EP1655383A1 - Process and device for limiting the vibrations of aluminium or steel sheets during gas cooling - Google Patents
Process and device for limiting the vibrations of aluminium or steel sheets during gas cooling Download PDFInfo
- Publication number
- EP1655383A1 EP1655383A1 EP05292109A EP05292109A EP1655383A1 EP 1655383 A1 EP1655383 A1 EP 1655383A1 EP 05292109 A EP05292109 A EP 05292109A EP 05292109 A EP05292109 A EP 05292109A EP 1655383 A1 EP1655383 A1 EP 1655383A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- strip
- tubes
- jets
- gas
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 77
- 238000000034 method Methods 0.000 title claims abstract description 20
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 19
- 239000010959 steel Substances 0.000 title claims abstract description 19
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 11
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 11
- 239000004411 aluminium Substances 0.000 title abstract 2
- 230000008569 process Effects 0.000 title description 3
- 238000007664 blowing Methods 0.000 claims abstract description 63
- 238000010438 heat treatment Methods 0.000 claims abstract description 5
- 238000011144 upstream manufacturing Methods 0.000 claims description 12
- 238000006073 displacement reaction Methods 0.000 claims description 7
- 230000003416 augmentation Effects 0.000 abstract description 2
- 230000001133 acceleration Effects 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 31
- 239000011248 coating agent Substances 0.000 description 11
- 238000000576 coating method Methods 0.000 description 11
- 230000000694 effects Effects 0.000 description 7
- 230000009471 action Effects 0.000 description 5
- 238000011084 recovery Methods 0.000 description 5
- 230000000087 stabilizing effect Effects 0.000 description 5
- 238000000137 annealing Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 238000005246 galvanizing Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 239000012467 final product Substances 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000000930 thermomechanical effect Effects 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 241000219504 Caryophyllales Species 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241001249696 Senna alexandrina Species 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000005465 channeling Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000004224 protection Effects 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
- C21D9/54—Furnaces for treating strips or wire
- C21D9/56—Continuous furnaces for strip or wire
- C21D9/573—Continuous furnaces for strip or wire with cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B9/00—Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
- F27B9/12—Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity with special arrangements for preheating or cooling the charge
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B45/00—Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
- B21B45/02—Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B45/00—Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
- B21B45/02—Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
- B21B45/0203—Cooling
- B21B45/0209—Cooling devices, e.g. using gaseous coolants
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
- C21D9/54—Furnaces for treating strips or wire
- C21D9/56—Continuous furnaces for strip or wire
- C21D9/573—Continuous furnaces for strip or wire with cooling
- C21D9/5735—Details
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B9/00—Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
- F27B9/14—Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment
- F27B9/145—Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving along a serpentine path
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B9/00—Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
- F27B9/30—Details, accessories, or equipment peculiar to furnaces of these types
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D9/00—Cooling of furnaces or of charges therein
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B45/00—Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
- B21B45/02—Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
- B21B45/0203—Cooling
- B21B45/0209—Cooling devices, e.g. using gaseous coolants
- B21B2045/0212—Cooling devices, e.g. using gaseous coolants using gaseous coolants
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/56—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
- C21D1/613—Gases; Liquefied or solidified normally gaseous material
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/62—Quenching devices
- C21D1/667—Quenching devices for spray quenching
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D9/00—Cooling of furnaces or of charges therein
- F27D2009/007—Cooling of charges therein
- F27D2009/0072—Cooling of charges therein the cooling medium being a gas
- F27D2009/0075—Cooling of charges therein the cooling medium being a gas in direct contact with the charge
Definitions
- the present invention generally relates to a method of improving the cooling of a blast gas cooling chamber or blown air cooling section of a heat treatment line of steel or steel. aluminum and / or improving the quality of the products to be treated.
- the method which is the subject of the invention concerns the treatment lines of steel or aluminum strips using at least one gas or air jet cooling chamber, or a gas jet cooling section or of air, such as heat treatment lines, in particular continuous annealing lines, or such as coating lines, in particular metal or non-metallic coating lines.
- This process aims to increase the cooling of the band while avoiding vibration phenomena on the band.
- a vertical cooling chamber of a steel or aluminum strip processing line produced according to the state of the art is constructed according to the principle shown in FIG. 1, on which a cooling chamber 4 is distinguished.
- a treatment furnace in which a steel or aluminum strip 1 is circulated, which is subjected to the action of cooling elements 2 as it passes over upper idler rollers 3 and lower idler rollers 3 '.
- Strip 1 is cooled in chamber 4 mainly by the cooling elements 2 consisting of gas blowing assemblies at a temperature below the strip temperature.
- the band 1 is cooled on both sides by the cooling elements 2 located on either side of the line of the pass, and in case of cooling on several lines of pass, said band changes line of pass to each return roller 3 or 3 '.
- the cooling curve of the strip in the chamber is controlled by the indexing of the different cooling elements 2 or groups of cooling elements operating identically.
- a vertical cooling section of a steel or aluminum strip processing line made according to the state of the art is constructed according to the principle shown in FIG. 2, on which a vertical cooling section 10 can be distinguished. in which circulates a strip 11 which is subjected to the action of cooling elements 12.
- the strip 11 is cooled in the section mainly by the cooling elements 12 consisting of air blowing assemblies at a temperature below the band temperature.
- the theoretical line of the band 11 is determined by the upper idler roll 13 and the lower idler roll 13 '.
- the strip 11 is cooled on both sides by the cooling elements 12 located on either side of the line of passage.
- the cooling curve of the strip in the section is controlled by the indexing of the different cooling elements 12 or groups of cooling elements operating identically.
- the productivity of the cooling chamber or section is determined by the ability to provide cooling heat transfer to reach strip temperatures at the outlet of the cooling chamber or section and the cooling slopes (expressed in ° C / second) that determine the metallurgical quality of the final product.
- This heat transfer is dependent on the blowing distance between the strip and the cooling system, the geometry of the blowing, and the blowing speed. The heat transfer will also be more effective if the blowing distance is small and / or if the blowing speed is important.
- Cooling slopes are lower (typically 20 ° C / second) for steels of commercial quality called CQ (Commercial Quality).
- CQ Common Quality
- the average thickness of the steels decreases, while the average width of the strips to be treated increases with the optimization of the stamping means.
- the cooling zone after coating of a hot-dip galvanizing line shown in FIG. 3 is also very sensitive to this phenomenon.
- the thickness of the coating is controlled by spinning in air or nitrogen of the liquid coating. This wringing is generally carried out by a pair of blowing nozzles 23, 23 '.
- the vertical cooling zone 24 which follows is intended to freeze coating and achieving a temperature at the turn-up baffle roll 25 which is process-compatible, in particular avoiding any trace on the coating.
- the increase in the capacity of the lines makes the free strand height of the web 21 between the last roller 26 immersed in the molten zinc bath 22 and the tower top baffle roll 25 can exceed 50 meters on large lines. capacity.
- Aeraulic stabilization systems have also been proposed to replace the aforementioned stabilizing rollers. These systems are relatively efficient and can contribute to cooling, but they are not optimized to favor the exchange coefficient, and therefore to optimize cooling. In addition the energy consumption is relatively important.
- Another solution is to control the vibrations of the band by adjusting the blowing speed and / or the distance between the band and the blowing elements and / or the blowing flow rate in the event of occurrence of vibrations. This then leads to a limitation of the efficiency of the cooling, and therefore of the performance of the installation.
- FIG. 4 Another solution illustrated in Figure 4 has been proposed, to promote a lateral flow of the blown gas.
- This solution consists in arranging blow tubes 31, 31 'on blow boxes 32, 32' located on either side of the band 33 which runs in a direction marked 100.
- the blowing tubes 31, 31 allow and to guide the blowing jets 34, 34 'emitted in a direction which is perpendicular to the plane of the strip 33 scrolling.
- this system leads to an improvement over simple boxes the holes are not satisfactory, and the band flutations observed in such systems lead either to deterioration of the tubes when the band is thick, or to tape breaks when the band is thin.
- FIGS. 5 and 6 are end views along the arrow A of FIG.
- the fluid mechanics simulations on industrial geometries show that, when the strip 33 is biased towards one of the two boxes, here the box 32 ', the resultant of the pressures on the strip exerts a force F tending to bring even closer the band of said box.
- the system is therefore unstable, and does not tend to stabilize the band in a pass line centered between the boxes.
- the fluid mechanics simulations on industrial geometries show that, when the strip 33 is inclined, the resultant of the pressures exerted on the strip exerts a torque C, tending to further incline the strip and thus to bring the strips closer together. edges of the box strip.
- the system is also unstable, and does not tend to stabilize the band in a pass line centered between the boxes.
- FIGS. 5 and 6 have been demonstrated by simulation of fluid mechanics software, and by a calculation of the resultant pressures exerted on each side of the strip.
- the resultant pressure exerted on each side of the strip is the result of positive pressures in areas that are substantially right of the blowing tubes, and depressions at the parts that are not located in line with these tubes.
- the document US-A-6 054 095 also teaches tilting towards the edges of the strip the blowing tubes equipping the boxes, but to have a better homogeneity of the temperature of the strip, thus without worrying about the stability of the scrolling. of said band.
- the document US-A-4,673,447 describes the use of perforated blow boxes, said holes being formed in a thick plate to have an inclination of the gas jets. It should be noted that the jets are inclined not towards the edges, but on the contrary towards a median plane, symmetrically with respect to said plane. It is therefore rather a simple stabilizing pad.
- the document EP-A-1 108 795 describes a variant of the preceding techniques, in which straight tube blow boxes (perpendicular to the plane of the strip) are used. In fact, the aim is only to modify the intensity of cooling by varying the length of the tubes, which are chosen shorter at the edges of the strip.
- EP-A-1 029 933 discloses another variant with nozzle-type casings.
- the blades transversals do not produce any inclined jets, and the boxes do not allow to organize a recovery of the blowing gas perpendicular to the strip, as already mentioned above.
- FIGS. 7 and 8 a solution commonly used is shown in FIGS. 7 and 8 (FIG. 8 being a section along VIII-VIII of FIG. Figure 7).
- This solution consists in using tubular blowing nozzles 41 of axis 48, having bottoms 46 and a gas inlet 47, said nozzles being pierced with a plurality of circular holes 42, which are oblong or slit-shaped, allowing blowing jets 45 on the strip 43 scrolling in the direction 100, in a direction normal to the plane of the strip.
- the document EP 1 067 204 A1 describes a solution for suppressing vibrations by adjustment of the pressure and / or the flow of gas blown in the transverse direction of the strip.
- this method has two major disadvantages.
- the strip may be caused to be not parallel to the blowing devices, thus reducing the distance between the band and the device, and increasing the risk of contact.
- the cooling capacity is not maximum, and the reduction of the speed and / or the pressure on one side can not be compensated by an increase in the speed or pressure of the jets on the other side if the speed or blowing capacity limits have already been reached.
- the aim of the invention is to propose a cooling method that optimizes both the thermal and a somehowlic aspects, that is to say maximizing the cooling, while minimizing the vibrations or the strip offsets by a self-centering effect tending to reduce the band in an ideal pass line when it is deported or when it is rotated relative to its theoretical line.
- the fundamental principles of the approach of the invention are to combine the advantages of a minimized confinement, and a limitation of the flow of gases in a plane parallel to the band with optimized blowing by directed jets ensuring the times the cooling and stability of the band.
- the aforementioned technical problem is solved according to the invention by a method of improving the cooling of a blast gas cooling chamber or a blowing air cooling section of a steel heat treatment line. or aluminum and / or improving the quality of the products to be treated by reducing the variations generated by this cooling, in which gas or air jets are projected towards each of the faces of the strip moving in said chamber or section, the jets of gas or air being emitted from blowing tubes equipping tubular nozzles arranged at a distance from each other transversely to the direction of movement of the strip, said jets being directed towards the concerned face of the strip being inclined both substantially towards the edges of said strip in a plane perpendicular to the plane of the strip and the direction of movement of said band e, and upstream or downstream of the strip in a plane perpendicular to the plane of the strip and parallel to the direction of movement of said strip.
- the jets of gas or air emitted from the same tubular nozzle are inclined upstream and downstream of the strip. This gives a better blowing efficiency for the same number of tubular nozzles.
- the distance between two adjacent tubular nozzles on the same side of the strip is chosen such that the points of impact of the gas or air jets on the strip are substantially equidistant in a direction parallel to the direction of movement of said band. This is very favorable for the stability of the band during the scrolling thereof.
- the jets of gas or air emitted from the same tubular nozzle are inclined essentially towards the edges of the strip in such a way that the points of impact of said jets on said strip are substantially equidistant in a direction perpendicular to the direction of movement of the strip.
- the jets of gas or air emitted from the same tubular nozzle are inclined essentially towards the edges of the strip at an increasing inclination, starting from the median line of the strip towards the edges of said band, from about 0 ° to an angle less than 15 °.
- the jets of gas or air are organized to have a substantially constant jet distance regardless of their inclination.
- the invention also relates to a device for implementing an improvement method having at least one of the abovementioned characteristics, said device being remarkable in that it comprises, on either side of the moving strip, a plurality of tubular nozzles arranged at a distance from one another transversely to the direction of movement of the strip, each tubular nozzle being equipped with blowing tubes pointing towards one side of the strip, said blowing tubes being inclined at the times substantially to the edges of said strip in a plane perpendicular to the plane of the strip and to the direction of movement of said strip, and upstream or downstream of the strip in a plane perpendicular to the plane of the strip and parallel to the direction of movement of said band.
- each tubular nozzle is equipped with two rows of blowing tubes, the tubes of one row being inclined upstream while the tubes of the other row are inclined downstream, preferably with the same angle of inclination.
- the distance between two adjacent tubular nozzles on the same side of the strip is chosen so that the points of impact of the jets emitted from rows of blow tubes are substantially equidistant in a direction parallel to the direction of movement of said strip.
- the blowing tubes of each row of the same tubular nozzle are inclined essentially towards the edges of the strip in such a way that the points of impact of the jets emitted from the blowing tubes of said row are substantially equidistant in a direction perpendicular to the direction of movement of said strip.
- the blow tubes of the same row are inclined essentially towards the edges of the strip at an increasing inclination, starting from the median line of the strip towards the edges of said strip, of approximately 0 ° to an angle less than 15 °.
- blowing tubes of each tubular nozzle are dimensioned in length so that the jets of gas or air emitted by said tubes have a substantially constant jet distance regardless of their inclination.
- tubular nozzles have a circular, oblong, triangular, square, rectangular or polygonal section.
- FIG. 9 being a section along IX-IX of FIG. figure 10.
- FIGS. 9 and 10 describe in a more concrete and detailed manner a particular embodiment of the invention.
- FIGS. 9 and 10 illustrate a cooling device 50, of which only two pairs of tubular blowing nozzles 51 have been shown, these blowing nozzles being situated on either side of the strip 53 which moves in one direction 100.
- the blowing nozzles 51 preferably have a circular section as illustrated here, with an axis 56, but may according to other embodiments of the invention have an oblong, triangular, square, rectangular or polygonal.
- Hollow discharge tubes 52 are fixed on the tubular nozzles 51. These tubes are arranged in one or more rows. The arrangement and the row number of the blowing tubes must be provided in order to have a mesh of the points of impact on the strip which is substantially equidistant in order to optimize the cooling and to limit the thermomechanical stresses exerted on the strip.
- tubular nozzles 51 are arranged at a distance from each other transversely to the direction of movement of the strip, each tubular nozzle 51 being equipped with blow tubes 52 pointing towards a face of the strip, with a symmetrical disposition with respect to the plane of said strip so as to have points of impact of the emitted jets 58 which are in correspondence on each of the faces of the strip 53.
- the blow tubes 52 are inclined both substantially to the edges of the band 53 in a plane perpendicular to the plane of the band and to the direction of movement of said band (as is visible in Figure 10), and upstream or downstream of the band 53 (with reference to the direction of travel) in a plane P perpendicular to the plane of the strip and parallel to the direction 100 of displacement of said strip ( as can be seen in Figure 9).
- blowing tubes 52 near the center line LM of the strip 53, may emit jets which are perpendicular to the plane of the strip, the great majority of blast tubes 52 nevertheless having an inclination at an angle ⁇ with respect to the normal to the plane of the strip.
- This inclination is preferably increasing, from the center line LM of the strip towards the edges of said strip, from about 0 ° to an angle of less than 15 °.
- the blowing tubes 52 are in this case inclined towards the edges of the strip by an angle ⁇ ranging from 0 ° to 15 ° at the maximum, as shown in FIG. 10, which is a view along B of FIG. 9.
- This inclination may concern all or part of the tubes according to different embodiments of the invention. This makes it possible to channel the residual flow of gas (that is to say the non-evacuated flow to a rear direction perpendicular to the plane of the strip after heat exchange with said strip) in preferential directions towards the band edges tending to stabilize. said band.
- One of the cooling performance parameters is the blowing distance, that is the distance of the emitted jet 58, between the free end 54 of a tube 52 and the corresponding point of impact 55 on the strip, for the jet emitted by this tube.
- the length of each tube 52 can be determined according to its inclination in order to have jet distances substantially constant, and therefore a homogeneous cooling capacity.
- the length of the tubes will be greater as the inclination ⁇ is large. Numerical modelings show an optimal stabilizing effect for a tilting angle of the tubes that remains less than 15 ° towards the band edges.
- the distance between the tubular nozzles 51 and the band 53 is D. This distance D is greater than that which would exist with nozzles simply perforated at equal blowing distances.
- blowing tubes 52 are also inclined upstream or downstream of the band 53 in a plane perpendicular to the plane of the strip and parallel to the direction 100 of displacement of said strip.
- Tubular nozzles 51 could be provided with a single row of blowing tubes 52, oriented either downstream or upstream.
- each tubular nozzle 51 it is advantageous to provide, as illustrated in FIG. 9, for each tubular nozzle 51 to be equipped with two rows of blast tubes 52, the tubes of a row being inclined upstream. while the tubes of the other row are inclined downstream, and preferably with the same inclination angle noted here ⁇ .
- the impact points 55 of the jets 58 emitted from the two rows of tubes 52 of each tubular nozzle 51 are at a distance denoted i. It is then advantageous to choose the distance d between two adjacent tubular nozzles 51 located in the same side of the band 53 so that all the points of impact 55 are equidistant (distance i). This results in obtaining a regular and optimized mesh of the impact points of the blowing 55. This distance d then allows an optimal recovery of the gases, in a direction substantially normal to the plane of the band, which has the effect of reducing the depressions may exist between the impact zones.
- blowing tubes 52 are all dimensioned in length so that the jets of gas or air 58 have a jet distance a (between the outlet orifice 54 of a tube 52 and the corresponding point of impact 55) which is substantially constant regardless of their inclination.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatments In General, Especially Conveying And Cooling (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
- Tires In General (AREA)
Abstract
Description
La présente invention concerne d'une façon générale un procédé d'amélioration du refroidissement d'une chambre de refroidissement à gaz soufflé ou d'une section de refroidissement à air soufflé d'une ligne de traitement thermique de l'acier ou de l'aluminium et/ou d'amélioration de la qualité des produits à traiter.The present invention generally relates to a method of improving the cooling of a blast gas cooling chamber or blown air cooling section of a heat treatment line of steel or steel. aluminum and / or improving the quality of the products to be treated.
Plus précisément, le procédé objet de l'invention concerne les lignes de traitement de bandes d'acier ou d'aluminium utilisant au moins une chambre de refroidissement par jets de gaz ou d'air, ou une section de refroidissement par jets de gaz ou d'air, telles que les lignes de traitement thermique, en particulier les lignes de recuit continu, ou telles que les lignes de revêtements, en particulier les lignes de revêtements métalliques ou non métalliques.More specifically, the method which is the subject of the invention concerns the treatment lines of steel or aluminum strips using at least one gas or air jet cooling chamber, or a gas jet cooling section or of air, such as heat treatment lines, in particular continuous annealing lines, or such as coating lines, in particular metal or non-metallic coating lines.
Ce procédé vise à augmenter le refroidissement de la bande tout en évitant les phénomènes vibratoires sur la bande.This process aims to increase the cooling of the band while avoiding vibration phenomena on the band.
On va présenter, en référence aux figures 1 à 8, une description générale des lignes de traitement des bandes d'acier ou d'aluminium.With reference to FIGS. 1 to 8, a general description of the treatment lines of steel or aluminum strips will be presented.
Une chambre verticale de refroidissement d'une ligne de traitement de bandes d'acier ou d'aluminium réalisée suivant l'état de l'art est construite suivant le principe représenté sur la figure 1, sur laquelle on distingue une chambre de refroidissement 4 d'un four de traitement, dans laquelle circule une bande d'acier ou d'aluminium 1, qui est soumise à l'action d'éléments de refroidissement 2 lorsqu'elle passe sur des rouleaux de renvoi supérieurs 3 et des rouleaux de renvoi inférieurs 3'. La bande 1 est refroidie dans la chambre 4 principalement par les éléments de refroidissement 2 constitués d'ensembles de soufflage de gaz à une température inférieure à la température de bande.A vertical cooling chamber of a steel or aluminum strip processing line produced according to the state of the art is constructed according to the principle shown in FIG. 1, on which a
Lors de son passage dans la chambre de refroidissement 4, la bande 1 est refroidie sur ses deux faces par les éléments de refroidissement 2 situés de part et d'autre de la ligne de passe, et en cas de refroidissement sur plusieurs lignes de passe, ladite bande change de ligne de passe à chaque rouleau de renvoi 3 ou 3'. La courbe de refroidissement de la bande dans la chambre est maîtrisée par l'indexation des différents éléments de refroidissement 2 ou groupes d'éléments de refroidissement fonctionnant de façon identique.During its passage in the
Une section verticale de refroidissement d'une ligne de traitement de bandes d'acier ou d'aluminium réalisée suivant l'état de l'art est construite suivant le principe représenté sur la figure 2, sur laquelle on distingue une section verticale de refroidissement 10, dans laquelle circule une bande 11 qui est soumise à l'action d'éléments de refroidissement 12. La bande 11 est refroidie dans la section principalement par les éléments de refroidissement 12 constitués d'ensembles de soufflage d'air à une température inférieure à la température de bande. La ligne de passe théorique de la bande 11 est déterminée par le rouleau de renvoi supérieur 13 et le rouleau de renvoi inférieur 13'.A vertical cooling section of a steel or aluminum strip processing line made according to the state of the art is constructed according to the principle shown in FIG. 2, on which a
Lors de son passage dans la section de refroidissement 10, la bande 11 est refroidie sur ses deux faces par les éléments de refroidissement 12 situés de part et d'autre de la ligne de passe. La courbe de refroidissement de la bande dans la section est maîtrisée par l'indexation des différents éléments de refroidissement 12 ou groupes d'éléments de refroidissement fonctionnant de façon identique.During its passage in the
La productivité de la chambre ou de la section de refroidissement est déterminée par la capacité à assurer un transfert thermique de refroidissement afin d'atteindre des températures de bande à la sortie de la chambre ou de la section de refroidissement et des pentes de refroidissement (exprimées en °C/seconde) qui déterminent la qualité métallurgique du produit final. Ce transfert thermique est dépendant de la distance de soufflage entre la bande et le système de refroidissement, de la géométrie du soufflage, et de la vitesse de soufflage. Le transfert thermique sera en outre plus efficace si la distance de soufflage est petite et/ou si la vitesse de soufflage est importante.The productivity of the cooling chamber or section is determined by the ability to provide cooling heat transfer to reach strip temperatures at the outlet of the cooling chamber or section and the cooling slopes (expressed in ° C / second) that determine the metallurgical quality of the final product. This heat transfer is dependent on the blowing distance between the strip and the cooling system, the geometry of the blowing, and the blowing speed. The heat transfer will also be more effective if the blowing distance is small and / or if the blowing speed is important.
L'augmentation de la vitesse de soufflage et la diminution de la distance entre la bande et le système de soufflage engendrent, à partir d'une certaine limite, des vibrations et/ou oscillations de la bande qui peuvent provoquer un contact entre la bande et le système de soufflage (ou les protections du système de soufflage), provoquant des marques (scratchs) incompatibles avec la qualité de surface recherchée, et même dans les cas extrêmes des ruptures de bande.Increasing the blowing speed and decreasing the distance between the strip and the blowing system generate, from a certain limit, vibrations and / or oscillations of the strip which can cause contact between the strip and the strip. the blowing system (or the protections of the blowing system), causing marks (scratches) incompatible with the desired surface quality, and even in extreme cases of tape breaks.
L'augmentation des performances des lignes de traitement d'acier ou d'aluminium impose des pentes de refroidissement plus importantes sur des produits de plus en plus fins et de plus en plus larges.The increase in the performance of steel or aluminum treatment lines imposes greater cooling slopes on products that are becoming thinner and larger and wider.
Par exemple, en ce qui concerne le recuit des bandes d'acier, il n'est pas rare de spécifier dans la chambre de refroidissement d'un four de recuit continu, des besoins de pentes de refroidissement élevées (typiquement supérieures à 80°C/seconde) pour les aciers dits DQ (Drawing Quality), DDQ (Deep Drawing Quality) et HSS (High Strength Steel). Les pentes de refroidissement sont plus faibles (typiquement 20°C/seconde) pour les aciers de qualité commerciale dits CQ (Commercial Quality). Le document EP 0 803 583 A2 décrit ce besoin et les diverses applications.For example, with regard to the annealing of the steel strips, it is not uncommon to specify in the cooling chamber of a continuous annealing furnace, the need for high cooling slopes (typically greater than 80 ° C. / second) for the so-called DQ (Drawing Quality), DDQ (Deep Drawing Quality) and HSS (High Strength Steel) steels. Cooling slopes are lower (typically 20 ° C / second) for steels of commercial quality called CQ (Commercial Quality). EP 0 803 583 A2 describes this need and the various applications.
Il faut noter que la proportion d'aciers à haute limite d'emboutissage (par exemple de type DDQ) ou à haute limite élastique (par exemple type HSS) augmente de façon significative.It should be noted that the proportion of steels with a high drawing limit (for example of the DDQ type) or with a high elastic limit (for example of the HSS type) increases significantly.
De même, pour gagner du poids, en particulier dans les applications automobiles, l'épaisseur moyenne des aciers diminue, alors que la largeur moyenne des feuillards à traiter augmente avec l'optimisation des moyens d'emboutissage.Similarly, to gain weight, particularly in automotive applications, the average thickness of the steels decreases, while the average width of the strips to be treated increases with the optimization of the stamping means.
Enfin, les capacités des lignes de traitement, en particulier les lignes de galvanisation ou de recuit, évoluent vers des capacités plus importantes.Finally, the capacities of the treatment lines, in particular the galvanizing or annealing lines, evolve towards greater capacities.
Cette évolution combinée des différents paramètres ci-dessus entraîne l'apparition d'un nouveau problème dans les chambres ou les sections de refroidissement, à savoir les vibrations de la bande, ce phénomène étant limité ou même inconnu dans les équipements réalisés suivant l'état antérieur de la technique.This combined evolution of the various parameters above causes the appearance of a new problem in the chambers or cooling sections, namely the vibrations of the band, this phenomenon being limited or even unknown in the equipment made according to the state prior art.
Le phénomène est bien entendu très critique pour les chambres ou sections verticales telles que représentées sur les figures 1 et 2, mais existe également avec une ligne de passe horizontale, bien que ce phénomène soit alors atténué par le poids propre de la bande.The phenomenon is of course very critical for the chambers or vertical sections as shown in Figures 1 and 2, but also exists with a horizontal line, although this phenomenon is then attenuated by the weight of the tape itself.
La zone de refroidissement après revêtement d'une ligne de galvanisation à chaud représentée sur la figure 3 est elle aussi très sensible à ce phénomène. Après revêtement par une immersion d'une bande d'acier 21 dans un bain 22 d'alliage de zinc en fusion, l'épaisseur du revêtement est contrôlée par essorage à l'air ou à l'azote du revêtement liquide. Cet essorage est généralement réalisé par une paire de buses de soufflage 23, 23'. La zone de refroidissement verticale 24 qui suit est destinée à figer le revêtement et à atteindre une température au niveau du rouleau déflecteur de haut de tour 25 qui soit compatible avec le process, en particulier évitant toute trace sur le revêtement.The cooling zone after coating of a hot-dip galvanizing line shown in FIG. 3 is also very sensitive to this phenomenon. After coating by immersion of a
L'augmentation des capacités des lignes fait que la hauteur de brin libre de la bande 21 entre le dernier rouleau 26 immergé dans le bain de zinc en fusion 22 et le rouleau déflecteur de haut de tour 25 peut dépasser 50 mètres sur des lignes de grande capacité.The increase in the capacity of the lines makes the free strand height of the
Une réduction de cette hauteur, qui est souhaitable pour des raisons technico-économiques, imposerait des coefficients d'échange plus importants qui là encore génèrent des vibrations non compatibles avec la qualité du produit final. Ces vibrations peuvent engendrer des marques par contact entre la bande et les éléments extérieurs, mais sont également préjudiciables à la régularité du revêtement de zinc. En effet, l'un des paramètres essentiels de l'essorage est la distance entre la buse de soufflage 23 ou 23' et la bande 21, dont la ligne de passe est idéalement fixe. Les vibrations de la bande 21 entraînent un changement de ligne de passe dans le sens longitudinal et/ou transversal de la bande, et donc un revêtement non uniforme.A reduction of this height, which is desirable for technico-economic reasons, would impose higher exchange coefficients which again generate vibrations that are not compatible with the quality of the final product. These vibrations can generate marks by contact between the band and the external elements, but are also detrimental to the regularity of the zinc coating. Indeed, one of the essential parameters of the spin is the distance between the
Afin de limiter les effets indésirables des vibrations de la bande, on a tenté, dans une technique antérieure, de limiter les vibrations par une réduction de la longueur des caissons (ou zones) de soufflage, ceci afin d'installer des rouleaux stabilisateurs. Cependant, cette technique limite la longueur concernée par le refroidissement et donc l'efficacité du refroidissement de la zone, et de plus cette technique impose un contact entre la bande et les rouleaux stabilisateurs, ce qui est incompatible avec des applications dans des zones de refroidissement après galvanisation à chaud car le revêtement n'est pas encore totalement figé.In order to limit the undesirable effects of the vibrations of the band, it has been attempted, in a prior art, to limit the vibrations by reducing the length of the casing (or zones), in order to install stabilizing rollers. However, this technique limits the length involved in the cooling and thus the cooling efficiency of the zone, and moreover this technique imposes a contact between the strip and the stabilizing rollers, which is incompatible with applications in cooling zones. after hot dip galvanizing because the coating is not yet completely frozen.
Des systèmes de stabilisation aéraulique ont également été proposés pour remplacer les rouleaux stabilisateurs précités. Ces systèmes sont relativement efficaces et peuvent contribuer au refroidissement, mais ils ne sont pas optimisés pour favoriser le coefficient d'échange, et donc pour optimiser le refroidissement. En outre la consommation d'énergie est relativement importante.Aeraulic stabilization systems have also been proposed to replace the aforementioned stabilizing rollers. These systems are relatively efficient and can contribute to cooling, but they are not optimized to favor the exchange coefficient, and therefore to optimize cooling. In addition the energy consumption is relatively important.
Une autre tentative a consisté à augmenter la traction de bande, mais cette solution n'est envisageable que pour des bandes d'épaisseur importante, et pour des températures de bande réduites, car les contraintes thermomécaniques générées sur des bandes fines à haute température peuvent dépasser la limite élastique des bandes et peuvent engendrer des déformations permanentes, voire même des casses de bande.Another attempt has been to increase web tension, but this solution is only feasible for thick webs, and for reduced web temperatures, since the thermomechanical stresses generated on high temperature thin webs may exceed the elastic limit of the bands and can cause permanent deformations, or even breakages of tape.
Une autre solution consiste à contrôler les vibrations de la bande en adaptant la vitesse de soufflage et/ou la distance entre la bande et les éléments de soufflage et/ou le débit de soufflage en cas d'apparition de vibrations. Ceci entraîne alors une limitation de l'efficacité du refroidissement, et donc des performances de l'installation.Another solution is to control the vibrations of the band by adjusting the blowing speed and / or the distance between the band and the blowing elements and / or the blowing flow rate in the event of occurrence of vibrations. This then leads to a limitation of the efficiency of the cooling, and therefore of the performance of the installation.
Une autre solution illustrée en figure 4 a été proposée, pour favoriser un écoulement latéral du gaz soufflé. Cette solution consiste à agencer des tubes de soufflage 31, 31' sur des caissons de soufflage 32, 32' situés de part et d'autre de la bande 33 qui défile dans une direction notée 100. Les tubes de soufflage 31, 31' permettent ainsi de guider les jets de soufflage 34, 34' émis dans une direction qui est perpendiculaire au plan de la bande 33 en défilement. Bien que ce système entraîne une amélioration par rapport à des caissons simplement troués, la solution n'est pas satisfaisante, et les flottements de bande observés dans de tels systèmes conduisent soit à des détérioration des tubes lorsque la bande est épaisse, soit à des casses de bande lorsque la bande est fine. Comme l'évacuation du gaz après soufflage ne peut se faire que vers le bord des caissons, soit dans le sens de défilement de la bande, soit latéralement, il s'ensuit un débit important de gaz circulant parallèlement à la bande, dans un volume qui est confiné entre la bande et les caissons vers les bords desdits caissons. La présence des tubes 31, 31' augmente de facto le volume disponible confiné entre la bande et les caissons, par rapport à des caissons simplement troués.Another solution illustrated in Figure 4 has been proposed, to promote a lateral flow of the blown gas. This solution consists in arranging
Les perturbations qui ont été observées avec l'agencement de la figure 4 sont illustrées aux figures 5 et 6, qui sont des vues en bout selon la flèche A de la figure 4.The disturbances that have been observed with the arrangement of FIG. 4 are illustrated in FIGS. 5 and 6, which are end views along the arrow A of FIG.
Sur la figure 5, les simulations de mécanique des fluides sur des géométries industrielles montrent que, quand la bande 33 est décentrée vers l'un des deux caissons, ici le caisson 32', la résultante des pressions sur la bande exerce une force F tendant à rapprocher encore plus la bande dudit caisson. Le système est donc instable, et n'a pas tendance à stabiliser la bande dans une ligne de passe centrée entre les caissons. Sur la figure 6, les simulations de mécanique des fluides sur des géométries industrielles montrent que, quand la bande 33 est inclinée, la résultante des pressions exercées sur la bande exerce un couple C, tendant à incliner encore plus la bande et donc à rapprocher les bords de la bande des caissons. Le système est là aussi instable, et n'a pas tendance à stabiliser la bande dans une ligne de passe centrée entre les caissons. Les résultats des figures 5 et 6 ont été démontrés par simulation de logiciels de mécanique des fluides, et par un calcul de la résultante des pressions exercées sur chaque face de la bande. La résultante des pressions exercées sur chaque face de la bande est la résultante de pressions positives au niveau de zones qui sont sensiblement au droit des tubes de soufflage, et de dépressions au niveau des parties qui ne sont pas situées au droit de ces tubes.In FIG. 5, the fluid mechanics simulations on industrial geometries show that, when the
Il a été proposé de canaliser le flux du gaz soufflé en prévoyant une inclinaison des tubes de soufflage vers les bords de la bande, principalement pour améliorer le refroidissement, comme décrit dans le document WO-A-01/09397, mais la modélisation conduit seulement à une légère amélioration des effets illustrés schématiquement sur les figures 5 et 6.It has been proposed to channel the flow of the blown gas by providing an inclination of the blowing tubes towards the edges of the strip, mainly to improve the cooling, as described in the document WO-A-01/09397, but the modeling leads only to a slight improvement of the effects illustrated schematically in Figures 5 and 6.
Le document US-A-6 054 095 enseigne également d'incliner vers les bords de la bande les tubes de soufflage équipant des caissons, mais pour avoir une meilleure homogénéité de la température de la bande, donc sans se préoccuper de la stabilité du défilement de ladite bande. En variante, le document US-A-4 673 447 décrit l'utilisation de caissons de soufflage à trous, lesdits trous étant ménagés dans une plaque épaisse pour présenter une inclinaison des jets de gaz. Il est à noter que les jets sont inclinés non pas vers les bords, mais au contraire vers un plan médian, symétriquement par rapport audit plan. Il s'agit donc plutôt d'un simple patin de stabilisation.The document US-A-6 054 095 also teaches tilting towards the edges of the strip the blowing tubes equipping the boxes, but to have a better homogeneity of the temperature of the strip, thus without worrying about the stability of the scrolling. of said band. Alternatively, the document US-A-4,673,447 describes the use of perforated blow boxes, said holes being formed in a thick plate to have an inclination of the gas jets. It should be noted that the jets are inclined not towards the edges, but on the contrary towards a median plane, symmetrically with respect to said plane. It is therefore rather a simple stabilizing pad.
Le document EP-A-1 108 795 décrit une variante des techniques précédentes, dans laquelle on utilise des caissons à tubes de soufflage droits (perpendiculaires au plan de la bande). On cherche en fait seulement à modifier l'intensité du refroidissement en jouant sur la longueur des tubes, lesquels sont choisis plus courts au niveau des bords de la bande.The document EP-A-1 108 795 describes a variant of the preceding techniques, in which straight tube blow boxes (perpendicular to the plane of the strip) are used. In fact, the aim is only to modify the intensity of cooling by varying the length of the tubes, which are chosen shorter at the edges of the strip.
Le document EP-A-1 029 933 décrit une autre variante avec des caissons à buses en lames. Les lames transversales ne produisent aucuns jets inclinés, et les caissons ne permettent pas d'organiser une reprise des gaz de soufflage perpendiculairement à la bande, comme cela a déjà été indiqué plus haut.EP-A-1 029 933 discloses another variant with nozzle-type casings. The blades transversals do not produce any inclined jets, and the boxes do not allow to organize a recovery of the blowing gas perpendicular to the strip, as already mentioned above.
Suivant une autre conception, et afin de limiter le flux de gaz dans une direction parallèle à la direction de défilement de la bande, une solution communément utilisée est représentée aux figures 7 et 8 (la figure 8 étant une coupe selon VIII-VIII de la figure 7). Cette solution consiste à utiliser des buses tubulaires de soufflage 41 d'axe 48, ayant des fonds 46 et une entrée de gaz 47, lesdites buses étant percées de plusieurs trous circulaires 42, qui sont oblongs ou en forme de fente, permettant un soufflage de jets 45 sur la bande 43 en défilement dans la direction 100, dans une direction normale au plan de la bande. Même si le confinement entre la bande 43 et les buses de soufflage 41 est plus réduit qu'avec les agencements utilisant des caissons à tubes, et permet une certaine reprise des gaz dans une direction normale au plan de la bande entre les buses de soufflage, ce confinement engendre des effets de pression très défavorables conduisant aux mêmes phénomènes que ceux décrits en référence aux figures 5 et 6. Ce résultat peut être démontré par une modélisation des pressions engendrées par cette configuration, et la bande n'est pas stabilisée dans une ligne de passe optimale, c'est-à-dire centrée entre les buses de soufflage.According to another design, and in order to limit the flow of gas in a direction parallel to the running direction of the strip, a solution commonly used is shown in FIGS. 7 and 8 (FIG. 8 being a section along VIII-VIII of FIG. Figure 7). This solution consists in using
Enfin, le document EP 1 067 204 A1 décrit une solution de suppression des vibrations par ajustement de la pression et/ou du débit de gaz soufflé dans le sens transversal de la bande. Outre la complexité du réglage à adapter à chaque produit à traiter, cette méthode présente deux inconvénients majeurs. En premier lieu, la bande peut être amenée à ne pas être parallèle aux dispositifs de soufflage, réduisant ainsi la distance entre la bande et le dispositif, et augmentant les risques de contact. Enfin, la capacité de refroidissement n'est pas maximale, et la réduction de la vitesse et/ou de la pression sur une face ne peut pas être compensée par une augmentation de la vitesse ou de la pression des jets sur l'autre face si les limites de vitesse ou de capacité de soufflage sont déjà atteintes.Finally, the document EP 1 067 204 A1 describes a solution for suppressing vibrations by adjustment of the pressure and / or the flow of gas blown in the transverse direction of the strip. In addition to the complexity of the adjustment to be adapted to each product to be treated, this method has two major disadvantages. In the first place, the strip may be caused to be not parallel to the blowing devices, thus reducing the distance between the band and the device, and increasing the risk of contact. Finally, the cooling capacity is not maximum, and the reduction of the speed and / or the pressure on one side can not be compensated by an increase in the speed or pressure of the jets on the other side if the speed or blowing capacity limits have already been reached.
L'invention vise à proposer un procédé de refroidissement optimisant à la fois les aspects thermiques et aérauliques, c'est-à-dire maximisant le refroidissement, tout en minimisant les vibrations ou les déports de bande par un effet auto-centreur tendant à ramener la bande dans une ligne de passe idéale lorsque celle-ci est déportée ou lorsqu'elle présente une rotation par rapport à sa ligne de passe théorique.The aim of the invention is to propose a cooling method that optimizes both the thermal and aeraulic aspects, that is to say maximizing the cooling, while minimizing the vibrations or the strip offsets by a self-centering effect tending to reduce the band in an ideal pass line when it is deported or when it is rotated relative to its theoretical line.
Les principes fondamentaux de l'approche de l'invention consistent à combiner les avantages d'un confinement minimisé, et d'une limitation de la circulation des gaz dans un plan parallèle à la bande avec un soufflage optimisé par des jets dirigés assurant à la fois le refroidissement et la stabilité de la bande.The fundamental principles of the approach of the invention are to combine the advantages of a minimized confinement, and a limitation of the flow of gases in a plane parallel to the band with optimized blowing by directed jets ensuring the times the cooling and stability of the band.
Cette approche exclut donc les solutions antérieures utilisant des caissons de refroidissement (suivant les figures 4 à 6) qui par nature limitent de facto le volume disponible entre la bande et les caissons (et ce même dans le cas de tubes de soufflage rajoutés).This approach therefore excludes previous solutions using cooling boxes (according to Figures 4 to 6) which by nature de facto limit the available volume between the strip and the boxes (and even in the case of blown tubes added).
Cette approche est également très éloignée des solutions antérieures avec des buses de soufflage percées de trous (suivant les figures 7 et 8) qui laissent subsister un confinement important entre la bande et les buses. De plus l'épaisseur habituellement réduite des buses de soufflage ne permet pas de diriger les jets par simple percement ou usinage des buses de soufflage.This approach is also very far from previous solutions with perforated jet nozzles (according to FIGS. 7 and 8) which leave substantial containment between the band and the nozzles. In addition, the usually small thickness of the blowing nozzles makes it impossible to direct the jets by simple drilling or machining of the blast nozzles.
Le problème technique précité est résolu conformément à l'invention grâce à un procédé d'amélioration du refroidissement d'une chambre de refroidissement à gaz soufflé ou d'une section de refroidissement à air soufflé d'une ligne de traitement thermique de l'acier ou de l'aluminium et/ou d'amélioration de la qualité des produits à traiter par réduction des variations engendrées par ce refroidissement, dans lequel on projette des jets de gaz ou d'air vers chacune des faces de la bande en déplacement dans ladite chambre ou section, les jets de gaz ou d'air étant émis à partir de tubes de soufflage équipant des buses tubulaires agencées à distance l'une de l'autre transversalement à la direction de déplacement de la bande, lesdits jets étant dirigés vers la face concernée de la bande en étant inclinés à la fois essentiellement vers les bords de ladite bande dans un plan perpendiculaire au plan de la bande et à la direction de déplacement de ladite bande, et vers l'amont ou l'aval de la bande dans un plan perpendiculaire au plan de la bande et parallèle à la direction de déplacement de ladite bande.The aforementioned technical problem is solved according to the invention by a method of improving the cooling of a blast gas cooling chamber or a blowing air cooling section of a steel heat treatment line. or aluminum and / or improving the quality of the products to be treated by reducing the variations generated by this cooling, in which gas or air jets are projected towards each of the faces of the strip moving in said chamber or section, the jets of gas or air being emitted from blowing tubes equipping tubular nozzles arranged at a distance from each other transversely to the direction of movement of the strip, said jets being directed towards the concerned face of the strip being inclined both substantially towards the edges of said strip in a plane perpendicular to the plane of the strip and the direction of movement of said band e, and upstream or downstream of the strip in a plane perpendicular to the plane of the strip and parallel to the direction of movement of said strip.
Avantageusement, les jets de gaz ou d'air émis à partir d'une même buse tubulaire sont inclinés vers l'amont et l'aval de la bande. On obtient ainsi un meilleur rendement de soufflage pour le même nombre de buses tubulaires.Advantageously, the jets of gas or air emitted from the same tubular nozzle are inclined upstream and downstream of the strip. This gives a better blowing efficiency for the same number of tubular nozzles.
De préférence aussi, la distance entre deux buses tubulaires adjacentes d'un même côté de la bande est choisie de telle façon que les points d'impact des jets de gaz ou d'air sur la bande soient sensiblement équidistants dans une direction parallèle à la direction de déplacement de ladite bande. Ceci est très favorable pour la stabilité de la bande lors du défilement de celle-ci.Also preferably, the distance between two adjacent tubular nozzles on the same side of the strip is chosen such that the points of impact of the gas or air jets on the strip are substantially equidistant in a direction parallel to the direction of movement of said band. This is very favorable for the stability of the band during the scrolling thereof.
Avantageusement encore, les jets de gaz ou d'air émis à partir d'une même buse tubulaire sont inclinés essentiellement vers les bords de la bande de telle façon que les points d'impact desdits jets sur ladite bande soient sensiblement équidistants dans une direction perpendiculaire à la direction de déplacement de la bande. En particulier, les jets de gaz ou d'air émis à partir d'une même buse tubulaire sont inclinés essentiellement vers les bords de la bande selon une inclinaison croissante, à partir de la ligne médiane de la bande en allant vers les bords de ladite bande, d'environ 0° à un angle inférieur à 15°.Advantageously, the jets of gas or air emitted from the same tubular nozzle are inclined essentially towards the edges of the strip in such a way that the points of impact of said jets on said strip are substantially equidistant in a direction perpendicular to the direction of movement of the strip. In particular, the jets of gas or air emitted from the same tubular nozzle are inclined essentially towards the edges of the strip at an increasing inclination, starting from the median line of the strip towards the edges of said band, from about 0 ° to an angle less than 15 °.
De préférence encore, les jets de gaz ou d'air sont organisés pour présenter une distance de jet sensiblement constante quelle que soit leur inclinaison.More preferably, the jets of gas or air are organized to have a substantially constant jet distance regardless of their inclination.
L'invention concerne également un dispositif destiné à mettre en oeuvre un procédé d'amélioration présentant l'une au moins des caractéristiques précitées, ledit dispositif étant remarquable en ce qu'il comporte, de part et d'autre de la bande en déplacement, une pluralité de buses tubulaires agencées à distance l'une de l'autre transversalement à la direction de déplacement de la bande, chaque buse tubulaire étant équipée de tubes de soufflage pointant vers une face de la bande, lesdits tubes de soufflage étant inclinés à la fois essentiellement vers les bords de ladite bande dans un plan perpendiculaire au plan de la bande et à la direction de déplacement de ladite bande, et vers l'amont ou l'aval de la bande dans un plan perpendiculaire au plan de la bande et parallèle à la direction de déplacement de ladite bande.The invention also relates to a device for implementing an improvement method having at least one of the abovementioned characteristics, said device being remarkable in that it comprises, on either side of the moving strip, a plurality of tubular nozzles arranged at a distance from one another transversely to the direction of movement of the strip, each tubular nozzle being equipped with blowing tubes pointing towards one side of the strip, said blowing tubes being inclined at the times substantially to the edges of said strip in a plane perpendicular to the plane of the strip and to the direction of movement of said strip, and upstream or downstream of the strip in a plane perpendicular to the plane of the strip and parallel to the direction of movement of said band.
Il est intéressant de prévoir que chaque buse tubulaire est équipée de deux rangées de tubes de soufflage, les tubes d'une rangée étant inclinés vers l'amont tandis que les tubes de l'autre rangée sont inclinés vers l'aval, de préférence avec le même angle d'inclinaison. En particulier, la distance entre deux buses tubulaires adjacentes d'un même côté de la bande est choisie de telle façon que les points d'impact des jets émis à partir des rangées de tubes de soufflage soient sensiblement équidistants dans une direction parallèle à la direction de déplacement de ladite bande.It is advantageous to provide that each tubular nozzle is equipped with two rows of blowing tubes, the tubes of one row being inclined upstream while the tubes of the other row are inclined downstream, preferably with the same angle of inclination. In particular, the distance between two adjacent tubular nozzles on the same side of the strip is chosen so that the points of impact of the jets emitted from rows of blow tubes are substantially equidistant in a direction parallel to the direction of movement of said strip.
Avantageusement alors, les tubes de soufflage de chaque rangée d'une même buse tubulaire sont inclinés essentiellement vers les bords de la bande de telle façon que les points d'impact des jets émis à partir des tubes de soufflage de ladite rangée soient sensiblement équidistants dans une direction perpendiculaire à la direction de déplacement de ladite bande. En particulier, les tubes de soufflage d'une même rangée sont inclinés essentiellement vers les bords de la bande selon une inclinaison croissante, à partir de la ligne médiane de la bande en allant vers les bords de ladite bande, d'environ 0° à un angle inférieur à 15°.Advantageously then, the blowing tubes of each row of the same tubular nozzle are inclined essentially towards the edges of the strip in such a way that the points of impact of the jets emitted from the blowing tubes of said row are substantially equidistant in a direction perpendicular to the direction of movement of said strip. In particular, the blow tubes of the same row are inclined essentially towards the edges of the strip at an increasing inclination, starting from the median line of the strip towards the edges of said strip, of approximately 0 ° to an angle less than 15 °.
De préférence encore, les tubes de soufflage de chaque buse tubulaire sont dimensionnés en longueur de telle façon que les jets de gaz ou d'air émis par lesdits tubes présentent une distance de jet sensiblement constante quelle que soit leur inclinaison.More preferably, the blowing tubes of each tubular nozzle are dimensioned in length so that the jets of gas or air emitted by said tubes have a substantially constant jet distance regardless of their inclination.
On pourra enfin prévoir que les buses tubulaires ont une section circulaire, oblongue, triangulaire, carrée, rectangulaire ou polygonale.Finally, it can be provided that the tubular nozzles have a circular, oblong, triangular, square, rectangular or polygonal section.
D'autres caractéristiques et avantages de l'invention apparaîtront plus clairement à la lumière de la description qui va suivre d'un mode de réalisation particulier, en référence aux figures 9 et 10, la figure 9 étant une coupe selon IX-IX de la figure 10.Other characteristics and advantages of the invention will emerge more clearly in the light of the following description of a particular embodiment, with reference to FIGS. 9 and 10, FIG. 9 being a section along IX-IX of FIG. figure 10.
Fondamentalement, les moyens de mise en oeuvre de l'invention dans une chambre ou une zone de refroidissement consistent à combiner les effets techniques exposés ci-après.
- Possibilité de reprise des gaz soufflés après impact sur la bande dans une direction sensiblement normale au plan de la bande par utilisation de buses de soufflage de section préférentiellement circulaire, oblongue, carrée ou rectangulaire, ou polygonale, permettant une reprise des gaz soufflés dans les espaces situés entre les buses.
- Limitation du confinement entre la bande et les dispositifs de soufflage en augmentant le volume disponible entre les buses de soufflage et la bande, afin d'avoir une force (respectivement un couple) de rappel tendant à ramener la bande dans sa ligne de passe théorique lorsque celle-ci présente un déport (respectivement une rotation) par rapport à sa ligne de passe théorique, ceci sans augmenter la distance de soufflage. Cette limitation du confinement peut être réalisée en augmentant la distance entre la bande et les buses sans augmenter la distance de soufflage par utilisation de tubes creux de soufflage fixés sur les buses en une ou plusieurs rangées.
- Canalisation ou guidage des jets de soufflage vers les bords de la bande afin d'avoir une force (respectivement un couple) de rappel tendant à ramener la bande dans sa ligne de passe théorique lorsque celle-ci présente un déport (respectivement une rotation) par rapport à sa ligne de passe théorique. Cette orientation des jets par inclinaison de tout ou partie des tubes par rapport à une direction normale au plan de la bande est compatible avec un refroidissement optimisé, c'est-à-dire un maillage des points d'impact du gaz soufflé sensiblement constant et une distance de soufflage sensiblement constante.
- Possibility of recovery of the blown gases after impact on the strip in a direction substantially normal to the plane of the strip by using blowing nozzles of preferably circular, oblong, square or rectangular, or polygonal section, allowing a recovery of the gases blown into the spaces between the nozzles.
- Limiting the confinement between the band and the blowing devices by increasing the available volume between the blast nozzles and the band, so as to have a restoring force (or torque) tending to bring the band back to its theoretical line of this has an offset (respectively a rotation) with respect to its theoretical line of passage, this without increasing the blowing distance. This limitation of confinement can be achieved by increasing the distance between the band and the nozzles without increasing the blowing distance by using hollow blow tubes fixed on the nozzles in one or more rows.
- Channeling or guiding the blowing jets towards the edges of the strip in order to have a force (respectively a torque) of return tending to bring the strip back to its theoretical line of passage when the latter has an offset (respectively a rotation) by relation to its theoretical line of This orientation of the jets by inclining all or part of the tubes relative to a normal direction to the plane of the band is compatible with optimized cooling, that is to say a mesh of the impact points of the substantially constant blast gas and a substantially constant blowing distance.
Ainsi, le refroidissement et la stabilité de bande sont optimisés.Thus, cooling and tape stability are optimized.
On va maintenant se référer aux figures 9 et 10 pour décrire de façon plus concrète et détaillée un mode de réalisation particulier de l'invention.Reference will now be made to FIGS. 9 and 10 to describe in a more concrete and detailed manner a particular embodiment of the invention.
Les figures 9 et 10 illustrent un dispositif de refroidissement 50, dont on n'a représenté que deux paires de buses tubulaires de soufflage 51, ces buses de soufflage étant situées de part et d'autre de la bande 53 qui se déplace dans une direction de défilement notée 100. Les buses de soufflage 51 ont préférablement une section circulaire comme cela est illustré ici, avec un axe 56, mais peuvent suivant d'autres modes de réalisation de l'invention avoir une section oblongue, triangulaire, carrée, rectangulaire ou polygonale.FIGS. 9 and 10 illustrate a
Des tubes de soufflage creux 52 sont fixés sur les buses tubulaires 51. Ces tubes sont disposés suivant une ou plusieurs rangées. La disposition et le nombre de rangée des tubes de soufflage doivent être prévus afin d'avoir un maillage des points d'impact sur la bande qui soit sensiblement équidistant pour optimiser le refroidissement et limiter les contraintes thermomécaniques exercées sur la bande.
Comme cela est illustré sur la figure 9, les buses tubulaires 51 sont agencées à distance l'une de l'autre transversalement à la direction 100 de déplacement de la bande, chaque buse tubulaire 51 étant équipée de tubes de soufflage 52 pointant vers une face de la bande, avec une disposition symétrique par rapport au plan de ladite bande de façon à avoir des points d'impact des jets 58 émis qui sont en correspondance sur chacune des faces de la bande 53.As illustrated in FIG. 9, the
Conformément à une caractéristique de l'invention, les tubes de soufflage 52 sont inclinés à la fois essentiellement vers les bords de la bande 53 dans un plan perpendiculaire au plan de la bande et à la direction 100 de déplacement de ladite bande (comme cela est visible sur la figure 10), et vers l'amont ou l'aval de la bande 53 (par référence au sens de défilement) dans un plan P perpendiculaire au plan de la bande et parallèle à la direction 100 de déplacement de ladite bande (comme cela est visible sur la figure 9).According to a feature of the invention, the
Le terme "essentiellement" utilisé plus haut vise à indiquer que quelques tubes de soufflage 52, près de la ligne médiane LM de la bande 53, peuvent émettre des jets qui sont perpendiculaires au plan de la bande, la grande majorité des tubes de soufflage 52 présentant néanmoins une inclinaison selon un angle α par rapport à la normale au plan de la bande. Cette inclinaison est de préférence croissante, à partir de la ligne médiane LM de la bande en allant vers les bords de ladite bande, d'environ 0° à un angle inférieur à 15°.The term "substantially" used above is intended to indicate that some blowing
Les tubes de soufflage 52 sont en l'espèce inclinés vers les bords de la bande d'un angle α allant de 0° à 15° au maximum, comme le représente la figure 10, qui est une vue suivant B de la figure 9. Cette inclinaison peut concerner tout ou partie des tubes suivant différents modes de réalisation de l'invention. Ceci permet de canaliser le flux résiduel de gaz (c'est-à-dire le flux non évacué vers une direction arrière perpendiculaire au plan de la bande après échange thermique avec ladite bande) dans des directions préférentielles vers les bords de bande tendant à stabiliser ladite bande.The blowing
Un des paramètres de performance du refroidissement est la distance de soufflage, c'est-à-dire la distance du jet émis 58, entre l'extrémité libre 54 d'un tube 52 et le point d'impact correspondant 55 sur la bande, pour le jet émis par ce tube. Afin de conserver une capacité de refroidissement homogène sur la bande quelle que soit l'inclinaison des tubes, la longueur de chaque tube 52 peut être déterminée en fonction de son inclinaison afin d'avoir des distances de jet sensiblement constantes, et donc une capacité de refroidissement homogène. En pratique, la longueur des tubes sera d'autant plus grande que l'inclinaison α est grande. Les modélisations numériques montrent un effet optimal de stabilisation pour un angle d'inclinaison des tubes qui reste inférieur à 15° vers les bords de bande.One of the cooling performance parameters is the blowing distance, that is the distance of the emitted
La modélisation numérique de cette configuration montre un effet auto-stabilisateur lors d'un décentrement ou d'une rotation de la bande par rapport à la ligne de passe théorique. La résultante des pressions a ainsi tendance à ramener la bande au centre.The numerical modeling of this configuration shows a self-stabilizing effect during a shift or a rotation of the band with respect to the theoretical line of the pass. The resultant of the pressures thus tends to bring the band to the center.
Il est à noter que le rappel de la bande en position s'effectue de façon naturelle sans réglage particulier, et sans action d'opérateur ou de calculateur, et que la capacité de refroidissement optimale est préservée.It should be noted that the reminder of the band in position is carried out naturally without any particular adjustment, and without operator or computer action, and that the optimum cooling capacity is preserved.
Sur la figure 10, on a noté D la distance entre les buses tubulaires 51 et la bande 53. Cette distance D est plus importante que celle qui existerait avec des buses simplement trouées à distances de soufflage égales.In FIG. 10, the distance between the
Les tubes de soufflage 52 sont par ailleurs inclinés vers l'amont ou l'aval de la bande 53 dans un plan perpendiculaire au plan de la bande et parallèle à la direction 100 de déplacement de ladite bande.The blowing
On pourrait prévoir des buses tubulaires 51 à une seule rangée de tubes de soufflage 52, orientés soit vers l'aval, soit vers l'amont. Pour une plus grande efficacité et une meilleure compacité, il est intéressant de prévoir, comme illustré en figure 9, que chaque buse tubulaire 51 soit équipée de deux rangées de tubes de soufflage 52, les tubes d'une rangée étant inclinés vers l'amont tandis que les tubes de l'autre rangée sont inclinés vers l'aval, et ce de préférence avec le même angle d'inclinaison noté ici β.
Les points d'impact 55 des jets 58 émis à partir des deux rangées de tubes 52 de chaque buse tubulaire 51 sont à une distance notée i, Il est alors intéressant de choisir la distance d entre deux buses tubulaires adjacentes 51 situées d'un même côté de la bande 53 de telle façon que tous les points d'impact 55 soient équidistants (distance i). On parvient ainsi à obtenir un maillage régulier et optimisé des points d'impact du soufflage 55. Cette distance d permet alors une reprise optimale des gaz, dans une direction sensiblement normale au plan de la bande, ce qui a pour effet de diminuer les dépressions pouvant exister entre les zones d'impact.The impact points 55 of the
Enfin, il est intéressant de prévoir que les tubes de soufflage 52 soient tous dimensionnés en longueur de telle façon que les jets de gaz ou d'air 58 présentent une distance de jet a (entre l'orifice de sortie 54 d'un tube 52 et le point d'impact 55 correspondant) qui est sensiblement constante quelle que soit leur inclinaison.Finally, it is advantageous to provide that the blowing
On est ainsi assuré de fournir une puissance de refroidissement répartie de façon parfaitement homogène sur la partie de la bande qui est soumise aux jets de gaz ou d'air.It is thus ensured to provide a cooling power distributed in a perfectly homogeneous manner on the part of the strip which is subjected to the jets of gas or air.
L'invention procure des avantages très importants, qui sont rappelés ci-après :
- gain de productivité de la ligne, par application d'une capacité de refroidissement supérieure à celle des solutions conventionnelles, sans vibrations de la bande ;
- gain de qualité et de productivité par garantie de non marquage de la bande par contact dû aux vibrations (avec les conséquences associées de production de second choix, de ralentissement de ligne, ou de casse de bande) ;
- gain de flexibilité par la disparition de tout réglage et/ou action visant à réduire l'apparition de vibrations dans les solutions traditionnelles ;
- augmentation de la capacité des installations : le procédé réduit les vibrations tout en optimisant le refroidissement, ce qui permet de réduire la distance entre les appuis de bande dans les chambres ou les zones de refroidissement. Un exemple d'avantage particulièrement important est la possibilité de réduction de hauteur des tours de refroidissement après galvanisation à chaud suivant la figure 3.
- increased productivity of the line, by applying a cooling capacity greater than that of conventional solutions, without vibrations of the band;
- gain in quality and productivity by guaranteeing non-marking of the band by vibration contact (with the associated consequences of production of second choice, slowing of line, or breaking of tape);
- increased flexibility by the disappearance of any adjustment and / or action aimed at reducing the appearance of vibrations in traditional solutions;
- increased plant capacity: The process reduces vibration while optimizing cooling, which reduces the distance between strip bearings in chambers or cooling zones. An example of a particularly important advantage is the possibility of reducing the height of the cooling towers after hot-dip galvanizing according to FIG.
L'invention n'est pas limitée aux modes de réalisation qui viennent d'être décrits, mais englobe au contraire toute variante reprenant, avec des moyens équivalents, les caractéristiques essentielles énoncées plus haut.The invention is not limited to the embodiments that have just been described, but on the contrary covers any variant using, with equivalent means, the essential characteristics mentioned above.
Claims (13)
caractérisé en ce que les jets de gaz ou d'air (58) émis à partir d'une même buse tubulaire (51) sont inclinés essentiellement vers les bords de la bande (53) de telle façon que les points d'impact (55) desdits jets sur ladite bande soient sensiblement équidistants dans une direction perpendiculaire à la direction (100) de déplacement de la bande.Method according to one of claims 1 to 3,
characterized in that the gas or air jets (58) emitted from the same tubular nozzle (51) are inclined substantially towards the edges of the strip (53) so that the points of impact (55) ) said jets on said strip are substantially equidistant in a direction perpendicular to the direction (100) of displacement of the strip.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0411038A FR2876710B1 (en) | 2004-10-19 | 2004-10-19 | METHOD AND DEVICE FOR LIMITING THE VIBRATION OF STEEL OR ALUMINUM BANDS IN GAS OR AIR BLOWING COOLING ZONES |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1655383A1 true EP1655383A1 (en) | 2006-05-10 |
EP1655383B1 EP1655383B1 (en) | 2013-03-27 |
Family
ID=34951913
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05292109A Active EP1655383B1 (en) | 2004-10-19 | 2005-10-11 | Process and device for limiting the vibrations of aluminium or steel sheets during gas cooling |
Country Status (10)
Country | Link |
---|---|
US (1) | US7763131B2 (en) |
EP (1) | EP1655383B1 (en) |
KR (1) | KR100917245B1 (en) |
CN (1) | CN100572568C (en) |
BR (1) | BRPI0516938B1 (en) |
CA (1) | CA2583748C (en) |
ES (1) | ES2412854T3 (en) |
FR (1) | FR2876710B1 (en) |
RU (1) | RU2354720C2 (en) |
WO (1) | WO2006042937A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2226400A1 (en) | 2009-03-02 | 2010-09-08 | CMI Thermline Services | Method for cooling a metal band circulating in a cooling section of a continuous thermal treatment line, and installation for implementing said method |
EP3763836A1 (en) | 2019-07-11 | 2021-01-13 | Cockerill Maintenance & Ingenierie S.A. | Cooling device for blowing gas onto a surface of a traveling strip |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5211642B2 (en) * | 2007-10-31 | 2013-06-12 | Jfeスチール株式会社 | Production equipment for hot dip galvanized steel sheet and method for producing hot dip galvanized steel sheet |
KR100931178B1 (en) * | 2007-12-26 | 2009-12-11 | 주식회사 포스코 | Chiller for manufacturing galvanized sheet |
ES2359594T3 (en) * | 2008-03-14 | 2011-05-25 | Arcelormittal France | GAS BLOWING PROCEDURE AND DEVICE ON A CIRCULATING BAND. |
KR101256430B1 (en) | 2011-03-15 | 2013-04-18 | 삼성에스디아이 주식회사 | Laser welding apparatus |
CN102392111B (en) * | 2011-11-30 | 2013-09-18 | 马鞍山市华东耐磨合金有限公司 | Air-quenched vibrating device for heat treatment |
CN114411079B (en) * | 2022-01-10 | 2023-01-24 | 山东恩光新材料有限公司 | Air cooling device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3116788A (en) * | 1961-07-13 | 1964-01-07 | Midland Ross Corp | Convective cooling of continuously moving metal strip |
US3262688A (en) * | 1965-06-03 | 1966-07-26 | Midland Ross Corp | Jet convection heat transfer |
US6054095A (en) * | 1996-05-23 | 2000-04-25 | Nippon Steel Corporation | Widthwise uniform cooling system for steel strip in continuous steel strip heat treatment step |
WO2001009397A2 (en) * | 1999-07-29 | 2001-02-08 | Corus Uk Limited | Cooling system in continuously heat treatment of metal strips |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3068586A (en) * | 1959-02-18 | 1962-12-18 | Electric Furnace Co | Forced cooling means and method for continuous strip furnaces |
US3300198A (en) * | 1963-12-27 | 1967-01-24 | Olin Mathieson | Apparatus for quenching metal |
GB2075455B (en) * | 1980-04-30 | 1984-08-22 | Nippon Steel Corp | Apparatus and method for supporting a metal strip under a static gas pressure |
JP3307771B2 (en) * | 1993-08-23 | 2002-07-24 | ハンス‐ユルゲン、ガイドール | Means for descaling hot rolled steel sheets |
EP0803583B2 (en) | 1996-04-26 | 2009-12-16 | Nippon Steel Corporation | Primary cooling method in continuously annealing steel strips |
FR2789757B1 (en) * | 1999-02-16 | 2001-05-11 | Selas Sa | DEVICE FOR EXCHANGING HEAT WITH A FLAT PRODUCT |
FR2796139B1 (en) | 1999-07-06 | 2001-11-09 | Stein Heurtey | METHOD AND DEVICE FOR SUPPRESSING THE VIBRATION OF STRIPS IN GAS BLOWING ZONES, ESPECIALLY COOLING ZONES |
FR2802552B1 (en) * | 1999-12-17 | 2002-03-29 | Stein Heurtey | METHOD AND APPARATUS FOR REDUCING WEB FOLDING IN A QUICK COOLING AREA OF A HEAT TREATMENT LINE |
-
2004
- 2004-10-19 FR FR0411038A patent/FR2876710B1/en not_active Expired - Fee Related
-
2005
- 2005-10-11 ES ES05292109T patent/ES2412854T3/en active Active
- 2005-10-11 EP EP05292109A patent/EP1655383B1/en active Active
- 2005-10-12 WO PCT/FR2005/002523 patent/WO2006042937A1/en active Application Filing
- 2005-10-12 CA CA2583748A patent/CA2583748C/en active Active
- 2005-10-12 CN CNB2005800354166A patent/CN100572568C/en active Active
- 2005-10-12 US US11/577,348 patent/US7763131B2/en active Active
- 2005-10-12 BR BRPI0516938-0A patent/BRPI0516938B1/en active IP Right Grant
- 2005-10-12 KR KR1020077011420A patent/KR100917245B1/en active IP Right Grant
- 2005-10-12 RU RU2007118642/02A patent/RU2354720C2/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3116788A (en) * | 1961-07-13 | 1964-01-07 | Midland Ross Corp | Convective cooling of continuously moving metal strip |
US3262688A (en) * | 1965-06-03 | 1966-07-26 | Midland Ross Corp | Jet convection heat transfer |
US6054095A (en) * | 1996-05-23 | 2000-04-25 | Nippon Steel Corporation | Widthwise uniform cooling system for steel strip in continuous steel strip heat treatment step |
WO2001009397A2 (en) * | 1999-07-29 | 2001-02-08 | Corus Uk Limited | Cooling system in continuously heat treatment of metal strips |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2226400A1 (en) | 2009-03-02 | 2010-09-08 | CMI Thermline Services | Method for cooling a metal band circulating in a cooling section of a continuous thermal treatment line, and installation for implementing said method |
US8490416B2 (en) | 2009-03-02 | 2013-07-23 | Cmi Sa | Method of cooling a metal strip traveling through a cooling section of a continuous heat treatment line, and an installation for implementing said method |
EP3763836A1 (en) | 2019-07-11 | 2021-01-13 | Cockerill Maintenance & Ingenierie S.A. | Cooling device for blowing gas onto a surface of a traveling strip |
Also Published As
Publication number | Publication date |
---|---|
CA2583748A1 (en) | 2006-04-27 |
ES2412854T3 (en) | 2013-07-12 |
US20070241485A1 (en) | 2007-10-18 |
FR2876710A1 (en) | 2006-04-21 |
CN100572568C (en) | 2009-12-23 |
KR100917245B1 (en) | 2009-09-16 |
KR20070068463A (en) | 2007-06-29 |
RU2354720C2 (en) | 2009-05-10 |
FR2876710B1 (en) | 2014-12-26 |
CA2583748C (en) | 2011-08-09 |
US7763131B2 (en) | 2010-07-27 |
EP1655383B1 (en) | 2013-03-27 |
BRPI0516938B1 (en) | 2014-08-12 |
CN101040057A (en) | 2007-09-19 |
WO2006042937A1 (en) | 2006-04-27 |
US20090065983A2 (en) | 2009-03-12 |
RU2007118642A (en) | 2008-11-27 |
BRPI0516938A (en) | 2008-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2100673B1 (en) | Method and device for blowing a gas onto a moving strip | |
EP2376662B1 (en) | Method and section for cooling a moving metal belt by spraying liquid | |
EP1655383B1 (en) | Process and device for limiting the vibrations of aluminium or steel sheets during gas cooling | |
EP0128842B1 (en) | Tempering of glass | |
FR2498092A1 (en) | INSTALLATION FOR THE DIRECT ROLLING OF A CAST STEEL CASTING AND PRODUCTION THEREOF OF A STEEL FINISHED PRODUCT | |
EP1281458A1 (en) | Cooling drum for continuously casting thin cast piece and fabricating method and device therefor and thin cast piece and continuous casting method therefor | |
FR2521122A1 (en) | PROCESS AND DEVICE FOR THE PRODUCTION OF GLASS SHEETS WHICH INCREASE STRENGTH BY HEAT TREATMENT AND HAVING IMPROVED DRAWING DESIGNS | |
FR2796139A1 (en) | METHOD AND DEVICE FOR SUPPRESSING THE VIBRATION OF STRIPS IN GAS BLOWING ZONES, ESPECIALLY COOLING ZONES | |
WO2001021844A1 (en) | Method for making carbon steel bands, in particular packaging steel bands, and resulting bands | |
FR2738577A1 (en) | COOLING DEVICE FOR A LAMINATED PRODUCT | |
EP1687455B1 (en) | Cooling process and device for a steel sheet | |
FR2733445A1 (en) | PROCESS FOR THE MANUFACTURE OF TUBES WITH INTERNAL GROOVES FOR HEAT EXCHANGERS | |
FR2833871A1 (en) | Trimming the edges of a continuously cast thin metal strip involves cooling edge zones are to make them more brittle directly before cutting the edges away | |
EP3555324B1 (en) | Method and section for quick cooling of a continuous line for treating metal belts | |
JP3867073B2 (en) | Cooling apparatus and cooling method for hot rolled steel sheet | |
FR2789757A1 (en) | HEAT EXCHANGE DEVICE WITH FLAT PRODUCT | |
EP0058607B1 (en) | Apparatus for rapid and controllable cooling in an annealing furnace with a neutral or reducing atmosphere | |
EP0709151B1 (en) | Casting surface for a continuous metal casting mould with movable walls | |
EP0069616B1 (en) | Device for cooling steel wire spirals in the rolling heat | |
EP0526360A1 (en) | Method to improve the surface quality and the regularity in thickness of thin cast metallic ribbons | |
EP3408424B1 (en) | Device for hydrodynamic stabilisation of a continuously travelling metal strip | |
EP2396285A1 (en) | Producing textured flat glass by floating | |
EP1457581A1 (en) | Controlling the thickness of a liquid surface coating layer on a long object emerging from a bath |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
17P | Request for examination filed |
Effective date: 20061012 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: CMI THERMLINE SERVICES |
|
17Q | First examination report despatched |
Effective date: 20070417 |
|
19A | Proceedings stayed before grant |
Effective date: 20070824 |
|
19F | Resumption of proceedings before grant (after stay of proceedings) |
Effective date: 20120502 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602005038746 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: C21D0009573000 Ipc: F27B0009120000 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: COCKERILL MAINTENANCE & INGENIERIE S.A. |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C22F 1/00 20060101ALI20120510BHEP Ipc: B21B 45/02 20060101ALI20120510BHEP Ipc: F27D 9/00 20060101ALI20120510BHEP Ipc: F27B 9/12 20060101AFI20120510BHEP Ipc: F27B 9/30 20060101ALI20120510BHEP Ipc: F27B 9/14 20060101ALI20120510BHEP Ipc: C21D 1/667 20060101ALI20120510BHEP Ipc: C21D 9/573 20060101ALI20120510BHEP |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAF | Information related to payment of grant fee modified |
Free format text: ORIGINAL CODE: EPIDOSCIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 603653 Country of ref document: AT Kind code of ref document: T Effective date: 20130415 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602005038746 Country of ref document: DE Effective date: 20130523 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2412854 Country of ref document: ES Kind code of ref document: T3 Effective date: 20130712 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130627 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130628 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20130327 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130727 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130729 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20131021 Year of fee payment: 9 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20140103 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602005038746 Country of ref document: DE Effective date: 20140103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131031 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131011 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602005038746 Country of ref document: DE Representative=s name: SCHAUMBURG & PARTNER PATENTANWAELTE GBR, DE Ref country code: DE Ref legal event code: R082 Ref document number: 602005038746 Country of ref document: DE Representative=s name: SCHAUMBURG & PARTNER PATENTANWAELTE MBB, DE Ref country code: DE Ref legal event code: R082 Ref document number: 602005038746 Country of ref document: DE Representative=s name: SCHAUMBURG UND PARTNER PATENTANWAELTE MBB, DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20141011 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141011 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131011 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20051011 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20231117 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20231031 Year of fee payment: 19 Ref country code: FR Payment date: 20231023 Year of fee payment: 19 Ref country code: DE Payment date: 20231018 Year of fee payment: 19 Ref country code: AT Payment date: 20231019 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20231023 Year of fee payment: 19 |