 2004-07-31 Ketolasen und verfaren zur herstellung von ketocarotinoiden
EP04763696A EP1658372A2 (de) 2003-08-18 2004-07-31 Ketolasen und verfahren zur herstellung von ketocarotinoiden

Publications (1)

Publication Number Publication Date
EP1658372A2 true EP1658372A2 (de) 2006-05-24

Family

ID=36204257

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04763696A Withdrawn EP1658372A2 (de) 2003-08-18 2004-07-31 Ketolasen und verfahren zur herstellung von ketocarotinoiden

Country Status (1)

Country Link
EP (1) EP1658372A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102888425A (zh) * 2012-07-02 2013-01-23 中国科学院昆明植物研究所 利用转基因植物生产虾青素的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005019461A2 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102888425A (zh) * 2012-07-02 2013-01-23 中国科学院昆明植物研究所 利用转基因植物生产虾青素的方法
CN102888425B (zh) * 2012-07-02 2015-02-25 中国科学院昆明植物研究所 利用转基因植物生产虾青素的方法

Similar Documents

Publication Publication Date Title
ZA200602230B (en) Method for producing ketocarotinoids in genetically modified, non-human organisms
DE10300649A1 (de) Verfahren zur Herstellung von Ketocarotinoiden durch Kultivierung von genetisch veränderten Organismen
WO2005019467A1 (de) Verfahren zur herstellung von ketocarotinoiden in genetisch veränderten, nichthumanen organismen
JP2007502605A6 (ja) 遺伝子的に改変された非ヒト生物におけるケトカロテノイドの製造方法
DE10238980A1 (de) Verfahren zur Herstellung von Ketocarotinoiden in Blütenblättern von Pflanzen
WO2005019461A2 (de) Ketolasen und verfaren zur herstellung von ketocarotinoiden
DE10253112A1 (de) Verfahren zur Herstellung von Ketocarotinoiden in genetisch veränderten Organismen
EP1658372A2 (de) Ketolasen und verfahren zur herstellung von ketocarotinoiden
EP1532256A1 (de) VERFAHREN ZUR HERSTELLUNG VON &bgr;-CAROTINOIDEN
EP1658377A1 (de) VERFAHREN ZUR HERSTELLUNG VON KETOCAROTINOIDEN IN GENETISCH VERÄNDERTEN, NICHTHUMANEN ORGANISMEN
DE10238978A1 (de) Verfahren zur Herstellung von Ketocarotinoiden in Früchten von Pflanzen
DE10238979A1 (de) Verfahren zur Herstellung von Zeaxanthin und/oder dessen biosynthetischen Zwischen- und/oder Folgeprodukten
AU2004267196A1 (en) Method for producing ketocarotinoids in genetically modified, non-human organisms

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060320

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20070329

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20070828