EP2100673B1 - Method and device for blowing a gas onto a moving strip - Google Patents

Method and device for blowing a gas onto a moving strip Download PDF

Info

Publication number
EP2100673B1
EP2100673B1 EP08300145A EP08300145A EP2100673B1 EP 2100673 B1 EP2100673 B1 EP 2100673B1 EP 08300145 A EP08300145 A EP 08300145A EP 08300145 A EP08300145 A EP 08300145A EP 2100673 B1 EP2100673 B1 EP 2100673B1
Authority
EP
European Patent Office
Prior art keywords
strip
gas
jets
face
blowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08300145A
Other languages
German (de)
French (fr)
Other versions
EP2100673A1 (en
Inventor
Jérôme Muller
Akli Elias
Thierry Petesch
Ivan Santi
Paul Durighello
Karen Beaujard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ArcelorMittal France SA
Original Assignee
ArcelorMittal France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to SI200830202T priority Critical patent/SI2100673T1/en
Application filed by ArcelorMittal France SA filed Critical ArcelorMittal France SA
Priority to PL08300145T priority patent/PL2100673T3/en
Priority to PT08300145T priority patent/PT2100673E/en
Priority to DK08300145.3T priority patent/DK2100673T3/en
Priority to EP08300145A priority patent/EP2100673B1/en
Priority to AT08300145T priority patent/ATE494968T1/en
Priority to DE602008004430T priority patent/DE602008004430D1/en
Priority to ES08300145T priority patent/ES2359594T3/en
Priority to CN2008801280534A priority patent/CN101970141A/en
Priority to CN2012105631383A priority patent/CN103056176A/en
Priority to AU2008352731A priority patent/AU2008352731B2/en
Priority to CA2718465A priority patent/CA2718465C/en
Priority to PCT/FR2008/051895 priority patent/WO2009112654A1/en
Priority to JP2010550229A priority patent/JP5399423B2/en
Priority to MX2010010147A priority patent/MX2010010147A/en
Priority to US12/594,773 priority patent/US8591675B2/en
Priority to UAA201010937A priority patent/UA99000C2/en
Priority to KR1020137035134A priority patent/KR20140008473A/en
Priority to KR1020107022638A priority patent/KR101374459B1/en
Priority to BRPI0821280-5 priority patent/BRPI0821280B1/en
Priority to EA201001485A priority patent/EA020625B1/en
Publication of EP2100673A1 publication Critical patent/EP2100673A1/en
Priority to ZA2010/06553A priority patent/ZA201006553B/en
Application granted granted Critical
Publication of EP2100673B1 publication Critical patent/EP2100673B1/en
Priority to HR20110233T priority patent/HRP20110233T1/en
Priority to US14/058,750 priority patent/US9222700B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/004Heating the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0218Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for strips, sheets, or plates
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B15/00Arrangements for performing additional metal-working operations specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B15/0035Forging or pressing devices as units
    • B21B15/005Lubricating, cooling or heating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B2045/0212Cooling devices, e.g. using gaseous coolants using gaseous coolants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0233Spray nozzles, Nozzle headers; Spray systems

Definitions

  • the present invention relates to the blowing of gas or a water / gas mixture on a moving strip in order to act on its temperature to cool or to heat it.
  • Document EP-A0761B29 discloses a method and a device according to the preambles of claims 1 and 10.
  • the cooling chambers are arranged in which the strips run vertically between two gas blowing modules intended to cool the strip, the gas being either air or a gas neutral, a mixture of neutral gas.
  • the blowing modules generally consist of distribution boxes fed with pressurized gas, each having a face provided with openings constituting nozzles, arranged opposite one another on either side of a blowing zone traversed by the moving strip.
  • the openings may be either slots extending the full width of the strip, or point openings arranged in a two-dimensional array for distributing gas streams over a surface extending across the width and over a certain length of the scrolling the tape.
  • the modules are adapted so that the jets of one module are facing the jets of the other module.
  • the gas blowing generates vibrations of the moving strip resulting in torsional deformations and lateral displacements of the strip from one blowing module to the other blowing module facing it.
  • the torsional deformations are made by twisting the band about an axis generally parallel to the running direction of the band.
  • the lateral displacements are made by displacement of the strip in a direction perpendicular to the median plane of the strip running zone, generally parallel to the surface of the strip.
  • nozzles are fed by distribution boxes, the nozzles being tubes extending in the direction of the surface of the strip to be cooled, the tubes being inclined perpendicular to the surface of the strip. the band, the inclination of the tubes being all the more important that they are distant from the median line of the passage zone of a band.
  • the nozzles are arranged in two-dimensional arrays so that the points of impact of the gas jets on each side of the strip are facing each other.
  • This device has the particular disadvantage of generating vibrations of the band which force to limit the blowing pressure, therefore, the cooling efficiency.
  • the object of the present invention is to remedy these drawbacks by proposing a means of acting on the temperature of a strip in the course of blowing a gas which, when passing through the cooling or reheating zone, generates band vibrations in the passage of the cooling or heating zone limited, even for large blowing pressures.
  • the invention relates to a method of action on the temperature of a gas-blowing strip according to which a plurality of gas jets extending towards the surface is projected on each side of the strip. of the band, and arranged so that the impacts of the gas jets on each side of the band are distributed at the nodes of a two-dimensional network.
  • the impacts of the jets on one side are not compared to the impacts of the jets on the other side, and the gas jets are derived from tubular nozzles fed by at least one distribution box and extending away from the distribution box so as to leave free a gas circulation space back parallel to the longitudinal direction of the strip and perpendicular to the longitudinal direction of the strip.
  • the gas jets may be perpendicular to the surface of the strip.
  • the axis of at least one jet of gas may form an angle with the perpendicular to the surface of the strip.
  • the two-dimensional networks for distributing jet impacts on each of the faces of the strip are periodic, of the same type and the same pitch.
  • the networks are for example of the hexagonal type.
  • the impacts of the jets on the same face of the strip are distributed at the nodes of the two-dimensional network to form a complex polygonal mesh whose number of sides is between 3 and 20, of periodicity equal to 1 step in the transverse direction of the band and between 3 and 10 steps in the longitudinal direction of the strip, so that the traces of the impacts of adjacent blowing jets are contiguous on a face of the strip in the cross direction of said strip.
  • the joined nature of the traces of adjacent blast impacts means that the traces may also overlap.
  • the network corresponding to one face and the network corresponding to the other face are offset relative to each other and the offset is between 1 ⁇ 4 steps and 3 ⁇ 4 steps.
  • the gas may be a cooling gas, a gas / water mixture, or a hot gas, in particular a combustion gas of a burner.
  • the invention also relates to a device comprising at least two blowing modules arranged facing one another on either side of a strip running zone, each blowing module being constituted by a plurality of tubular nozzles extending from at least one distribution box, in the direction of the running zone of a strip, the nozzles being arranged in such a way that the impacts of the jets on each face of a strip are distributed at the nodes of a two-dimensional network, and the blowing modules are adapted so that the impacts of jets on one side are not compared to the impacts of jets on the other side.
  • two-dimensional networks are periodic networks of the same type and not even.
  • the networks can be of hexagonal type.
  • the impacts of the jets on the same face of the strip are distributed at the nodes of the two-dimensional network to form a complex polygonal mesh whose number of sides is between 3 and 20, of periodicity equal to 1 step in the transverse direction of the band and between 3 and 10 steps in the longitudinal direction of the strip, so that the traces of the impacts of adjacent blowing jets are contiguous on a face of the strip in the cross direction of said strip.
  • the blowing modules are adapted so that the network corresponding to one face and the network corresponding to the other face are offset relative to each other, the offset being between 1 ⁇ 4 steps and 3 ⁇ 4 steps. .
  • the nozzle blowing axes may be perpendicular to the running plane of a strip.
  • the blowing axis of at least one nozzle may form an angle with the perpendicular to the running plane of a strip.
  • the nozzle discharge ports may have a round, polygonal, oblong or slot-shaped section.
  • the blowing modules are of the type with gas recovery or without gas recovery.
  • each blowing module consists of a distribution box on which the blowing nozzles are implanted.
  • the invention is particularly applicable to continuous processing facilities for thin metal strips such as steel or aluminum strips. These treatments are for example continuous annealing, dip coating treatments such as galvanizing or tinning. It allows to obtain heat exchange intensities with high band without generating unacceptable vibrations of the band.
  • the installation for cooling by blowing a gas generally identified by 1 to the figure 1 consists of two blowing modules 2 and 3 arranged on either side of a moving strip 4.
  • Each blowing module consists of a distribution box 21 on the one hand and 31 on the other hand, all both fed with pressurized gas.
  • Each of the distribution boxes is of generally parallelepipedal shape with one face 22 for one and 32 for the other, of generally rectangular shape, arranged facing one another and on which are implanted a plurality of nozzle nozzles.
  • These cylindrical nozzles are tubes of a length of the order of 100 mm and which can be between 20 mm and 200 mm, preferably between 50 and 150 mm, and having an internal diameter of for example 9.5 mm but can be between 4 mm and 60 mm.
  • These tubes are distributed on the faces 22 and 32 of the distribution boxes so that the impacts of the blowing jets on one face of the strip are distributed according to a two-dimensional network which, preferably, is a periodic network whose mesh may to be square or rhombus so as to constitute a distribution of the hexagonal type.
  • the distance between two adjacent tubes is for example 50 mm, and may be between 40 mm and 100 mm.
  • the number of nozzles per side of a distribution box of a cooling module can reach a few hundred.
  • the distance between the nozzle head and the band can be between 50 and 250 mm.
  • the distribution of the nozzles on each box is made according to a two-dimensional network identical to the two-dimensional network of distribution of jet impacts on the bandaged. But when the jets are not all parallel to each other, the distribution of the nozzles on a box is different from the distribution of the impacts of the jets on the surface of the strip.
  • the tubes are distributed so that the impacts 24 of the jets emitted by the blowing module 2 on the side A of the strip are distributed at the nodes of a two-dimensional network which, in the example represented, is a periodic network of the hexagonal type whose step p is indicated.
  • the blowing nozzles of the second blowing module 3 are distributed over the distribution box 31 so that the impacts 34 of the gas jets on the side B of the strip are equally distributed at the nodes of a periodic two-dimensional network of type also hexagonal, and mesh also equal to p .
  • the two two-dimensional networks corresponding on the one hand to the face A and the other to the face B are offset relative to each other so that the impacts 34 of the gas jets of the face B are not not facing the impacts 24 gas jets on the side A, so that these impacts are staggered.
  • the offset is adapted so that the impacts of the jets on one side are opposite spaces left free between the impacts of the jets on the other side.
  • Such a distribution of the impact points of the blowing jets on each of the faces of the strip has the advantage of better distributing the contacts of the blowing jets with the surfaces of the strip, and thus of ensuring a more favorable cooling. homogeneous only when the jets are facing each other. As a result, the heat exchange coefficient between the strip and the gas is improved.
  • This distribution of the jets also has the advantage of reducing the stresses exerted on the surface of the strip. In addition, this distribution of the jets substantially reduces the vibrations of the band and consequently the lateral deflection and the torsion of the band.
  • the inventors have found that in order to obtain a significant reduction of the vibrations of the strip, the distribution of the points of impact on the surface of the strip does not necessarily have to be in a two-dimensional hexagonal network, nor that the offset between the two networks is equal to half a step.
  • the offset between the two networks can be understood, for example, between a quarter of a step and three quarters of a step. This offset can be done either in the direction of travel of the band, or in the direction perpendicular to the scrolling of the band.
  • the gas blowing nozzles may have sections of various shapes. This may be for example blowholes of circular section or polygonal section, for example such as squares or triangles, or oblong shapes, or even in the form of slits of short length.
  • the blowing is done by means of tubular type nozzles which extend at a sufficiently large distance from the lateral faces of the distribution boxes so as to allow the return gas to be evacuated by circulation at both parallel to the direction of travel of the strip and perpendicular to the running direction of the strip.
  • tubular type nozzles which extend at a sufficiently large distance from the lateral faces of the distribution boxes so as to allow the return gas to be evacuated by circulation at both parallel to the direction of travel of the strip and perpendicular to the running direction of the strip.
  • the vibratory behavior of a strip running between two rectangular-shaped blowing modules of a length has been compared. 2200 mm, equipped with cylindrical tubes with a length of 100 mm and a diameter of 9.5 mm arranged in a hexagonal pattern with a pitch of 50 mm, the two blowing modules being arranged opposite one another. the other so that the distance between the head of the nozzles and the band is 67 mm. Between these two blowing modules, a steel strip 950 mm wide, 0.25 mm thick, was placed under constant tension. The supply pressure of the distribution boxes was varied between 0 and 10 kPa above atmospheric pressure, and the lateral displacement of the strip was measured using three lasers arranged in the width direction.
  • a laser 40A disposed in the axis of the strip which measures the distance d a
  • a laser 40G disposed on the left side of the strip which measures the distance d g at a distance D of about 50 mm from the edge of the strip
  • a third laser 40D disposed on the right side of the strip at a distance D of about 50 mm from the edge of the strip, and which measures the distance d d .
  • the distances d a , d g , d d are the distances to a line parallel to the median plane of the band scroll zone.
  • recordings are made during blowing.
  • lateral displacement the mean distance from peak to peak of the lateral displacements is determined.
  • torsion the average amplitude of the torsion is determined.
  • the lateral displacements and on the other hand the mean torsions, are represented for the cooling modules according to the invention, the gas jets of which are offset with respect to each other (the gas jets of one face are offset with respect to the gas jets of the other face), and secondly for blowing cooling modules identical to the preceding modules, but for which the blowing jets of one face are facing the jets blowing the opposite side.
  • the curve 50 which relates to blowing modules according to the invention, shows a slow evolution of the peak to peak displacement amplitudes of the band which goes from approximately 15 mm to a blast overpressure of 1 kPa, at about 30 mm for a blast overpressure of 10 kPa.
  • the curve 51 which represents the evolution of the peak-to-peak displacement amplitude for blowing modules whose blowing jets of one face are in front of the blowing jets on the other side, shows that the amplitude of displacement of the band for a blow-molding overpressure of the order of 1 kPa is still 15 mm but that this amplitude increases more significantly than in the previous case, and reaches about 55 mm for a blow pressure of 9 kPa and then exceeds 100 mm for a blowing pressure of 10 kPa.
  • the curve 52 of the figure 6 which represents the evolution of twisting or twisting as a function of the blowing pressure shows that with the devices according to the invention, the twisting remains less than 4 mm even for blast overpressures of up to 10 kPa.
  • the twisting can reach 24 mm for overpressures of blowing of 9 kPa.
  • the displacement amplitude of the strip was measured as a function of the blast overpressure, for distances between the heads of the blast nozzles and the surface of the strip of 67 mm, 85 mm and 100 mm. mm, on the one hand with the blowing modules according to the invention, on the other hand with blowing modules according to the prior art.
  • the curves 57, 58, 59 relating to the strip cooled with the devices according to the prior art which blow the gas through slots extending over the width of the strip, correspond to distances between the nozzles of blowing and the strip respectively of 67 mm, 85 mm and 100 mm. These curves show that for blowing pressures up to 4 kPa, the displacement of the strip exceeds 100 mm and can reach 150 mm.
  • the vibratory behavior of a moving strip in the industrial coating plant has also been characterized by dipping in a bath of liquid metal generally identified by 200 at figure 8 , comprising at the outlet of the bath 201 a wiper module 202, and downstream of the wiper module a cooling module generally identified by 203.
  • This cooling module comprises four blowing modules 203A, 203B, 203C and 203D, rectangular shape with a length of about 6500 mm and a width of 1600 mm.
  • Each blowing module is equipped with cylindrical nozzles with a length of 100 mm and a diameter of 9.5 mm arranged in a hexagonal type grating, with a pitch of 60 mm.
  • the four blowing modules are arranged so as to form two blocks 204 and 205 of two modules 203A, 203B and 203C, 203D respectively, arranged facing each other on either side of a scrolling zone. of a strip 206.
  • the distance between the nozzle head and the strip is 100 mm.
  • a first means for measuring the lateral displacements of the strip 207 between the two blocks 205 and 205 of blowing modules at about 13 meters downstream of the wiper module, and secondly disposed a second means for measuring the lateral displacements of the strip 208 at the outlet of the wiper module 202.
  • the two measuring means are of the type of the one shown in FIG. figure 4 .
  • the first measuring means 207 disposed at the level of the blowing modules comprises lasers
  • the second measuring means 208 disposed at the output of the spin module comprises inductive sensors.
  • a first series of measurements of the displacement of the strip was carried out using the first measuring means 207 placed between the two blocks of blowing modules.
  • the supply pressure of the blowing modules was varied and the displacement of the strip was measured using three lasers arranged in the direction of the width of the moving strip.
  • a second series of measurements of the displacement of the strip was also performed upstream of the cooling module in the running direction of the strip and downstream of the spin module, at a distance of a few centimeters from the latter. This second series of measurements was carried out using the second measurement means 208.
  • the curve 91 which relates to a cooling module 203 according to the invention, shows a quasi-constant amplitude of peak to peak displacement of the band.
  • the displacement amplitudes oscillate around 2 to 3 mm for a blast overpressure varying from 0.7 kPa to 4 kPa.
  • Curve 92 represents the evolution of peak-to-peak displacement amplitudes for a cooling module according to the prior art. This curve 92 shows that the amplitudes of displacement of the band for an overpressure of blowing ranging from 1.5 kPa to 2.7 kPa increase exponentially. These deformations limit the cooling capacity of the device and consequently the productivity of the manufacturing process. Indeed, it was found that the deformations caused a degradation of the quality of the product when they are too important, which leads to limit the blowing pressures to at most 2.5 kPa.
  • the curve 102 represents the peak-to-peak displacement amplitudes in the case of the device according to the prior art.
  • the displacement amplitudes at the wiper module increase exponentially from about 2.5 mm to about 9 mm, up to the deterioration of the product.
  • This effect of high blowing pressures on the amplitude of the deformations of the strip requires limiting the blowing power substantially below 2.8 kPa.
  • the curve 101 relative to the cooling device according to the invention, remains substantially horizontal, below 1.8 mm, for a blowing pressure ranging from 0.5 kPa to 3.5 kPa.
  • the inventors have noticed the disappearance of the torsional setting of the band in the case of the device according to the invention, both at the level of the cooling module and at the level of the dewatering module, and what it whatever the power of the cooling jets.
  • the curve 111 corresponds to the invention and the curve 112 to the prior art.
  • the two curves are increasing and show that the cooling power increases as the blowing pressure increases.
  • the curve relating to the prior art stops for a pressurizing blow of 2.0 kPa because, beyond, the vibrations cause a deterioration of the product.
  • the maximum cooling power is 160 W / m 2 .
  • the curve relating to the invention is extended for blowing pressures of up to 3.5 kPa, which makes it possible to reach a cooling power of 200 W / m 2 . ° C.
  • the invention therefore makes it possible to increase the extraction power of the heat of the moving strip very substantially.
  • the blowing jets are directed perpendicular to the surface of the strip, but it may be advantageous to incline all or part of the blowing jets with respect to the perpendicular to the strip.
  • blowing gas which is a pure gas or a mixture of gases, may be air or a mixture consisting of nitrogen and hydrogen or any other gas mixture. This gas may be at a temperature below the temperature of the strip.
  • the blowing is then used to cool the strip. This is the case, for example, at the hot-dip galvanizing outlet or at the outlet of a annealing treatment of a strip.
  • the blown gas may be a hot gas, and in particular may be a burner combustion gas, and may be intended to preheat a strip before it enters a heat treatment plant.
  • the nozzles may all be arranged on a single distribution box, generally of flat shape, or be distributed over a plurality of distribution boxes, these distribution boxes may be for example tubes extending over the width of the bandaged.
  • the distribution boxes are tubes, they can also be oriented parallel to the direction of travel of the strip.
  • the blowing nozzles are arranged on the distribution boxes, so that the impacts of the blowing jets overlap on one side of the strip in the cross direction of said strip.
  • This arrangement in which the impacts of blowing jets on one face of the strip are not opposite jet impacts on the other side of the strip, but in which the impacts of the jets on each of the faces of the strip overlap has the advantage of avoiding the formation of defects on the strip, called lines of jets, in the direction of travel of the strip and parallel to each other in the cross-machine direction of the strip.
  • the nozzles can be arranged in such a way that the impacts of the jets on one face of the strip are distributed along several lines each extending over the width of the strip, each line comprising a plurality of impacts of diameter d determined and distributed regularly in a pitch p, the impacts of two successive lines or of two groups of successive lines being offset laterally such that the lines of jets resulting from the different lines lead to lines of jets which cover the entire width of the band.
  • This figure shows a part of the network formed by the impacts of the jets on a face of a band 300.
  • This network is formed by a pattern consisting of four lines of impacts that can be divided into two groups: one first group consisting of two impact lines 301 A and 301 B, and a second group of two impact lines 304A and 304B.
  • Each line 301A, 301B, 304A and 304B consists of impacts 302A, 302B, 305A and 305B, respectively, distributed regularly with a pitch p.
  • the second line 301 B or 304B is deduced from the first line 301 A or 301 B, respectively, firstly by a lateral translation of a half step or p / 2, and secondly by a longitudinal translation of a length I.
  • the second group of lines consisting of the lines 305A and 305B, is deduced from the first group of lines 301A and 301B by a lateral translation of a distance d equal to diameter d of an impact.
  • the traces left by the impacts on the strip 303A, 303B for the impacts 302A and 302B, and 306A, 306B for the impacts 305A and 305B form strips that are contiguous when the diameter an impact is at least equal to a quarter of the pitch p separating two adjacent impacts on the same line.
  • the network can be extended by reproducing the distribution of impacts that has just been described by translation of a length equal to four times the distance I separating two successive lines. We thus obtain a periodic network whose mesh is a complex polygon.
  • the good coverage of the surface of the strip can be obtained by a distribution of the impacts of the jets of the blowing nozzles on the same face of the band at the nodes of a two-dimensional network by forming a complex polygonal mesh whose number of sides is between 3 and 20, of periodicity equal to 1 step in the direction of the width of the strip and between 3 and 20 steps in the longitudinal direction of the strip.
  • This distribution must be adapted taking into account in particular the width of an impact of a jet of a blowing nozzle. The skilled person knows how to make such an adaptation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Advancing Webs (AREA)
  • Coating With Molten Metal (AREA)
  • Air Bags (AREA)
  • Manufacturing And Processing Devices For Dough (AREA)

Abstract

The process comprises projecting gas jets or water/gas mixture jets on each side of the strip, and distributing the impacts of gas or water/gas mixture jets on each surface of the strip in nodes of a two-dimensional network. The jet impacts on one side (A) of the strip, and does not impact on the other side (B) of the strip. The gas or water/gas jets are obtained from tubular nozzles (23, 33) fed by a distribution box (21). The tubular nozzles extend away from the distribution box so as to leave a free space for gas or water/gas circulation. The process comprises projecting gas jets or water/gas mixture jets on each side of the strip, and distributing the impacts of gas or water/gas mixture jets on each surface of the strip in nodes of a two-dimensional network. The jet impacts on one side (A) of the strip, and does not impact on the other side (B) of the strip. The gas or water/gas jets are obtained from tubular nozzles (23, 33) fed by a distribution box (21). The tubular nozzles extend away from the distribution box so as to leave a free space for gas or water/gas circulation that is parallel or perpendicular to the longitudinal direction of the strip. The axis of gas or water/gas mixture jet forms a perpendicular angle with the strip surface. The two-dimensional networks for distribution of jet impacting on each side of the strip are hexagonal, periodical, same type and same pace. The impacts of jets on the same face of the strip distributed in nodes of two-dimensional network form a polygonal mesh complex having 3-20 sides and periodicity of 1 pace across the strip and 3-20 paces in the longitudinal direction of the strip. The network corresponding to one side and another side are spaced apart from each other with a gap of of pace and 3/4 of pace. An independent claim is included for a device for blowing a cool or hot gas or a water/gas mixture on a rolling strip to act on its temperature for cooling or heating.

Description

La présente invention est relative au soufflage de gaz ou d'un mélange eau/gaz sur une bande en défilement afin d'agir sur sa température pour la refroidir ou pour la réchauffer. Document EP-A0761B29 décrit un procédé et un dispositif selon les préambules des revendications 1 et 10.The present invention relates to the blowing of gas or a water / gas mixture on a moving strip in order to act on its temperature to cool or to heat it. Document EP-A0761B29 discloses a method and a device according to the preambles of claims 1 and 10.

En sortie de certaines installations de traitement de bandes métalliques en défilement, on dispose les chambres de refroidissement dans lesquelles les bandes défilent verticalement entre deux modules de soufflage de gaz destinés à refroidir la bande, le gaz pouvant être soit de l'air soit un gaz neutre, soit un mélange de gaz neutre.At the outlet of some scrolling metal strip processing plants, the cooling chambers are arranged in which the strips run vertically between two gas blowing modules intended to cool the strip, the gas being either air or a gas neutral, a mixture of neutral gas.

Les modules de soufflage sont constitués, en général, de caissons de répartition alimentés en gaz sous pression, comportant chacun une face munie d'ouvertures constituant des buses, disposés en regard l'un de l'autre de part et d'autre d'une zone de soufflage traversée par la bande en défilement.The blowing modules generally consist of distribution boxes fed with pressurized gas, each having a face provided with openings constituting nozzles, arranged opposite one another on either side of a blowing zone traversed by the moving strip.

Les ouvertures peuvent être soit des fentes s'étendant sur toute la largeur de la bande, soit des ouvertures ponctuelles disposées en réseau bidimensionnel pour répartir les jets de gaz sur une surface s'étendant sur la largeur et sur une certaine longueur de la zone de défilement de la bande. Afin d'équilibrer les effets des jets générés par chacun des modules de soufflage disposés en regard l'un de l'autre, les modules sont adaptés pour que les jets d'un module soient en regard des jets de l'autre module.The openings may be either slots extending the full width of the strip, or point openings arranged in a two-dimensional array for distributing gas streams over a surface extending across the width and over a certain length of the scrolling the tape. In order to balance the effects of the jets generated by each of the blowing modules arranged opposite one another, the modules are adapted so that the jets of one module are facing the jets of the other module.

On constate que le soufflage de gaz engendre des vibrations de la bande en défilement se traduisant par des déformations en torsion et des déplacements latéraux de la bande d'un module de soufflage à l'autre module de soufflage qui lui fait face. Les déformations en torsion se font par torsion de la bande autour d'un axe généralement parallèle à la direction de défilement de la bande. Les déplacements latéraux se font par déplacement de la bande dans une direction perpendiculaire au plan médian de la zone de défilement de la bande, généralement parallèle à la surface de la bande. Ces vibrations sont d'autant plus importantes que l'intensité du soufflage est élevée. Il en résulte que l'intensité du soufflage, donc du refroidissement, doit être limitée pour éviter des vibrations trop importantes pouvant conduire à des détériorations des bandes.It can be seen that the gas blowing generates vibrations of the moving strip resulting in torsional deformations and lateral displacements of the strip from one blowing module to the other blowing module facing it. The torsional deformations are made by twisting the band about an axis generally parallel to the running direction of the band. The lateral displacements are made by displacement of the strip in a direction perpendicular to the median plane of the strip running zone, generally parallel to the surface of the strip. These vibrations are all the more important as the blowing intensity is high. It follows that the intensity of the blowing, so the cooling, must be limited to avoid excessive vibrations that can lead to deterioration of the bands.

Afin de remédier à cet inconvénient, on a proposé de raccourcir les caissons de soufflage de façon à disposer une pluralité de caissons séparés par des moyens de maintien de la bande tels que des rouleaux ou des moyens de stabilisation aéraulique. Mais ces dispositifs présentent l'inconvénient soit d'imposer un contact de la bande avec des rouleaux stabilisateurs, ce qui est inadapté à certaines applications tel que le refroidissement en sortie de galvanisation à chaud, soit d'imposer des refroidissements particuliers dans les zones de stabilisation aérauliques qui sont mal contrôlés. De tels dispositifs comprenant des rouleaux stabilisateurs sont connus de EP 0 761 829 .In order to overcome this drawback, it has been proposed to shorten the blow boxes so as to have a plurality of boxes separated by band holding means such as rollers or aeraulic stabilizing means. But these devices have the disadvantage of either imposing a contact of the strip with stabilizing rollers, which is unsuited to certain applications such as hot-dip galvanizing output, or to impose particular cooling in areas of Aeraulic stabilization that is poorly controlled. Such devices comprising stabilizing rollers are known from EP 0 761 829 .

On a également proposé de stabiliser la bande en agissant sur la traction de la bande, et notamment en augmentant celle-ci. Mais, cette technique présente l'inconvénient d'engendrer des contraintes importantes dans la bande qui peuvent avoir un effet défavorable sur ses propriétés.It has also been proposed to stabilize the band by acting on the traction of the band, and in particular by increasing it. But, this technique has the disadvantage of generating significant stresses in the band that can have an adverse effect on its properties.

On a également tenté de réduire les vibrations de la bande en agissant sur les vitesses de soufflage ou les distances entre les têtes des buses et la bande ou le débit de soufflage. Mais, tous ces moyens entraînent une diminution de l'efficacité du refroidissement et donc des performances de l'installation.Attempts have also been made to reduce the vibration of the web by acting on the blowing rates or the distances between the nozzle heads and the blast band or flow rate. But, all these means lead to a reduction in the cooling efficiency and thus the performance of the installation.

On a enfin proposé des dispositifs dans lesquels une pluralité de buses sont alimentés par des caissons de répartition, les buses étant des tubes s'étendant en direction de la surface de la bande à refroidir, les tubes étant inclinés perpendiculairement par rapport à la surface de la bande, l'inclinaison des tubes étant d'autant plus importante qu'ils sont éloignés de la ligne médiane de la zone de passage d'une bande. Dans ce dispositif, les buses sont disposées selon des réseaux bidimensionnels de telle sorte que les points d'impacts des jets de gaz sur chaque face de la bande sont en regard les uns des autres. Ce dispositif présente l'inconvénient notamment d'engendrer des vibrations de la bande qui obligent à limiter la pression de soufflage, donc, l'efficacité du refroidissement.Devices have finally been proposed in which a plurality of nozzles are fed by distribution boxes, the nozzles being tubes extending in the direction of the surface of the strip to be cooled, the tubes being inclined perpendicular to the surface of the strip. the band, the inclination of the tubes being all the more important that they are distant from the median line of the passage zone of a band. In this device, the nozzles are arranged in two-dimensional arrays so that the points of impact of the gas jets on each side of the strip are facing each other. This device has the particular disadvantage of generating vibrations of the band which force to limit the blowing pressure, therefore, the cooling efficiency.

Le but de la présente invention est de remédier à ces inconvénients en proposant un moyen d'agir sur la température d'une bande en défilement par soufflage d'un gaz qui, lors du passage dans la zone de refroidissement ou de réchauffage, engendre des vibrations de la bande dans le passage de la zone de refroidissement ou de réchauffage limitées, même pour des pressions de soufflage importantes.The object of the present invention is to remedy these drawbacks by proposing a means of acting on the temperature of a strip in the course of blowing a gas which, when passing through the cooling or reheating zone, generates band vibrations in the passage of the cooling or heating zone limited, even for large blowing pressures.

A cet effet, l'invention concerne un procédé d'action sur la température d'une bande en défilement par soufflage de gaz selon lequel on projette sur chaque face de la bande une pluralité de jets de gaz s'étendant en direction de la surface de la bande, et disposés de telle sorte que les impacts des jets de gaz sur chaque face de la bande sont répartis aux noeuds d'un réseau bidimensionnel. Les impacts des jets sur une face ne sont pas en regard des impacts des jets sur l'autre face, et les jets de gaz sont issus de buses tubulaires alimentées par au moins un caisson de répartition et s'étendant à distance du caisson de répartition de façon à laisser libre un espace de circulation du gaz en retour parallèlement au sens longitudinal de la bande et perpendiculairement au sens longitudinal de la bande.For this purpose, the invention relates to a method of action on the temperature of a gas-blowing strip according to which a plurality of gas jets extending towards the surface is projected on each side of the strip. of the band, and arranged so that the impacts of the gas jets on each side of the band are distributed at the nodes of a two-dimensional network. The impacts of the jets on one side are not compared to the impacts of the jets on the other side, and the gas jets are derived from tubular nozzles fed by at least one distribution box and extending away from the distribution box so as to leave free a gas circulation space back parallel to the longitudinal direction of the strip and perpendicular to the longitudinal direction of the strip.

Les jets de gaz peuvent être perpendiculaires à la surface de la bande.The gas jets may be perpendicular to the surface of the strip.

L'axe d'au moins un jet de gaz peut former un angle avec la perpendiculaire à la surface de la bande.The axis of at least one jet of gas may form an angle with the perpendicular to the surface of the strip.

De préférence, les réseaux bidimensionnels de répartition des impacts de jets sur chacune des faces de la bande sont périodiques, de même type et de même pas.Preferably, the two-dimensional networks for distributing jet impacts on each of the faces of the strip are periodic, of the same type and the same pitch.

Les réseaux sont par exemple du type hexagonal.The networks are for example of the hexagonal type.

Plus préférentiellement, les impacts des jets sur une même face de la bande sont répartis aux noeuds du réseau bidimensionnel pour former une maille polygonale complexe dont le nombre de côtés est compris entre 3 et 20, de périodicité égale à 1 pas dans le sens travers de la bande et comprise entre 3 et 10 pas dans le sens longitudinal de la bande, de telle sorte que les traces des impacts des jets de soufflage adjacentes soient jointives sur une face de la bande dans le sens travers de ladite bande. On notera que le caractère jointif des traces des impacts de jets de soufflage adjacentes signifie que les traces peuvent aussi se chevaucher.More preferably, the impacts of the jets on the same face of the strip are distributed at the nodes of the two-dimensional network to form a complex polygonal mesh whose number of sides is between 3 and 20, of periodicity equal to 1 step in the transverse direction of the band and between 3 and 10 steps in the longitudinal direction of the strip, so that the traces of the impacts of adjacent blowing jets are contiguous on a face of the strip in the cross direction of said strip. It should be noted that the joined nature of the traces of adjacent blast impacts means that the traces may also overlap.

De préférence, le réseau correspondant à une face et le réseau correspondant à l'autre face sont décalés l'un par rapport à l'autre et le décalage est compris entre ¼ de pas et ¾ de pas.Preferably, the network corresponding to one face and the network corresponding to the other face are offset relative to each other and the offset is between ¼ steps and ¾ steps.

Le gaz peut être un gaz de refroidissement, un mélange gaz/eau, ou encore un gaz chaud, notamment un gaz de combustion d'un brûleur.The gas may be a cooling gas, a gas / water mixture, or a hot gas, in particular a combustion gas of a burner.

L'invention concerne également un dispositif comprenant au moins deux modules de soufflage disposés en regard l'un de l'autre de part et d'autre d'une zone de défilement d'une bande, chaque module de soufflage étant constitué d'une pluralité de buses tubulaires s'étendant depuis au moins un caisson de répartition, en direction de la zone de défilement d'une bande, les buses étant disposées de telles sorte que les impacts des jets sur chaque face d'une bande sont répartis aux noeuds d'un réseau bidimensionnel, et les modules de soufflage sont adaptés pour que les impacts de jets sur une face ne soient pas en regard des impacts de jets sur l'autre face.The invention also relates to a device comprising at least two blowing modules arranged facing one another on either side of a strip running zone, each blowing module being constituted by a plurality of tubular nozzles extending from at least one distribution box, in the direction of the running zone of a strip, the nozzles being arranged in such a way that the impacts of the jets on each face of a strip are distributed at the nodes of a two-dimensional network, and the blowing modules are adapted so that the impacts of jets on one side are not compared to the impacts of jets on the other side.

De préférence, les réseaux bidimensionnels, selon lesquels les impacts de jets sont répartis, sont des réseaux périodiques de même type et de même pas.Preferably, two-dimensional networks, according to which jet impacts are distributed, are periodic networks of the same type and not even.

Les réseaux peuvent être de type hexagonal.The networks can be of hexagonal type.

Plus préférentiellement, les impacts des jets sur une même face de la bande sont répartis aux noeuds du réseau bidimensionnel pour former une maille polygonale complexe dont le nombre de côtés est compris entre 3 et 20, de périodicité égale à 1 pas dans le sens travers de la bande et comprise entre 3 et 10 pas dans le sens longitudinal de la bande, de telle sorte que les traces des impacts des jets de soufflage adjacentes soient jointives sur une face de la bande dans le sens travers de ladite bande.More preferably, the impacts of the jets on the same face of the strip are distributed at the nodes of the two-dimensional network to form a complex polygonal mesh whose number of sides is between 3 and 20, of periodicity equal to 1 step in the transverse direction of the band and between 3 and 10 steps in the longitudinal direction of the strip, so that the traces of the impacts of adjacent blowing jets are contiguous on a face of the strip in the cross direction of said strip.

De préférence, les modules de soufflage sont adaptés pour que le réseau correspondant à une face et le réseau correspondant à l'autre face soient décalés l'un par rapport à l'autre, le décalage étant compris entre ¼ de pas et ¾ de pas.Preferably, the blowing modules are adapted so that the network corresponding to one face and the network corresponding to the other face are offset relative to each other, the offset being between ¼ steps and ¾ steps. .

Les axes de soufflage des buses peuvent être perpendiculaires au plan de défilement d'une bande.The nozzle blowing axes may be perpendicular to the running plane of a strip.

L'axe de soufflage d'au moins une buse peut former un angle avec la perpendiculaire au plan de défilement d'une bande.The blowing axis of at least one nozzle may form an angle with the perpendicular to the running plane of a strip.

Les orifices de soufflage des buses peuvent avoir une section ronde, polygonale, oblongue ou en forme de fente.The nozzle discharge ports may have a round, polygonal, oblong or slot-shaped section.

Les modules de soufflage sont du type avec reprise de gaz ou sans reprise de gaz.The blowing modules are of the type with gas recovery or without gas recovery.

De préférence, chaque module de soufflage est constitué d'un caisson de répartition sur lequel les buses de soufflage sont implantées.Preferably, each blowing module consists of a distribution box on which the blowing nozzles are implanted.

L'invention s'applique notamment aux installations de traitement en continu de bandes métalliques minces telles que les bandes en acier ou en aluminium. Ces traitements sont par exemple des recuits continus, des traitements de revêtement au trempé tels que la galvanisation ou l'étamage. Elle permet d'obtenir des intensités d'échanges thermiques avec la bande élevées sans engendrer des vibrations inacceptables de la bande.The invention is particularly applicable to continuous processing facilities for thin metal strips such as steel or aluminum strips. These treatments are for example continuous annealing, dip coating treatments such as galvanizing or tinning. It allows to obtain heat exchange intensities with high band without generating unacceptable vibrations of the band.

L'invention va maintenant être décrite de façon plus précise mais non limitative en regard des figures annexées dans lesquelles :

  • la figure 1 est une vue schématique en perspective d'une bande en défilement dans un module de refroidissement par soufflage d'un gaz ;
  • la figure 2 est une vue de la répartition des impacts de jets de gaz sur les zones de soufflage d'une première face et de la deuxième face d'une bande ;
  • la figure 3 montre la superposition des répartitions des impacts de jets de refroidissement sur les deux faces d'une même bande ;
  • la figure 4 est une représentation schématique de la mesure du déplacement latéral d'une bande dans un dispositif de refroidissement ;
  • la figure 5 représente l'évolution du déplacement latéral de la bande dans un dispositif de refroidissement par soufflage d'une part dans le cas où les jets de soufflage d'une face et d'une autre face sont décalés l'un par rapport à l'autre, et d'autre part dans le cas où les jets des deux faces sont en regard l'un de l'autre ;
  • la figure 6 est une représentation de la torsion moyenne d'une bande en défilement dans un dispositif de refroidissement par soufflage en fonction de la pression de soufflage, d'une part dans le cas où les jets de soufflage des deux faces sont décalés les uns par rapport aux autres, et d'autre part dans le cas où les jets de soufflage des deux faces sont en regard les uns des autres ;
  • la figure 7 représente l'évolution du déplacement latéral de la bande dans un dispositif de refroidissement par soufflage d'une part dans le cas où la bande est refroidie par un dispositif de soufflage conforme à l'invention, et d'autre part dans le cas où la bande est refroidie par un dispositif de soufflage au travers de fentes conforme à l'art antérieur ;
  • la figure 8 est la représentation schématique de la sortie d'une installation de revêtement au trempé comportant un dispositif de refroidissement.
  • la figure 9 représente l'évolution du déplacement latéral de la bande refroidie dans un dispositif de refroidissement par soufflage dans l'installation de revêtement au trempé de la figure 8, mesurée au niveau du module d'essorage, d'une part dans le cas où les jets de soufflage d'une face et d'une autre face sont décalés l'un par rapport à l'autre, et d'autre part dans le cas où les jets de soufflage des deux faces sont en regard l'un de l'autre ;
  • la figure 10 représente l'évolution du déplacement latéral de la bande refroidie dans un dispositif de refroidissement par soufflage dans l'installation de revêtement au trempé de la figure 8, mesuré au niveau du module de refroidissement, d'une part dans le cas où les jets de soufflage d'une face et d'une autre face sont décalés l'un par rapport à l'autre, et d'autre part dans le cas où les jets de soufflage des deux faces sont en regard l'un de l'autre ;
  • la figure 11 présente l'évolution dans du coefficient d'échange thermique en fonction de la puissance de soufflage des modules de soufflage, dans un dispositif de refroidissement par soufflage de la figure 8, d'une part selon l'invention où les jets de soufflage d'une face et d'une autre face sont décalés l'un par rapport à l'autre, et d'autre part dans un dispositif de refroidissement conforme à l'art antérieur où les jets de soufflage des deux faces sont en regard l'un de l'autre ;
  • la figure 12 représente une répartition des impacts des jets de gaz sur une face d'une bande en défilement assurant un soufflage uniforme sur la surface de la bande.
The invention will now be described in a more precise but nonlimiting manner with reference to the appended figures in which:
  • the figure 1 is a schematic perspective view of a strip moving in a cooling module by blowing a gas;
  • the figure 2 is a view of the distribution of the impacts of gas jets on the blowing zones of a first face and the second face of a strip;
  • the figure 3 shows the superimposition of the distribution of the impacts of cooling jets on both sides of the same band;
  • the figure 4 is a schematic representation of the measurement of the lateral displacement of a band in a cooling device;
  • the figure 5 represents the evolution of the lateral displacement of the strip in a blow-cooling device on the one hand in the case where the blowing jets of one face and another face are offset with respect to each other and on the other hand, in the case where the jets of the two faces are opposite one another;
  • the figure 6 is a representation of the average torsion of a moving strip in a blast chiller as a function of the blowing pressure, on the one hand in the case where the blast jets of the two faces are offset relative to each other. others, and secondly in the case where the blowing jets of the two faces are facing each other;
  • the figure 7 represents the evolution of the lateral displacement of the strip in a blast chiller on the one hand in the case where the strip is cooled by a blowing device according to the invention, and secondly in the case where the band is cooled by a blowing device through slots according to the prior art;
  • the figure 8 is the diagrammatic representation of the output of a dip coating installation with a cooling device.
  • the figure 9 represents the evolution of the lateral displacement of the cooled strip in a blow-cooling device in the dip coating installation of the figure 8 , measured at the level of the dewatering module, on the one hand in the case where the blowing jets of one face and another face are offset with respect to each other, and secondly in the case where the blowing jets of the two faces are facing each other;
  • the figure 10 represents the evolution of the lateral displacement of the cooled strip in a blow-cooling device in the dip coating installation of the figure 8 , measured at the level of the cooling module, on the one hand in the case where the blowing jets of one face and another face are offset relative to each other, and secondly in the case where the jets of blowing of the two faces are opposite one of the other;
  • the figure 11 presents the evolution in the heat exchange coefficient as a function of the blowing power of the blowing modules, in a blow-cooling device of the figure 8 , on the one hand according to the invention where the blowing jets of one face and another face are offset relative to each other, and secondly in a cooling device according to the prior art where the blowing jets of the two faces are facing each other;
  • the figure 12 represents a distribution of the impacts of the gas jets on a face of a moving strip ensuring uniform blowing on the surface of the strip.

L'installation de refroidissement par soufflage d'un gaz repéré généralement par 1 à la figure 1 est constituée de deux modules de soufflage 2 et 3 disposés de part et d'autre d'une bande en défilement 4. Chaque module de soufflage est constitué d'un caisson de répartition 21 d'une part et 31 d'autre part, tous les deux alimentés en gaz sous pression.The installation for cooling by blowing a gas generally identified by 1 to the figure 1 consists of two blowing modules 2 and 3 arranged on either side of a moving strip 4. Each blowing module consists of a distribution box 21 on the one hand and 31 on the other hand, all both fed with pressurized gas.

Chacun des caissons de répartition est de forme généralement parallélépipédique avec une face 22 pour l'un et 32 pour l'autre, de forme généralement rectangulaire, disposées en regard l'une de l'autre et sur lesquels sont implantés une pluralité de buses de soufflage cylindriques 23 d'une part et 33 de l'autre. Ces buses cylindriques sont des tubes d'une longueur de l'ordre de 100 mm et pouvant être comprise entre 20 mm et 200 mm, de préférence entre 50 et 150 mm, et ayant un diamètre intérieur par exemple de 9,5 mm mais pouvant être compris entre 4 mm et 60 mm. Ces tubes sont répartis sur les faces 22 et 32 des caissons de répartition de façon à ce que les impacts des jets de soufflage sur une face de la bande soient répartis selon un réseau bidimensionnel qui, de préférence, est un réseau périodique dont la maille peut être carrée ou losange de façon à constituer une répartition du type hexagonal. La distance entre deux tubes adjacents est par exemple de 50 mm, et peut être comprise entre 40 mm et 100 mm. Le nombre de buses par face d'un caisson de répartition d'un module de refroidissement, peut atteindre quelques centaines. La distance entre la tête des buses et la bande peut être comprise entre 50 et 250 mm. Afin d'obtenir une telle répartition des impacts des jets sur la bande, lorsque les buses génèrent des jets parallèles entre eux, la répartition des buses sur chaque caisson est faite selon un réseau bidimensionnel identique au réseau bidimensionnel de répartition des impacts de jets sur la bande. Mais, lorsque les jets ne sont pas tous parallèles entre eux, la répartition des buses sur un caisson est différente de la répartition des impacts des jets sur la surface de la bande.Each of the distribution boxes is of generally parallelepipedal shape with one face 22 for one and 32 for the other, of generally rectangular shape, arranged facing one another and on which are implanted a plurality of nozzle nozzles. cylindrical blowing 23 on the one hand and 33 on the other. These cylindrical nozzles are tubes of a length of the order of 100 mm and which can be between 20 mm and 200 mm, preferably between 50 and 150 mm, and having an internal diameter of for example 9.5 mm but can be between 4 mm and 60 mm. These tubes are distributed on the faces 22 and 32 of the distribution boxes so that the impacts of the blowing jets on one face of the strip are distributed according to a two-dimensional network which, preferably, is a periodic network whose mesh may to be square or rhombus so as to constitute a distribution of the hexagonal type. The distance between two adjacent tubes is for example 50 mm, and may be between 40 mm and 100 mm. The number of nozzles per side of a distribution box of a cooling module, can reach a few hundred. The distance between the nozzle head and the band can be between 50 and 250 mm. In order to obtain such a distribution of the impacts of the jets on the strip, when the nozzles generate jets parallel to each other, the distribution of the nozzles on each box is made according to a two-dimensional network identical to the two-dimensional network of distribution of jet impacts on the bandaged. But when the jets are not all parallel to each other, the distribution of the nozzles on a box is different from the distribution of the impacts of the jets on the surface of the strip.

Dans le mode de réalisation, représenté à la figure 2, les tubes sont répartis pour que les impacts 24 des jets émis par le module de soufflage 2 sur la face A de la bande soient répartis aux noeuds d'un réseau bidimensionnel qui, dans l'exemple représenté, est un réseau périodique du type hexagonal, dont le pas p est indiqué. Les buses de soufflage du deuxième module de soufflage 3, sont réparties sur le caisson de répartition 31 de façon à ce que les impacts 34 des jets de gaz sur la face B de la bande soient également répartis aux noeuds d'un réseau bidimensionnel périodique de type également hexagonal, et de maille également égale à p. Les deux réseaux bidimensionnels correspondant d'une part à la face A et d'autre part à la face B sont décalés l'un par rapport à l'autre de telle sorte que les impacts 34 des jets de gaz de la face B ne sont pas en regard des impacts 24 des jets de gaz sur la face A, de sorte que ces impacts sont en quinconce.In the embodiment, shown in figure 2 the tubes are distributed so that the impacts 24 of the jets emitted by the blowing module 2 on the side A of the strip are distributed at the nodes of a two-dimensional network which, in the example represented, is a periodic network of the hexagonal type whose step p is indicated. The blowing nozzles of the second blowing module 3 are distributed over the distribution box 31 so that the impacts 34 of the gas jets on the side B of the strip are equally distributed at the nodes of a periodic two-dimensional network of type also hexagonal, and mesh also equal to p . The two two-dimensional networks corresponding on the one hand to the face A and the other to the face B are offset relative to each other so that the impacts 34 of the gas jets of the face B are not not facing the impacts 24 gas jets on the side A, so that these impacts are staggered.

Le décalage est adapté pour que les impacts des jets sur une face soient en regard des espaces laissés libres entre les impacts des jets sur l'autre face.The offset is adapted so that the impacts of the jets on one side are opposite spaces left free between the impacts of the jets on the other side.

De ce fait, comme cela est représenté à la figure 3, dans laquelle les impacts des jets sur la face A et les jets sur la face B sont représentés de façon superposée, on obtient une répartition dense de l'ensemble des points d'impact des jets de soufflage sur les deux faces.As a result, as shown in figure 3 , in which the impacts of the jets on the face A and the jets on the face B are represented in a superimposed manner, one obtains a dense distribution of all the points of impact of the jets of blowing on both sides.

Une telle répartition des points d'impact des jets de soufflage sur chacune des faces de la bande a l'avantage de mieux répartir les contacts des jets de soufflage avec les surfaces de la bande, et donc d'assurer un refroidissement plus homogène que lorsque les jets sont en regard les uns des autres. Par voie de conséquence, le coefficient d'échange thermique entre la bande et le gaz est amélioré. Cette répartition des jets a également l'avantage de diminuer les contraintes exercées sur la surface de la bande. En outre, cette répartition des jets réduit sensiblement les vibrations de la bande et par conséquent le débattement latéral et la torsion de la bande.Such a distribution of the impact points of the blowing jets on each of the faces of the strip has the advantage of better distributing the contacts of the blowing jets with the surfaces of the strip, and thus of ensuring a more favorable cooling. homogeneous only when the jets are facing each other. As a result, the heat exchange coefficient between the strip and the gas is improved. This distribution of the jets also has the advantage of reducing the stresses exerted on the surface of the strip. In addition, this distribution of the jets substantially reduces the vibrations of the band and consequently the lateral deflection and the torsion of the band.

Les inventeurs ont constaté que pour obtenir une réduction sensible des vibrations de la bande, la répartition des points d'impact sur la surface de la bande n'a pas nécessairement besoin d'être selon un réseau bidimensionnel du type hexagonal, ni que le décalage entre les deux réseaux soit égal à un demi pas.The inventors have found that in order to obtain a significant reduction of the vibrations of the strip, the distribution of the points of impact on the surface of the strip does not necessarily have to be in a two-dimensional hexagonal network, nor that the offset between the two networks is equal to half a step.

En effet, l'essentiel est d'une part que le gaz en retour, c'est-à-dire le gaz qui a été soufflé contre la bande et qui doit se dégager, puisse s'échapper en circulant entre les buses aussi bien perpendiculairement que parallèlement au sens de défilement de la bande, et d'autre part que les points d'impact ne soient pas en regard les uns des autres, le décalage entre les deux réseaux pouvant être compris, par exemple, entre un quart de pas et trois quart de pas. Ce décalage peut se faire soit dans le sens de défilement de la bande, soit dans le sens perpendiculaire au défilement de la bande.Indeed, the essential is on the one hand that the back gas, that is to say the gas that has been blown against the band and must be released, can escape by circulating between the nozzles as well perpendicularly than parallel to the direction of travel of the strip, and secondly that the points of impact are not opposite each other, the offset between the two networks can be understood, for example, between a quarter of a step and three quarters of a step. This offset can be done either in the direction of travel of the band, or in the direction perpendicular to the scrolling of the band.

Les inventeurs ont également constaté que les buses de soufflage de gaz peuvent avoir des sections de formes diverses. Ce peut être par exemple des orifices de soufflage de section circulaire ou de section polygonale, par exemple tels que des carrés ou des triangles, ou encore des formes oblongues, ou même en forme de fentes de faible longueur.The inventors have also found that the gas blowing nozzles may have sections of various shapes. This may be for example blowholes of circular section or polygonal section, for example such as squares or triangles, or oblong shapes, or even in the form of slits of short length.

En revanche, il est important que le soufflage se fasse par l'intermédiaire de buses de type tubulaire qui s'étendent à une distance suffisamment importante des faces latérales des caissons de répartition de façon à permettre une évacuation du gaz en retour, par circulation à la fois parallèlement au sens de défilement de la bande et perpendiculairement au sens de défilement de la bande. En effet, c'est la combinaison de la bonne répartition de l'évacuation des gaz et de la répartition des points d'impact des jets de gaz sur la surface de la bande qui permet d'obtenir une bonne stabilité de la bande.On the other hand, it is important that the blowing is done by means of tubular type nozzles which extend at a sufficiently large distance from the lateral faces of the distribution boxes so as to allow the return gas to be evacuated by circulation at both parallel to the direction of travel of the strip and perpendicular to the running direction of the strip. Indeed, it is the combination of the good distribution of the evacuation of the gas and the distribution of the points of impact of the gas jets on the surface of the strip which makes it possible to obtain a good stability of the strip.

A titre d'exemple, on a comparé le comportement vibratoire d'une bande en défilement entre deux modules de soufflage de forme rectangulaire d'une longueur de 2200 mm, munis de tubes cylindriques d'une longueur de 100 mm et de diamètre de 9,5 mm disposés selon un réseau du type hexagonal avec un pas de 50 mm, les deux modules de soufflage étant disposés l'un en face de l'autre de telle sorte que la distance entre la tête des buses et la bande soit de 67 mm. On a disposé entre ces deux modules de soufflage, une bande d'acier de 950 mm de large, de 0,25 mm d'épaisseur, soumise à une tension constante. On a fait varier la pression d'alimentation des caissons de répartition entre 0 et 10 kPa au-dessus de la pression atmosphérique, et on a mesuré le déplacement latéral de la bande à l'aide de trois lasers disposés dans le sens de la largueur de la bande comme représenté à la figure 4, avec un laser 40A disposé dans l'axe de la bande qui mesure la distance da, un laser 40G disposé sur le côté gauche de la bande qui mesure la distance dg à une distance D de 50 mm environ du bord de la bande, et d'autre part un troisième laser 40D disposé sur le côté droit de la bande à une distance D d'environ 50 mm du bord de la bande, et qui mesure la distance dd.By way of example, the vibratory behavior of a strip running between two rectangular-shaped blowing modules of a length has been compared. 2200 mm, equipped with cylindrical tubes with a length of 100 mm and a diameter of 9.5 mm arranged in a hexagonal pattern with a pitch of 50 mm, the two blowing modules being arranged opposite one another. the other so that the distance between the head of the nozzles and the band is 67 mm. Between these two blowing modules, a steel strip 950 mm wide, 0.25 mm thick, was placed under constant tension. The supply pressure of the distribution boxes was varied between 0 and 10 kPa above atmospheric pressure, and the lateral displacement of the strip was measured using three lasers arranged in the width direction. of the band as shown in the figure 4 with a laser 40A disposed in the axis of the strip which measures the distance d a , a laser 40G disposed on the left side of the strip which measures the distance d g at a distance D of about 50 mm from the edge of the strip , and on the other hand a third laser 40D disposed on the right side of the strip at a distance D of about 50 mm from the edge of the strip, and which measures the distance d d .

Les distances da, dg, dd sont les distances à une ligne parallèle au plan médian de la zone de défilement de la bande.The distances d a , d g , d d are the distances to a line parallel to the median plane of the band scroll zone.

A l'aide de ces mesures, on peut déterminer le déplacement moyen de la bande égal à 1/3 (dg + da + dd), et la torsion qui est égale |dg - dd| (valeur absolue de l'écart entre les déplacements latéraux).Using these measurements, we can determine the average displacement of the band equal to 1/3 (d g + d a + d d ), and the torsion which is equal | d g - d d | (absolute value of the difference between the lateral displacements).

Pour mesurer ces deux grandeurs, on fait des enregistrements pendant le soufflage. Pour le déplacement latéral, on détermine la distance moyenne pic à pic des déplacements latéraux. Pour la torsion, on détermine l'amplitude moyenne de la torsion.To measure these two quantities, recordings are made during blowing. For lateral displacement, the mean distance from peak to peak of the lateral displacements is determined. For torsion, the average amplitude of the torsion is determined.

Sur les figures 5 et 6, on a représenté d'une part les déplacements latéraux, et d'autre part les torsions moyennes, pour les modules de refroidissement selon l'invention dont les jets de gaz sont décalés les uns par rapport aux autres (les jets de gaz d'une face sont décalés par rapport aux jets de gaz de l'autre face), et d'autre part pour des modules de refroidissement de soufflage identiques aux modules précédents, mais pour lesquels les jets de soufflage d'une face sont en regard des jets de soufflage de la face opposée.On the Figures 5 and 6 , on the one hand, the lateral displacements, and on the other hand the mean torsions, are represented for the cooling modules according to the invention, the gas jets of which are offset with respect to each other (the gas jets of one face are offset with respect to the gas jets of the other face), and secondly for blowing cooling modules identical to the preceding modules, but for which the blowing jets of one face are facing the jets blowing the opposite side.

Comme on peut le constater sur la figure 5, la courbe 50 qui est relative à des modules de soufflage conformes à l'invention, montre une évolution lente des amplitudes de déplacement pic à pic de la bande qui passe d'environ 15 mm pour une surpression de soufflage de 1 kPa, à environ 30 mm pour une surpression de soufflage de 10 kPa. Sur cette figure également, la courbe 51 qui représente l'évolution de l'amplitude de déplacement pic à pic pour des modules de soufflage dont les jets de soufflage d'une face sont en face des jets de soufflage sur l'autre face, montre que l'amplitude de déplacement de la bande pour une surpression de soufflage de l'ordre de 1 kPa est toujours de 15 mm mais que cette amplitude augmente d'une façon plus importante que dans le cas précédent, et atteint environ 55 mm pour une pression de soufflage de 9 kPa puis dépasse 100 mm pour une pression de soufflage de 10 kPa.As can be seen from the figure 5 , the curve 50 which relates to blowing modules according to the invention, shows a slow evolution of the peak to peak displacement amplitudes of the band which goes from approximately 15 mm to a blast overpressure of 1 kPa, at about 30 mm for a blast overpressure of 10 kPa. In this figure also, the curve 51 which represents the evolution of the peak-to-peak displacement amplitude for blowing modules whose blowing jets of one face are in front of the blowing jets on the other side, shows that the amplitude of displacement of the band for a blow-molding overpressure of the order of 1 kPa is still 15 mm but that this amplitude increases more significantly than in the previous case, and reaches about 55 mm for a blow pressure of 9 kPa and then exceeds 100 mm for a blowing pressure of 10 kPa.

Ces courbes montrent qu'avec le dispositif selon l'invention, il est possible de faire passer la bande entre les deux modules de soufflage écartés d'une distance telle que la distance entre la tête des buses et la bande est de 67 mm, avec des pressions de soufflage pouvant atteindre 10 kPa, alors qu'avec des modules de soufflage dans lesquels les jets de soufflage sur une face sont en regard des jets de soufflage sur l'autre face, il n'est possible d'utiliser ces dispositifs que pour des surpressions de soufflage sensiblement inférieures à 9 kPa.These curves show that with the device according to the invention, it is possible to pass the strip between the two blowing modules spaced apart by a distance such that the distance between the nozzle head and the strip is 67 mm, with blowing pressures of up to 10 kPa, while with blowing modules in which the blowing jets on one side are facing the blowing jets on the other side, it is possible to use these devices that for blast overpressures substantially lower than 9 kPa.

De la même façon, la courbe 52 de la figure 6, qui représente l'évolution du vrillage ou de la torsion en fonction de la pression de soufflage montre qu'avec les dispositifs selon l'invention, le vrillage reste inférieur à 4 mm même pour des surpressions de soufflage allant jusqu'à 10 kPa. En revanche, avec des caissons dont les jets ne sont pas décalés par rapport aux autres, le vrillage peut atteindre 24 mm pour des surpressions de soufflage de 9 kPa.In the same way, the curve 52 of the figure 6 , which represents the evolution of twisting or twisting as a function of the blowing pressure shows that with the devices according to the invention, the twisting remains less than 4 mm even for blast overpressures of up to 10 kPa. On the other hand, with casings whose jets are not offset relative to the others, the twisting can reach 24 mm for overpressures of blowing of 9 kPa.

Afin de comparer le comportement de la bande lorsqu'elle est refroidie à l'aide des modules de soufflage conformes à l'invention et des modules de soufflage conformes à l'art antérieur dans lesquels les caissons de répartition soufflent de l'air au travers des fentes s'étendant latéralement, on a mesuré l'amplitude de déplacement de la bande en fonction de la surpression de soufflage, pour des distances entre les têtes des buses de soufflage et la surface de la bande de 67 mm, 85 mm et 100 mm, d'une part avec les modules de soufflage conformes à l'invention, d'autre part avec des modules de soufflage conformes à l'art antérieur.In order to compare the behavior of the strip when it is cooled using the blowing modules according to the invention and blowing modules according to the prior art in which the distribution boxes blow air through laterally extending slits, the displacement amplitude of the strip was measured as a function of the blast overpressure, for distances between the heads of the blast nozzles and the surface of the strip of 67 mm, 85 mm and 100 mm. mm, on the one hand with the blowing modules according to the invention, on the other hand with blowing modules according to the prior art.

Ces résultats sont représentés à la figure 7 dans laquelle les courbes 54, 55, 56 relatives à la bande refroidie par un dispositif de soufflage conforme à l'invention pour des distances respectivement de 67 mm, 85 mm et 100 mm, sont quasiment superposées et montrent que pour des surpressions de soufflage pouvant atteindre 10 kPa, les amplitudes de déplacement restent inférieures à 30 mm.These results are represented in figure 7 in which the curves 54, 55, 56 relating to the strip cooled by a blowing device according to the invention for distances of respectively 67 mm, 85 mm and 100 mm, are almost superimposed and show that for blast pressures of up to 10 kPa, the displacement amplitudes remain less than 30 mm.

Les courbes 57, 58, 59 relatives à la bande refroidie à l'aide des dispositifs conformes à l'art antérieur qui soufflent le gaz à travers des fentes s'étendant sur la largeur de la bande, correspondent à des distances entre les buses de soufflage et la bande respectivement de 67 mm, 85 mm et 100 mm. Ces courbes montrent que pour des pressions de soufflage atteignant 4 kPa, le déplacement de la bande dépasse 100 mm et peut atteindre 150 mm.The curves 57, 58, 59 relating to the strip cooled with the devices according to the prior art which blow the gas through slots extending over the width of the strip, correspond to distances between the nozzles of blowing and the strip respectively of 67 mm, 85 mm and 100 mm. These curves show that for blowing pressures up to 4 kPa, the displacement of the strip exceeds 100 mm and can reach 150 mm.

On a également caractérisé le comportement vibratoire d'une bande en défilement dans l'installation industrielle de revêtement au trempé dans un bain de métal liquide repérée généralement par 200 à la figure 8, comprenant à la sortie du bain 201 un module d'essorage 202, et en aval du module d'essorage un module de refroidissement repéré généralement par 203. Ce module de refroidissement comprend quatre modules de soufflage 203A, 203B, 203C et 203D, de forme rectangulaire d'une longueur d'environ 6500 mm et d'une largeur de 1600 mm. Chaque module de soufflage est muni de buses cylindriques d'une longueur de 100 mm et de diamètre de 9,5 mm disposées selon un réseau du type hexagonal, avec un pas de 60 mm. Les quatre modules de soufflage sont disposés de façon à former deux blocs 204 et 205 de deux modules 203A, 203B et 203C, 203D respectivement, disposés en regard l'un de l'autre de part et d'autre d'une zone de défilement d'une bande 206. La distance entre la tête des buses et la bande est de 100 mm. En outre, pour effectuer les essais décrits ci-dessous, on a d'une part disposé un premier moyen de mesure des déplacements latéraux de la bande 207 entre les deux blocs 204 et 205 de modules de soufflage, à environ 13 mètres en aval du module d'essorage, et d'autre part disposé un deuxième moyen de mesure des déplacements latéraux de la bande 208 en sortie du module d'essorage 202. Les deux moyens de mesure sont du type de celui qui est représenté à la figure 4. Cependant, alors que le premier moyen de mesure 207 disposé au niveau des modules de soufflage comporte de lasers, le deuxième moyen de mesure 208 disposé en sortie du module d'essorage comporte des capteurs inductifs.The vibratory behavior of a moving strip in the industrial coating plant has also been characterized by dipping in a bath of liquid metal generally identified by 200 at figure 8 , comprising at the outlet of the bath 201 a wiper module 202, and downstream of the wiper module a cooling module generally identified by 203. This cooling module comprises four blowing modules 203A, 203B, 203C and 203D, rectangular shape with a length of about 6500 mm and a width of 1600 mm. Each blowing module is equipped with cylindrical nozzles with a length of 100 mm and a diameter of 9.5 mm arranged in a hexagonal type grating, with a pitch of 60 mm. The four blowing modules are arranged so as to form two blocks 204 and 205 of two modules 203A, 203B and 203C, 203D respectively, arranged facing each other on either side of a scrolling zone. of a strip 206. The distance between the nozzle head and the strip is 100 mm. In addition, in order to carry out the tests described below, on the one hand a first means for measuring the lateral displacements of the strip 207 between the two blocks 205 and 205 of blowing modules, at about 13 meters downstream of the wiper module, and secondly disposed a second means for measuring the lateral displacements of the strip 208 at the outlet of the wiper module 202. The two measuring means are of the type of the one shown in FIG. figure 4 . However, while the first measuring means 207 disposed at the level of the blowing modules comprises lasers, the second measuring means 208 disposed at the output of the spin module comprises inductive sensors.

Pour faire les essais, on a fait défiler une bande d'acier de 0,27 mm d'épaisseur, qui, en sortie du bain, présentait une température élevée, de l'ordre de 400 °C, et qui devait présenter une température inférieure à 250°C à la sortie du module de refroidissement. On a fait défiler la bande à vitesse constante et on a fait varier la pression de soufflage. En outre, on a fait des essais d'une part avec des caissons de soufflage conformes à l'invention, c'est-à-dire dont les buses sont disposées de telle sorte que les impacts des jets sur une face de la bande ne soient pas en regard des impacts des jets sur l'autre face de la bande, d'autre part avec des caissons selon l'art antérieur, c'est-à-dire tels que les impacts des jets sur une face soient en regard des impacts des jets sur l'autre face.To carry out the tests, a 0.27 mm thick strip of steel was passed through, which, at the outlet of the bath, had a high temperature, of the order of 400 ° C., which had to have a temperature less than 250 ° C at the exit of cooling module. The belt was scrolled at constant speed and the blowing pressure was varied. In addition, tests were carried out on the one hand with blow boxes in accordance with the invention, that is to say the nozzles are arranged in such a way that the impacts of the jets on one side of the strip are not facing the impacts of the jets on the other side of the strip, on the other hand with boxes according to the prior art, that is to say such that the impacts of the jets on one side are opposite the jets impact on the other side.

Une première série de mesures du déplacement de la bande a été réalisée à l'aide du premier moyen de mesure 207 disposé entre les deux blocs de modules de soufflage. A cet effet, on a fait varier la pression d'alimentation des modules de soufflage et mesuré le déplacement de la bande à l'aide de trois lasers disposés dans le sens de la largeur de la bande en défilement.A first series of measurements of the displacement of the strip was carried out using the first measuring means 207 placed between the two blocks of blowing modules. For this purpose, the supply pressure of the blowing modules was varied and the displacement of the strip was measured using three lasers arranged in the direction of the width of the moving strip.

Une seconde série de mesures du déplacement de la bande a également été réalisée en amont du module de refroidissement dans le sens de défilement de la bande et en aval du module d'essorage, à une distance de quelques centimètres de ce dernier. Cette seconde série de mesures a été réalisée à l'aide du deuxième moyen de mesure 208.A second series of measurements of the displacement of the strip was also performed upstream of the cooling module in the running direction of the strip and downstream of the spin module, at a distance of a few centimeters from the latter. This second series of measurements was carried out using the second measurement means 208.

Pour obtenir ces deux séries de mesures, on réalise des enregistrements pendant le soufflage, dans des conditions de production identiques pour les essais relatifs à l'art antérieur et à l'invention. Pour mesurer le déplacement latéral de la bande, on a déterminé l'amplitude moyenne pic à pic des déplacements latéraux de la bande.To obtain these two series of measurements, recordings are made during blowing, under identical production conditions for the tests relating to the prior art and to the invention. To measure the lateral displacement of the band, the average peak-to-peak amplitude of the lateral displacements of the band was determined.

Sur la figure 9, on a représenté les résultats de la première série de mesures, c'est à dire les déplacements latéraux de la bande (distance pic à pic) en fonction de la puissance de soufflage, effectuée au niveau du module de soufflage.On the figure 9 the results of the first series of measurements are shown, ie the lateral displacements of the strip (peak-to-peak distance) as a function of the blowing power effected at the level of the blowing module.

La courbe 91 qui est relative à un module de refroidissement 203 conforme à l'invention, montre une quasi constance des amplitudes de déplacement pic à pic de la bande. Les amplitudes de déplacement oscillent autour de 2 à 3 mm pour une surpression de soufflage variant de 0,7 kPa à 4 kPa.The curve 91 which relates to a cooling module 203 according to the invention, shows a quasi-constant amplitude of peak to peak displacement of the band. The displacement amplitudes oscillate around 2 to 3 mm for a blast overpressure varying from 0.7 kPa to 4 kPa.

La courbe 92 représente l'évolution des amplitudes de déplacement pic à pic pour un module de refroidissement conforme à l'art antérieur. Cette courbe 92 montre que les amplitudes de déplacement de la bande pour une surpression de soufflage variant de 1,5 kPa à 2,7 kPa augmentent de manière exponentielle. Ces déformations limitent les capacités de refroidissement du dispositif et par voie de conséquence la productivité du procédé de fabrication. En effet, il a été constaté que les déformations engendraient une dégradation de la qualité du produit lorsqu'elles sont trop importantes, ce qui conduit à limiter la pressions de soufflage à au plus 2,5 kPa environ.Curve 92 represents the evolution of peak-to-peak displacement amplitudes for a cooling module according to the prior art. This curve 92 shows that the amplitudes of displacement of the band for an overpressure of blowing ranging from 1.5 kPa to 2.7 kPa increase exponentially. These deformations limit the cooling capacity of the device and consequently the productivity of the manufacturing process. Indeed, it was found that the deformations caused a degradation of the quality of the product when they are too important, which leads to limit the blowing pressures to at most 2.5 kPa.

Lorsque les déformations de la bande au niveau des modules de soufflage sont trop importantes, on constate également une dégradation du produit au niveau du module d'essorage, en amont du module de refroidissement. En effet les vibrations se propagent le long de la bande depuis les modules de soufflage jusqu'au module d'essorage, et peuvent provoquer des défauts de qualité du produit. La seconde série de mesures effectuées au niveau du module d'essorage, permet d'évaluer la répercussion au niveau du module d'essorage des vibrations de bande engendrées au niveau des modules de soufflage.When the deformations of the band at the blowing modules are too large, there is also a deterioration of the product at the level of the spin module, upstream of the cooling module. Indeed vibrations propagate along the band from the blowing modules to the spin module, and can cause defects in the quality of the product. The second series of measurements carried out at the level of the dewatering module, makes it possible to evaluate the repercussion at the level of the dewatering module of the band vibrations generated at the level of the blow modules.

Sur la figure 10, on a représenté les résultats de la seconde série de mesures. La courbe 102 représente les amplitudes de déplacement pic à pic dans le cas du dispositif conforme à l'art antérieur. Pour une pression de soufflage variant de 1,2 à 3,0 kPa, les amplitudes de déplacement au niveau du module d'essorage augmentent de manière exponentielle en passant d'environ 2,5 mm à environ 9 mm, allant jusqu'à provoquer la détérioration du produit. Cet effet des fortes pressions de soufflage sur l'amplitude des déformations de la bande, nécessite de limiter la puissance de soufflage sensiblement en dessous de 2,8 kPa.On the figure 10 the results of the second series of measurements are shown. The curve 102 represents the peak-to-peak displacement amplitudes in the case of the device according to the prior art. For a blowing pressure ranging from 1.2 to 3.0 kPa, the displacement amplitudes at the wiper module increase exponentially from about 2.5 mm to about 9 mm, up to the deterioration of the product. This effect of high blowing pressures on the amplitude of the deformations of the strip, requires limiting the blowing power substantially below 2.8 kPa.

Sur cette même figure, la courbe 101, relative au dispositif de refroidissement conforme à l'invention, reste sensiblement horizontale, en dessous de 1,8 mm, pour une pression de soufflage variant de 0,5 kPa à 3,5 kPa.In this same figure, the curve 101, relative to the cooling device according to the invention, remains substantially horizontal, below 1.8 mm, for a blowing pressure ranging from 0.5 kPa to 3.5 kPa.

Ces résultats montrent qu'avec des modules de soufflage conforme à l'invention, les amplitudes des déplacement latéraux de la bande sont considérablement réduits, cette réduction pouvant aller jusqu'à les diviser par un facteur pouvant dépasser 5.These results show that with blowing modules according to the invention, the amplitudes of the lateral displacements of the strip are considerably reduced, this reduction being able to go as far as to divide them by a factor which can exceed 5.

En outre, les inventeurs ont remarqué la disparition de la mise en torsion de la bande dans le cas du dispositif conforme à l'invention, tant au niveau du module de refroidissement qu'au niveau du module d'essorage, et ce qu'elle que soit la puissance des jets de refroidissement.In addition, the inventors have noticed the disappearance of the torsional setting of the band in the case of the device according to the invention, both at the level of the cooling module and at the level of the dewatering module, and what it whatever the power of the cooling jets.

Par ailleurs, on a représenté sur la figure 11, l'évolution du coefficient d'échange thermique en fonction de la pression de soufflage des modules de soufflage, afin de comparer les performances de refroidissement des dispositifs de refroidissement conforme à l'invention à celles des dispositifs de refroidissement conforme à l'art antérieur. Sur cette figure, la courbe 111 correspond à l'invention et la courbe 112 à l'art antérieur. Les deux courbes sont croissantes et montrent que la puissance de refroidissement augmente lorsque la pression de soufflage augmente. Cependant, la courbe relative à l'art antérieur s'arrête pour une pressinon de soufflage de 2,0 kPa car, au-delà, les vibrations engendrent une détérioration du produit. Ainsi, la puissance maximale de refroidissement est de 160 W/m2.°C. En revanche la courbe relative à l'invention se prolonge pour des pressions de soufflage allant jusqu'à 3,5 kPa ce qui permet d'atteindre une puissance de refroidissement de 200 W/m2. °C. L'invention permet donc d'augmenter très sensiblement le pouvoir d'extraction de la chaleur de la bande en défilement.Moreover, it has been shown on the figure 11 the evolution of the heat exchange coefficient as a function of the blowing pressure of the blowing modules, in order to compare the cooling performance of the cooling devices according to the invention with those of the cooling devices according to the prior art . In this figure, the curve 111 corresponds to the invention and the curve 112 to the prior art. The two curves are increasing and show that the cooling power increases as the blowing pressure increases. However, the curve relating to the prior art stops for a pressurizing blow of 2.0 kPa because, beyond, the vibrations cause a deterioration of the product. Thus, the maximum cooling power is 160 W / m 2 . On the other hand, the curve relating to the invention is extended for blowing pressures of up to 3.5 kPa, which makes it possible to reach a cooling power of 200 W / m 2 . ° C. The invention therefore makes it possible to increase the extraction power of the heat of the moving strip very substantially.

Ces résultats montrent qu'en utilisant un dispositif selon l'invention, il est possible de refroidir la bande avec des pressions de soufflage relativement importantes tout en ayant des vibrations de la bande très limitées.These results show that by using a device according to the invention, it is possible to cool the strip with relatively large blowing pressures while having very limited band vibrations.

Le lecteur comprendra que les valeurs numériques indiquées ci-dessus pour les domaines d'utilisation du module de refroidissement correspondent aux conditions d'essai particulières et notamment à l'épaisseur, à la largeur et à la vitesse de défilement de la bande.The reader will understand that the numerical values given above for the areas of use of the cooling module correspond to the particular test conditions and in particular to the thickness, the width and the running speed of the strip.

Dans l'exemple qui vient d'être décrit, les jets de soufflage sont dirigés perpendiculairement à la surface de la bande, mais il peut être avantageux d'incliner toute ou partie des jets de soufflage par rapport à la perpendiculaire à la bande. En particulier, il peut être intéressant d'orienter les jets de gaz situés sur les bords de la bande vers l'extérieur de la bande. Il peut également être intéressant d'orienter toute ou partie des jets dans le sens de défilement de la bande ou, au contraire, à l'opposé du sens de défilement de la bande, de manière à forcer l'évacuation du gaz soufflé ou du mélange gaz/eau après impact sur la bande et ainsi favoriser les échanges thermiques.In the example just described, the blowing jets are directed perpendicular to the surface of the strip, but it may be advantageous to incline all or part of the blowing jets with respect to the perpendicular to the strip. In particular, it may be advantageous to orient the gas jets located on the edges of the strip towards the outside of the strip. It may also be advantageous to orient all or part of the jets in the direction of travel of the strip or, conversely, opposite to the direction of travel of the strip, so as to force the evacuation of the blown gas or gas / water mixture after impact on the band and thus promote heat exchange.

On notera également que le gaz de soufflage, qui est un gaz pur ou un mélange de gaz, peut être de l'air ou un mélange constitué d'azote et d'hydrogène ou tout autre mélange de gaz. Ce gaz peut être à une température inférieure à la température de la bande. Le soufflage est alors utilisé pour refroidir la bande. C'est le cas, par exemple, en sortie de galvanisation à chaud ou en sortie d'un traitement de recuit d'une bande.It will also be noted that the blowing gas, which is a pure gas or a mixture of gases, may be air or a mixture consisting of nitrogen and hydrogen or any other gas mixture. This gas may be at a temperature below the temperature of the strip. The blowing is then used to cool the strip. This is the case, for example, at the hot-dip galvanizing outlet or at the outlet of a annealing treatment of a strip.

Mais, le gaz soufflé peut être un gaz chaud, et en particulier peut être un gaz de combustion de brûleur, et peut être destiné à réaliser un préchauffage d'une bande avant de la faire pénétrer dans une installation de traitement thermique.But, the blown gas may be a hot gas, and in particular may be a burner combustion gas, and may be intended to preheat a strip before it enters a heat treatment plant.

Les buses peuvent être toutes disposées sur un seul et même caisson de répartition, de forme généralement plate, ou bien être réparties sur une pluralité de caissons de répartition, ces caissons de répartition pouvant être par exemple des tubes s'étendant sur la largeur de la bande.The nozzles may all be arranged on a single distribution box, generally of flat shape, or be distributed over a plurality of distribution boxes, these distribution boxes may be for example tubes extending over the width of the bandaged.

Lorsque les caissons de répartition sont des tubes, ils peuvent également être orientés parallèlement au sens de défilement de la bande.When the distribution boxes are tubes, they can also be oriented parallel to the direction of travel of the strip.

Il est donc possible avec l'invention de réduire très sensiblement les vibrations de bande générées au niveau des caissons de répartition, de réduire très sensiblement les vibrations de bande au niveau du module d'essorage, d'augmenter sensiblement les puissances de refroidissement des caissons de répartition, de garantir une très bonne qualité du produit, et par voie de conséquence d'augmenter sensiblement la productivité du procédé de fabrication.It is therefore possible with the invention to very substantially reduce the band vibrations generated at the distribution boxes, to very substantially reduce the band vibrations at the wiper module, to substantially increase the cooling powers of the boxes. distribution, to ensure a very good product quality, and consequently to significantly increase the productivity of the manufacturing process.

Dans un mode de réalisation de l'invention préféré, les buses de soufflage sont disposées sur les caissons de répartition, de telle sorte que les impacts des jets de soufflage se chevauchent sur une face de la bande dans le sens travers de ladite bande.In a preferred embodiment of the invention, the blowing nozzles are arranged on the distribution boxes, so that the impacts of the blowing jets overlap on one side of the strip in the cross direction of said strip.

Cette disposition dans laquelle les impacts de jets de soufflage sur une face de la bande ne sont pas en regard des impacts de jets sur l'autre face de la bande, mais dans laquelle les impacts des jets sur chacune des faces de la bande se chevauchent présente l'avantage d'éviter la formation de défauts sur la bande, appelés lignes de jets, dans le sens de défilement de la bande et parallèles les unes aux autres dans le sens travers de la bande.This arrangement in which the impacts of blowing jets on one face of the strip are not opposite jet impacts on the other side of the strip, but in which the impacts of the jets on each of the faces of the strip overlap has the advantage of avoiding the formation of defects on the strip, called lines of jets, in the direction of travel of the strip and parallel to each other in the cross-machine direction of the strip.

En effet, lorsque les impacts des jets de gaz sont disposés de telle sorte qu'ils forment des lignes de jets, ces lignes de jets se manifestent par des traînées d'oxydation dans le cas du réchauffage d'une bande par soufflage d'un gaz chaud, comme par exemple de l'air chaud. Dans le cas du refroidissement d'une bande revêtue pas trempé à chaud dans un bain de métal liquide, elles se manifestent sur la bande par une succession de lignes de revêtement d'aspect de surface différent. Par exemple, dans le cas de la galvanisation d'une bande, celle-ci présente à l'issue du refroidissement dans un dispositif de refroidissement ne comprenant pas de chevauchement des jets d'impact sur une même face de la bande, par une succession de lignes d'aspect de surface brillante et de lignes d'aspect de surface matte.Indeed, when the impacts of the gas jets are arranged so that they form lines of jets, these jet lines are manifested by oxidation streaks in the case of reheating of a strip by blowing a hot gas, like for example hot air. In the case of cooling a coated strip not hot dipped in a bath of liquid metal, they are manifested on the strip by a succession of coating lines of different surface appearance. For example, in the case of the galvanization of a strip, it has after cooling in a cooling device not including overlapping impact jets on the same side of the strip, by a succession lines of shiny surface appearance and matte surface appearance lines.

Pour éviter la formation de ces lignes de jet, on peut disposer les buses de telle sorte que les impacts des jets sur une face de la bande soient réparties selon plusieurs lignes s'étendant chacune sur la largeur de la bande, chaque ligne comportant une pluralité d'impacts de diamètre d déterminé et répartis régulièrement selon un pas p, les impacts de deux lignes successives ou de deux groupes de lignes successifs étant décalées latéralement de telles sortes que les lignes de jets résultant des différentes lignes conduisent à des lignes de jets qui recouvrent l'ensemble de la largeur de la bande.To avoid the formation of these jet lines, the nozzles can be arranged in such a way that the impacts of the jets on one face of the strip are distributed along several lines each extending over the width of the strip, each line comprising a plurality of impacts of diameter d determined and distributed regularly in a pitch p, the impacts of two successive lines or of two groups of successive lines being offset laterally such that the lines of jets resulting from the different lines lead to lines of jets which cover the entire width of the band.

A la figure 12, on a représenté un exemple de répartition des impacts qui assure une bonne uniformité des actions des jets sur toute la surface de la bande.To the figure 12 an example of distribution of the impacts is shown which ensures a good uniformity of the actions of the jets on the whole surface of the band.

On a représenté sur cette figure, une partie du réseau formé par les impacts des jets sur une face d'une bande 300. Ce réseau est formé par un motif constitué de quatre lignes d'impacts qu'on peut diviser en deux groupe : un premier groupe constitué de deux lignes d'impacts 301 A et 301 B, et un deuxième groupe de deux lignes d'impacts 304A et 304B. Chaque ligne 301 A, 301 B, 304A et 304B est constituée d'impacts 302A, 302B, 305A et 305B, respectivement, répartis régulièrement avec un pas p. Dans chacun des groupes, la deuxième ligne 301 B ou 304B, se déduit de la première ligne 301 A ou 301 B, respectivement, d'une part par une translation latérale d'un demi pas soit p/2, et d'autre part, par une translation longitudinale d'une longueur I. En outre, le deuxième groupe de lignes, constitué des lignes 305A et 305B, se déduit du premier groupe de lignes 301 A et 301 B par une translation latérale d'une distance d égale au diamètre d d'un impact. Avec cette disposition, les traces laissées par les impacts sur la bande 303A, 303B pour les impacts 302A et 302B, et 306A, 306 B pour les impacts 305A et 305B, forment des bandes qui sont jointives dès lors que le diamètre d'un impact est au moins égal au quart du pas p séparant deux impacts adjacents sur une même ligne. Lorsqu'on souhaite augmenter le nombre d'impacts, on peut étendre le réseau en reproduisant la répartition des impacts qui vient d'être décrite par translation d'une longueur égale à quatre fois la distance I séparant deux lignes successives. On obtient ainsi un réseau périodique dont la maille est un polygone complexe.This figure shows a part of the network formed by the impacts of the jets on a face of a band 300. This network is formed by a pattern consisting of four lines of impacts that can be divided into two groups: one first group consisting of two impact lines 301 A and 301 B, and a second group of two impact lines 304A and 304B. Each line 301A, 301B, 304A and 304B consists of impacts 302A, 302B, 305A and 305B, respectively, distributed regularly with a pitch p. In each of the groups, the second line 301 B or 304B is deduced from the first line 301 A or 301 B, respectively, firstly by a lateral translation of a half step or p / 2, and secondly by a longitudinal translation of a length I. In addition, the second group of lines, consisting of the lines 305A and 305B, is deduced from the first group of lines 301A and 301B by a lateral translation of a distance d equal to diameter d of an impact. With this arrangement, the traces left by the impacts on the strip 303A, 303B for the impacts 302A and 302B, and 306A, 306B for the impacts 305A and 305B, form strips that are contiguous when the diameter an impact is at least equal to a quarter of the pitch p separating two adjacent impacts on the same line. When it is desired to increase the number of impacts, the network can be extended by reproducing the distribution of impacts that has just been described by translation of a length equal to four times the distance I separating two successive lines. We thus obtain a periodic network whose mesh is a complex polygon.

Dans l'exemple qui vient d'être décrit, on utilise quatre lignes d'impacts pour assurer une bonne couverture de la bande par les traces des impacts. Mais, l'homme du métier comprendra que d'autres dispositions sont possibles. Et, en particulier la bonne couverture de la surface de la bande peut être obtenue par une répartition des impacts des jets des buses de soufflage sur une même face de la bande aux noeuds d'un réseau bidimensionnel en formant une maille polygonale complexe dont le nombre de côtés est compris entre 3 et 20, de périodicité égale à 1 pas dans le sens de la largeur de la bande et comprise entre 3 et 20 pas dans le sens longitudinal de la bande. Cette répartition doit être adaptée en tenant compte notamment de la largeur d'un impact d'un jet d'une buse de soufflage. L'homme du métier sait faire une telle adaptation.In the example just described, four lines of impact are used to ensure good coverage of the band by the traces of the impacts. But, those skilled in the art will understand that other arrangements are possible. And, in particular the good coverage of the surface of the strip can be obtained by a distribution of the impacts of the jets of the blowing nozzles on the same face of the band at the nodes of a two-dimensional network by forming a complex polygonal mesh whose number of sides is between 3 and 20, of periodicity equal to 1 step in the direction of the width of the strip and between 3 and 20 steps in the longitudinal direction of the strip. This distribution must be adapted taking into account in particular the width of an impact of a jet of a blowing nozzle. The skilled person knows how to make such an adaptation.

Avec de telles répartitions des impacts, les inventeurs ont constaté la disparition du défaut de lignes de jet dans le cas de modules de refroidissement conformes à l'invention.With such impact distributions, the inventors have noted the disappearance of the defect of jet lines in the case of cooling modules according to the invention.

Claims (27)

  1. Method for acting on the temperature of a moving strip (4) by blowing gas or a water/gas mixture thereon, according to which a plurality of jets of gas or a water/gas mixture are discharged onto each face of the strip, which jets extending in the direction of the surface of the strip and being arranged so that the impact points (24, 34) of the jets of gas or water/gas mixture on each surface of the strip are distributed at the junction points of a bidirectional network, the impact points (24) of the jets on a face (A) of the strip not facing the impact points (34) of the jets on the other face (B) of the strip, characterised in that the jets of gas or water/gas mixture are discharged from tubular nozzles (23, 33) fed by at least one supply tank (21, 31) and extend at a distance from the supply tank in order to leave a space for the gas or water/gas mixture to circulate back in parallel to the longitudinal direction of the strip and perpendicularly to the longitudinal direction of the strip.
  2. Method according to claim 1, characterised in that the jets of gas or water/gas mixture are perpendicular to the surface of the strip.
  3. Method according to claim 1, characterised in that the axis of at least one jet of gas or water/gas mixture forms an angle with the perpendicular to the surface of the strip.
  4. Method according to any one of claims 1 to 3, characterised in that the bidirectional distribution networks of the jet impact points on each of the faces of the strip are periodic, of the same type or possibly not.
  5. Method according to claim 4, characterised in that the networks are hexagonal.
  6. Method according to one of claims 1 to 3, characterised in that the impact points of the jets on the same face of the strip are distributed at the junction points of the bidirectional network to form a complex polygonal mesh, wherein the number of sides varies from 3 to 20, with a periodicity equal to 1 step in the cross direction of the strip and in the range of between 3 and 20 steps in the longitudinal direction of the strip, such that two adjacent points of impact of blast jets on a face of the strip are contiguous in the cross direction of said strip.
  7. Method according to any one of claims 4 to 6, characterised in that the network corresponding to one face and the network corresponding to the other face are offset in relation to one another, and in that the offset is in the range of between a 1/4 of a step to 3/4 of a step.
  8. Method according to any one of claims 1 to 7, characterised in that the gas is a cooling gas.
  9. Method according to any one of claims 1 to 7, characterised in that the gas is a hot gas.
  10. Method according to any one of claims 1 to 9, characterised in that said at least one supply tank is cuboidal.
  11. Method according to any one of claims 1 to 9, characterised in that said at least one supply tank is flat.
  12. Method according to any one of claims 1 to 9, characterised in that the nozzles are embedded in a plurality of supply tanks.
  13. Method according to claim 12, characterised in that said supply tanks are tubes.
  14. Device for implementing the method according to any one of claims 1 to 13, of the type comprising at least two blast modules (2, 3) arranged opposite one another on either side of a moving zone of a strip (4), the blast modules (2, 3) being adjusted so that the jet impact points (24) on one face (A) do not face the jet impact points (34) on the other face (B), characterised in that each blast module (2, 3) is formed from a plurality of tubular nozzles (23, 33) extending from at least one supply tank (21, 31) in the direction of the moving zone of a strip, said nozzles being arranged so that the impact points (24, 34) of the jets on each face (A, B) of the strip are distributed at the junction points of a bidirectional network.
  15. Devices according to claim 14, characterised in that the bidirectional distribution networks, along which the jet impact points are distributed, are periodic networks of the same type and possibly not.
  16. Device according to claim 15, characterised in that the networks are hexagonal.
  17. Device according to claim 14, characterised in that the impact points of the jets on the same face of the strip are distributed at the junction points of the bidirectional network to form a complex polygonal mesh, wherein the number of sides varies from 3 to 20, with a periodicity equal to 1 step in the cross direction of the strip and in the range of between 3 and 20 steps in the longitudinal direction of the strip, such that the adjacent points of impact of the blast jets are contiguous on a face of the strip in the cross direction of said strip.
  18. Device according to any one of claims 15 to 17, characterised in that the blast modules (2, 3) are adjusted so that the network corresponding to one face (A) and the network corresponding to the other face (B) are offset in relation to one another, and in that the offset is in the range of between a 1/4 of a step to 3/4 of a step.
  19. Device according to any one of claims 14 to 18, characterised in that the blowing axes of the nozzles are perpendicular to the plane of movement of said strip (4).
  20. Device according to any one of claims 14 to 18, characterised in that the blowing axis of at least one nozzle forms an angle with the perpendicular to the plane of movement of said strip (4).
  21. Device according to any one of claims 14 to 20, characterised in that the blowing orifices of the nozzles have a round, polygonal, oblong or slot-shaped cross-section.
  22. Device according to any one of claims 14 to 21, characterised in that the blast modules are configured with gas recovery or without gas recovery system.
  23. Device according to any one of claims 14 to 22, characterised in that each blast module (23) is formed from at least one supply tank (21, 31), in which blast nozzles (23, 33) are embedded.
  24. Device according to claim 23, characterised in that said at least one supply tank is cuboidal.
  25. Device according to claim 23, characterised in that said at least one supply tank is flat.
  26. Device according to claim 23, characterised in that the nozzles are installed on a plurality of supply tanks.
  27. Device according to claim 26, characterised in that said supply tanks are tubes.
EP08300145A 2008-03-14 2008-03-14 Method and device for blowing a gas onto a moving strip Active EP2100673B1 (en)

Priority Applications (24)

Application Number Priority Date Filing Date Title
PL08300145T PL2100673T3 (en) 2008-03-14 2008-03-14 Method and device for blowing a gas onto a moving strip
PT08300145T PT2100673E (en) 2008-03-14 2008-03-14 Method and device for blowing a gas onto a moving strip
DK08300145.3T DK2100673T3 (en) 2008-03-14 2008-03-14 Method and apparatus for blowing a gas on a conveyor belt
EP08300145A EP2100673B1 (en) 2008-03-14 2008-03-14 Method and device for blowing a gas onto a moving strip
AT08300145T ATE494968T1 (en) 2008-03-14 2008-03-14 METHOD AND DEVICE FOR BLOWING GAS ONTO A MOVING BELT
DE602008004430T DE602008004430D1 (en) 2008-03-14 2008-03-14 Method and apparatus for blowing gas onto a moving belt
ES08300145T ES2359594T3 (en) 2008-03-14 2008-03-14 GAS BLOWING PROCEDURE AND DEVICE ON A CIRCULATING BAND.
SI200830202T SI2100673T1 (en) 2008-03-14 2008-03-14 Method and device for blowing a gas onto a moving strip
BRPI0821280-5 BRPI0821280B1 (en) 2008-03-14 2008-10-21 method for acting on the temperature of a moving strip and device for performing the method
AU2008352731A AU2008352731B2 (en) 2008-03-14 2008-10-21 Method and device for blowing gas on a running strip
CA2718465A CA2718465C (en) 2008-03-14 2008-10-21 Method and device for blowing gas on a running strip
PCT/FR2008/051895 WO2009112654A1 (en) 2008-03-14 2008-10-21 Method and device for blowing gas on a running strip
CN2008801280534A CN101970141A (en) 2008-03-14 2008-10-21 Method and device for blowing a gas onto a moving strip
MX2010010147A MX2010010147A (en) 2008-03-14 2008-10-21 Method and device for blowing gas on a running strip.
US12/594,773 US8591675B2 (en) 2008-03-14 2008-10-21 Method and device for blowing gas on a running strip
UAA201010937A UA99000C2 (en) 2008-03-14 2008-10-21 Method and device for blowing a running strip
KR1020137035134A KR20140008473A (en) 2008-03-14 2008-10-21 Method and device for blowing gas on a running strip
KR1020107022638A KR101374459B1 (en) 2008-03-14 2008-10-21 Method and device for blowing gas on a running strip
CN2012105631383A CN103056176A (en) 2008-03-14 2008-10-21 Method and device for blowing gas on running strip
EA201001485A EA020625B1 (en) 2008-03-14 2008-10-21 Method and device for blowing gas on a running strip
JP2010550229A JP5399423B2 (en) 2008-03-14 2008-10-21 Method and apparatus for blowing gas onto a running strip
ZA2010/06553A ZA201006553B (en) 2008-03-14 2010-09-13 Method and device for blowing gas on a running strip
HR20110233T HRP20110233T1 (en) 2008-03-14 2011-03-31 Method and device for blowing a gas onto a moving strip
US14/058,750 US9222700B2 (en) 2008-03-14 2013-10-21 Method and device for blowing gas on a running strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08300145A EP2100673B1 (en) 2008-03-14 2008-03-14 Method and device for blowing a gas onto a moving strip

Publications (2)

Publication Number Publication Date
EP2100673A1 EP2100673A1 (en) 2009-09-16
EP2100673B1 true EP2100673B1 (en) 2011-01-12

Family

ID=39496216

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08300145A Active EP2100673B1 (en) 2008-03-14 2008-03-14 Method and device for blowing a gas onto a moving strip

Country Status (21)

Country Link
US (2) US8591675B2 (en)
EP (1) EP2100673B1 (en)
JP (1) JP5399423B2 (en)
KR (2) KR20140008473A (en)
CN (2) CN101970141A (en)
AT (1) ATE494968T1 (en)
AU (1) AU2008352731B2 (en)
BR (1) BRPI0821280B1 (en)
CA (1) CA2718465C (en)
DE (1) DE602008004430D1 (en)
DK (1) DK2100673T3 (en)
EA (1) EA020625B1 (en)
ES (1) ES2359594T3 (en)
HR (1) HRP20110233T1 (en)
MX (1) MX2010010147A (en)
PL (1) PL2100673T3 (en)
PT (1) PT2100673E (en)
SI (1) SI2100673T1 (en)
UA (1) UA99000C2 (en)
WO (1) WO2009112654A1 (en)
ZA (1) ZA201006553B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019201622A1 (en) 2018-04-20 2019-10-24 Schwartz Gmbh Temperature-control device for partially cooling a component
WO2022053847A1 (en) 2020-09-08 2022-03-17 Arcelormittal Filtration system

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4977878B2 (en) * 2009-10-27 2012-07-18 Jfeスチール株式会社 Gas jet cooling device for continuous annealing furnace
DE102011118197B3 (en) * 2011-11-11 2013-05-08 Thyssenkrupp Steel Europe Ag A method and apparatus for hot dip coating a metal strip with a metallic coating
JP5825250B2 (en) * 2012-12-25 2015-12-02 Jfeスチール株式会社 Method and apparatus for cooling hot-rolled steel strip
EP2826570B1 (en) 2013-07-16 2017-02-01 Cockerill Maintenance & Ingéniérie S.A. Pre-cooling system with controlled internal adjustment
CN104249081B (en) * 2014-08-27 2016-06-15 山东钢铁股份有限公司 The control method of air-cooled blower fan and device
CA2983069C (en) * 2015-05-07 2023-03-28 Cockerill Maintenance & Ingenierie S.A. Method and device for reaction control
EP3173495A1 (en) * 2015-11-25 2017-05-31 Cockerill Maintenance & Ingenierie S.A. Method and device for reaction control
ES2781198T3 (en) * 2015-05-29 2020-08-31 Voestalpine Stahl Gmbh Method for non-contact cooling of steel sheets and device for it
FR3046423B1 (en) * 2015-12-30 2018-04-13 Fives Stein DEVICE AND METHOD FOR REALIZING CONTROLLED OXIDATION OF METAL BANDS IN A CONTINUOUS PROCESSING FURNACE
DE102016103079A1 (en) * 2016-02-22 2017-08-24 Loi Thermprocess Gmbh Apparatus and method for heat treating a flat product
DE102017111991B4 (en) 2017-05-31 2019-01-10 Voestalpine Additive Manufacturing Center Gmbh Device for cooling hot, plane objects
US10900098B2 (en) 2017-07-04 2021-01-26 Daido Steel Co., Ltd. Thermal treatment furnace
CN107414241A (en) * 2017-07-31 2017-12-01 安徽华众焊业有限公司 A kind of soldering spray equipment
EP3663417B1 (en) * 2017-11-20 2022-01-05 Primetals Technologies Japan, Ltd. Cooling apparatus for metal strip and continuous heat treatment facility for metal strip
CN111954722A (en) * 2018-02-06 2020-11-17 集成热处理解决方案有限责任公司 High pressure instantaneous uniform quench to control part performance
EP3763836B1 (en) * 2019-07-11 2023-06-07 John Cockerill S.A. Cooling device for blowing gas onto a surface of a traveling strip
TWI831852B (en) * 2019-10-24 2024-02-11 香港商亞洲電鍍器材有限公司 A fluid delivery system and a method of electroplating a workpiece

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767134A (en) * 1980-10-09 1982-04-23 Nippon Steel Corp Method and installation for continuous annealing method of cold-rolled steel strip
JPH0635708B2 (en) * 1990-03-26 1994-05-11 株式会社ヒラノテクシード Heat treatment equipment
JP3028175B2 (en) * 1994-02-21 2000-04-04 株式会社ヒラノテクシード Web heat treatment equipment
JPH07252539A (en) * 1994-03-14 1995-10-03 Daido Steel Co Ltd Induction heating device of metal strip
FR2738577B1 (en) * 1995-09-12 1998-03-13 Selas Sa COOLING DEVICE FOR A LAMINATED PRODUCT
TW420718B (en) * 1995-12-26 2001-02-01 Nippon Steel Corp Primary cooling method in continuously annealing steel strip
JP3739934B2 (en) * 1998-04-02 2006-01-25 新日本製鐵株式会社 Uniform cooling method for thin steel sheet
FR2796139B1 (en) 1999-07-06 2001-11-09 Stein Heurtey METHOD AND DEVICE FOR SUPPRESSING THE VIBRATION OF STRIPS IN GAS BLOWING ZONES, ESPECIALLY COOLING ZONES
JP2001040421A (en) * 1999-07-27 2001-02-13 Nkk Corp Gas cooling device for metallic strip
JP2002018970A (en) * 2000-07-07 2002-01-22 Hirano Tecseed Co Ltd Heat treatment apparatus
US7523631B2 (en) 2002-08-08 2009-04-28 Jfe Steel Corporation Cooling device, manufacturing method, and manufacturing line for hot rolled steel band
JP2004269930A (en) * 2003-03-06 2004-09-30 Jfe Steel Kk Method for manufacturing hot dip metal coated steel sheet
FR2876710B1 (en) * 2004-10-19 2014-12-26 Kappa Thermline METHOD AND DEVICE FOR LIMITING THE VIBRATION OF STEEL OR ALUMINUM BANDS IN GAS OR AIR BLOWING COOLING ZONES
JP4395081B2 (en) * 2005-01-28 2010-01-06 新日本製鐵株式会社 Steel sheet cooling equipment
KR100973691B1 (en) * 2005-08-30 2010-08-03 제이에프이 스틸 가부시키가이샤 Cooling facility and cooling method of steel plate, and hot rolling facility and hot rolling method using the same
US8318080B2 (en) * 2005-11-11 2012-11-27 Jfe Steel Corporation Device and method for cooling hot strip
JP4905180B2 (en) * 2007-02-28 2012-03-28 Jfeスチール株式会社 Steel cooling device and cooling method
FR2925919B1 (en) * 2007-12-28 2010-06-11 Cmi Thermline Services DEVICE FOR BLOWING GAS ON A FACE OF A THREADED STRIP MATERIAL
JP5020863B2 (en) * 2008-03-04 2012-09-05 新日鐵住金ステンレス株式会社 Steel bar manufacturing equipment
JP5198126B2 (en) * 2008-04-15 2013-05-15 新日鐵住金ステンレス株式会社 Cooling apparatus and cooling method for rod-like or tubular metal material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019201622A1 (en) 2018-04-20 2019-10-24 Schwartz Gmbh Temperature-control device for partially cooling a component
WO2022053847A1 (en) 2020-09-08 2022-03-17 Arcelormittal Filtration system
WO2022053927A1 (en) 2020-09-08 2022-03-17 Arcelormittal Filtration system

Also Published As

Publication number Publication date
DE602008004430D1 (en) 2011-02-24
EA020625B1 (en) 2014-12-30
US8591675B2 (en) 2013-11-26
ATE494968T1 (en) 2011-01-15
BRPI0821280A2 (en) 2019-12-10
ES2359594T3 (en) 2011-05-25
MX2010010147A (en) 2010-10-20
UA99000C2 (en) 2012-07-10
KR101374459B1 (en) 2014-03-17
PT2100673E (en) 2011-04-01
EP2100673A1 (en) 2009-09-16
US9222700B2 (en) 2015-12-29
KR20140008473A (en) 2014-01-21
CN103056176A (en) 2013-04-24
PL2100673T3 (en) 2011-06-30
US20110018178A1 (en) 2011-01-27
BRPI0821280B1 (en) 2019-12-10
CA2718465A1 (en) 2009-09-17
AU2008352731A1 (en) 2009-09-17
JP2011516723A (en) 2011-05-26
CN101970141A (en) 2011-02-09
KR20100130625A (en) 2010-12-13
HRP20110233T1 (en) 2011-06-30
CA2718465C (en) 2014-04-08
US20140047729A1 (en) 2014-02-20
AU2008352731B2 (en) 2014-06-19
ZA201006553B (en) 2011-06-29
SI2100673T1 (en) 2011-05-31
WO2009112654A1 (en) 2009-09-17
DK2100673T3 (en) 2011-05-09
JP5399423B2 (en) 2014-01-29
EA201001485A1 (en) 2011-02-28

Similar Documents

Publication Publication Date Title
EP2100673B1 (en) Method and device for blowing a gas onto a moving strip
US6896033B2 (en) Cooling drum for continuously casting thin cast piece and fabricating method and device therefor and thin cast piece and continuous casting method therefor
EP0128842B1 (en) Tempering of glass
EP1655383B1 (en) Process and device for limiting the vibrations of aluminium or steel sheets during gas cooling
EP1108795B1 (en) Process and device for preventing buckling of strip in a fast cooling zone of a heat treatment line
EP1199543B1 (en) Method and device for flatness detection
EP0761829B1 (en) Cooling device for rolled products
FR2552448A1 (en) APPARATUS FOR CONTINUOUSLY COOLING A HEATED METAL PLATE
EP3555324B1 (en) Method and section for quick cooling of a continuous line for treating metal belts
EP1029933B1 (en) Device for heat exchanging with a flat product
EP2826570A1 (en) Pre-cooling system with controlled internal adjustment
BE1018202A3 (en) Device for spin hydrodynamics a band metal scroll contunu.
FR2649340A1 (en) METHOD AND DEVICE FOR CONTINUOUS CASTING BETWEEN CYLINDERS OF THIN METAL PRODUCTS FOR DIRECT COLD ROLLING
FR2473025A1 (en) METHOD AND APPARATUS FOR PREVENTING THE OSCILLATION OF A TAPE DURING TRIPPING
EP0526360A1 (en) Method to improve the surface quality and the regularity in thickness of thin cast metallic ribbons
FR2571384A1 (en) PROCESS OF HARDENING HARDWARE OF METAL SHEETS SUCH AS STEEL AND INSTALLATION FOR IMPLEMENTING SAME
FR2757790A1 (en) METHOD OF CONTINUOUS CASTING THIN METAL BANDS BETWEEN TWO CYLINDERS, AND INSTALLATION FOR ITS IMPLEMENTATION
BE1016113A3 (en) Secondary cooling procedure for a continuously cast metal slab uses cooling liquid delivered in jets that cool slabs of various widths
FR2628347A1 (en) Method and installation for continuous rolling - of metal strip in tandem mill
BE826200A (en) COOLING DEVICE FOR LAMINATED STEEL PRODUCTS
JP2008006488A (en) Cooling method of hot-rolled steel strip
FR2671741A1 (en) PROCESS AND INSTALLATION FOR COOLING BY RUNNING WITH HARDENING OF FLAT PRODUCTS.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090226

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

17Q First examination report despatched

Effective date: 20100910

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 602008004430

Country of ref document: DE

Date of ref document: 20110224

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008004430

Country of ref document: DE

Effective date: 20110224

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: HR

Ref legal event code: TUEP

Ref document number: P20110233

Country of ref document: HR

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20110325

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2359594

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20110525

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20110112

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20110400783

Country of ref document: GR

Effective date: 20110513

REG Reference to a national code

Ref country code: HR

Ref legal event code: T1PR

Ref document number: P20110233

Country of ref document: HR

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 9090

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110512

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E010814

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20111013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008004430

Country of ref document: DE

Effective date: 20111013

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: BE

Ref legal event code: PD

Owner name: ARCELORMITTAL; LU

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), AUTRE, CHANGE OF ADRES; FORMER OWNER NAME: ARCELORMITTAL FRANCE

Effective date: 20180717

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20110233

Country of ref document: HR

Payment date: 20190220

Year of fee payment: 12

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20110233

Country of ref document: HR

Payment date: 20200221

Year of fee payment: 13

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20110233

Country of ref document: HR

Payment date: 20210225

Year of fee payment: 14

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20110233

Country of ref document: HR

Payment date: 20220310

Year of fee payment: 15

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20110233

Country of ref document: HR

Payment date: 20230228

Year of fee payment: 16

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20240220

Year of fee payment: 17

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20110233

Country of ref document: HR

Payment date: 20240228

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20240222

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LT

Payment date: 20240220

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240220

Year of fee payment: 17

Ref country code: IE

Payment date: 20240222

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240222

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20240301

Year of fee payment: 17

Ref country code: HU

Payment date: 20240311

Year of fee payment: 17

Ref country code: FI

Payment date: 20240223

Year of fee payment: 17

Ref country code: EE

Payment date: 20240221

Year of fee payment: 17

Ref country code: DE

Payment date: 20240220

Year of fee payment: 17

Ref country code: CZ

Payment date: 20240226

Year of fee payment: 17

Ref country code: BG

Payment date: 20240227

Year of fee payment: 17

Ref country code: GB

Payment date: 20240220

Year of fee payment: 17

Ref country code: PT

Payment date: 20240221

Year of fee payment: 17

Ref country code: SK

Payment date: 20240228

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20240301

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240304

Year of fee payment: 17

Ref country code: SE

Payment date: 20240220

Year of fee payment: 17

Ref country code: PL

Payment date: 20240223

Year of fee payment: 17

Ref country code: NO

Payment date: 20240222

Year of fee payment: 17

Ref country code: IT

Payment date: 20240220

Year of fee payment: 17

Ref country code: HR

Payment date: 20240228

Year of fee payment: 17

Ref country code: FR

Payment date: 20240221

Year of fee payment: 17

Ref country code: DK

Payment date: 20240220

Year of fee payment: 17

Ref country code: BE

Payment date: 20240220

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240402

Year of fee payment: 17