EP1655383B1 - Process and device for limiting the vibrations of aluminium or steel sheets during gas cooling - Google Patents

Process and device for limiting the vibrations of aluminium or steel sheets during gas cooling Download PDF

Info

Publication number
EP1655383B1
EP1655383B1 EP05292109A EP05292109A EP1655383B1 EP 1655383 B1 EP1655383 B1 EP 1655383B1 EP 05292109 A EP05292109 A EP 05292109A EP 05292109 A EP05292109 A EP 05292109A EP 1655383 B1 EP1655383 B1 EP 1655383B1
Authority
EP
European Patent Office
Prior art keywords
strip
jets
towards
tubes
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05292109A
Other languages
German (de)
French (fr)
Other versions
EP1655383A1 (en
Inventor
Michel Boyer
Michel Dubois
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
John Cockerill SA
Original Assignee
Cockerill Maintenance and Ingenierie SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cockerill Maintenance and Ingenierie SA filed Critical Cockerill Maintenance and Ingenierie SA
Publication of EP1655383A1 publication Critical patent/EP1655383A1/en
Application granted granted Critical
Publication of EP1655383B1 publication Critical patent/EP1655383B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/12Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity with special arrangements for preheating or cooling the charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • C21D9/5735Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/14Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment
    • F27B9/145Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving along a serpentine path
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D9/00Cooling of furnaces or of charges therein
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B2045/0212Cooling devices, e.g. using gaseous coolants using gaseous coolants
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/613Gases; Liquefied or solidified normally gaseous material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D9/00Cooling of furnaces or of charges therein
    • F27D2009/007Cooling of charges therein
    • F27D2009/0072Cooling of charges therein the cooling medium being a gas
    • F27D2009/0075Cooling of charges therein the cooling medium being a gas in direct contact with the charge

Definitions

  • the present invention relates to the treatment lines of steel or aluminum strips using at least one gas or air jet cooling chamber, or a gas or air jet cooling section, such as the heat treatment lines, in particular continuous annealing lines, or such as coating lines, in particular metal or non-metallic coating lines.
  • the subject of the invention is a method for cooling a strip of steel or aluminum moving in a treatment or coating line, in which gas or air jets are sprayed towards each of the moving web faces according to the preamble of claim 1.
  • This process aims to increase the cooling of the band while avoiding vibration phenomena on the band.
  • a vertical cooling chamber of a steel or aluminum strip processing line produced according to the state of the art is constructed according to the principle shown in FIG. figure 1 , on which there is a cooling chamber 4 of a treatment furnace, in which circulates a steel or aluminum strip 1, which is subjected to the action of cooling elements 2 when it passes over upper idler rollers 3 and lower idler rollers 3 '.
  • Strip 1 is cooled in chamber 4 mainly by the cooling elements 2 consisting of gas blowing assemblies at a temperature below the strip temperature.
  • the band 1 is cooled on both sides by the cooling elements 2 located on either side of the line of the pass, and in case of cooling on several lines of pass, said band changes line of pass to each return roller 3 or 3 '.
  • the cooling curve of the strip in the chamber is controlled by the indexing of the different cooling elements 2 or groups of cooling elements operating identically.
  • a vertical cooling section of a steel or aluminum strip processing line produced according to the state of the art is constructed according to the principle shown in FIG. figure 2 , on which is distinguished a vertical cooling section 10, in which circulates a strip 11 which is subjected to the action of cooling elements 12.
  • the strip 11 is cooled in the section mainly by the cooling elements 12 consisting of air blowing assemblies at a temperature below the strip temperature.
  • the theoretical line of the band 11 is determined by the upper idler roll 13 and the lower idler roll 13 '.
  • the strip 11 is cooled on both sides by the cooling elements 12 located on either side of the line of passage.
  • the cooling curve of the strip in the section is controlled by the indexing of the different cooling elements 12 or groups of cooling elements operating identically.
  • the productivity of the cooling chamber or section is determined by the ability to provide cooling heat transfer to reach strip temperatures at the outlet of the cooling chamber or section and the cooling slopes (expressed in ° C / second) that determine the metallurgical quality of the final product.
  • This heat transfer is dependent on the blowing distance between the strip and the cooling system, the geometry of the blowing, and the blowing speed. The heat transfer will also be more effective if the blowing distance is small and / or if the blowing speed is important.
  • Cooling slopes are lower (typically 20 ° C / second) for steels of commercial quality called CQ (Commercial Quality).
  • CQ Common Quality
  • the average thickness of the steels decreases, while the average width of the strips to be treated increases with the optimization of the stamping means.
  • the cooling zone after coating of a hot-dip galvanizing line shown on the figure 3 is also very sensitive to this phenomenon.
  • the thickness of the coating is controlled by spinning in air or nitrogen of the liquid coating. This wringing is generally carried out by a pair of blowing nozzles 23, 23 '.
  • the vertical cooling zone 24 which follows is intended to freeze coating and achieving a temperature at the turn-up baffle roll 25 which is process-compatible, in particular avoiding any trace on the coating.
  • the increase in the capacity of the lines makes the free strand height of the web 21 between the last roller 26 immersed in the molten zinc bath 22 and the tower top baffle roll 25 can exceed 50 meters on large lines. capacity.
  • Aeraulic stabilization systems have also been proposed to replace the aforementioned stabilizing rollers. These systems are relatively efficient and can contribute to cooling, but they are not optimized to favor the exchange coefficient, and therefore to optimize cooling. In addition the energy consumption is relatively important.
  • Another solution is to control the vibrations of the band by adjusting the blowing speed and / or the distance between the band and the blowing elements and / or the blowing flow rate in the event of occurrence of vibrations. This then leads to a limitation of the efficiency of the cooling, and therefore of the performance of the installation.
  • FIG. 4 Another solution illustrated in figure 4 has been proposed to promote lateral flow of the blown gas.
  • This solution consists in arranging blow tubes 31, 31 'on blow boxes 32, 32' located on either side of the band 33 which runs in a direction marked 100.
  • the blowing tubes 31, 31 ' allow and to guide the blowing jets 34, 34 'emitted in a direction which is perpendicular to the plane of the strip 33 scrolling.
  • this system leads to an improvement over simple boxes the holes are not satisfactory, and the band flutations observed in such systems lead either to deterioration of the tubes when the band is thick, or to tape breaks when the band is thin.
  • the simulations of fluid mechanics on industrial geometries show that, when the band 33 is decentered towards one of the two boxes, here the box 32 ', the resultant of the pressures on the band exerts a force F tending to bring even more the strip of said box. The system is therefore unstable, and does not tend to stabilize the band in a pass line centered between the boxes.
  • the simulations of fluid mechanics on industrial geometries show that, when the band 33 is inclined, the resultant of the pressures exerted on the band exerts a torque C, tending to further incline the band and thus to bring the edges of the band closer together caissons.
  • the system is also unstable, and does not tend to stabilize the band in a pass line centered between the boxes.
  • the results of Figures 5 and 6 have been demonstrated by simulation of fluid mechanics software, and by a calculation of the resultant pressures exerted on each side of the strip.
  • the resultant pressure exerted on each side of the strip is the result of positive pressures in areas that are substantially right of the blowing tubes, and depressions at the parts that are not located in line with these tubes.
  • the document US-A-6,054,095 teaches also to incline to the edges of the strip the blowing tubes equipping the boxes, but to have a better homogeneity of the temperature of the strip, so without worrying about the stability of the scrolling of said strip.
  • the document US-A-4,673,447 discloses the use of blowholes with holes, said holes being formed in a thick plate to have an inclination of gas jets. It should be noted that the jets are inclined not towards the edges, but on the contrary towards a median plane, symmetrically with respect to said plane. It is therefore rather a simple stabilizing pad.
  • EP-A-1,108,795 describes a variant of the preceding techniques, in which one also uses boxes with straight blow tubes (perpendicular to the plane of the strip). In fact, the aim is only to modify the intensity of cooling by varying the length of the tubes, which are chosen shorter at the edges of the strip.
  • EP-A-1,029,933 discloses another variant with bladed nozzle boxes.
  • the transverse blades produce no inclined jets, and the boxes do not allow to organize a recovery of the blowing gas perpendicular to the strip, as already mentioned above.
  • FIGS. Figures 7 and 8 a commonly used solution is shown in FIGS. Figures 7 and 8 (the figure 8 being a section according to VIII-VIII of the figure 7 ).
  • This solution consists in using tubular blowing nozzles 41 of axis 48, having bottoms 46 and a gas inlet 47, said nozzles being pierced with several circular holes 42, which are oblong or slit-shaped, allowing blowing jets 45 on the strip 43 scrolling in the direction 100, in a direction normal to the plane of the strip.
  • the document EP 1 067 204 A1 discloses a solution for suppressing vibrations by adjusting the pressure and / or the flow rate of gas blown in the transverse direction of the strip.
  • this method has two major disadvantages.
  • the strip may be made to be not parallel to the blowing devices, thus reducing the distance between the strip and the device, and increasing the risks of contact.
  • the cooling capacity is not maximum, and the reduction of the speed and / or the pressure on one side can not be compensated by an increase in the speed or pressure of the jets on the other side if the speed or blowing capacity limits have already been reached.
  • the aim of the invention is to propose a cooling method that optimizes both the thermal and a somehowlic aspects, that is to say maximizing the cooling, while minimizing the vibrations or the strip offsets by a self-centering effect tending to reduce the band in an ideal pass line when it is deported or when it is rotated relative to its theoretical line.
  • the fundamental principles of the approach of the invention are to combine the advantages of a minimized containment, and a limitation of the flow of gases in a plane parallel to the band with optimized blowing by directed jets ensuring both cooling and stability of the band.
  • blow-through nozzles pierced with holes (depending on the Figures 7 and 8 ) which leave substantial containment between the band and the nozzles.
  • the usually small thickness of the blowing nozzles makes it impossible to direct the jets by simple drilling or machining of the blast nozzles.
  • the aforementioned technical problem is solved according to the invention by a cooling method of the aforementioned type, wherein the gas or air jets are emitted from blowing tubes fitted to tubular nozzles arranged remotely one of the other transversely to the direction of movement of the strip, said jets being directed towards the relevant face of the strip by being inclined both substantially towards the edges of said strip in a plane perpendicular to the plane of the strip and to the direction moving said strip, and upstream or downstream of the strip in a plane perpendicular to the plane of the strip and parallel to the direction of movement of said strip, according to the characterizing part of claim 1.
  • the jets of gas or air emitted from the same tubular nozzle are inclined upstream and downstream of the strip. We thus obtain a better blowing efficiency for the same number of tubular nozzles.
  • the distance between two adjacent tubular nozzles on the same side of the strip is chosen such that the points of impact of the gas or air jets on the strip are substantially equidistant in a direction parallel to the direction of movement of said band. This is very favorable for the stability of the band during the scrolling thereof.
  • the jets of gas or air emitted from the same tubular nozzle are inclined essentially towards the edges of the strip in such a way that the points of impact of said jets on said strip are substantially equidistant in a direction perpendicular to the direction of movement of the strip.
  • the jets of gas or air emitted from the same tubular nozzle are inclined essentially towards the edges of the strip at an increasing inclination, from the center line of the strip towards the edges of said strip, from about 0 ° to an angle less than 15 °.
  • the jets of gas or air are organized to have a substantially constant jet distance regardless of their inclination.
  • the invention also relates to a device for implementing an improvement method having at least one of the abovementioned characteristics, said device being remarkable in that it comprises, on either side of the moving strip, a plurality of tubular nozzles arranged at a distance from one another transversely to the direction of movement of the strip, each tubular nozzle being equipped with blowing tubes pointing towards one side of the strip, said blowing tubes being inclined at the times substantially to the edges of said strip in a plane perpendicular to the plane of the strip and to the direction of movement of said strip, and upstream or downstream of the strip in a plane perpendicular to the plane of the strip and parallel to the direction of movement of said band.
  • each tubular nozzle is equipped with two rows of blowing tubes, the tubes of one row being inclined upstream while the tubes of the other row are inclined downstream, preferably with the same angle of inclination.
  • the distance between two adjacent tubular nozzles on the same side of the strip is chosen in such a way that the points of impact of the jets emitted by the shot rows of blow tubes are substantially equidistant in a direction parallel to the direction of movement of said strip.
  • the blowing tubes of each row of the same tubular nozzle are inclined essentially towards the edges of the strip in such a way that the points of impact of the jets emitted from the blowing tubes of said row are substantially equidistant in a direction perpendicular to the direction of movement of said strip.
  • the blow tubes of the same row are inclined essentially towards the edges of the strip at an increasing inclination, starting from the median line of the strip towards the edges of said strip, of approximately 0 ° to an angle less than 15 °.
  • blowing tubes of each tubular nozzle are dimensioned in length so that the jets of gas or air emitted by said tubes have a substantially constant jet distance regardless of their inclination.
  • tubular nozzles have a circular, oblong, triangular, square, rectangular or polygonal section.
  • FIGS 9 and 10 illustrate a cooling device 50, of which only two pairs of tubular blowing nozzles 51 have been shown, these blowing nozzles being situated on either side of the band 53 which moves in a running direction denoted 100.
  • the blow nozzles 51 preferably have a circular section as shown here with an axis 56, but may according to other embodiments of the invention have an oblong, triangular, square, rectangular or polygonal section.
  • Hollow discharge tubes 52 are fixed on the tubular nozzles 51. These tubes are arranged in one or more rows. The arrangement and the row number of the blowing tubes must be provided in order to have a mesh of the points of impact on the strip which is substantially equidistant in order to optimize the cooling and to limit the thermomechanical stresses exerted on the strip.
  • the tubular nozzles 51 are arranged at a distance from each other transversely to the direction of travel 100 of the band, each tubular nozzle 51 being equipped with blow tubes 52 pointing towards one face of the band, with a symmetrical disposition relative to the plane of said strip so as to have points of impact of the emitted jets 58 which are in correspondence on each of the faces of the strip 53.
  • the blow tubes 52 are inclined both substantially to the edges of the band 53 in a plane perpendicular to the plane of the band and to the direction of movement of said band (as is visible on the figure 10 ), and upstream or downstream of the band 53 (with reference to the direction of travel) in a plane P perpendicular to the plane of the strip and parallel to the direction 100 of displacement of said strip (as is visible on the figure 9 ).
  • blowing tubes 52 near the center line LM of the strip 53, may emit jets which are perpendicular to the plane of the strip, the great majority of blast tubes 52 nevertheless having an inclination at an angle ⁇ with respect to the normal to the plane of the strip.
  • This inclination is preferably increasing, from the center line LM of the strip towards the edges of said strip, from about 0 ° to an angle of less than 15 °.
  • blowing tubes 52 are inclined towards the edges of the strip by an angle ⁇ ranging from 0 ° to 15 ° at the maximum, as represented by FIG. figure 10 which is a view following B of the figure 9 .
  • This inclination may concern all or part of the tubes according to different embodiments of the invention. This makes it possible to channel the residual flow of gas (that is to say the non-evacuated flow to a rear direction perpendicular to the plane of the strip after heat exchange with said strip) in preferential directions towards the band edges tending to stabilize. said band.
  • One of the cooling performance parameters is the blowing distance, that is the distance of the emitted jet 58, between the free end 54 of a tube 52 and the corresponding point of impact 55 on the strip, for the jet emitted by this tube.
  • the length of each tube 52 can be determined according to its inclination in order to have jet distances substantially constant, and therefore a homogeneous cooling capacity.
  • the length of the tubes will be greater as the inclination ⁇ is large. Numerical modelings show an optimal stabilizing effect for a tilting angle of the tubes that remains less than 15 ° towards the band edges.
  • blowing tubes 52 are also inclined upstream or downstream of the band 53 in a plane perpendicular to the plane of the strip and parallel to the direction 100 of displacement of said strip.
  • Tubular nozzles 51 could be provided with a single row of blowing tubes 52, oriented either downstream or upstream.
  • each tubular nozzle 51 is equipped with two rows of blast tubes 52, the tubes of one row being inclined upstream while the tubes of the other row are inclined downstream, and preferably with the same angle of inclination noted here ⁇ .
  • the impact points 55 of the jets 58 emitted from the two rows of tubes 52 of each tubular nozzle 51 are at a distance denoted i. It is then advantageous to choose the distance d between two adjacent tubular nozzles 51 located in the same side of the band 53 so that all the points of impact 55 are equidistant (distance i). This results in obtaining a regular and optimized mesh of the impact points of the blowing 55. This distance d then allows an optimal recovery of the gases, in a direction substantially normal to the plane of the band, which has the effect of reducing the depressions may exist between the impact zones.
  • blowing tubes 52 are all dimensioned in length so that the jets of gas or air 58 have a jet distance a (between the outlet orifice 54 of a tube 52 and the corresponding point of impact 55) which is substantially constant regardless of their inclination.

Description

La présente invention concerne les lignes de traitement de bandes d'acier ou d'aluminium utilisant au moins une chambre de refroidissement par jets de gaz ou d'air, ou une section de refroidissement par jets de gaz ou d'air, telles que les lignes de traitement thermique, en particulier les lignes de recuit continu, ou telles que les lignes de revêtements, en particulier les lignes de revêtements métalliques ou non métalliques.The present invention relates to the treatment lines of steel or aluminum strips using at least one gas or air jet cooling chamber, or a gas or air jet cooling section, such as the heat treatment lines, in particular continuous annealing lines, or such as coating lines, in particular metal or non-metallic coating lines.

Plus précisément, l'invention a pour objet un procédé de refroidissement d'une bande d'acier ou d'aluminium se déplaçant dans une ligne de traitement ou de revêtement, dans lequel on projette des jets de gaz ou d'air vers chacune des faces de la bande en déplacement, conformément au préambule de la revendication 1.More specifically, the subject of the invention is a method for cooling a strip of steel or aluminum moving in a treatment or coating line, in which gas or air jets are sprayed towards each of the moving web faces according to the preamble of claim 1.

Ce procédé vise à augmenter le refroidissement de la bande tout en évitant les phénomènes vibratoires sur la bande.This process aims to increase the cooling of the band while avoiding vibration phenomena on the band.

ARRIERE PLAN DE L'INVENTIONBACKGROUND OF THE INVENTION

On va présenter, en référence aux figures 1 à 8, une description générale des lignes de traitement des bandes d'acier ou d'aluminium.We will present, with reference to Figures 1 to 8 , a general description of the processing lines of steel or aluminum strips.

Une chambre verticale de refroidissement d'une ligne de traitement de bandes d'acier ou d'aluminium réalisée suivant l'état de l'art est construite suivant le principe représenté sur la figure 1, sur laquelle on distingue une chambre de refroidissement 4 d'un four de traitement, dans laquelle circule une bande d'acier ou d'aluminium 1, qui est soumise à l'action d'éléments de refroidissement 2 lorsqu'elle passe sur des rouleaux de renvoi supérieurs 3 et des rouleaux de renvoi inférieurs 3'. La bande 1 est refroidie dans la chambre 4 principalement par les éléments de refroidissement 2 constitués d'ensembles de soufflage de gaz à une température inférieure à la température de bande.A vertical cooling chamber of a steel or aluminum strip processing line produced according to the state of the art is constructed according to the principle shown in FIG. figure 1 , on which there is a cooling chamber 4 of a treatment furnace, in which circulates a steel or aluminum strip 1, which is subjected to the action of cooling elements 2 when it passes over upper idler rollers 3 and lower idler rollers 3 '. Strip 1 is cooled in chamber 4 mainly by the cooling elements 2 consisting of gas blowing assemblies at a temperature below the strip temperature.

Lors de son passage dans la chambre de refroidissement 4, la bande 1 est refroidie sur ses deux faces par les éléments de refroidissement 2 situés de part et d'autre de la ligne de passe, et en cas de refroidissement sur plusieurs lignes de passe, ladite bande change de ligne de passe à chaque rouleau de renvoi 3 ou 3'. La courbe de refroidissement de la bande dans la chambre est maîtrisée par l'indexation des différents éléments de refroidissement 2 ou groupes d'éléments de refroidissement fonctionnant de façon identique.During its passage in the cooling chamber 4, the band 1 is cooled on both sides by the cooling elements 2 located on either side of the line of the pass, and in case of cooling on several lines of pass, said band changes line of pass to each return roller 3 or 3 '. The cooling curve of the strip in the chamber is controlled by the indexing of the different cooling elements 2 or groups of cooling elements operating identically.

Une section verticale de refroidissement d'une ligne de traitement de bandes d'acier ou d'aluminium réalisée suivant l'état de l'art est construite suivant le principe représenté sur la figure 2, sur laquelle on distingue une section verticale de refroidissement 10, dans laquelle circule une bande 11 qui est soumise à l'action d'éléments de refroidissement 12. La bande 11 est refroidie dans la section principalement par les éléments de refroidissement 12 constitués d'ensembles de soufflage d'air à une température inférieure à la température de bande. La ligne de passe théorique de la bande 11 est déterminée par le rouleau de renvoi supérieur 13 et le rouleau de renvoi inférieur 13'.A vertical cooling section of a steel or aluminum strip processing line produced according to the state of the art is constructed according to the principle shown in FIG. figure 2 , on which is distinguished a vertical cooling section 10, in which circulates a strip 11 which is subjected to the action of cooling elements 12. The strip 11 is cooled in the section mainly by the cooling elements 12 consisting of air blowing assemblies at a temperature below the strip temperature. The theoretical line of the band 11 is determined by the upper idler roll 13 and the lower idler roll 13 '.

Lors de son passage dans la section de refroidissement 10, la bande 11 est refroidie sur ses deux faces par les éléments de refroidissement 12 situés de part et d'autre de la ligne de passe. La courbe de refroidissement de la bande dans la section est maîtrisée par l'indexation des différents éléments de refroidissement 12 ou groupes d'éléments de refroidissement fonctionnant de façon identique.During its passage in the cooling section 10, the strip 11 is cooled on both sides by the cooling elements 12 located on either side of the line of passage. The cooling curve of the strip in the section is controlled by the indexing of the different cooling elements 12 or groups of cooling elements operating identically.

PRODUCTIVITE DE LA LIGNE ET QUALITE DU PRODUIT FINALPRODUCTIVITY OF THE LINE AND QUALITY OF THE FINAL PRODUCT

La productivité de la chambre ou de la section de refroidissement est déterminée par la capacité à assurer un transfert thermique de refroidissement afin d'atteindre des températures de bande à la sortie de la chambre ou de la section de refroidissement et des pentes de refroidissement (exprimées en °C/seconde) qui déterminent la qualité métallurgique du produit final. Ce transfert thermique est dépendant de la distance de soufflage entre la bande et le système de refroidissement, de la géométrie du soufflage, et de la vitesse de soufflage. Le transfert thermique sera en outre plus efficace si la distance de soufflage est petite et/ou si la vitesse de soufflage est importante.The productivity of the cooling chamber or section is determined by the ability to provide cooling heat transfer to reach strip temperatures at the outlet of the cooling chamber or section and the cooling slopes (expressed in ° C / second) that determine the metallurgical quality of the final product. This heat transfer is dependent on the blowing distance between the strip and the cooling system, the geometry of the blowing, and the blowing speed. The heat transfer will also be more effective if the blowing distance is small and / or if the blowing speed is important.

L'augmentation de la vitesse de soufflage et la diminution de la distance entre la bande et le système de soufflage engendrent, à partir d'une certaine limite, des vibrations et/ou oscillations de la bande qui peuvent provoquer un contact entre la bande et le système de soufflage (ou les protections du système de soufflage), provoquant des marques (scratchs) incompatibles avec la qualité de surface recherchée, et même dans les cas extrêmes des ruptures de bande.Increasing the blowing speed and decreasing the distance between the strip and the blowing system generate, from a certain limit, vibrations and / or oscillations of the strip which can cause contact between the strip and the strip. the blowing system (or the protections of the blowing system), causing marks (scratches) incompatible with the desired surface quality, and even in extreme cases of tape breaks.

VIBRATIONS DE LA BANDEVIBRATIONS OF THE BAND

L'augmentation des performances des lignes de traitement d'acier ou d'aluminium impose des pentes de refroidissement plus importantes sur des produits de plus en plus fins et de plus en plus larges.The increase in the performance of steel or aluminum treatment lines imposes greater cooling slopes on products that are becoming thinner and larger and wider.

Par exemple, en ce qui concerne le recuit des bandes d'acier, il n'est pas rare de spécifier dans la chambre de refroidissement d'un four de recuit continu, des besoins de pentes de refroidissement élevées (typiquement supérieures à 80°C/seconde) pour les aciers dits DQ (Drawing Quality), DDQ (Deep Drawing Quality) et HSS (High Strength Steel). Les pentes de refroidissement sont plus faibles (typiquement 20°C/seconde) pour les aciers de qualité commerciale dits CQ (Commercial Quality). Le document EP 0 803 583 A2 décrit ce besoin et les diverses applications.For example, with regard to the annealing of the steel strips, it is not uncommon to specify in the cooling chamber of a continuous annealing furnace, the need for high cooling slopes (typically greater than 80 ° C. / second) for the so-called DQ (Drawing Quality), DDQ (Deep Drawing Quality) and HSS (High Strength Steel) steels. Cooling slopes are lower (typically 20 ° C / second) for steels of commercial quality called CQ (Commercial Quality). The document EP 0 803 583 A2 describes this need and the various applications.

Il faut noter que la proportion d'aciers à haute limite d'emboutissage (par exemple de type DDQ) ou à haute limite élastique (par exemple type HSS) augmente de façon significative.It should be noted that the proportion of steels with a high drawing limit (for example of the DDQ type) or with a high elastic limit (for example of the HSS type) increases significantly.

De même, pour gagner du poids, en particulier dans les applications automobiles, l'épaisseur moyenne des aciers diminue, alors que la largeur moyenne des feuillards à traiter augmente avec l'optimisation des moyens d'emboutissage.Similarly, to gain weight, particularly in automotive applications, the average thickness of the steels decreases, while the average width of the strips to be treated increases with the optimization of the stamping means.

Enfin, les capacités des lignes de traitement, en particulier les lignes de galvanisation ou de recuit, évoluent vers des capacités plus importantes.Finally, the capacities of the treatment lines, in particular the galvanizing or annealing lines, evolve towards greater capacities.

Cette évolution combinée des différents paramètres ci-dessus entraîne l'apparition d'un nouveau problème dans les chambres ou les sections de refroidissement, à savoir les vibrations de la bande, ce phénomène étant limité ou même inconnu dans les équipements réalisés suivant l'état antérieur de la technique.This combined evolution of the various parameters above causes the appearance of a new problem in the chambers or cooling sections, namely the vibrations of the band, this phenomenon being limited or even unknown in the equipment made according to the state prior art.

Le phénomène est bien entendu très critique pour les chambres ou sections verticales telles que représentées sur les figures 1 et 2, mais existe également avec une ligne de passe horizontale, bien que ce phénomène soit alors atténué par le poids propre de la bande.The phenomenon is of course very critical for the vertical chambers or sections as represented on the Figures 1 and 2 , but also exists with a horizontal pass line, although this phenomenon is then attenuated by the tape's own weight.

La zone de refroidissement après revêtement d'une ligne de galvanisation à chaud représentée sur la figure 3 est elle aussi très sensible à ce phénomène. Après revêtement par une immersion d'une bande d'acier 21 dans un bain 22 d'alliage de zinc en fusion, l'épaisseur du revêtement est contrôlée par essorage à l'air ou à l'azote du revêtement liquide. Cet essorage est généralement réalisé par une paire de buses de soufflage 23, 23'. La zone de refroidissement verticale 24 qui suit est destinée à figer le revêtement et à atteindre une température au niveau du rouleau déflecteur de haut de tour 25 qui soit compatible avec le process, en particulier évitant toute trace sur le revêtement.The cooling zone after coating of a hot-dip galvanizing line shown on the figure 3 is also very sensitive to this phenomenon. After coating by immersion of a steel strip 21 in a bath 22 of molten zinc alloy, the thickness of the coating is controlled by spinning in air or nitrogen of the liquid coating. This wringing is generally carried out by a pair of blowing nozzles 23, 23 '. The vertical cooling zone 24 which follows is intended to freeze coating and achieving a temperature at the turn-up baffle roll 25 which is process-compatible, in particular avoiding any trace on the coating.

L'augmentation des capacités des lignes fait que la hauteur de brin libre de la bande 21 entre le dernier rouleau 26 immergé dans le bain de zinc en fusion 22 et le rouleau déflecteur de haut de tour 25 peut dépasser 50 mètres sur des lignes de grande capacité.The increase in the capacity of the lines makes the free strand height of the web 21 between the last roller 26 immersed in the molten zinc bath 22 and the tower top baffle roll 25 can exceed 50 meters on large lines. capacity.

Une réduction de cette hauteur, qui est souhaitable pour des raisons technico-économiques, imposerait des coefficients d'échange plus importants qui là encore génèrent des vibrations non compatibles avec la qualité du produit final. Ces vibrations peuvent engendrer des marques par contact entre la bande et les éléments extérieurs, mais sont également préjudiciables à la régularité du revêtement de zinc. En effet, l'un des paramètres essentiels de l'essorage est la distance entre la buse de soufflage 23 ou 23' et la bande 21, dont la ligne de passe est idéalement fixe. Les vibrations de la bande 21 entraînent un changement de ligne de passe dans le sens longitudinal et/ou transversal de la bande, et donc un revêtement non uniforme.A reduction of this height, which is desirable for technico-economic reasons, would impose higher exchange coefficients which again generate vibrations that are not compatible with the quality of the final product. These vibrations can generate marks by contact between the band and the external elements, but are also detrimental to the regularity of the zinc coating. Indeed, one of the essential parameters of the spin is the distance between the blast nozzle 23 or 23 'and the band 21, whose pass line is ideally fixed. The vibrations of the band 21 cause a line change in the longitudinal and / or transverse direction of the band, and therefore a non-uniform coating.

ETAT DE LA TECHNIQUESTATE OF THE ART

Afin de limiter les effets indésirables des vibrations de la bande, on a tenté, dans une technique antérieure, de limiter les vibrations par une réduction de la longueur des caissons (ou zones) de soufflage, ceci afin d'installer des rouleaux stabilisateurs. Cependant, cette technique limite la longueur concernée par le refroidissement et donc l'efficacité du refroidissement de la zone, et de plus cette technique impose un contact entre la bande et les rouleaux stabilisateurs, ce qui est incompatible avec des applications dans des zones de refroidissement après galvanisation à chaud car le revêtement n'est pas encore totalement figé.In order to limit the undesirable effects of the vibrations of the band, it has been attempted, in a prior art, to limit the vibrations by reducing the length of the casing (or zones), in order to install stabilizing rollers. However, this technique limits the length involved in the cooling and thus the cooling efficiency of the zone, and moreover this technique imposes a contact between the strip and the stabilizing rollers, which is incompatible with applications in cooling zones. after hot dip galvanizing because the coating is not yet completely frozen.

Des systèmes de stabilisation aéraulique ont également été proposés pour remplacer les rouleaux stabilisateurs précités. Ces systèmes sont relativement efficaces et peuvent contribuer au refroidissement, mais ils ne sont pas optimisés pour favoriser le coefficient d'échange, et donc pour optimiser le refroidissement. En outre la consommation d'énergie est relativement importante.Aeraulic stabilization systems have also been proposed to replace the aforementioned stabilizing rollers. These systems are relatively efficient and can contribute to cooling, but they are not optimized to favor the exchange coefficient, and therefore to optimize cooling. In addition the energy consumption is relatively important.

Une autre tentative a consisté à augmenter la traction de bande, mais cette solution n'est envisageable que pour des bandes d'épaisseur importante, et pour des températures de bande réduites, car les contraintes thermomécaniques générées sur des bandes fines à haute température peuvent dépasser la limite élastique des bandes et peuvent engendrer des déformations permanentes, voire même des casses de bande.Another attempt has been to increase web tension, but this solution is only feasible for thick webs, and for reduced web temperatures, since the thermomechanical stresses generated on high temperature thin webs may exceed the elastic limit of the bands and can cause permanent deformations, or even breakages of tape.

Une autre solution consiste à contrôler les vibrations de la bande en adaptant la vitesse de soufflage et/ou la distance entre la bande et les éléments de soufflage et/ou le débit de soufflage en cas d'apparition de vibrations. Ceci entraîne alors une limitation de l'efficacité du refroidissement, et donc des performances de l'installation.Another solution is to control the vibrations of the band by adjusting the blowing speed and / or the distance between the band and the blowing elements and / or the blowing flow rate in the event of occurrence of vibrations. This then leads to a limitation of the efficiency of the cooling, and therefore of the performance of the installation.

Une autre solution illustrée en figure 4 a été proposée, pour favoriser un écoulement latéral du gaz soufflé. Cette solution consiste à agencer des tubes de soufflage 31, 31' sur des caissons de soufflage 32, 32' situés de part et d'autre de la bande 33 qui défile dans une direction notée 100. Les tubes de soufflage 31, 31' permettent ainsi de guider les jets de soufflage 34, 34' émis dans une direction qui est perpendiculaire au plan de la bande 33 en défilement. Bien que ce système entraîne une amélioration par rapport à des caissons simplement troués, la solution n'est pas satisfaisante, et les flottements de bande observés dans de tels systèmes conduisent soit à des détérioration des tubes lorsque la bande est épaisse, soit à des casses de bande lorsque la bande est fine. Comme l'évacuation du gaz après soufflage ne peut se faire que vers le bord des caissons, soit dans le sens de défilement de la bande, soit latéralement, il s'ensuit un débit important de gaz circulant parallèlement à la bande, dans un volume qui est confiné entre la bande et les caissons vers les bords desdits caissons. La présence des tubes 31, 31' augmente de facto le volume disponible confiné entre la bande et les caissons, par rapport à des caissons simplement troués.Another solution illustrated in figure 4 has been proposed to promote lateral flow of the blown gas. This solution consists in arranging blow tubes 31, 31 'on blow boxes 32, 32' located on either side of the band 33 which runs in a direction marked 100. The blowing tubes 31, 31 'allow and to guide the blowing jets 34, 34 'emitted in a direction which is perpendicular to the plane of the strip 33 scrolling. Although this system leads to an improvement over simple boxes the holes are not satisfactory, and the band flutations observed in such systems lead either to deterioration of the tubes when the band is thick, or to tape breaks when the band is thin. As the evacuation of the gas after blowing can only be done towards the edge of the boxes, either in the direction of travel of the strip, or laterally, it follows a large flow of gas flowing parallel to the strip, in a volume which is confined between the strip and the boxes towards the edges of said boxes. The presence of the tubes 31, 31 'de facto increases the available volume confined between the strip and the boxes, compared to simply perforated boxes.

Les perturbations qui ont été observées avec l'agencement de la figure 4 sont illustrées aux figures 5 et 6, qui sont des vues en bout selon la flèche A de la figure 4.The disturbances that have been observed with the layout of the figure 4 are illustrated in Figures 5 and 6 , which are end views along arrow A of the figure 4 .

Sur la figure 5, les simulations de mécanique des fluides sur des géométries industrielles montrent que, quand la bande 33 est décentrée vers l'un des deux caissons, ici le caisson 32', la résultante des pressions sur la bande exerce une force F tendant à rapprocher encore plus la bande dudit caisson. Le système est donc instable, et n'a pas tendance à stabiliser la bande dans une ligne de passe centrée entre les caissons. Sur la figure 6, les simulations de mécanique des fluides sur des géométries industrielles montrent que, quand la bande 33 est inclinée, la résultante des pressions exercées sur la bande exerce un couple C, tendant à incliner encore plus la bande et donc à rapprocher les bords de la bande des caissons. Le système est là aussi instable, et n'a pas tendance à stabiliser la bande dans une ligne de passe centrée entre les caissons. Les résultats des figures 5 et 6 ont été démontrés par simulation de logiciels de mécanique des fluides, et par un calcul de la résultante des pressions exercées sur chaque face de la bande. La résultante des pressions exercées sur chaque face de la bande est la résultante de pressions positives au niveau de zones qui sont sensiblement au droit des tubes de soufflage, et de dépressions au niveau des parties qui ne sont pas situées au droit de ces tubes.On the figure 5 , the simulations of fluid mechanics on industrial geometries show that, when the band 33 is decentered towards one of the two boxes, here the box 32 ', the resultant of the pressures on the band exerts a force F tending to bring even more the strip of said box. The system is therefore unstable, and does not tend to stabilize the band in a pass line centered between the boxes. On the figure 6 , the simulations of fluid mechanics on industrial geometries show that, when the band 33 is inclined, the resultant of the pressures exerted on the band exerts a torque C, tending to further incline the band and thus to bring the edges of the band closer together caissons. The system is also unstable, and does not tend to stabilize the band in a pass line centered between the boxes. The results of Figures 5 and 6 have been demonstrated by simulation of fluid mechanics software, and by a calculation of the resultant pressures exerted on each side of the strip. The resultant pressure exerted on each side of the strip is the result of positive pressures in areas that are substantially right of the blowing tubes, and depressions at the parts that are not located in line with these tubes.

Il a été proposé de canaliser le flux du gaz soufflé en prévoyant des caissons équipés de tubes de soufflage, avec une inclinaison des tubes de soufflage vers les bords de la bande, principalement pour éviter les vibrations de la bande en défilement lors de son refroidissement par soufflage de jets de gaz, comme décrit dans le document WO-A-01/09397 , mais la modélisation conduit seulement à une légère amélioration des effets illustrés schématiquement sur les figures 5 et 6.It has been proposed to channel the flow of the blown gas by providing caissons equipped with blowing tubes, with an inclination of the blowing tubes towards the edges of the strip, mainly to avoid the vibrations of the moving strip when it is cooled by blowing of gas jets as described in the document WO-A-01/09397 , but the modeling only leads to a slight improvement in the effects illustrated schematically in the Figures 5 and 6 .

Le document US-A-6 054 095 enseigne également d'incliner vers les bords de la bande les tubes de soufflage équipant des caissons, mais pour avoir une meilleure homogénéité de la température de la bande, donc sans se préoccuper de la stabilité du défilement de ladite bande. En variante, le document US-A-4 673 447 décrit l'utilisation de caissons de soufflage à trous, lesdits trous étant ménagés dans une plaque épaisse pour présenter une inclinaison des jets de gaz. Il est à noter que les jets sont inclinés non pas vers les bords, mais au contraire vers un plan médian, symétriquement par rapport audit plan. Il s'agit donc plutôt d'un simple patin de stabilisation. Le document US-A-3 116 788 procède de la même approche, avec d'éventuels déflecteurs agencés à l'intérieur des caissons de soufflage, produisant ainsi des jets de gaz qui sont soit dirigés perpendiculairement au plan de la bande en défilement, soit dirigés en direction de l'amont de ladite bande pour un échange de chaleur à contre-courant.The document US-A-6,054,095 teaches also to incline to the edges of the strip the blowing tubes equipping the boxes, but to have a better homogeneity of the temperature of the strip, so without worrying about the stability of the scrolling of said strip. Alternatively, the document US-A-4,673,447 discloses the use of blowholes with holes, said holes being formed in a thick plate to have an inclination of gas jets. It should be noted that the jets are inclined not towards the edges, but on the contrary towards a median plane, symmetrically with respect to said plane. It is therefore rather a simple stabilizing pad. The document US-A-3,116,788 proceeds from the same approach, with possible baffles arranged inside the blow boxes, thereby producing gas jets which are either directed perpendicularly to the plane of the moving strip, or directed towards the upstream of said band for countercurrent heat exchange.

Le document EP-A-1 108 795 décrit une variante des techniques précédentes, dans laquelle on utilise également des caissons à tubes de soufflage droits (perpendiculaires au plan de la bande). On cherche en fait seulement à modifier l'intensité du refroidissement en jouant sur la longueur des tubes, lesquels sont choisis plus courts au niveau des bords de la bande.The document EP-A-1,108,795 describes a variant of the preceding techniques, in which one also uses boxes with straight blow tubes (perpendicular to the plane of the strip). In fact, the aim is only to modify the intensity of cooling by varying the length of the tubes, which are chosen shorter at the edges of the strip.

Le document EP-A-1 029 933 décrit une autre variante avec des caissons à buses en lames. Les lames transversales ne produisent aucuns jets inclinés, et les caissons ne permettent pas d'organiser une reprise des gaz de soufflage perpendiculairement à la bande, comme cela a déjà été indiqué plus haut.The document EP-A-1,029,933 discloses another variant with bladed nozzle boxes. The transverse blades produce no inclined jets, and the boxes do not allow to organize a recovery of the blowing gas perpendicular to the strip, as already mentioned above.

Suivant une autre conception, et afin de limiter le flux de gaz dans une direction parallèle à la direction de défilement de la bande, une solution communément utilisée est représentée aux figures 7 et 8 (la figure 8 étant une coupe selon VIII-VIII de la figure 7). Cette solution consiste à utiliser des buses tubulaires de soufflage 41 d'axe 48, ayant des fonds 46 et une entrée de gaz 47, lesdites buses étant percées de plusieurs trous circulaires 42, qui sont oblongs ou en forme de fente, permettant un soufflage de jets 45 sur la bande 43 en défilement dans la direction 100, dans une direction normale au plan de la bande. Même si le confinement entre la bande 43 et les buses de soufflage 41 est plus réduit qu'avec les agencements utilisant des caissons à tubes, et permet une certaine reprise des gaz dans une direction normale au plan de la bande entre les buses de soufflage, ce confinement engendre des effets de pression très défavorables conduisant aux mêmes phénomènes que ceux décrits en référence aux figures 5 et 6. Ce résultat peut être démontré par une modélisation des pressions engendrées par cette configuration, et la bande n'est pas stabilisée dans une ligne de passe optimale, c'est-à-dire centrée entre les buses de soufflage. En variante, le document US-A-3 262 688 enseigne d'utiliser des buses cylindriques de soufflage percées de trous circulaires qui sont disposés pour produire soit des jets droits et des jets inclinés transversalement (figures 13 à 15), soit des jets droits et des jets inclinés longitudinalement (figures 16 à 18). Pour les jets inclinés, les buses sont agencées par paires de façon à diriger leur jet vers un même point d'impact sur la bande en défilement.According to another design, and in order to limit the flow of gas in a direction parallel to the running direction of the strip, a commonly used solution is shown in FIGS. Figures 7 and 8 (the figure 8 being a section according to VIII-VIII of the figure 7 ). This solution consists in using tubular blowing nozzles 41 of axis 48, having bottoms 46 and a gas inlet 47, said nozzles being pierced with several circular holes 42, which are oblong or slit-shaped, allowing blowing jets 45 on the strip 43 scrolling in the direction 100, in a direction normal to the plane of the strip. Even if the confinement between the strip 43 and the blast nozzles 41 is smaller than with the arrangements using tube boxes, and allows some recovery of the gases in a direction normal to the plane of the strip between the blowing nozzles, this confinement generates very unfavorable pressure effects leading to the same phenomena as those described with reference to Figures 5 and 6 . This result can be demonstrated by modeling the pressures generated by this configuration, and the band is not stabilized in an optimal pass line, that is to say centered between the blowing nozzles. Alternatively, the document US-A-3,262,688 teaches to use cylindrical blow nozzles pierced with circular holes which are arranged to produce either straight jets and transversely inclined jets (FIGS. 13 to 15), or straight jets and longitudinally inclined jets (FIGS. 16 to 18). For inclined jets, the nozzles are arranged in pairs so as to direct their jet towards the same point of impact on the moving strip.

Enfin, le document EP 1 067 204 A1 décrit une solution de suppression des vibrations par ajustement de la pression et/ou du débit de gaz soufflé dans le sens transversal de la bande. Outre la complexité du réglage à adapter à chaque produit à traiter, cette méthode présente deux inconvénients majeurs. En premier lieu, la bande peut être amenée à ne pas être parallèle aux dispositifs de soufflage, réduisant ainsi la distance entre la bande et le dispositif, et augmentant les risques de contact. Enfin, la capacité de refroidissement n'est pas maximale, et la réduction de la vitesse et/ou de la pression sur une face ne peut pas être compensée par une augmentation de la vitesse ou de la pression des jets sur l'autre face si les limites de vitesse ou de capacité de soufflage sont déjà atteintes.Finally, the document EP 1 067 204 A1 discloses a solution for suppressing vibrations by adjusting the pressure and / or the flow rate of gas blown in the transverse direction of the strip. In addition to the complexity of the adjustment to be adapted to each product to be treated, this method has two major disadvantages. In the first place, the strip may be made to be not parallel to the blowing devices, thus reducing the distance between the strip and the device, and increasing the risks of contact. Finally, the cooling capacity is not maximum, and the reduction of the speed and / or the pressure on one side can not be compensated by an increase in the speed or pressure of the jets on the other side if the speed or blowing capacity limits have already been reached.

OBJET DE L'INVENTIONOBJECT OF THE INVENTION

L'invention vise à proposer un procédé de refroidissement optimisant à la fois les aspects thermiques et aérauliques, c'est-à-dire maximisant le refroidissement, tout en minimisant les vibrations ou les déports de bande par un effet auto-centreur tendant à ramener la bande dans une ligne de passe idéale lorsque celle-ci est déportée ou lorsqu'elle présente une rotation par rapport à sa ligne de passe théorique.The aim of the invention is to propose a cooling method that optimizes both the thermal and aeraulic aspects, that is to say maximizing the cooling, while minimizing the vibrations or the strip offsets by a self-centering effect tending to reduce the band in an ideal pass line when it is deported or when it is rotated relative to its theoretical line.

Les principes fondamentaux de l'approche de l'invention consistent à combiner les avantages d'un confinement minimisé, et d'une limitation de la circulation des gaz dans un plan parallèle à la bande avec un soufflage optimisé par des jets dirigés assurant à la fois le refroidissement et la stabilité de la bande.The fundamental principles of the approach of the invention are to combine the advantages of a minimized containment, and a limitation of the flow of gases in a plane parallel to the band with optimized blowing by directed jets ensuring both cooling and stability of the band.

Cette approche exclut donc les solutions antérieures utilisant des caissons de refroidissement (suivant les figures 4 à 6) qui par nature limitent de facto le volume disponible entre la bande et les caissons (et ce même dans le cas de tubes de soufflage rajoutés).This approach therefore excludes previous solutions using cooling boxes (following the Figures 4 to 6 ) which by nature limit de facto the available volume between the band and the boxes (and this even in the case of blown tubes added).

Cette approche est également très éloignée des solutions antérieures avec des buses de soufflage percées de trous (suivant les figures 7 et 8) qui laissent subsister un confinement important entre la bande et les buses. De plus l'épaisseur habituellement réduite des buses de soufflage ne permet pas de diriger les jets par simple percement ou usinage des buses de soufflage.This approach is also very far from previous solutions with blow-through nozzles pierced with holes (depending on the Figures 7 and 8 ) which leave substantial containment between the band and the nozzles. In addition, the usually small thickness of the blowing nozzles makes it impossible to direct the jets by simple drilling or machining of the blast nozzles.

DEFINITION GENERALE DE L'INVENTIONGENERAL DEFINITION OF THE INVENTION

Le problème technique précité est résolu conformément à l'invention grâce à un procédé de refroidissement du type précité, dans lequel les jets de gaz ou d'air sont émis à partir de tubes de soufflage équipant des buses tubulaires agencées à distance l'une de l'autre transversalement à la direction de déplacement de la bande, lesdits jets étant dirigés vers la face concernée de la bande en étant inclinés à la fois essentiellement vers les bords de ladite bande dans un plan perpendiculaire au plan de la bande et à la direction de déplacement de ladite bande, et vers l'amont ou l'aval de la bande dans un plan perpendiculaire au plan de la bande et parallèle à la direction de déplacement de ladite bande, conformément à la partie caractérisante de la revendication 1.The aforementioned technical problem is solved according to the invention by a cooling method of the aforementioned type, wherein the gas or air jets are emitted from blowing tubes fitted to tubular nozzles arranged remotely one of the other transversely to the direction of movement of the strip, said jets being directed towards the relevant face of the strip by being inclined both substantially towards the edges of said strip in a plane perpendicular to the plane of the strip and to the direction moving said strip, and upstream or downstream of the strip in a plane perpendicular to the plane of the strip and parallel to the direction of movement of said strip, according to the characterizing part of claim 1.

Avantageusement, les jets de gaz ou d'air émis à partir d'une même buse tubulaire sont inclinés vers l'amont et l'aval de la bande. On obtient ainsi un meilleur rendement de soufflage pour le même nombre de buses tubulaires.Advantageously, the jets of gas or air emitted from the same tubular nozzle are inclined upstream and downstream of the strip. We thus obtain a better blowing efficiency for the same number of tubular nozzles.

De préférence aussi, la distance entre deux buses tubulaires adjacentes d'un même côté de la bande est choisie de telle façon que les points d'impact des jets de gaz ou d'air sur la bande soient sensiblement équidistants dans une direction parallèle à la direction de déplacement de ladite bande. Ceci est très favorable pour la stabilité de la bande lors du défilement de celle-ci.Also preferably, the distance between two adjacent tubular nozzles on the same side of the strip is chosen such that the points of impact of the gas or air jets on the strip are substantially equidistant in a direction parallel to the direction of movement of said band. This is very favorable for the stability of the band during the scrolling thereof.

Avantageusement encore, les jets de gaz ou d'air émis à partir d'une même buse tubulaire sont inclinés essentiellement vers les bords de la bande de telle façon que les points d'impact desdits jets sur ladite bande soient sensiblement équidistants dans une direction perpendiculaire à la direction de déplacement de la bande En particulier, les jets de gaz ou d'air émis à partir d'une même buse tubulaire sont inclinés essentiellement vers les bords de la bande selon une inclinaison croissante, à partir de la ligne médiane de la bande en allant vers les bords de ladite bande, d'environ 0° à un angle inférieur à 15°.Advantageously, the jets of gas or air emitted from the same tubular nozzle are inclined essentially towards the edges of the strip in such a way that the points of impact of said jets on said strip are substantially equidistant in a direction perpendicular to the direction of movement of the strip. In particular, the jets of gas or air emitted from the same tubular nozzle are inclined essentially towards the edges of the strip at an increasing inclination, from the center line of the strip towards the edges of said strip, from about 0 ° to an angle less than 15 °.

De préférence encore, les jets de gaz ou d'air sont organisés pour présenter une distance de jet sensiblement constante quelle que soit leur inclinaison.More preferably, the jets of gas or air are organized to have a substantially constant jet distance regardless of their inclination.

L'invention concerne également un dispositif destiné à mettre en oeuvre un procédé d'amélioration présentant l'une au moins des caractéristiques précitées, ledit dispositif étant remarquable en ce qu'il comporte, de part et d'autre de la bande en déplacement, une pluralité de buses tubulaires agencées à distance l'une de l'autre transversalement à la direction de déplacement de la bande, chaque buse tubulaire étant équipée de tubes de soufflage pointant vers une face de la bande, lesdits tubes de soufflage étant inclinés à la fois essentiellement vers les bords de ladite bande dans un plan perpendiculaire au plan de la bande et à la direction de déplacement de ladite bande, et vers l'amont ou l'aval de la bande dans un plan perpendiculaire au plan de la bande et parallèle à la direction de déplacement de ladite bande.The invention also relates to a device for implementing an improvement method having at least one of the abovementioned characteristics, said device being remarkable in that it comprises, on either side of the moving strip, a plurality of tubular nozzles arranged at a distance from one another transversely to the direction of movement of the strip, each tubular nozzle being equipped with blowing tubes pointing towards one side of the strip, said blowing tubes being inclined at the times substantially to the edges of said strip in a plane perpendicular to the plane of the strip and to the direction of movement of said strip, and upstream or downstream of the strip in a plane perpendicular to the plane of the strip and parallel to the direction of movement of said band.

Il est intéressant de prévoir que chaque buse tubulaire est équipée de deux rangées de tubes de soufflage, les tubes d'une rangée étant inclinés vers l'amont tandis que les tubes de l'autre rangée sont inclinés vers l'aval, de préférence avec le même angle d'inclinaison. En particulier, la distance entre deux buses tubulaires adjacentes d'un même côté de la bande est choisie de telle façon que les points d'impact des jets émis à par-tir des rangées de tubes de soufflage soient sensiblement équidistants dans une direction parallèle à la direction de déplacement de ladite bande.It is advantageous to provide that each tubular nozzle is equipped with two rows of blowing tubes, the tubes of one row being inclined upstream while the tubes of the other row are inclined downstream, preferably with the same angle of inclination. In particular, the distance between two adjacent tubular nozzles on the same side of the strip is chosen in such a way that the points of impact of the jets emitted by the shot rows of blow tubes are substantially equidistant in a direction parallel to the direction of movement of said strip.

Avantageusement alors, les tubes de soufflage de chaque rangée d'une même buse tubulaire sont inclinés essentiellement vers les bords de la bande de telle façon que les points d'impact des jets émis à partir des tubes de soufflage de ladite rangée soient sensiblement équidistants dans une direction perpendiculaire à la direction de déplacement de ladite bande. En particulier, les tubes de soufflage d'une même rangée sont inclinés essentiellement vers les bords de la bande selon une inclinaison croissante, à partir de la ligne médiane de la bande en allant vers les bords de ladite bande, d'environ 0° à un angle inférieur à 15°.Advantageously then, the blowing tubes of each row of the same tubular nozzle are inclined essentially towards the edges of the strip in such a way that the points of impact of the jets emitted from the blowing tubes of said row are substantially equidistant in a direction perpendicular to the direction of movement of said strip. In particular, the blow tubes of the same row are inclined essentially towards the edges of the strip at an increasing inclination, starting from the median line of the strip towards the edges of said strip, of approximately 0 ° to an angle less than 15 °.

De préférence encore, les tubes de soufflage de chaque buse tubulaire sont dimensionnés en longueur de telle façon que les jets de gaz ou d'air émis par lesdits tubes présentent une distance de jet sensiblement constante quelle que soit leur inclinaison.More preferably, the blowing tubes of each tubular nozzle are dimensioned in length so that the jets of gas or air emitted by said tubes have a substantially constant jet distance regardless of their inclination.

On pourra enfin prévoir que les buses tubulaires ont une section circulaire, oblongue, triangulaire, carrée, rectangulaire ou polygonale.Finally, it can be provided that the tubular nozzles have a circular, oblong, triangular, square, rectangular or polygonal section.

D'autres caractéristiques et avantages de l'invention apparaîtront plus clairement à la lumière de la description qui va suivre d'un mode de réalisation particulier, en référence aux figures 9 et 10, la figure 9 étant une coupe selon IX-IX de la figure 10.Other characteristics and advantages of the invention will emerge more clearly in the light of the following description of a particular embodiment, with reference to the following Figures 9 and 10 , the figure 9 being a section according to IX-IX of the figure 10 .

DESCRIPTION DETAILLEE DES MOYENS DE MISE EN OEUVRE DE L'INVENTIONDETAILED DESCRIPTION OF THE MEANS FOR IMPLEMENTING THE INVENTION

Fondamentalement, les moyens de mise en oeuvre de l'invention dans une chambre ou une zone de refroidissement consistent à combiner les effets techniques exposés ci-après.

  • Possibilité de reprise des gaz soufflés après impact sur la bande dans une direction sensiblement normale au plan de la bande par utilisation de buses de soufflage de section préférentiellement circulaire, oblongue, carrée ou rectangulaire, ou polygonale, permettant une reprise des gaz soufflés dans les espaces situés entre les buses.
  • Limitation du confinement entre la bande et les dispositifs de soufflage en augmentant le volume disponible entre les buses de soufflage et la bande, afin d'avoir une force (respectivement un couple) de rappel tendant à ramener la bande dans sa ligne de passe théorique lorsque celle-ci présente un déport (respectivement une rotation) par rapport à sa ligne de passe théorique, ceci sans augmenter la distance de soufflage. Cette limitation du confinement peut être réalisée en augmentant la distance entre la bande et les buses sans augmenter la distance de soufflage par utilisation de tubes creux de soufflage fixés sur les buses en une ou plusieurs rangées.
  • Canalisation ou guidage des jets de soufflage vers les bords de la bande afin d'avoir une force (respectivement un couple) de rappel tendant à ramener la bande dans sa ligne de passe théorique lorsque celle-ci présente un déport (respectivement une rotation) par rapport à sa ligne de passe théorique. Cette orientation des jets par inclinaison de tout ou partie des tubes par rapport à une direction normale au plan de la bande est compatible avec un refroidissement optimisé, c'est-à-dire un maillage des points d'impact du gaz soufflé sensiblement constant et une distance de soufflage sensiblement constante.
Basically, the means for implementing the invention in a chamber or a cooling zone consist in combining the technical effects described below.
  • Possibility of recovery of the blown gases after impact on the strip in a direction substantially normal to the plane of the strip by using blowing nozzles of preferably circular, oblong, square or rectangular, or polygonal section, allowing a recovery of the gases blown into the spaces between the nozzles.
  • Limiting the confinement between the band and the blowing devices by increasing the available volume between the blast nozzles and the band, so as to have a restoring force (or torque) tending to bring the band back to its theoretical line of this has an offset (respectively a rotation) with respect to its theoretical line of passage, without increasing the blowing distance. This limitation of confinement can be achieved by increasing the distance between the band and the nozzles without increasing the blowing distance by using hollow blow tubes fixed on the nozzles in one or more rows.
  • Channeling or guiding the blowing jets towards the edges of the strip in order to have a force (respectively a torque) of return tending to bring the strip back to its theoretical line of passage when the latter has an offset (respectively a rotation) by relation to its theoretical line of This orientation of the jets by inclining all or part of the tubes relative to a normal direction to the plane of the band is compatible with optimized cooling, that is to say a mesh of the impact points of the substantially constant blast gas and a substantially constant blowing distance.

Ainsi, le refroidissement et la stabilité de bande sont optimisés.Thus, cooling and tape stability are optimized.

On va maintenant se référer aux figures 9 et 10 pour décrire de façon plus concrète et détaillée un mode de réalisation particulier de l'invention.We will now refer to Figures 9 and 10 to describe more concretely and in detail a particular embodiment of the invention.

Les figures 9 et 10 illustrent un dispositif de refroidissement 50, dont on n'a représenté que deux paires de buses tubulaires de soufflage 51, ces buses de soufflage étant situées de part et d'autre de la bande 53 qui se déplace dans une direction de défilement notée 100. Les buses de soufflage 51 ont préférablement une section circulaire comme cela est illustré ici, avec un axe 56, mais peuvent suivant d'autres modes de réalisation de l'invention avoir une section oblongue, triangulaire, carrée, rectangulaire ou polygonale.The Figures 9 and 10 illustrate a cooling device 50, of which only two pairs of tubular blowing nozzles 51 have been shown, these blowing nozzles being situated on either side of the band 53 which moves in a running direction denoted 100. The blow nozzles 51 preferably have a circular section as shown here with an axis 56, but may according to other embodiments of the invention have an oblong, triangular, square, rectangular or polygonal section.

Des tubes de soufflage creux 52 sont fixés sur les buses tubulaires 51. Ces tubes sont disposés suivant une ou plusieurs rangées. La disposition et le nombre de rangée des tubes de soufflage doivent être prévus afin d'avoir un maillage des points d'impact sur la bande qui soit sensiblement équidistant pour optimiser le refroidissement et limiter les contraintes thermomécaniques exercées sur la bande.Hollow discharge tubes 52 are fixed on the tubular nozzles 51. These tubes are arranged in one or more rows. The arrangement and the row number of the blowing tubes must be provided in order to have a mesh of the points of impact on the strip which is substantially equidistant in order to optimize the cooling and to limit the thermomechanical stresses exerted on the strip.

Comme cela est illustré sur la figure 9, les buses tubulaires 51 sont agencées à distance l'une de l'autre transversalement à la direction 100 de déplacement de la bande, chaque buse tubulaire 51 étant équipée de tubes de soufflage 52 pointant vers une face de la bande, avec une disposition symétrique par rapport au plan de ladite bande de façon à avoir des points d'impact des jets 58 émis qui sont en correspondance sur chacune des faces de la bande 53.As illustrated on the figure 9 , the tubular nozzles 51 are arranged at a distance from each other transversely to the direction of travel 100 of the band, each tubular nozzle 51 being equipped with blow tubes 52 pointing towards one face of the band, with a symmetrical disposition relative to the plane of said strip so as to have points of impact of the emitted jets 58 which are in correspondence on each of the faces of the strip 53.

Conformément à une caractéristique de l'invention, les tubes de soufflage 52 sont inclinés à la fois essentiellement vers les bords de la bande 53 dans un plan perpendiculaire au plan de la bande et à la direction 100 de déplacement de ladite bande (comme cela est visible sur la figure 10), et vers l'amont ou l'aval de la bande 53 (par référence au sens de défilement) dans un plan P perpendiculaire au plan de la bande et parallèle à la direction 100 de déplacement de ladite bande (comme cela est visible sur la figure 9).According to a feature of the invention, the blow tubes 52 are inclined both substantially to the edges of the band 53 in a plane perpendicular to the plane of the band and to the direction of movement of said band (as is visible on the figure 10 ), and upstream or downstream of the band 53 (with reference to the direction of travel) in a plane P perpendicular to the plane of the strip and parallel to the direction 100 of displacement of said strip (as is visible on the figure 9 ).

Le terme "essentiellement" utilisé plus haut vise à indiquer que quelques tubes de soufflage 52, près de la ligne médiane LM de la bande 53, peuvent émettre des jets qui sont perpendiculaires au plan de la bande, la grande majorité des tubes de soufflage 52 présentant néanmoins une inclinaison selon un angle α par rapport à la normale au plan de la bande. Cette inclinaison est de préférence croissante, à partir de la ligne médiane LM de la bande en allant vers les bords de ladite bande, d'environ 0° à un angle inférieur à 15°.The term "substantially" used above is intended to indicate that some blowing tubes 52, near the center line LM of the strip 53, may emit jets which are perpendicular to the plane of the strip, the great majority of blast tubes 52 nevertheless having an inclination at an angle α with respect to the normal to the plane of the strip. This inclination is preferably increasing, from the center line LM of the strip towards the edges of said strip, from about 0 ° to an angle of less than 15 °.

Les tubes de soufflage 52 sont en l'espèce inclinés vers les bords de la bande d'un angle α allant de 0° à 15° au maximum, comme le représente la figure 10, qui est une vue suivant B de la figure 9. Cette inclinaison peut concerner tout ou partie des tubes suivant différents modes de réalisation de l'invention. Ceci permet de canaliser le flux résiduel de gaz (c'est-à-dire le flux non évacué vers une direction arrière perpendiculaire au plan de la bande après échange thermique avec ladite bande) dans des directions préférentielles vers les bords de bande tendant à stabiliser ladite bande.In this case, the blowing tubes 52 are inclined towards the edges of the strip by an angle α ranging from 0 ° to 15 ° at the maximum, as represented by FIG. figure 10 which is a view following B of the figure 9 . This inclination may concern all or part of the tubes according to different embodiments of the invention. This makes it possible to channel the residual flow of gas (that is to say the non-evacuated flow to a rear direction perpendicular to the plane of the strip after heat exchange with said strip) in preferential directions towards the band edges tending to stabilize. said band.

Un des paramètres de performance du refroidissement est la distance de soufflage, c'est-à-dire la distance du jet émis 58, entre l'extrémité libre 54 d'un tube 52 et le point d'impact correspondant 55 sur la bande, pour le jet émis par ce tube. Afin de conserver une capacité de refroidissement homogène sur la bande quelle que soit l'inclinaison des tubes, la longueur de chaque tube 52 peut être déterminée en fonction de son inclinaison afin d'avoir des distances de jet sensiblement constantes, et donc une capacité de refroidissement homogène. En pratique, la longueur des tubes sera d'autant plus grande que l'inclinaison α est grande. Les modélisations numériques montrent un effet optimal de stabilisation pour un angle d'inclinaison des tubes qui reste inférieur à 15° vers les bords de bande.One of the cooling performance parameters is the blowing distance, that is the distance of the emitted jet 58, between the free end 54 of a tube 52 and the corresponding point of impact 55 on the strip, for the jet emitted by this tube. In order to maintain a homogeneous cooling capacity on the strip whatever the inclination of the tubes, the length of each tube 52 can be determined according to its inclination in order to have jet distances substantially constant, and therefore a homogeneous cooling capacity. In practice, the length of the tubes will be greater as the inclination α is large. Numerical modelings show an optimal stabilizing effect for a tilting angle of the tubes that remains less than 15 ° towards the band edges.

La modélisation numérique de cette configuration montre un effet auto-stabilisateur lors d'un décentrement ou d'une rotation de la bande par rapport à la ligne de passe théorique. La résultante des pressions a ainsi tendance à ramener la bande au centre.The numerical modeling of this configuration shows a self-stabilizing effect during a shift or a rotation of the band with respect to the theoretical line of the pass. The resultant of the pressures thus tends to bring the band to the center.

Il est à noter que le rappel de la bande en position s'effectue de façon naturelle sans réglage particulier, et sans action d'opérateur ou de calculateur, et que la capacité de refroidissement optimale est préservée.It should be noted that the reminder of the band in position is carried out naturally without any particular adjustment, and without operator or computer action, and that the optimum cooling capacity is preserved.

Sur la figure 10, on a noté D la distance entre les buses tubulaires 51 et la bande 53. Cette distance D est plus importante que celle qui existerait avec des buses simplement trouées à distances de soufflage égales.On the figure 10 the distance between the tubular nozzles 51 and the band 53 was noted D. This distance D is greater than that which would exist with nozzles simply perforated at equal blowing distances.

Les tubes de soufflage 52 sont par ailleurs inclinés vers l'amont ou l'aval de la bande 53 dans un plan perpendiculaire au plan de la bande et parallèle à la direction 100 de déplacement de ladite bande.The blowing tubes 52 are also inclined upstream or downstream of the band 53 in a plane perpendicular to the plane of the strip and parallel to the direction 100 of displacement of said strip.

On pourrait prévoir des buses tubulaires 51 à une seule rangée de tubes de soufflage 52, orientés soit vers l'aval, soit vers l'amont. Pour une plus grande efficacité et une meilleure compacité, il est intéressant de prévoir, comme illustré en figure 9, que chaque buse tubulaire 51 soit équipée de deux rangées de tubes de soufflage 52, les tubes d'une rangée étant inclinés vers l'amont tandis que les tubes de l'autre rangée sont inclinés vers l'aval, et ce de préférence avec le même angle d'inclinaison noté ici β.Tubular nozzles 51 could be provided with a single row of blowing tubes 52, oriented either downstream or upstream. For greater efficiency and compactness, it is interesting to predict, as illustrated in figure 9 , that each tubular nozzle 51 is equipped with two rows of blast tubes 52, the tubes of one row being inclined upstream while the tubes of the other row are inclined downstream, and preferably with the same angle of inclination noted here β.

Les points d'impact 55 des jets 58 émis à partir des deux rangées de tubes 52 de chaque buse tubulaire 51 sont à une distance notée i, Il est alors intéressant de choisir la distance d entre deux buses tubulaires adjacentes 51 situées d'un même côté de la bande 53 de telle façon que tous les points d'impact 55 soient équidistants (distance i). On parvient ainsi à obtenir un maillage régulier et optimisé des points d'impact du soufflage 55. Cette distance d permet alors une reprise optimale des gaz, dans une direction sensiblement normale au plan de la bande, ce qui a pour effet de diminuer les dépressions pouvant exister entre les zones d'impact.The impact points 55 of the jets 58 emitted from the two rows of tubes 52 of each tubular nozzle 51 are at a distance denoted i. It is then advantageous to choose the distance d between two adjacent tubular nozzles 51 located in the same side of the band 53 so that all the points of impact 55 are equidistant (distance i). This results in obtaining a regular and optimized mesh of the impact points of the blowing 55. This distance d then allows an optimal recovery of the gases, in a direction substantially normal to the plane of the band, which has the effect of reducing the depressions may exist between the impact zones.

Enfin, il est intéressant de prévoir que les tubes de soufflage 52 soient tous dimensionnés en longueur de telle façon que les jets de gaz ou d'air 58 présentent une distance de jet a (entre l'orifice de sortie 54 d'un tube 52 et le point d'impact 55 correspondant) qui est sensiblement constante quelle que soit leur inclinaison.Finally, it is advantageous to provide that the blowing tubes 52 are all dimensioned in length so that the jets of gas or air 58 have a jet distance a (between the outlet orifice 54 of a tube 52 and the corresponding point of impact 55) which is substantially constant regardless of their inclination.

On est ainsi assuré de fournir une puissance de refroidissement répartie de façon parfaitement homogène sur la partie de la bande qui est soumise aux jets de gaz ou d'air.It is thus ensured to provide a cooling power distributed in a perfectly homogeneous manner on the part of the strip which is subjected to the jets of gas or air.

L'invention procure des avantages très importants, qui sont rappelés ci-après :

  • gain de productivité de la ligne, par application d'une capacité de refroidissement supérieure à celle des solutions conventionnelles, sans vibrations de la bande ;
  • gain de qualité et de productivité par garantie de non marquage de la bande par contact dû aux vibrations (avec les conséquences associées de production de second choix, de ralentissement de ligne, ou de casse de bande) ;
  • gain de flexibilité par la disparition de tout réglage et/ou action visant à réduire l'apparition de vibrations brations dans les solutions traditionnelles ;
  • augmentation de la capacité des installations :
    • le procédé réduit les vibrations tout en optimisant le refroidissement, ce qui permet de réduire la distance entre les appuis de bande dans les chambres ou les zones de refroidissement. Un exemple d'avantage particulièrement important est la possibilité de réduction de hauteur des tours de refroidissement après galvanisation à chaud suivant la figure 3.
The invention provides very important advantages, which are recalled below:
  • increased productivity of the line, by applying a cooling capacity greater than that of conventional solutions, without vibrations of the band;
  • gain in quality and productivity by guaranteeing non-marking of the band by vibration contact (with the associated consequences of production of second choice, slowing of line, or breaking of tape);
  • increased flexibility by the disappearance of any adjustment and / or action aimed at reducing the appearance of vibrations brations in traditional solutions;
  • increased capacity of facilities:
    • the method reduces vibration while optimizing cooling, thereby reducing the distance between the tape bearings in the chambers or cooling zones. An example of a particularly important advantage is the possibility of reducing the height of the cooling towers after hot-dip galvanizing according to the figure 3 .

Claims (13)

  1. Method of cooling a strip of steel or aluminum traveling in a line for heat treating or coating, in which jets of gas or air are projected against each of the faces of the traveling strip, wherein the jets of gas or air (58) are emitted from blow tubes (52) fitted to tubular nozzles (51) arranged at a distance one from the other transversely to the travel direction (100) of the strip (53), said jets being directed towards the corresponding face of the strip while being inclined simultaneously essentially towards the edges of said strip in a plane perpendicular to the plane of the strip and to the travel direction (100) of said strip, and towards the upstream or downstream end of the strip in a plane perpendicular to the plane of the strip and parallel to the travel direction (100) of said strip.
  2. Method according to claim 1, wherein the jets of gas or air (58) emitted from a single tubular nozzle (51) are inclined both towards the upstream end and towards the downstream end of the strip (53).
  3. Method according claim 2, wherein the distance (d) between two adjacent tubular nozzles (51) on the same side of the strip (53) is selected in such a manner that the points of impact (55) of the jets of gas or air (58) on the strip are substantially equidistant in a direction parallel to the travel direction (100) of said strip.
  4. Method according to any of claims 1 to 3, wherein the jets of gas or air (58) emitted from a given tubular nozzle (51) are inclined essentially towards the edges of the strip (53) in such a manner that the points of impact (55) of said jets on said strip are substantially equidistant in a direction perpendicular to the travel direction (100) of the strip.
  5. Method according claim 4, wherein the jets of gas or air (58) emitted from a given tubular nozzle (51) are inclined essentially towards the edges of the strip (53) at an inclination that increases going from the midline of the strip towards the edges of said strip from about 0° to an angle of less than 15°.
  6. Method according to any of claims 1 to 5, wherein the jets of gas or air (58) are organized to present a jet distance (a) that is substantially constant regardless of their angle of inclination.
  7. Apparatus for implementing the method according to any of claims 1 to 6, wherein the apparatus includes a plurality of tubular nozzles (51) on either side of the traveling strip (53), the nozzles being arranged at a distance from one another transversely to the travel direction (100) of the strip, each tubular nozzle (51) being fitted with blow tubes (52) pointing towards a face of the strip, said blow tubes being inclined both essentially towards the edges of said strip in a plane perpendicular to the plane of the strip and to the travel direction (100) of said strip, and towards the upstream end or downstream end of the strip in a plane perpendicular to the plane of the strip and parallel to the travel direction (100) of said strip.
  8. Apparatus according to claim 7, wherein each tubular nozzle (51) is fitted with two rows of blow tubes (52), the tubes of one row being inclined upstream while the tubes of the other row are inclined downstream, preferably at the same angle of inclination.
  9. Apparatus according to claim 8, wherein the distance (d) between two adjacent tubular nozzles (51) on the same side of the strip (53) is selected in such a manner that the points of impact (55) of the jets (58) emitted from the rows of blow tubes (52) are substantially equidistant in a direction parallel to the travel direction (100) of said strip.
  10. Apparatus according to claim 8 or claim 9, wherein the blow tubes (52) of each row of a given tubular nozzle (51) are inclined essentially towards the edges of the strip (53) in such a manner that the points of impact (55) of the jets (58) emitted from the blow tubes of said row are substantially equidistant in a direction perpendicular to the travel direction (100) of said strip.
  11. Apparatus according to claim 10, wherein the blow tubes (52) of a given row are inclined essentially towards the edges of the strip (53) at an angle of inclination that increases from the midline of the strip going towards the edges of said strip from about 0° to an angle of less than 15°.
  12. Apparatus according to any of claims 7 to 11, wherein the blow tubes (52) of each tubular nozzle (51) are dimensioned lengthwise in such a manner that the jets of gas or air (58) emitted by said tubes present a jet distance (a) that is substantially constant regardless of their angle of inclination.
  13. Apparatus according to any of claims 7 to 12, wherein the tubular nozzles (51) are circular, oblong, triangular, square, rectangular, or polygonal in section.
EP05292109A 2004-10-19 2005-10-11 Process and device for limiting the vibrations of aluminium or steel sheets during gas cooling Active EP1655383B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0411038A FR2876710B1 (en) 2004-10-19 2004-10-19 METHOD AND DEVICE FOR LIMITING THE VIBRATION OF STEEL OR ALUMINUM BANDS IN GAS OR AIR BLOWING COOLING ZONES

Publications (2)

Publication Number Publication Date
EP1655383A1 EP1655383A1 (en) 2006-05-10
EP1655383B1 true EP1655383B1 (en) 2013-03-27

Family

ID=34951913

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05292109A Active EP1655383B1 (en) 2004-10-19 2005-10-11 Process and device for limiting the vibrations of aluminium or steel sheets during gas cooling

Country Status (10)

Country Link
US (1) US7763131B2 (en)
EP (1) EP1655383B1 (en)
KR (1) KR100917245B1 (en)
CN (1) CN100572568C (en)
BR (1) BRPI0516938B1 (en)
CA (1) CA2583748C (en)
ES (1) ES2412854T3 (en)
FR (1) FR2876710B1 (en)
RU (1) RU2354720C2 (en)
WO (1) WO2006042937A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021004651A1 (en) 2019-07-11 2021-01-14 Cockerill Maintenance & Ingenierie S.A. Cooling device for blowing gas onto a surface of a traveling strip

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5211642B2 (en) * 2007-10-31 2013-06-12 Jfeスチール株式会社 Production equipment for hot dip galvanized steel sheet and method for producing hot dip galvanized steel sheet
KR100931178B1 (en) * 2007-12-26 2009-12-11 주식회사 포스코 Chiller for manufacturing galvanized sheet
DK2100673T3 (en) * 2008-03-14 2011-05-09 Arcelormittal France Method and apparatus for blowing a gas on a conveyor belt
FR2942629B1 (en) 2009-03-02 2011-11-04 Cmi Thermline Services METHOD FOR COOLING A METAL STRIP CIRCULATING IN A COOLING SECTION OF A CONTINUOUS THERMAL TREATMENT LINE, AND INSTALLATION FOR CARRYING OUT SAID METHOD
KR101256430B1 (en) 2011-03-15 2013-04-18 삼성에스디아이 주식회사 Laser welding apparatus
CN102392111B (en) * 2011-11-30 2013-09-18 马鞍山市华东耐磨合金有限公司 Air-quenched vibrating device for heat treatment
CN114411079B (en) * 2022-01-10 2023-01-24 山东恩光新材料有限公司 Air cooling device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3068586A (en) * 1959-02-18 1962-12-18 Electric Furnace Co Forced cooling means and method for continuous strip furnaces
US3116788A (en) * 1961-07-13 1964-01-07 Midland Ross Corp Convective cooling of continuously moving metal strip
US3300198A (en) * 1963-12-27 1967-01-24 Olin Mathieson Apparatus for quenching metal
US3262688A (en) * 1965-06-03 1966-07-26 Midland Ross Corp Jet convection heat transfer
GB2075455B (en) * 1980-04-30 1984-08-22 Nippon Steel Corp Apparatus and method for supporting a metal strip under a static gas pressure
JP3307771B2 (en) * 1993-08-23 2002-07-24 ハンス‐ユルゲン、ガイドール Means for descaling hot rolled steel sheets
ATE245710T1 (en) 1996-04-26 2003-08-15 Nippon Steel Corp PRIMARY COOLING PROCESS FOR CONTINUOUS ANNEALING OF STEEL STRIPS
US6054095A (en) * 1996-05-23 2000-04-25 Nippon Steel Corporation Widthwise uniform cooling system for steel strip in continuous steel strip heat treatment step
FR2789757B1 (en) * 1999-02-16 2001-05-11 Selas Sa DEVICE FOR EXCHANGING HEAT WITH A FLAT PRODUCT
FR2796139B1 (en) 1999-07-06 2001-11-09 Stein Heurtey METHOD AND DEVICE FOR SUPPRESSING THE VIBRATION OF STRIPS IN GAS BLOWING ZONES, ESPECIALLY COOLING ZONES
GB2352731A (en) * 1999-07-29 2001-02-07 British Steel Plc Strip cooling apparatus
FR2802552B1 (en) * 1999-12-17 2002-03-29 Stein Heurtey METHOD AND APPARATUS FOR REDUCING WEB FOLDING IN A QUICK COOLING AREA OF A HEAT TREATMENT LINE

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021004651A1 (en) 2019-07-11 2021-01-14 Cockerill Maintenance & Ingenierie S.A. Cooling device for blowing gas onto a surface of a traveling strip
US11639537B2 (en) 2019-07-11 2023-05-02 John Cockerill S.A. Cooling device for blowing gas onto a surface of a traveling strip

Also Published As

Publication number Publication date
WO2006042937A1 (en) 2006-04-27
US20090065983A2 (en) 2009-03-12
CN100572568C (en) 2009-12-23
RU2354720C2 (en) 2009-05-10
KR100917245B1 (en) 2009-09-16
CN101040057A (en) 2007-09-19
FR2876710B1 (en) 2014-12-26
US7763131B2 (en) 2010-07-27
CA2583748A1 (en) 2006-04-27
ES2412854T3 (en) 2013-07-12
BRPI0516938B1 (en) 2014-08-12
CA2583748C (en) 2011-08-09
BRPI0516938A (en) 2008-09-23
EP1655383A1 (en) 2006-05-10
RU2007118642A (en) 2008-11-27
KR20070068463A (en) 2007-06-29
FR2876710A1 (en) 2006-04-21
US20070241485A1 (en) 2007-10-18

Similar Documents

Publication Publication Date Title
EP1655383B1 (en) Process and device for limiting the vibrations of aluminium or steel sheets during gas cooling
WO2009112654A1 (en) Method and device for blowing gas on a running strip
EP2376662B1 (en) Method and section for cooling a moving metal belt by spraying liquid
EP0128842B1 (en) Tempering of glass
CA2710590C (en) Device for blowing a gas on a surface of a running strip material
US8353191B2 (en) Cooling device and cooling method for hot strip
EP0134172B1 (en) Tempering of glass objects by means of a two-component jet
FR2521122A1 (en) PROCESS AND DEVICE FOR THE PRODUCTION OF GLASS SHEETS WHICH INCREASE STRENGTH BY HEAT TREATMENT AND HAVING IMPROVED DRAWING DESIGNS
EP1108795B1 (en) Process and device for preventing buckling of strip in a fast cooling zone of a heat treatment line
EP0761829B1 (en) Cooling device for rolled products
FR2822850A1 (en) QUICK COOLING APPARATUS FOR A STRIP
EP1687455B1 (en) Cooling process and device for a steel sheet
FR2733445A1 (en) PROCESS FOR THE MANUFACTURE OF TUBES WITH INTERNAL GROOVES FOR HEAT EXCHANGERS
WO2018108747A1 (en) Method and section for quick cooling of a continuous line for treating metal belts
EP1029933B1 (en) Device for heat exchanging with a flat product
JP3867073B2 (en) Cooling apparatus and cooling method for hot rolled steel sheet
FR2649340A1 (en) METHOD AND DEVICE FOR CONTINUOUS CASTING BETWEEN CYLINDERS OF THIN METAL PRODUCTS FOR DIRECT COLD ROLLING
EP0069616B1 (en) Device for cooling steel wire spirals in the rolling heat
EP0526360A1 (en) Method to improve the surface quality and the regularity in thickness of thin cast metallic ribbons
FR2479720A1 (en) CURVED TYPE CONTINUOUS CASTING METHOD AND DEVICE
EP2396285B1 (en) Producing textured flat glass by floating
BE1015409A3 (en) Checking the thickness of liquid layer on the surface of an object emerging stretch of bath.
BE1016623A4 (en) DEVICE FOR THE PNEUMATIC STABILIZATION OF A METAL STRIP IN CONTINUOUS SCROLL.
FR2726209A1 (en) CASTING SURFACE OF A CONTINUOUS CASTING LINGOTIERE OF MOBILE WALL METALS
BE419364A (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20061012

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CMI THERMLINE SERVICES

17Q First examination report despatched

Effective date: 20070417

19A Proceedings stayed before grant

Effective date: 20070824

19F Resumption of proceedings before grant (after stay of proceedings)

Effective date: 20120502

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602005038746

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C21D0009573000

Ipc: F27B0009120000

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COCKERILL MAINTENANCE & INGENIERIE S.A.

RIC1 Information provided on ipc code assigned before grant

Ipc: C22F 1/00 20060101ALI20120510BHEP

Ipc: B21B 45/02 20060101ALI20120510BHEP

Ipc: F27D 9/00 20060101ALI20120510BHEP

Ipc: F27B 9/12 20060101AFI20120510BHEP

Ipc: F27B 9/30 20060101ALI20120510BHEP

Ipc: F27B 9/14 20060101ALI20120510BHEP

Ipc: C21D 1/667 20060101ALI20120510BHEP

Ipc: C21D 9/573 20060101ALI20120510BHEP

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAF Information related to payment of grant fee modified

Free format text: ORIGINAL CODE: EPIDOSCIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 603653

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005038746

Country of ref document: DE

Effective date: 20130523

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2412854

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20130712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130627

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130628

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130727

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130729

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20131021

Year of fee payment: 9

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140103

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005038746

Country of ref document: DE

Effective date: 20140103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131011

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602005038746

Country of ref document: DE

Representative=s name: SCHAUMBURG & PARTNER PATENTANWAELTE GBR, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 602005038746

Country of ref document: DE

Representative=s name: SCHAUMBURG & PARTNER PATENTANWAELTE MBB, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 602005038746

Country of ref document: DE

Representative=s name: SCHAUMBURG UND PARTNER PATENTANWAELTE MBB, DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141011

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131011

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20051011

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20221020

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231117

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231031

Year of fee payment: 19

Ref country code: FR

Payment date: 20231023

Year of fee payment: 19

Ref country code: DE

Payment date: 20231018

Year of fee payment: 19

Ref country code: AT

Payment date: 20231019

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20231023

Year of fee payment: 19